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Abstract:

Mechanisms of northern Tibet crustal thickening are strongly debated. Here we
present a high-resolution and continuous record (24-4.8 Ma) of anisotropy of
magnetic susceptibility and paleomagnetic declination from the Dahonggou section in
the northern Qaidam Basin, northern Tibet. Our results reveal two major clockwise
rotations of the regional paleostress field at ~15 Ma (~20°) and ~8.4 Ma (~15°),
coeval with episodes of mountain building and basin deformation in northern Tibet.
We suggest that simultaneous stress field rotation and uplift observed in the study area
are related to progressively slowing lateral-extrusion tectonics along
boundary-parallel strike-slip faults (Altyn Tagh and Haiyuan faults). The 15 Ma event
can be explained by the transition from northeastward to eastward extrusion of

northern Tibet materials due to the obstruction of the rigid Alxa block. As deformation
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keeps migrating towards the east, the 8 Ma event is possibly related to a change from
eastward to southeastward extrusion of northeastern Tibet materials as a result of the
resistance of the rigid Ordos block. We conclude that Tibetan deformation evolved
through successive stages of slowing extrusion tectonics since the mid-Miocene.
Deformation was initially localized along pre-existing lithospheric structures, and
subsequently more distributed under confining boundary conditions, leading to crustal
thickening and uniform uplift of northern Tibet during the late stage of plateau

development.

Plain Language Summary

How northern Tibet evolved as a far-field response to the India-Asian collision
remains an open question. Here we present high-resolution and continuous record
(24-4.8 Ma) of anisotropy of magnetic susceptibility and paleomagnetic declination
from a well-exposed sedimentary section in the northern Qaidam Basin, northern
Tibet. The results indicate two significant clockwise rotations (~20° and ~15°) of the
regional paleostress field at 15 Ma and 8.4 Ma. Interestingly, these two ages are
characterized by large-scale mountain building, basin deformation and initiation or
slowdown of major strike-slip faulting in northern Tibet. Given that the relatively
weak northern Tibet crust is surrounded by several rigid blocks on its northern and
eastern sides, we suggest that Tibetan deformation patterns since the mid-Miocene
was associated with successive stages of a weakening extrusion process (from NE- to
E-directed extrusion at 15 Ma and from E- to SE-directed extrusion at ~8 Ma) that
exploits pre-existing lithospheric weak zones. This study supports the dominant role
of strain transfer from Ilocalized strike-slip faulting to distributed thickening
deformation under confining boundary conditions in raising uniformly the crust of

northern Tibet during the late stage of plateau development.

Key points:
1. We present high-resolution anisotropy of magnetic susceptibility and

paleomagnetic data from the Neogene sediments in the Qaidam Basin.
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2. Our results indicate two major clockwise rotations (~20° and ~15°) of the regional
paleostress field at 15 Ma and 8.4 Ma, respectively.
3. We propose a slowing extrusion tectonics and accelerated uplift model to explain

the uplift mechanism of northern Tibet in the Neogene.

1 Introduction:

Two end-member models are classically invoked to account for how the vast
Tibetan Plateau was formed and is maintained: 1) “Viscous deformation” model
assumes that India’s northward convergence with Eurasia was mainly accommodated
by broadly distributed shortening in the crust and mantle of the Tibetan Plateau
(England and Houseman, 1986); 2) “Rigid deformation” model invokes instead
displacement and lateral transport of crustal slivers along major strike-slip faults, with
tectonic extrusion accommodating most of the convergence between India and
Eurasia (Tapponnier et al., 1982). One of the best sites to test these models is
northeastern Tibet, which is governed tectonically by a broad areal extent (~500, 000
km?) of active overthrusting, confined to the south and north by the major Kunlun and
Altyn Tagh-Haiyuan fault systems, respectively (Tapponnier et al., 2001).
Approximately one-fifth of India’s 36-40 mm yr' northward motion is presently
accommodated by compressional and strike-slip structures located in northern Tibet
(Zhang et al., 2004; Fig. 1A). Most of the thrust structures appear to be kinematically
linked with major strike-slip faults, suggesting a transition from strongly localized
deformation along the major faults to distributed deformation near their ends
(Burchfiel et al., 1991; Duvall et al. 2010; Kirby et al., 2007; Li et al., 2018; Zhang et
al., 2007; Zheng et al., 2013). Current GPS measurements indicate continuous lateral
extrusion toward the northeast and southeast in northern Tibet (Fig. 1A; Gan et al.,
2007; Zhang et al., 2004). Although there is a growing consensus on the details of
present structures of northern Tibet, the main controversy is principally how the crust
thickened.

The strike-slip-controlled growth model for northern Tibet (Meyer et al. 1998) is

based on the northeastward younging sedimentation onset in the basins south of the
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Altyn Tagh fault (ATF) and on the observation that most NW-SE-trending thrust faults
branch southeastwards from the ATF and Kunlun fault, which would imply a nearly
coeval onset of propagation of strike-slip faulting and crustal thickening (Fig. 2A).
The viscous sheet models considering heterogeneous mechanical strength and
preexisting weakness in the crust (Kong et al., 1997; Yin et al., 2008) or mantle
lithosphere (Clark et al., 2012) were used to explain rapid and efficient stress transfer
from the Indo-Asian collision belt to northern Tibet since the Eocene (Fig. 2B). The
viscous sheet models also argue for coeval initiation of strike-slip and thrust faulting
(Yin et al., 2002). The non-rigid passive bookshelf-fault model claims that continued
northeast-trending right-lateral shearing of northern Tibet may drive clockwise
rotation of the east-striking left-lateral Kunlun, Qinling, and Haiyuan faults and their
surroundings passively against the ATF (Fig. 2C; Zuza and Yin, 2016). This model
predicts coeval development of discrete left-lateral faults and distributed oft-fault
thickening deformation during regional clockwise rotation since the Eocene.
Additionally, convective removal of a lithospheric root underlying central Tibet was
invoked to account for rapid and uniform uplift of northern Tibet by exerting a high
deviatoric compressive stress on the surrounding areas of central Tibet since 20-15
Ma (Fig. 2D; Molnar and Stock, 2009; Yuan et al., 2013; Yue and Liou, 1999). More
recently, Zhuang et al. (2018) proposes an external boundary condition model
whereby accelerated Pacific-Asia plate convergence was responsible for the onset of
rapid topographic growth in northern Tibet beginning at 18-8 Ma. In conclusion, the
strike-slip-controlled growth model usually represents “rigid deformation” and the
convective removal and external boundary condition models can be classified into
“viscous deformation”, whereas the non-rigid passive bookshelf-fault model may be
described as a hybrid model between these two end-members.

The sedimentary record preserved in the intermontane basins of northern Tibet can
be used to constrain the mechanisms that have caused the rise of the Tibetan Plateau.
In this perspective, we performed measurements of anisotropy of magnetic
susceptibility (AMS) and paleomagnetic declination at high stratigraphic resolution in

the Dahonggou section of the northern Qaidam Basin (Fig. 1B, C), northern Tibet.
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The AMS method is a petrofabric tool to determine preferred orientation of particles
under an external force, such as gravity, wind, magnetic field, water flow, and strain,
during deposition and diagenesis of rocks (e.g., Parés et al., 1999; Li S et al., 2020;
Dallanave and Kirscher, 2020). AMS is demonstrated to be efficient in investigating
subtle tectonics-related fabrics in weakly deformed or undeformed -clay-rich
sedimentary sequences undergoing incipient tectonic deformation (Gilder et al., 2001;
He et al., 2021; Lu et al., 2014; Li et al., 2020, 2021; Nie et al., 2020; Parés et al.,
1999, 2015; Soto et al., 2009; Su et al., 2016; Weil and Yonkee, 2012; Wu et al., 2019;
Yu et al., 2014a). The comparison between AMS and paleostress data validates the
reliability of AMS ellipsoids as paleostress indicator in compressional settings (e.g.,
Soto et al., 2009). The exceptionally thick and continuous Dahonggou section is rich
in mudrocks that experienced weak deformation by single northeast-directed
compressive stress (Yin et al., 2008), making it an ideal location to investigate
paleostress field change using AMS data. In addition, magnetostratigraphic data
provide the best tool to decipher the distribution, magnitude, and timing of
vertical-axis rotations of crustal blocks (Chen et al., 2002; Dupont-Nivet et al., 2002;
LiBetal., 2018; Li S et al., 2020; Sun et al., 2005, 2006; Yan et al., 2006; Yu et al.,
2014b). Our results reveal two major clockwise rotations of the stress field at 15 and
8.4 Ma, which are combined with existing data sets on the timing of crustal thickening
and strike-slip faulting in northern Tibet to propose an improved model and thorough
understanding of the dynamic mechanism of crustal thickening of northern Tibet

during the late stage of plateau development.

2 Geological setting:

Northern Tibet is characterized by some large, 200- to 600-km-long, parallel
(N120°E) ranges with upthrusted basement (the Kunlun, Altyn Tagh, and Qilian Shan)
and several high, flat, 30- to 200-km-wide intermontane basins (e.g., Qaidam, Hexi
corridor, and Gonghe) (Fig. 1B, 3; Tapponnier et al., 2001). The longest and most
continuous lithospheric structures in northern Tibet are the sinistral strike-slip Altyn

Tagh, Kunlun, and Haiyuan faults (Fig. 3A). The ATF has a great length of ~1800 km
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between 78°E and 97°E and forms a prominent topographic limit between the Tibetan
highlands (3000-7000 m a.s.l.) and the Tarim basin (<1000 m a.s.l.). The E-W
striking Kunlun fault, extending ~1600 km between 89°E and 105°E, represents the
tectonic boundary between the high and flat main Tibet and the relatively low Qaidam
Basin. The ~1,000-km-long Haiyuan fault follows the northern edge of the Tibetan
Plateau from Hala Lake (~97°E) to Liupan Shan (east of 106°E).

2.1 Crustal rheological heterogeneities between northern Tibet and the
surrounding blocks

Northern Tibet is bordered by several rigid blocks, including the Tarim basin to the
northwest, the Alxa Block to the north and the Ordos Block to the east (Fig. 1A, 3A).
It has steep margins with large variations of crustal thickness and seismic wavespeed
(e.g., Tian et al., 2020). The crust thickness is ca. 60 km beneath the Qilian Shan and
East Kunlun Shan, but abruptly decrease to 45-50 km under the Tarim and Qaidam
basins and the Alxa and Ordos blocks (Tian and Zhang, 2013; Zhao et al., 2013).
Although these rigid blocks experienced multiple deformation events during the
Paleozoic and Meso-Cenozoic (e.g. Zhang et al., 2022), they are commonly described
as a strong resistance to the northward and northeastward growth of Tibet (e.g., Shi et
al., 2017; Tian et al., 2020). Therefore, the strong lithospheric heterogeneities along
the northern margin of northern Tibet would inhibit outward plateau growth (Chen et
al., 2017; Wolf et al., 2022; Xiao et al., 2015).

Detailed seismic imaging of lithospheric structure indicates that the North China
craton lithospheric mantle has been underthrust below the Qilian Shan crust (e.g., Ye
et al, 2015). Continental subduction induced vertical variations in mechanical
properties of the lithosphere, including a thick-skinned crustal accretionary wedges
and a middle-lower intracrustal decollement (Ye et al., 2015, 2021; Guo et al., 2016).
As large strike-slip faults may be linked at depth with subduction zones, they can
accommodate lateral extrusion during continental subduction (Wang et al., 2011).
Therefore, the crustal thrust-wedge tectonics above a mid- to lower-intracrustal

decollement may accommodate significant tectonic extrusion of the upper crust of
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northern Tibet via the strike-slip faulting of the Haiyuan fault (Ye et al., 2015, 2021;
Guo et al., 2016).

2.2 Slowing extrusion tectonics along the major faults in northern Tibet

The Cenozoic onset age of left-slip movement along the ATF may vary, depending
on the different studies, from early Eocene (~49 Ma; Yin et al., 2002) to latest
Oligocene (24+4 Ma; Yue and Liou, 1999; Ritts et al., 2008) and to as late as
mid-Miocene (15 Ma; Wu et al., 2012). It is widely accepted that the ATF experienced
a two-stage tectonic evolution: large scale (>350 km) and faster (20-30 mm/yr)
strike-slip motion from the late Oligocene to the mid-Miocene and slower (<10
mm/yr) strike-slip and distributed shortening and uplift since ~15 Ma, indicating slow
extrusion tectonics in northern Tibet after mid-Miocene (Fig. 3A; Li et al., 2021; Yue
and Liou, 1999; Ritts et al., 2008; Jian et al., 2018). This hypothesis was later
supported by a detailed paleomagnetic study that indicates clockwise and
counterclockwise vertical-axis rotations for the Kumkol and Janggalsay basins to the
south and north of the ATF, respectively, between the early Miocene and middle
Miocene, with no rotation after 15 Ma (Fig. 3A; Lu et al., 2016). Although there are
relatively few constraints on the onset timing of strike-slip motion along the Haiyuan
fault, some studies indicate consistently that the fault initiated at ~15—-10 Ma in the
western-central segment (Fig. 3A; Duvall et al., 2013; Li et al., 2019) and at ~8 Ma in
the eastern one (Fig. 3A; Zheng et al., 2006; Yuan et al., 2013). The Kunlun fault
initiated diachronously at 20—15 Ma along its central segment, at 12-8 Ma in the
western segment, and at 8-5 Ma in the eastern one (Fig. 3A; Duvall et al., 2013 and
references therein).

Seismic tomography and magnetotelluric survey across the ATF indicate that the
fault may reach lithospheric depth of ca. 140 km in its central segment, which
decrease dramatically toward its eastern and western tips (e.g., Wittlinger et al., 1998;
Xiao et al., 2015). In stark contrast, the Kunlun and Haiyuan faults reach crustal
depths of 40-50 km (Wang et al., 2011; Wang et al., 2012; Gao et al., 2013). The ATF

is vertical (Wittlinger et al., 1998), whereas the Kunlun and Haiyuan faults dip
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northward and southward, respectively, and merge with thrust duplex structures in the
middle crust (Wang et al., 2011; Gao et al., 2013).

Although estimates of the left-lateral offset along the ATF are hotly debated, most
authors agree on a cumulative slip exceeding 350 km (Fig. 3A; Chen et al., 2002;
Cheng et al., 2015, 2016; Cowgill et al., 2003; Peltzer and Tapponnier, 1988; Yue and
Liou, 1999). In comparison, the Kunlun and Haiyuan faults have much lower
cumulative offsets not exceeding 100 km (Kidd and Molnar, 1988; Fu and Awata,
2007; Gaudemer et al., 1995). Moreover, the Haiyuan Fault show an along-strike
variation of left-lateral offset, decreasing from 95+15 km in the central segment to
10-15 km at the eastern end (Gaudemer et al., 1995; Burchfiel et al., 1991). This
eastward decrease in strike-slip offset, as well as the eastward younging of the
initiation timing of strike-slip motion and gradually decreasing depths of these major
faults toward their eastern ends, may suggest a slowing extrusion tectonics in

northeastern Tibet.

2.3 Along-strike variations of slip rates of the major faults in northern Tibet
Numerous studies indicate that late Quaternary strike-slip rates based on
geochronology and variously offset geological markers are generally consistent with
present-day rates based on global positional system (GPS) and interferometric
synthetic aperture radar (InNSAR) analyses (Zheng et al., 2013; Zhang et al., 2007,
Kirby et al., 2007). The late Quaternary slip rates along the ATF show a nearly
identical variation trend from southwest to northeast (Fig. 3B; Table S1). The late
Quaternary slip rates along the Kunlun fault remain constant (10-12 mm/yr) in the
western-central segment and then decrease from ~10 to ~1 mm/yr from west to east
before reaching the eastern plateau margin (Fig. 3C; Table S1). The Quaternary slip
rates along the central Haiyuan fault are ~4.5 mm/yr and decrease to ~1 mm/yr along
the eastern termination of the fault (Fig. 3D; Table S1). The eastward decreases in
strike-slip rate indicate that localized shear strain along the left-lateral strike-slip
faults may be replaced by crustal contraction near their eastern terminations (Zheng et

al., 2013; Zhang et al., 2007; Kirby et al., 2007; Duvall et al. 2010). Unlike the
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Kunlun fault where the strain transfer near its eastern termination is diffusive, the
strain transfers end abruptly where the ATF encounters the rigid Alxa Block, and the

Haiyuan fault is resisted by the rigid Ordos Block (Li et al., 2018).

2.4 The anisotropy of magnetic susceptibility analyses of the Cenozoic
sedimentary rocks in northern Tibet

The AMS fabrics produce kinematic data to be compared to mesostructures such as
folds and faults in northern Tibet (Gilder et al., 2001; Lu et al., 2014; Nie et al., 2020;
He et al., 2021; Su et al., 2016; Wu et al., 2019; Yu et al., 2014a; Li et al., 2020, 2021).
These studies have shown that the orientation of the AMS ellipsoid is in most cases
related to the local stress field. Notably, the magnetic lineations (the principal Kpax
axis) observed in the Qaidam Basin show progressive variations with stratigraphic
depth (Huo et al., 2020; Li et al., 2020, 2021; Nie et al., 2020; Su et al., 2016; Yu et al.,
2014a), likely reflecting temporal changes in tectonic compression direction (Yu et al.,
2014a; Li et al., 2020, 2021; Su et al., 2016). However, no further study has been
conducted to investigate the variation of tectonic compression direction through time
due partly to the debated chronological framework of the Cenozoic strata in the
northern Qaidam Basin (Ji et al., 2017; Wang et al., 2017). The relatively clustered
magnetic lineation direction is due to the observation that as the deformation evolves
to the weak cleavage state, the principal K;.x axis becomes perpendicular to the
shortening direction (e.g., Dallanave and Kirscher, 2020). Until now, two distinct
tectonic processes are proposed to account for these changes, i.e., the left-lateral
strike-slip motion along the Kunlun fault or the eastward channel flow (Yu et al.,
2014a; Su et al., 2016), and the propagation of strike-slip faulting along the ATF into
the northern Qaidam marginal thrust belt (Li et al., 2020; Su et al., 2016).

2.5 Differential vertical-axis rotation of crustal blocks within northern Tibet
In strike-slip-dominated northern Tibet, relatively small (generally no more than
40°) rotations of crustal blocks have been inferred from paleomagnetic data of

Mesozoic-Cenozoic sedimentary rocks (Fig. 3A; Table S2). By taking the Qinghai
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lake and Gonghe extension area as a boundary (Li et al., 2018; Zuza and Yin, 2016),
northern Tibet can be divided into two parts: the eastern part experienced clockwise
rotations of 10-35°, which are recorded by sedimentary rocks of different ages;
whereas the western part shows no wholesale rotation (Fig. 3A; Table S2). The
significant rotations of crustal blocks are mainly concentrated along the ATF in the
western part of northern Tibet. Although a successive >30 ° rotation was documented
for a relatively long time period of >10 Ma in the Lulehe section (e.g., Li et al., 2018),
similar rotations have not been detected in other localities of the Qaidam Basin
(Dupont-Nivet et al., 2002; Sun et al., 2005; Yu et al., 2014b; This study). Therefore,
such significant rotation may be readily ascribed to a prolonged reactivation of local
structural belts in the Lulehe area. In other words, the differential rotation of northern
Tibet may be an effect of the different rheology of terranes with different geological
histories (Yin and Harrison, 2000).

2.6 Geologic and tectonic setting of the Qaidam Basin and Dahonggou section
The lozenge-shaped Qaidam basin, the biggest intermontane basin in Tibet, is
tectonically bounded by the northern Qaidam thrust belt to the north, the sinistral ATF
to the west, the Eastern Kunlun thrust belt to the south, and the dextral Wenquan Fault
to the east (Fig. 1B), and was controlled by a series of NW- and NWW-trending
thrust-fold belts that are roughly perpendicular to the direction of Indo-Asian
convergence (Fig. 1A). The basin, covering an area of ~120, 000 km?, is surrounded
by four major mountain ranges: the east Kunlun Shan and Qimen Tagh to the south,
the Altyn Tagh Range to the northwest, the Ela Shan to the east, and the Qilian
Shan-Nan Shan to the northeast (Fig. 1B, 3). These ranges are ~5000 m in elevation
on average, whereas the intervening basin is ~2800 m in elevation and includes
widespread and exceptionally thick (>10 km) Mesozoic-Cenozoic terrigenous clastic
successions (Cheng et al., 2019; Meng et al., 2001; Wu et al., 2011; Yin et al., 2008;
Zhuang et al., 2011; Jian et al., 2019). The Cenozoic deposits are well exposed by
NW-trending fold structures within the northern Qaidam basin (Fig. 1C) and reach a

thickness of 5-6 km in the Dahonggou and Lulehe sections (QBGMR, 1984). The
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axes of folds that deform the Cenozoic Dahonggou deposits generally mimic the
strike of the NW-trending Luliang Shan thrusts with the northwest-trending thrust
segments linked with the east-northeast-trending lateral ramp segments (Fig. 1C; Yin
et al.,, 2008). As such, the Luliang Shan and Dahonggou strata both exhibit an
L-shaped geometry in map view. In summary, the study area was deformed by
thrusting and folding under simple NE-directed horizontal compression.

These deposits are classically subdivided into seven formations, including from the
bottom to the top the Lulehe, lower Ganchaigou, upper Ganchaigou, lower
Youshashan, upper Youshashan, Shizigou, and Qigequan formations (Fig. 4). The
lithologies of these seven formations exhibit an initial upward-fining and then
upward-coarsening trend (Fig. 4). Magnetostratigraphic studies based on time
constraints of fossil ostracode (Ji et al., 2017) and mammal (Wang et al., 2017) yield
considerably different basal ages (~52 Ma vs ~25 Ma) for the Cenozoic deposits in
the northern Qaidam Basin. Our recent magnetostratigraphic study of the measured
~5300-m-thick Dahonggou section, with a high sampling density (2250 samples),
produced a compelling sequence of normal and reverse polarity zones (Fig. S1; Lu et
al., 2022). Magnetostratigraphic results in combination with tie points provided by
Mid-Miocene mammalian fossils indicate that these deposits span a time interval of

~24-4.8 Ma (Fig. S1; Li and Wang, 2015; Lu et al., 2022).

3 Sampling and methods:

A continuous 5300-m composite section was sampled, consisting of an eastern part
(the Lulehe Fm) and a western part (lower Ganchaigou to Shizigou Fm). (Fig. 1C).
The samples consist of mudstones and siltstones and minor sandstones with no
apparent metamorphic or hydrothermal alteration (Fig. S2). To avoid ambiguous
magnetization and potential paleocurrent imprints, no conglomerates and
coarse-grained sandstones have been included. The sampling interval was typically
1.5-5 m, reaching ~10 m in the coarsest intervals of the succession. Two specimens
were drilled at each sampling level. All samples were oriented with a magnetic

compass and then cut into cylindrical specimen (diameter: 2.5 cm, height: 2.2 cm). A



329
330
331
332
333
334
335
336
337
338
339
340

341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

total of 2009 paleomagnetic specimens were used for AMS measurement.

AMS analyses were carried out using an AGICO KLY-4S Kappa Bridge with an
automated sample handling system and applied field of 300A/m at a frequency of 875
Hz at Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of
Natural Resource, Chinese Academy of Geological Sciences, Beijing. Each sample
was rotated according to three orthogonal planes. All data were processed using the
software package of Anisoft 5.0.

The AMS parameters, including K;ps (maximum/intermediate/minimum), Km
(mean susceptibility), Pj (corrected degree of anisotropy), and T (shape factor) were
calculated following the definition of Tarling and Hrouda (1993). Km represents the
concentration of paramagnetic and ferromagnetic minerals and was computed as

(K +K,+K3)/3; Pj quantifies the degree of anisotropy (Jelinek, 1981); and T reflects
the shape of the susceptibility ellipsoid. 0<T<1 indicates oblate shapes, whereas -1<

T<O0 represents prolate shapes, and T=0 corresponds to neutral shapes (Jelinek, 1981).
The oblate and prolate shapes also correspond to K;=K,>K; and K;>K,=Kj,
respectively. The interval-mean direction of magnetic lineation (the clustering of the
K, axes) was determined by Fisher mean of declinations of maximum principal axes
(Fisher, 1953).

To evaluate the relative contribution of paramagnetic minerals to the total AMS
fabric (Parés and van der Pluijm, 2002, 2014; Richter and van der Pluijm, 1994;
Schultz-Krutisch and Heller, 1985), we selected 23 representative specimens from the
Dahonggou section for low temperature (77K: boiling temperature of liquid nitrogen)
AMS (LT-AMS) measurements. The LT-AMS measurement was conducted at the Key
Laboratory of Paleomagnetism of the Ministry of Natural Resources, Chinese
Academy of Geological Sciences, Beijing according to Issachar et al. (2016).

To determine the percentage of several main minerals, we performed powder X-ray
diffraction (XRD) on 54 representative siltstone samples. XRD analyses were
conducted using a Dmax 12 kW powder diffractometer (CuKa) at 40 kV and 100 mA,

with a sampling width of 0.02° and a scanning speed of 4° (20) min™, at the
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MicroStructure Analytical Laboratory of Peking University.

The paleomagnetic declination data of the Dahonggou section were derived from a
recently updated magnetostratigraphic study (Lu et al., 2022). We divided 1419
characteristic remanent magnetic directions clustering within 40° of the mean into 14
intervals, each of which has 91-104 specimens. The paleomagnetic declination
direction of each interval was calculated using Fisher statistics (Fisher, 1953) on the

selected directions.

4 Results:
4.1 XRD data

The siltstone samples are primarily composed of quartz (38-70%), calcite (0-35%),
plagioclase (2-30%), microcline (2-14%) and clay minerals (6-23%), and secondarily
of hematite (0-1%), gypsum (0-10%), halite (0-8%), and amphibole (0-5%) (Fig. S3;
Dataset S1). The Lulehe Fm. samples (E-3, E-47 and E-84) have a relatively high

proportion of hematite (1%).

4.2 Anisotropy of magnetic susceptibility data

The magnetic susceptibility of our samples is relatively low, generally in the range
100-500x 107 SI units; the anisotropy degree (Pj) is typically less than 1.15; the shape
parameter (T) ranges mostly from -0.75 to 1 (Fig. 5; Dataset S2). In tilt-corrected
coordinates, the K, directions of all samples are generally subhorizontal and well
clustered in an approximately NW-SE direction and are sub-parallel to the strike of
bedding plane (Fig. 6) and to the fold axes observed in the Dahonggou section (Fig.
1C). The K3 axes are near bedding perpendicular and show a slight girdle distribution
that is normal to the magnetic lineation direction (Fig. 6). The orientations of these
AMS ellipsoids are similar to those from low temperature AMS measurement (Fig.
S4). The distribution characteristics of the Dahonggou AMS data are generally
consistent with those of previous AMS data in the Qaidam Basin (Huo et al., 2020; Li
et al., 2020, 2021; Nie et al., 2020; Su et al., 2016; Yu et al., 2014a).

With the exception of a rapid decrease of Km since ~8 Ma, the AMS parameters
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(Km, Pj and T) show no other noticeable change with stratigraphic depth (Fig. 7). To
reveal statistically significant variations in magnetic lineation with time, we
subdivided the 2009 samples into 20 groups. Each group, except the last, is composed
of the same number of samples (~100) (Fig. 8). The samples of the first group are the
coarse-grained red bed deposits of the Lulehe Fm. (Fig. S5), which were not taken
into further account for the following two reasons: 1) the Lulehe Fm. are
coarse-grained conglomeratic and sandy continental red beds. Sedimentological
analyses indicate that these sediments were principally deposited in high-energy
alluvial fan and braided fluvial environments, thus representing synorogenic
deposition (Yin et al., 2008; Zhuang et al., 2011; Lu et al., 2019; Jian et al., 2022).
These relatively coarse-grained sandstone samples from the Lulehe Fm. have
randomly distributed three principal axes and quite low values of magnetic
susceptibility, magnetic foliation and anisotropy degree (Pj) (Fig. 7; Li et al., 2020).
Therefore, the AMS results are meaningless for these coarse-grained sandstone
samples (Li et al.,, 2020). 2) The existing magnetostratigraphic studies of the
Dahonggou section indicate that relative to the generally consistent results from other
formations (Fig. 9; Ji et al., 2017; Lu et al., 2022; Wang et al., 2017), the Lulehe Fm.
deposits have distinctly different polarity zone patterns (Fig. 9; Ji et al., 2017; Ke et
al., 2013; Lu et al., 2022; Wang et al., 2017). These indeterminate polarity zones
suggest that the Lulehe Fm. sediments did not record primary remanent magnetization.
Previous studies from southeastern Tibet indicate that these red beds likely have a
great quantity of authigenic hematite and goethite with detrital Fe-bearing minerals
strongly altered (Huang et al., 2020), which is also consistent with the unusually high
percentage of hematite (up to 1%) revealed by XRD analysis (Fig. S3; Dataset S1).
The average directions of magnetic lineation of the other 19 groups can be clearly
subdivided into three sets (Fig. 8). The first age interval (22.3-14.9 Ma) ranges from
111.1° to 117°, with a mean of 116.3 °+5.1 °; the second one (14.9-8.8 Ma) is
comprised between 127 ° and 148.4 ° with an average of 136.5°+6.2 °; and the third
one (8.8-4.8 Ma) ranges from 142 ° to 165.5°, i.e., 151 °+33.7° on average. In order to

obtain more precise time-bounds on the sharp deflections of magnetic lineation
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directions through the analyzed section, we further examined high stratigraphic
resolution data of AMS K, declination (Fig. 7). Two significant time points of 15 Ma
and 8.4 Ma were proposed based on the above results (Fig. 7). The corresponding

three age intervals now have averages of 115.2°, 135.3° and 150.5° (Fig. 7).

4.3 Paleomagnetic declination data

The declination values of the Dahonggou section vary from -3.4° to 5.2°, showing
no significant variation from 24 to 4.8 Ma (Fig. 7 and Table S3). Recently, Li et al.
(2018) and Sun et al. (2022) have reported a significant (~24 °) and successive
rotation for the upper Ganchaigou Formation of the Dahonggou section. However,
other paleomagnetic studies consistently indicate negligible rotation for the same

section (Yu et al., 2014b; Su et al., 2016; Dupont-Nivet et al., 2002).

5 Discussion
5.1 Two pulsed clockwise rotation of stress field at 15 and 8.4 Ma

The low Pj and Km values are controlled by the paramagnetic matrix and
specifically the shape anisotropy of clay minerals to the bulk susceptibility (e.g.,
Rochette, 1987; Hrouda and Kahan, 1991; Tarling and Hrouda, 1993), which is
confirmed by low temperature AMS measurement (Fig. S3). XRD analyses also
indicate a relatively high proportion of clay minerals (6-23%) in the siltstones of the
Dahonggou section (Dataset S1). The distribution characteristics of magnetic fabric of
the Dahonggou section suggest that the original sedimentary fabric was overprinted
by weak incipient deformation based on the following two lines of evidence: 1) The
well-defined magnetic lineations are in sharp contrast to the varied paleocurrent
directions throughout the Dahonggou section (Fig. 7); 2). The AMS lineations are
mainly subparallel to the orientation of fold axes (Strike: ~135°; Fig. 1C) and the
strikes of bedding planes (Fig. 8). According to the conceptual model of AMS
development in mudrocks undergoing progressive deformation, the magnetic fabric in
sedimentary rocks of the Dahonggou section can be referred to as a "weak cleavage"

state (e.g., Parés et al., 1999, 2015; Dallanave and Kirscher, 2020). In summary, the
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Dahonggou AMS data record weak tectonic strain during or shortly after
sedimentation and subsequent tectonic deformation did not overprint, or even
influence the original AMS fabric.

As incipient deformation drives rotation of platy phyllosilicates within the bedding
plane, K, axes become progressively aligned perpendicular to the shortening direction
(Soto, 2009). Therefore, variations in the trend of magnetic lineation are commonly
employed to deduce changes of shortening direction in compressive settings. Our
AMS results suggest two notable changes in compression direction from N25.2°E to
~N45.3°E at 15 Ma and from N45.3°E to ~N60.5°E at 8.4 Ma (Fig. 6). Sometimes
strain and paleostress field reconstruction are complicated by modification of early
layer parallel shortening fabrics by later deformation, such as vertical-axis rotations.
However, the paleomagnetic declination values of the Dahonggou section indicate no
significant variation for the 24-4.8 Ma time span. The finding is consistent with
previous paleomagnetic studies of the Dahonggou section (Dupont-Nivet et al., 2002)
and other localities (e.g., Sun et al., 2005; Yu et al., 2014b) in the Qaidam Basin,
suggesting that the basin did not experience wholesale vertical axis rotation during the
Neogene. Such observation was generally attributed to the rigid nature of the Qaidam
Basin basement (Zhu et al., 1998). Hence, the two pulsed clockwise rotations of
horizontal compression at 15 and 8.4 Ma likely reflect temporal variations in

paleostress orientations.

5.2 Regional paleostress field reflected by the Dahonggou AMS data

The Dahonggou section was deposited continuously between ~24 and 4.8 Ma and
does not contain growth strata, implying that the Dahonggou strata did not experience
local tectonic deformation prior to 4.8 Ma. Subsequently, the Dahonggou section was
uplifted and exposed between <4.8 Ma and 2.6 Ma based on magnetostratigraphic
dating of the section (Fig. S1) and the stratigraphic contact relationships between the
Shizigou and Quaternary Qigequan Fms (Fig. 4H). These observations indicate that
the thrust front did not begin to encroach into the Dahonggou locality until ~3 Ma.

Interestingly, the fold axis of the Dahonggou section, as well as a series of
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NW-trending thrust-fold belts in the Qaidam Basin, is roughly parallel to the
Cenozoic Indus—Yalu collisional belt and the northern boundary of the plateau (Fig.
1A). Therefore, the AMS shortening directions recorded in the Dahonggou section
likely reflect regional, not local paleostress field. Moreover, in striking contrast to its
surroundings with weak crust where various amounts of vertical-axis rotation have
been detected (e.g., Chen et al., 2002; Dupont-Nivet et al., 2004; Lu et al., 2016; Yan
et al., 2006), the rigid Qaidam Basin did not rotate as a whole after undergoing
progressive deformation during the Neogene (Fig. 3A). We thus suggest that the
Dahonggou AMS data likely record variations in paleostress orientation affecting

northern Tibet.

5.3 Two phases of initiation or acceleration of mountain building and basin
deformation in northern Tibet since 15 and 8 Ma

Increasing evidence demonstrates a large-scale simultaneity of compressional
deformation across northern Tibet at 15 Ma (Fig. 10A): 1) Substantial tectonic uplift
was demonstrated around the ATF by a suite of synorogenic conglomerates with
thicknesses >1 km (Lu et al., 2016; Ritts et al., 2008; Sun J et al., 2005; Wang et al.,
2016; Zheng et al., 2015), an accelerated exhumation rate of 1.1 km/Ma (Cao et al.,
2015), and an almost threefold increase in sediment accumulation rate (Chang et al.,
2015). 2) An accelerated uplift of the Qilian Shan was initiated since ~15 Ma (Fang et
al., 2007; Li et al., 2019; Wang et al., 2016; Yu et al., 2019; Meng et al., 2020). 3) A
nearly E-W shortening deformation began in the Dulan and Jishi Shan since 17-12 Ma
and 13 Ma, respectively (Duvall et al., 2013; Lease et al., 2011).

Subsequently, a major propagation of thrust faulting was initiated virtually
simultaneously at ~8 Ma (Fig. 10B; Li et al., 2014). The most well-known example is
in the NNW-SSE-oriented Liupan Shan where apatite fission track dating of Early
Cretaceous sedimentary rocks indicates rapid exhumation around 8 Ma possibly
related to E-directed compression (Zheng et al., 2006). A major sediment recycling
event at ~8 Ma was identified in three different successions of the northern Qaidam

basin based on fission-track analysis of detrital apatite grains (Pang et al., 2019; Lu et
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al., 2022), possibly linked to a southward propagation of the deformation front. A
similar event is also archived in the Linxia basin, northeastern Tibet (Zheng et al.,
2003), and S-directed thrust-related folding is revealed by syn-tectonic growth strata
in the Kumkol (Lu et al., 2018), Gonghe (Craddock et al., 2011), and Guide basins
(Fang et al., 2005).

In summary, deformation occurring at ~15 Ma was mainly focused along the ATF
and related secondary structural belts, whereas deformation at ~8 Ma was widely
distributed in northeastern Tibet (Fig. 10). This shift in the locations of these two
deformation events may reflect a significant transfer of deformational front in

northern Tibet during the Neogene.

5.4 Mechanism of crustal thickening of northern Tibet

Coincidently, the 15 Ma and 8 Ma time frames are also relevant for the activity of
the major faults parallel to the margin of the plateau (Altyn Tagh and Haiyuan).
Tectono-sedimentary and paleomagnetic vertical-axis rotation studies indicate rapid
decreases in the amount and rate of ATF’s strike slip since ~15 Ma, when fault
deformation was partly converted into widespread crustal shortening in the Qilian,
West Kunlun and Altyn ranges (Fig. 3A, 10A; Yue and Liou, 1999; Ritts et al., 2008;
Lu et al.,, 2016; Li et al., 2021). Strike-slip motion along the Haiyuan fault initiated at
~15 Ma along the western/central fault segment and at 10-8 Ma along the eastern fault
tip (Fig. 3A, 10A; Duvall et al., 2013; Li et al., 2019).

Existing models of northern Tibet uplift are unable to account for these integrated
observations, including two pulsed clockwise rotations of the regional stress field,
initiation or deceleration of major strike-slip faulting and two-phase crustal thickening
at 15 and 8.4 Ma. Many of the new observations from northern Tibet can be tested
against the previous competing models. The strike-slip-controlled growth model
requires coeval onset of strike-slip faulting and crustal thickening deformation, which
is inconsistent with the two-stage tectonic evolution of the ATF and Kunlun faults.
The ATF accommodated fast and localized strike-slip movements from the late

Oligocene to the Mid-Miocene, which was replaced by distributed shortening
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deformation since ~15 Ma (Li et al., 2021; Lu et al., 2016; Yue and Liou, 1999; Ritts
et al., 2008). The Kunlun fault experienced widespread Eocene-Oligocene thrust
faulting, which was overprinted by Miocene-Pliocene strike-slip faulting (e.g. Duvall
et al., 2013). The viscous sheet model may explain well the early tectonic records
broadly coeval with the timing of Indo-Asian collision, but fail to account for the
complex Neogene deformational patterns described in northern Tibet. The non-rigid
passive bookshelf-fault model explains well the clockwise rotation (10-35°) of the
eastern part of northern Tibet, but the wholesale rotation required by this model is not
observed in the western part of northern Tibet (Fig. 3A). The convective removal and
external boundary condition models did not consider markedly different timings, rates
and slip offsets along these three major strike-slip faults in northern Tibet and thus
oversimplify the Neogene tectonic evolution of northern Tibet. In particular, the
convective removal model is in contrast with some important observations: 1) It is
unable to explain the nearly simultaneous onset (~15 Ma) of strike-slip faulting along
the Haiyuan and Xianshuihe faults which are roughly orthogonal and parallel,
respectively, to the maximum principal stress stemmed from the detached lithospheric
mantle under central Tibet; 2) It cannot account for multiple episodes (e.g. ca. 15 Ma
and 8 Ma) of rapid uplift of northern Tibet which would require repeated removal of
central Tibet mantle lithosphere within a relatively short time interval; 3) This model
predicts NNE-SSW contraction for northern Tibet and therefore fails to explain the
E-W-oriented compressional deformations observed in the Dulan and Jishi Shan since
17-12 Ma and 13 Ma, respectively (Duvall et al., 2013; Lease et al., 2011).

Therefore, we develop a continuous geodynamic scenario to explain the
observations above, featuring nearly simultaneous initiation, or deceleration of
strike-slip movement, crustal thickening and stress field rotation. First, the change in
tectonic deformation along the ATF and adjacent Qilian and West Kunlun Shan at 15
Ma may be related to the northeastward tectonic extrusion of northern Tibet crust
along the ATF, which was obstructed by the rigid Alxa Block (Fig. 10A). The oblique
northeastward movement of northern Tibet toward the rigid Alxa Block led to strain

partitioning at the eastern tip of the ATF, triggering not only one of the most important
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uplift episodes of northern Tibet since ~15 Ma, but also leading to the dissipation and
the initiation of fast strike-slip motion along the ATF and Haiyuan fault, respectively,
at this time. The synchronous onset of strike-slip motion along the Haiyuan fault and
a significant clockwise rotation (~20°) of paleostress field imply that northern Tibet
rocks began to be extruded eastward since ~15 Ma. This is demonstrated in the
Changma Basin, northwestern corner of northern Qilian Shan, where paleomagnetic
and structural evidence indicate a significant clockwise rotation of the basin and the
presence of several roughly north-south-trending arcuate extensional faults,
respectively (Li et al., 2006). Subsequently, the eastward extrusion of northern Tibet
rocks along the Haiyuan fault was blocked by the rigid Ordos Block at ~8 Ma. Strain
partitioning in the transpressional zone near the eastern end of the Haiyuan fault may
explain the dissipation of strike-slip motion of the Haiyuan fault toward the east,
abrupt uplift of the Liupan Shan and its surroundings and clockwise rotation of the
crust south of the fault (Zheng et al., 2013; Li et al., 2018). This clockwise rotation
suggests that some northeastern Tibet materials began to move from eastward to
southeastward. This transition favored not only tectonic encroachment into the
southwestern corner of the Ordos Block and the western end of the Weihe Graben
(Zhang et al., 1995), but also the ~15° clockwise rotation of the stress field and the
southward propagation of deformation front into the intermontane basins of northern
Tibet (Fig. 10B). The kinematic shift from eastward to southeastward tectonic
extrusion gains support from deep seismic reflection data, which indicate the
existence of a laterally continuous crustal wedge (Guo et al., 2016). The conveyor
belt-like crustal wedge configuration that assists oblique sinistral motion transported
crustal materials eastward toward the Ordos Block between 15 and 8§ Ma and then
southeastward toward the Qinling orogen after 8§ Ma (Guo et al., 2016).

We propose that the progressive confinement of the relatively weak Tibet crust
against the rigid crustal blocks to the northeast and then to the east led to uniform
crustal thickening of northern Tibet (Fig. 11). This interpretation highlights the major
role of boundary conditions in determining whether a deforming zone is laterally

confined during the late stage of plateau development. In our model, lateral motion
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along the faults parallel to the range was precluded by the surrounding Alxa and
Ordos cratons with consequent strain partitioning in zones of oblique convergence
(Fig. 11). The major strike-slip faults acted as transfer-fault structures linking dip-slip
fault systems at their eastern ends (Burchfiel et al., 1991; Duvall and Clark, 2010).
The smaller faults between the Kunlun and Haiyuan strike-slip faults, such as the
southeast-striking right-lateral Elashan and Riyueshan faults, contributed in
accommodating eastward lateral extrusion of northern Tibet materials (Duvall and

Clark, 2010; Zuza and Yin, 2016).

5.5 Implications for the tectonic evolution of northern Tibet

Our model of progressively weakening lateral extrusion indicates a transfer of most
of fast left-lateral slip along the ATF eastward to the left-lateral Haiyuan and Kunlun
faults and to distributed deformation across a wider deforming zone between the two
faults and to local clockwise rotation of some subordinate crustal blocks (e.g., the
Changma basin). This study highlights the significance of the ATF in controlling the
Neogene tectonic evolution of northern Tibet (Fig. 11). The ATF has a much larger
slip offset and shear depth and more prolonged movement history than the Haiyuan
and Kunlun faults. However, these significant differences and the potential kinematic
shift between these major faults were not taken into account by some previous studies

(e.g., Yuan et al., 2013).
In addition, given cumulative offset of >350 km along the ATF and <100 km along

the Haiyuan and Kunlun faults, our model acknowledges the importance of strike-slip
faulting in accommodating the Indo-Asian collision (Tapponnier et al., 1982),
especially during the early stage of fault development with relatively “free”
boundaries. In the unilaterally confined experiments, the major faults allow
displacement toward the free side with a much larger offset than those in the
bilaterally confined experiments (Tapponnier et al., 1982). Later on, the
eastward-extruding motion of crustal blocks toward a lateral confining boundary

raises the plateau uniformly, supporting the existence of viscous deformation



627
628
629

630

631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655

(England and Houseman, 1986). Although the exact quantitative partitioning of the
deformation between shortening and extrusion remains unresolved, the viscous and
rigid deformation models likely play equally important roles in absorbing India’s

northward convergence with Eurasia at different stages.

6 Conclusion:

Our integrated analyses of AMS and paleomagnetic declination from the
Dahonggou section in northern Qaidam basin (northern Tibet) identifies two
significant clockwise rotations (~20° and ~15 °) of paleostress field at 15 Ma and 8.4
Ma for northern Tibet. Combined with nearly simultaneous initiation or deceleration
of major strike-slip faulting and tectonic uplift at 15 Ma and 8 Ma, a successively
decreased lateral extrusion scenario along two boundary-parallel strike-slip faults
(Altyn Tagh and Haiyuan) under restricted boundary conditions is proposed to explain
the mechanism of coeval crustal thickening of northern Tibet during the late stage of

plateau development.
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Figure captions:

Fig. 1. Geological setting of the Tibetan Plateau and study area. A: Color-shaded relief map of the
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Tibetan Plateau and its surroundings with Global positioning system velocities relative to stable
Eurasia (Zhang et al., 2004). Bold white arrows indicate N20°E shortening across the plateau
interior. Rounded rectangles show the amount of accommodation of India’s 36-40 mmyr"
northward motion within different terranes. B: Tectonic setting of the Qaidam Basin and its
surroundings. C: Geological map of the Dahonggou section.

Fig. 2. Four main models proposed to explain the crustal thickening mechanism of north Tibet.
See text for details.

Fig. 3. Onset ages (A), total offsets (A), and along-strike variation of slip rate (B-D) of the major
Altyn Tagh, Kunlun, and Haiyuan faults. Please refer to the section of geological setting and to
Table. S1 for details on the onset ages and total offsets of these three major faults and the
distribution of strike-slip rates along these three major faults, respectively. Fig. 3A also show
vertical-axis rotation data of the Mesozoic-Cenozoic strata in northern Tibet (See Table S2 for
details). The inset map in Fig. 3A shows a two-stage evolution model for the ATF, adapted from
Ritts et al. (2008).

Fig. 4. Cross section and photographs of the Dahonggou section. A: Google earth image of the
well-exposed Dahonggou section; B: Schematic cross section of the Dahonggou strata; C-H:
Representative lithofacies of six sedimentary formations.

Fig. 5. Anisotropy of magnetic susceptibility (AMS) results from the Dahonggou section,
including the frequency of bulk magnetic susceptibility, Pj-Km, T-Km, and T-Pj diagrams.

Fig. 6. Equal-area projections of the maximum (K, blue dots) and minimum (K3, green triangles)
principle axes of AMS divided into different age intervals as explained in the main text. A: Left
hand diagram: equal-area projections of the K; and K; axes of all samples in geographic
coordinate; Right hand diagram: the mean magnetic lineation directions of three age intervals
(lines with arrows) and the corresponding AMS shortening directions (dashed lines with arrows);
B: Equal-area projections of the K; and K; axes of various age intervals in tilt-corrected
coordinate. Red stars indicate the mean K, values. Orange arrows denote compression direction.
Fig. 7. Lithology, paleocurrent direction (Bush et al., 2016), mean susceptibility (Km), corrected
degree of anisotropy (Pj), shape parameter (T), sedimentary rate, paleomagnetic declination, and
declinations of maximum principle axes (K; Dec) versus depth from the Dahonggou section. The

red bed deposits of the Lulehe Fm. are marked in brick red. Red arrows indicate mean values of
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paleocurrent data (n is the number of measured data). The orange lines show the mean K; Dec
values of three age intervals and the blue curved line indicates 7-point average. The data of
sedimentary rate and paleomagnetic declination are calculated from Lu et al. (2022). Refer to Fig.
5 and Fig. S1 for the representative photos and detailed magnetic polarity stratigraphy and
correlation with the geomagnetic polarity time scale (GPTS: Hilgen et al., 2012) of this section,
respectively.

Fig. 8. Equal-area projections of the tilt-corrected maximum (K;, blue dots) and minimum (Kj,
green triangles) principle axes of the AMS divided into 20 age intervals. Each group, except the
last one, has 100-102 samples. Red stars and lines represent the mean values of the K; axes and
bedding attitudes, respectively. Lines in the central bigger circle show the directions of magnetic
lineation of groups 2-20; Lines with arrows indicate the mean directions of magnetic lineation of
three consecutive age intervals (22.3-14.9, 14.9-8.8, and 8.8-4.8 Ma).

Fig. 9. The existing magnetostratigraphic studies (Ji et al., 2017; Ke et al., 2013; Lu et al., 2022;
Wang et al., 2017) from the Dahonggou locality which show distinctly different polarity zones for
the Lulehe red bed deposits (marked in light yellow). For ease of comparison, the time interval of
Ji et al. (2017) was reinterpreted based on our preferred magnetic polarity correlation to the GPTS
(Hilgen et al., 2012).

Fig. 10. Slowing tectonic extrusion model under restricted boundary conditions used to explain
the mechanism of crustal thickening of northern Tibet. A: Summary of tectonic events occurring at
Aertashi (Zheng et al., 2015), Kekeya (Zheng et al., 2015), Sanju (Cao et al., 2015), Janggalsay
(Lu et al., 2014), Kumukol (Lu et al., 2016), Huatugou (Chang et al., 2015), Miran (Ritts et al.,
2008), Tiejianggou (Sun J et al., 2005), and Caogou (Wang et al., 2016) along the ATF and at
Qaidam Shan (Meng et al., 2020), Huaitoutala (Fang et al., 2007), Qilian (Yu et al., 2019), Dulan
(Duvall et al., 2013), Menyuan (Li et al., 2019), and Jishi Shan (Lease et al., 2011) in northern
Tibet at ~15 Ma. Red arrows denote relative motion with respect to the adjacent rigid blocks.
Black and red lines indicate inactive and active deformation, respectively; B: Summary of tectonic
events occurring at Liupan Shan (Zheng et al., 2006), Linxia (Zheng et al., 2003), Guide (Fang et
al., 2005), Gonghe (Craddock et al., 2011), Huaitoutala (Pang et al., 2019), Lulehe (Lu et al.,
2022), Dahonggou (Lu et al., 2022), and Kumukol (Lu et al., 2018) in northern Tibet at ~8 Ma.

Fig. 11. Block diagrams illustrating significant strain transfer from localized strike-slip faulting to
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distributed thickening deformation under confining boundary condition. Blue symbols indicate

newly initiated motion of crustal blocks or deformation.
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