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Abstract

In this work, I present the implementations of two processes of electroweak (EW)
boson pair production from hadronic scattering within two different Monte Carlo
event generators at next-to-next-to-leading order (NNLO) in quantum chromo-
dynamics (QCD) combined with parton showers (PS).

In the first part of the work, I discuss the implementation of the process
of production of two same-flavor opposite-charge pairs of massless leptons from
proton-proton scattering within the GENEva Monte Carlo event generator. After
briefly introducing the GENEvA method, I provide a detailed description of two of
its newly-implemented features. After passing the events through the PyTHIAS
parton shower, I finally show several distributions of phenomenological interest
and compare them with the data from the ATLAS and CMS experiments at the
Large Hadron Collider (LHC).

The GENEVA event generator provides a framework for matching the NNLO
calculation with the next-to-next-to-leading logarithmic prime (NNLL’) resum-
mation of the zero-jettiness and next-to-leading logarithmic (NLL) resummation
of the one-jettiness. Since the contribution from the resummation is only dif-
ferential in the N-jettiness parameter, it can be used for generating events only
after providing its dependence on the full radiation phase space. The functions
used for this purpose are called splitting functions and must be normalized so as
not to spoil the accuracy of the resummation. In this work, I present a way of
normalizing them on the fly, which provides better stability to the Monte Carlo
integration. However, such a method requires the analytic computation of sev-
eral phase-space boundaries, which depend on the mappings used for projecting
the configurations with N + 1 final-state partons onto those with NV final-state
partons. After describing all the mappings currently available in GENEva, I
present a detailed calculation of the normalization of the corresponding split-
ting functions. I then discuss the next-to-leading order (NLO) subtraction of
the infrared QCD singularities for any process of production of a color singlet.
Since GENEVA requires the on-the-fly Monte Carlo integration of the subtracted
real amplitudes, I show a way to optimize the efficiency of the integration, which
can be particularly useful for processes where the evaluation of the real matrix
elements is computationally demanding.

In the second part of the work, I discuss the implementation of the pro-
cess of production of a photon pair from a proton-proton scattering within the
PowHEG Box+MINNLOps Monte Carlo event generator. Such a process requires
a dedicated treatment since it is plagued by quantum electrodynamics (QED)
divergences in the limit where any photons become collinear to a quark. Af-
ter briefly introducing the Pownec Box event generator and the MiINNLOpg
method, I present the dedicated tools devised for this calculation. I begin by
describing a generic way to deal with any process with a divergent Born cross
section in the PownEc Box event generator without applying any generation-
level cuts. I then present a mapping that prevents QED-finite configurations



with one final-state parton from being projected to singular configurations with
no final-state partons. Finally, I discuss several modifications to the original
version of the MINNLOps method aimed at reducing the size of spurious con-
tributions beyond NNLO. After passing the events through the PyTHia8 parton
shower, I conclude by showing several distributions of phenomenological interest
and comparing them with the most recent LHC data from the ATLAS experi-
ment.
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Sommario

In questo lavoro presento le implementazioni di due processi di produzione di una
coppia di bosoni elettrodeboli (EW) dallo scattering di due adroni in due diversi
generatori di eventi Monte Carlo all’ordine next-to-next-to-leading (NNLO)
nella cromodinamica quantistica (QCD) combinati con la parton shower (PS).

Nella prima parte della tesi discuto I'implementazione del processo di pro-
duzione di due coppie di leptoni privi di massa con lo stesso sapore e carica
opposta dallo scattering protone-protone all’interno del generatore di eventi
Monte Carlo GENEVA. Dopo aver brevemente introdotto il metodo GENEvA, for-
nisco una descrizione dettagliata di due delle sue funzioni recentemente imple-
mentate. Dopo aver passato gli eventi attraverso la parton shower di PYTHIAS,
mostro infine diverse distribuzioni di interesse fenomenologico e le confronto con
i dati degli esperimenti ATLAS e CMS al Large Hadron Collider (LHC).

Il generatore di eventi GENEVA consente di abbinare il calcolo NNLO con
la resummazione all’ordine logaritmico next-to-next-to-leading primo (NNLL')
della zero-jettiness e quella all’ordine logaritmico next-to-leading (NLL) della
one-jettiness. Poiché il contributo della risommazione e differenziale nel solo
parametro della N-jettiness, puo essere utilizzato per generare eventi soltanto
dopo aver fornito la sua dipendenza dall’intero spazio delle fasi di radiazione. Le
funzioni utilizzate a questo scopo sono dette funzioni di splitting e devono essere
normalizzate in modo da non compromettere I’accuratezza della risommazione.
In questo lavoro presento un modo per normalizzarle on the fly, che fornisce una
migliore stabilita all’integrazione Monte Carlo. Tuttavia, tale metodo richiede il
calcolo analitico di diversi limiti dello spazio delle fasi che dipendono dalle mappe
utilizzate per proiettare le configurazioni con N + 1 partoni di stato finale su
quelle con N partoni di stato finale. Dopo aver descritto tutte le proiezioni
attualmente disponibili in GENEvA, presento un calcolo dettagliato della nor-
malizzazione delle corrispondenti funzioni di splitting. Successivamente discuto
la sottrazione all’ordine next-to-leading (NLO) delle singolarita infrarosse di
QCD per qualsiasi processo di produzione di un singoletto di colore. Poiché
GENEVA richiede 'integrazione Monte Carlo on-the-fly delle ampiezze reali sot-
tratte, mostro un modo per ottimizzare 'efficienza dell’integrazione che puo
essere particolarmente utile per i processi in cui il calcolo degli elementi di ma-
trice reali ¢ computazionalmente impegnativa.

Nella seconda parte della tesi discuto 'implementazione del processo di pro-
duzione di una coppia di fotoni da uno scattering protone-protone all’interno
del generatore di eventi Monte Carlo PowHEG Box+MINNLOps. Tale processo
richiede un trattamento dedicato poiché e afflitto da divergenze di elettrodinam-
ica quantistica (QED) nel limite in cui qualsiasi fotone diventa collineare a un
quark. Dopo aver brevemente introdotto il generatore di eventi PowHEG Box
e il metodo MINNLOpg, presento gli strumenti appositamente creati per questo
calcolo. Comincio descrivendo una tecnica generale per trattare qualsiasi pro-
cesso con una sezione d’'urto Born divergente nel generatore di eventi PowHEG
Box senza applicare alcun taglio a livello di generazione. Presento quindi una
mappa che impedisce che le configurazioni finite dal punto di vista della QED



con un partone di stato finale siano proiettate su configurazioni singolari senza
partoni di stato finale. Infine discuto alcune modifiche alla versione originale del
metodo MINNLOpg volte a ridurre I'impatto dei contributi spuri oltre il NNLO.
Dopo aver passato gli eventi attraverso la parton shower di PyTHia8, concludo
mostrando diverse distribuzioni di interesse fenomenologico e confrontandole
con i dati di LHC piu recenti dall’esperimento ATLAS.

PAROLE CHIAVE: NNLO, QCD, Event Generator, Parton Shower, EW Bosons
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Chapter 1

Introduction

Among the most useful experimental tools for investigating the subatomic struc-
ture of the matter are the colliders, machines where electromagnetic fields are
used for accelerating two beams of particles and making them collide with each
other. Currently, the world most high-energetic collider is the LHC, located at
the CERN laboratory in Geneva, Switzerland, where two beams of protons are
accelerated up to a center-of-mass energy /S = 13 TeV. Due to the electric
charge of the proton, most of the collisions end up in elastic scatterings. How-
ever, one of the predictions of QCD is that, at such high energies, the strong
force that is responsible for the confinement of the quarks and gluons within
the proton loses intensity, and the accelerated protons start progressively to
behave less as a bounded state and more as a superposition of free partons.
When two partons belonging to the two different beams interact (in what is
typically referred to as a hard scattering) new particles are produced. Studying
the probability with which this happens is a powerful way to expose the most
fundamental laws of nature. In particular, the mass distributions of subsets of
particles produced in the collisions offers a direct way of discovering new massive
particles by looking for their resonances. The search for large mass resonances is
indeed one of the main motivation for building colliders capable to reach higher
and higher energies.

The main success of the LHC has probably been the observation of the Higgs
boson in 2012, which at the time remained the last unobserved particle predicted
by the Standard Model. In the following years, due to the lack of a clear path
towards the discovery of new particles, because of a general good agreement
between the theoretical predictions based on the Standard Model and the ex-
perimental results, the LHC has progressively evolved into a precision machine.
The goal has then become to lower the systematic and statistical uncertainties
of the experimental results up to the point where even small discrepancies with
respect to the Standard Model predictions could be exposed, which would give
us hints on where to look for new physics. An interesting class of particles for
making precision studies are the EW vector bosons, which, due to the fact that
they do not undergo QCD interactions, have very clean signatures.



The chances of success of the LHC as a machine for precision studies relies,
however, on the assumption that the theoretical uncertainties on the Standard
Model predictions can be lowered to a size comparable to the experimental
ones. One of the best tools for reaching such a goal are the Monte Carlo event
generators, whose aim is exactly to simulate events, the name we give to the
outcome of the collisions (i.e. the set of particles produced after the scattering
with associated momenta). Historically, the first event generators to be imple-
mented were only able to provide an accurate description of the QCD emissions
in their collinear (parton showers) and/or soft limit (dipole showers). An ex-
tension to this approach was obtained by matching the showers to the tree-level
matrix elements of the process with one or more jets (ME+PS), thus improv-
ing the accuracy of the description of the scattering also far from the soft and
collinear regions of the phase space. This can be achieved by matching LO ma-
trix elements to general purpose Monte Carlo event generators like PyTHiA (3],
Herwic [4) [5] or SHErPA [6] (in some cases it can even be done automatically
within such event generators).

Another direction of improvement consists instead in combining the shower
with a partonic event generator with higher accuracy. Two notable methods that
combine a QCD NLO partonic event generator with the shower (NLO+PS) are
MC@NLO [7] and Pownec |8, 9, [10]. By doing so, they are able to produce
NLO distributions for the observables that are inclusive over the real radiation,
and LO distributions for those that require one additional jet. An extension to
such methods is obtained by matching two NLO calculations, one with one more
resolved parton than the other, thus allowing to reach NLO accuracy also for
the observables that require one additional jet with respect to the Born process.
Among the methods that provide such a matching there are MINLO |11} [12],
MEPS@NLO [13] FxFx [14] and UNLOPS [15].

The latest development in this direction has been the extension of the par-
tonic event generator to the NNLO in QCD. Two notable NNLO+PS event
generators are MINNLOps [16} |17] and Geneva. In the last few years several
LHC processes have been implemented in the GENEvA and MINNLOps event
generators, covering Drell-Yan [18] |16} [19], Higgs boson [16], VH [20], vv [21,
2], Vv [22, 23], VvV [1}, [24] [25] [26] and ¢t [27] production.

In this thesis, I will present the implementations of two processes of boson
pair production from hadronic scattering in two different NNLO QCD Monte
Carlo event generators. In the first part, I will discuss the process of production
of two same-flavor opposite-charge pairs of massless leptons within the GENEvA
event generator, while the second one will be on the process of production of
two photons within the MINNLOps+PoOwWHEG BOxX event generator.

The first part begins with a brief introduction to the Soft-Collinear Effective
Theory (SCET) resummation in chapter [and the GExeva method in chapter
It continues with a detailed description of two newly-implemented features of the
GENEVA event generator that can be useful also for other color-singlet production
processes. In chapter 5| I present a new implementation of the splitting func-
tions (i.e. the functions used for making the contributions from the resummation
differential over the entire phase space), which allows to compute their normal-



ization factor on the fly. Since such a method requires us to know the analytic
expression for the boundaries of the radiation phase space for all the phase-space
mappings employed, in chapters[6]and [7]I describe the default GENEvA mappings
and compute the expression for their boundaries. An alternative mapping from
the phase space with two final-state partons to that with one final-state parton
is presented in chapter [A] of the appendix. In chapter [§] instead I present a
way of optimizing the efficiency of the infrared NLO subtraction for the case of
color-singlet production, which can be particularly useful for processes where
the computation of the real matrix elements is computationally demanding. Fi-
nally, in chapter [9]I validate the entire implementation against the independent
results provided by the MATRIX fixed-order calculation, and present the com-
parisons with the LHC data from the ATLAS and CMS experiments for several
distributions of phenomenological interest.

The second part begins with a brief introduction to the MINNLOps and
PowneG methods in chapters [I0] and [I1] respectively, and continues in chap-
ter[I2| with the description of the dedicated treatment that the process of photon
pair production requires due to the presence of QED divergences. In particu-
lar; T start by discussing a general way of treating processes with a divergent
Born cross section within the PownEc Box event generator. I then introduce
a mapping that prevents QED-finite configurations with one final-state parton
from being projected to singular configurations with no final-state partons. Fi-
nally, I conclude by discussing several modifications to the original version of
the MINNLOps method [16} [17] aimed at reducing the size of spurious contri-
butions beyond NNLO. A detailed discussion on the way scale variations are
performed within the MINNLOps method to estimate the theoretical uncertain-
ties is furthermore presented in chapter [B|of the appendix. Finally, in chapter
I validate the entire implementation against the independent result provided by
the MaTRIX fixed-order calculation, and present the comparisons with the LHC
data from the ATLAS experiment for several distributions of phenomenological
interest.



Chapter 2

Infrared subtraction and
resummation

In QCD, the amplitudes of any process are affected by non-integrable diver-
gences in the limit where the energy of any final-state gluon is small (soft limit)
or the momenta of two of the partons treated as massless (either belonging to
the initial or final state) are parallel, as long as they represent a valid splitting
(collinear limit). The three valid QCD splittings are the emissions of a gluon
from a quark (¢ — ¢g splitting) or a gluon (¢ — g g splitting), and the pro-
duction of a quark-antiquark pair from a gluon (g — ¢ ¢ splitting). The origin
of such singularities ultimately lays in the expression of the QCD propagators,
whose denominator (in the case where all the involved partons are treated as
massless) is proportional to E;E; (1 — cos#), where we called E; and E; the
energies of the two partons produced in the splitting (in the following emitted
and sister partons) and 6 the angle between their momenta. However, one of
the theory most important results is that, in the collinear limit, the tree-level
amplitude R(®,1) for the process with n + 1 final-state partons factorizes on
the underlying tree-level amplitude B(®,,) where the two collinear partons have
been substituted by one single parton (in the following emitter parton) whose
momentum is the sum of the momenta of the two original partons. This factor-
ization property is universal and can be written as

8mag
t

R(®pyr) — P (2) B(D,), (2.1)

where ag is the strong coupling, and we called ¢ = (p; + pj)2 (with p; and p; be-
ing the momenta of the emitted and sister partons, respectively) the virtuality
of the underlying parton, and z = E;/ (E; + Ej;) the fraction of energy carried
by the sister parton. The Altarelli-Parisi splitting functions P,jjp are four uni-
versal functions that depend on the flavor of the emitter £ and the sister j.

Their expressions will be given in eq. (3.24). Since in this chapter we are more
interested in presenting the concept of resummation, rather than studying its



details, we focus on the simplest case where the emitted parton is a gluon close
to its soft limit (the soft-collinear limit), in which case eq. (2.1]) simplifies to

TasC;
R@u1) g1 ey Bl0). (2.2)
where C; is a Casimir factor of the SU(3) group (C; = Cy = 4/3 in case of
a ¢ — qg splitting, C; = Cy = 3 in case of a ¢ — g¢g splitting), E is the
gluon energy and 6 the angle with respect to the sister parton. Since, in the
same limit, the phase space d®,,11 for the process with n+ 1 final-state partons
factorizes on the phase space d®,, for the underlying process as

EdE dcos6 d¢
—_—— —d® 2.
82 d " (2:3)

d(anrl
where ¢ is the azimuthal angle of the emission, the cross section ¢,11 can be
written as

0n+1—/d(I>n+1R( nt1) —>/de> B(® aSC’ /dE/ dcost @’
1—cosf J 27

(2.4)
which, as anticipated, is non-integrable in the limits of small £ and 6.

The fact that this same problem of non-integrability arises with an opposite
sign in the computation of the one-loop correction V(®,) to the underlying
amplitude suggests that what we are observing is not an issue of the full QCD
theory, but a problem introduced by its perturbative expansion, as shown by
the Kinoshita-Lee-Nauenberg theorem [28, [29]. However, to prove that the
singularity coming from the integral of eq. is exactly canceled by the one-
loop correction, we need a way of regularizing it. To do that, we observe that the
singularity would not be present in a phase space defined on D > 4 space-time
dimensions, where the same integral would read

dE Pt 1 dcosd dQP=2)

"+1_>/dq)B C/E(u) /17(3059 in®” 49/ or
(2.5)

where we have introduced the scale p in order not to change the physical di-
mensions of the resulting cross section, and the solid angle Q(P=2) in D — 2
dimensions. At this point, after writing D as 4 — 2¢, the singularities of the
original integral can be exposed as € poles. After applying the same procedure
to the loop corrections, it can be shown that they have exactly the same sin-
gular structure, with and opposite sign, which means that, provided we adopt
the prescription of computing the phase space integrals in D dimensions, we
can obtain a finite value for the NLO cross section if we sum the virtual and
real corrections V(®,) and R(®,1) and take the limit € — 0. This solution,
however, cannot be straightforwardly applied to an event generator, where the
integral of eq. is done numerically in a fixed number of space-time dimen-
sions D = 4. The solution to this is called infrared subtraction and consists in



introducing a counterterm C(®,,;1) that reproduces the same soft and collinear
divergences of R(®,1), so that the full NLO cross section can be written as

2,

+ / 0B, 1 [R(Dy41) — C(@pn)]. (2.6)

The singularities of the first integral can be analytically subtracted, as long
as we know the expression of the integral of the counterterm C(®,1) over

the radiation phase space d@gﬁ)l /d®,,, while the second integral (where the
divergences are subtracted point by point) can now be performed numerically.
The counterterm C(®,,11), by reproducing infrared limits like that reported in
eq. (2.2) implicitly introduces the needing of a mapping between the d®,,11 and
d®,, phase spaces. In order for the integral in the second line of eq. to be
well defined, such a mapping is required to project the ®,, 1 configurations close
to the soft and collinear limits to the underlying ®,, configuration whose virtual
poles cancel the real singularities. At this point, as long as an observable O
is defined such that, in the infrared limits, O(®,4+1) — O(®,,), its distribution
is not affected by the infrared divergences. We call this class of observables
infrared safe.

Before continuing with the discussion, we observe that treating all the quarks
as massive (as they are in nature) would formally remove the collinear singu-
larities, which could make the above procedure appear as unnecessary as far
as the collinear limit is concerned. However, in such a limit, for small quark
masses m the QCD propagators would still be proportional to m?. Since the
quark masses can be as small as few MeVs, while the energies of modern days
colliders reach several TeVs, the matrix elements would still be affected by huge
enhancements in the collinear limit, meaning that we would still need a local
infrared subtraction between the virtual and real enhanced terms, in order for
the Monte Carlo integrator to be efficient.

The above discussion shows how the infrared soft and collinear divergences
are an artefact of the perturbative expansion of QCD. However, while the in-
frared subtraction by itself allows us to obtain finite predictions for all the
infrared-safe observables, the distributions that are not inclusive over radiation
(i.e. require the presence of an extra parton in the final state) will still present
unphysical features due to the divergent behavior of the real matrix elements
R(®,,+1) in the infrared limits. The solution to this problem is provided by the
resummation of contributions at all orders in the ag expansion. To explain how
this is done, we start from eq. and rewrite the radiation integral in terms
of the virtuality ¢ and the energy fraction z, so that it reads

dgnﬂz%@ﬂ dz d¢B

——— — B(® P,,. 2.
t 1—2z 2w (n>dn (7)



At this point we interpret

@ iz do
t 1—z21

dp =250, (2.8)
T

as the probability of having an emission with virtuality ¢, energy fraction z
and azimuth ¢ for a given underlying configuration ®,,, which implies that the
probability P(tg) that the hardest (i.e. with the largest virtuality) emission has
virtuality between tg and t; = tg+ dtg is given by the product of the probability
of having no emissions for all the intervals dt; = (t;11 —t;) for i from 1 to N
up to the maximum kinematically allowed virtuality ¢.,,. times the probability
of emitting in the interval dtg

N
P(to) = to dt0H<1— dt) Ccllt(to)dto exp( % dt)

i=1
(2.9)
where the expression on the right-hand side of the above equation is obtained in
the limit where the intervals dt; are infinite and infinitely small. Going back to
the continuous picture, where the sums becomes integrals, we can finally write
that the probability density of the hardest QCD emission as a function of its
virtuality is given by

dP . [ d e at [ d
b _as Gi & exp<—/ Lo = & ) (2.10)
t

dt Tt 1—=z T t’ 1—=z

The exponential function introduced in the above equation takes the name of
Sudakov form factor. We highlight that it contains the strong coupling at the
exponent, which makes it an all-order object with respect to the perturbative
expansion. At fixed ¢, z belongs to the interval (t/Q2, 1-— t/Q2) where () is some
hard scale of the process, so that, in the limit of small ¢, the above expression
can be rewritten as

dP  as C; Q? Qs 1 9 Q?
T 10g< o) e o C; log : , (2.11)

where we have neglected the log (Q2 / tmax), which is not enhanced. We high-
light that the above expression can be directly used as a probability density for
generating the hardest emission, since it has already the correct normalization
(i.e. its integral over ¢ from 0 to @ is equal to 1).

From the numerical point of view, the above probability distribution is ex-
actly equal to zero at ¢ = 0, where before we had the singularity. However, it
can be seen that its peak is still at small values of ¢, where the soft and collinear
approximations still hold. This is a very important observation, since such ap-
proximations greatly simplify any QCD calculations, and are the principle on
which dipole and parton showers are based. This example shows how the QCD
singular structure, from being an obstacle in the context of fixed-order calcula-
tions, has really become an advantage in the context of resummation, due to its
universal structure.
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Chapter 3

Resummation in SCET

Effective field theories are a useful tool for solving perturbatively problems of
quantum field theory that involve two or more well separated scales. Such prob-
lems are generally plagued by the presence of large logarithms of the ratio of
the scales that can spoil the convergence of the perturbative expansion. In the
process of production of a color singlet at a hadronic collider, for example, the
energy scale of the hard interaction is of the order of the mass mgg of the color
singlet, while the transverse momentum of the color singlet p; s typically de-
fines the order of magnitude of the energy of the QCD emissions. In the simple
example of eq. we showed that these logarithms need to be resummed
at all orders in the perturbation theory to make reliable predictions for observ-
ables that are not inclusive over the real radiation. The Soft-Collinear Effective
Theory provides a framework for doing this systematically, by separating the
perturbative expansion of the hard interaction from that of the lower-energy
QCD emissions, predicting the structure of the terms enhanced by the loga-
rithms of the ratio of the two scales, and resumming them at all perturbative
orders.

In this chapter, we present the three fundamental ingredients of the resum-
mation in the SCET formalism for the case of color-singlet production, i.e. the
soft, beam and hard functions, and discuss their evolution from their charac-
teristic scales to the common scale of the process. Finally, we prove that, by
construction, their total cumulant is not affected by the resummation. This last
property will allow us to straightforwardly match the resummed calculation to
the fixed-order results within the GENEva Monte Carlo event generator.

3.1 N-jettiness

Instead of the transverse momentum of the color singlet, SCET was historically
first developed using the so-called N-jettiness as the lower scale of the process.
Given a configuration ® with a color singlet and N final-state partons of

12



momenta pq, ..., py in the laboratory frame, the A-jettiness is defined as

N

TN:Z min (qa'f)hqb'ﬁiaql'ﬁiv"‘aq./\/'ﬁi)7 (31)
i=1 41, -, 4N
lightlike with ¢? = 1

where ¢, = (1,0,0,1), ¢» = (1,0,0,—1), and ¢, ..., g can be any lightlike
vectors with ¢ = 1. Furthermore we used the ~ symbol to refer to the momenta
longitudinally boosted from the laboratory frame to the frame where the color
singlet has zero rapidity.

The N-jettiness can be used as a resolution parameter for the radiative
emissions of the process. The ¢; vectors that minimize the above definition can
be thought of as the directions of the A hardest jets, so that any configuration
with A or less final-state partons has 7y = 0. Any additional emission that
is neither soft nor collinear leads instead to a positive value of Txs, so that we
can interpret the N-jettiness as a measure of how much the configuration differ
from a configuration with A/ final-state partons.

The expression for the 0-jettiness reduces to

N
=1

where we have introduced the plus and minus components of the i-th momentum
as

i =1} F 5, (33)
and can be interpreted as a measure of the quantity of QCD radiation far from
the hadronic beams.

3.2 Zero-jettiness resummation

We consider the process of production of a color singlet (CS) of mass @ from
the scattering of two hadrons a and b, and we call x, and x; the fraction of
momenta of a and b taken by the partons k, and k; which undergo the hard
interaction. Using the SCET factorization theorem presented for example in
eq. (1.6) of ref. [30], we can write the Ty spectrum of the resummed cross section
differential over the Born phase space d®q for such a process as

do.
e H, (& dt, | dty BE (ta,xa, ) BE (ty, zp,
o7y = 2 M) [t [ B 1) B,

tqo +1
XskaEb (76 - Q ba;“’) ) (34)

where we have introduced the hard function Hy, , , the two beam functions By

and B]%b, and the soft function S, , all of them dependent on the resummation
scale . The hard function describes the hard interaction from which the color
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singlet is produced and incorporates the virtual radiation. The two beam func-
tions describe the initial-state radiation collinear to the beams with virtuality
—t, and —t; respectively, in the limit ¢,,%, < (. Finally, the soft function
describes the soft radiation.

To simplify the expression presented in eq. , we introduce the Laplace
transform of a function f as

L0 = f(s) = / Sate ), (3.5)

and use it to rewrite the factorization theorem as

do e, - s ~p 8 ~
[/{ d(I)Q d% } = ]; Hka;?b ((I)Ovu) Bza <ana7 /J> B]}b <anb7/’6> Sk;a]?;b (S?/’(‘) .
a b
(3.6)
To be able to write the explicit expressions for the hard, beam and soft

functions in a compact form in the following sections of this chapter, it is useful
to define

. log" x log" ™ 8
Lo(x)=1 0(x — oz —p) ——— 3.7
(@) = Jim (o609 2EE 1 o(o - ) < (3.7
e oz~ ) g1
n — L LT _ _
o) = Jim |2 o - P 5)
and their Laplace transforms, which read
> 1
/ dte "' L(t) = s "T(n) — p (3.9)
0

e 1 i T
—st _ —z n+1(+<
/0 dte " L,(t) = o /0 dxe 7 log (s) . (3.10)

The above expressions can be obtained performing the integration appearing
in the Laplace transform for a generic value of 8 > 0, and then taking the
limit 8 — 0%. In particular, in the upcoming sections we will make use of the
formulae

/OO dte " Lo(t) = — (logs +7) (3.11)
0

and

dte ' Li(t) =

2, T
; {(logs+7) +—1. (3.12)

6

N |

3.3 The soft function

Following eq. (2.24) of ref. [31], the soft function can be expressed as the con-
volution

k
Spelk, ) = | dk Syp(k — k', pis) Us (K, s, 1) - (3.13)
0
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The soft function for the production of a color singlet at the soft scale pg only
depends on whether the Born process is quark- or gluon-initiated. The two
expressions can be taken respectively from eq. (155) of ref. [32] and eqgs. (2.22-
2.23) of ref. [31] and, at NLO, read

D)o e () + o) rote
Sk, =0 — |+ ——Ce |-8Ly|— ) +—=6l — || +O(ad),
ts Sya(k, pis) = Ore (us> 5, Cht A 5 O\ (a2)
(3.14)

where we have introduced

Cyq = Cr Cyg = Ch. (3.15)

By directly substituting the expression given in eq. in the 7 spectrum
presented in eq. we would obtain a divergent result in the limit 7o — O.
This can be avoided by resumming the singular contributions at all orders of
the strong coupling. In the SCET formalism such a resummation is achieved by
evolving the soft function from its characteristic scale pg to the common scale
w1 of the process according to the formula of eq. . The evolution kernel is
presented for example in eq. (2.25) of ref. [31] and reads

ULk ) s (s 1) —yns (ks 1) [5( k ) ( v 0 /)( k )}
) ’ = — |+ ) SWs I — )
Ms Us Hs, F(]. + s (ILLS, ‘LL)) U Ns\Ms; K Lhs
(3.16)

where
Ky =—4Kr + K’YS ns = 4nr. (317)

The explicit expression for K1, K., and nr will be given in section
After applying the Laplace transform defined in eq. (3.5)), the convolution of
eq. [3.13] can be reduced to the product

Spa(s, 1) = Syz(s, ps) Us(s, pis, 1) (3.18)
where, using eq. (3.9),
Us (s, pis, p) = e¥ssom)=rns (s.10) (SMS)—WS(N&M) (3.19)

and, using eq. (3.12)),
~ « 7('2 772
Siatonsi) = dua-+ 522 G { = | (om0 + T | + T+ ().

2 6
(3.20)

3.4 The beam function

Following eq. (2.17) of ref. [31], the beam function can be expressed as the
convolution

t
Bp(t,a,p) = | dt' Byt —t',a, p) Us (', pm, 1) - (3:21)
0
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The beam function B,’;(t, x, 1p) for the production of a color singlet at the beam
scale pp only depends on whether the Born process is quark- or gluon-initiated.
The two expressions can be taken respectively from eqs. (2.20), (2.38) and (3.48)
of ref. [30] and egs. (2.12-2.15) and (A.16) of ref. [31] and, at NLO, read

1
dz x
Bz(tvxvﬂB) = Z/ 7ij(t,2“u,3) f]h<;7/LB) ’ (322)
j x

where the index j runs over all the possible partons, fjh(f,u) is the parton
distribution function (PDF) of the parton j in the hadron h at momentum
fraction ¢ and factorization scale pg, and
t «@ t
pin Tij (t, 2, pis) = 6</~L2> Orj0(1 —2) + % {£1 (W) 2C%; 6(1 — 2)

B B

Lo <:2> (1— 2) PAP(2) Lo(1 - 2)

B

+ 5(:]%) {P,g\;(z) ((1 ) Li(1—2)— 10gz>

7T2

-5 Crj6(1—2)+ P,Qj(z)} } +0(a), (3.23)

where we have introduced the Altarelli-Parisi splitting functions

Py = € 11+_ zj Pl (2)=Cp(1—2)
N R0
Pyl (2) = Cx H(lz_Z)Q Pgq(2) = Crz o
PAF(2) = 2C, [lzz+ 17 +Z(1—2)} Pyy(2) = 0.

As explained for the soft function in the previous section, the beam function
presented in eq. needs to be resummed at all orders of the strong coupling
by evolving it from its characteristic scale py to the common scale p of the
process according to the formula of eq. . The evolution kernel is presented
for example in eq. (2.18) of ref. [31] and reads

KB (uB,p) =B (1B,1)

t t
EUB t» B - B \UB, ﬁnB(MB7N)(> +5<>:|7
o Un(ls o 1) = = oy e ) ) T\ e
(3.25)

where
Ky =4Kr + K, ng = —21r. (3.26)

The explicit expression for Kr, K., and nr will be given in section
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After applying the Laplace transform defined in eq. (3.5]), the convolution of
eq. can be reduced to the product

BZ(&.T,,U) :Bg(svm7uB)0B(sﬂﬂBﬂu)7 (3.27)
where, using eq. (3.9),
Us (s, pi, 1) = KB (1B .1) =18 (15, 11) (sui)*nB(MB,u) _ (3.28)

We refrain from reporting the explicit expression for By, which can be derived

by using the formulae given in eqgs. (3.11)) and (3.12)).

3.5 The hard function

Following eq. (2.10) of ref. [31], the hard function can be expressed as the
product
H}{)Z(®O7M) = Hk[(q)OJ IU/H) UH (Q27/1‘H7/1') . (329)

The hard function Hz(®o, un) evaluated at the hard scale py depends on the
specific color-singlet production process that we are considering. It can be
written as

s (fn)
2

Hyp(®o, i) = HY (@) + HY (@, i) + 0(a?) (3.30)

where H]i%)(q)o) is the LO amplitude of the process and Hé?(@o,uH) for n >

0 are its virtual corrections computed in the MS subtraction scheme. The
evolution kernel is given in eq. (2.11) of ref. [31] and reads

2

_QQ _ 10 nH(HHmu‘)
Un(Q, s, p) = |efntim) (2 ) , (3.31)
M
where
KH = —2K1" + K’YH MNa = 1. (332)
The explicit expression for Kr, K., and nr will be given in section
3.6 The resummed cross section
At this point, we make the assumptions that
= Q° 1y = Qs (3.33)
and introduce
~ ~ S ~
UO(Sa Q7 Mss /1/) = UH (Q27 Hus /1/) U§ (Q7 He, ,U/) US<S7 Mss /’L) ) (334)
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so that, using eqs. (3.18), (3.27) and (3.29)), we can further rewrite the factor-

ization theorem as

do,.. ~ ~ S
£{d©0 d%} = UO(SaQ);U’Sy,U) Z Hkajﬂ,((I)07u’H) Bka <Q’xa,‘uB>

Kok,
~ S ~
X B;—;b <Q,xb,u3> St (8, 1s) - (3.35)
After defining
n =2 + ns, (3.36)

the explicit expression for the evolution kernel reads
Uo(s, Q, pus, w) = exp(2Ky + 2K + Ks — [y + log (pss)|n) . (3.37)

At this point, we can rewrite the Laplace transforms of eqs. (3.11]) and (3.12)
under the action of the above evolution kernel as derivatives with respect to the
parameter 7, so that they read

- oo o -
UO(Sinu’S?/J')/ dt e_SNSt Co(t) = %U0(51Q7N57/1') (338)
0

and

9? 2

- oo , 1 .

UO(SinU’SMU’)/ dte”He! ‘Cl(t) =5\ 9.2 + = UO(S7Q7MS7:U)' (339)
0 2\ 0n 6

For example, the Laplace transform of the soft function given in eq. (3.20)) under

the action of the evolution kernel UO(S, Q, s, pv) can be written equivalently as

5 = b+ = C, o W) BT 1
we(8s ps) = Oke + 5, Cke [—4 (3772 + 6) + 6] +0(a3) . (3.40)
The advantage of this formulation is that the above expression does not depend
anymore on s, which simplifies the inverse Laplace transform of the factorization
theorem given in eq. . After applying the same procedure to the beam
function, we are left with taking the inverse Laplace transform of the evolution
kernel, which becomes

1 S
Uo(To, @uttss ) = 72 Ty eXp<2KH B [V“‘)g(%ﬂ) |

As an example, we can apply the n-derivative appearing in the Laplace

transform of the soft function given in eq. (3.40) to the evolution kernel of
eq. (3.41) to compute the NLL' contribution of the soft function to the 7y
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spectrum of the resummed cross section, which becomes

da.soft

BT = 2o i (0) S (as o) S v, 1)
k

1 n Is
S 2K, + 2K;, + Kg — log( ==
(2 + 2+ = [y g (2]

To I'(
<1+ 2( )ckk{—z; (1/)(0)(1+n)+’y+log</;§))2—w(l)(l-i-n)

+%2 n(w(o)(l—&-n)—&-v—klog(%)) +7§}+(’)(a§)>. (3.42)

From the above equation, we can then compute the NLO contribution of the
soft function to the resummed 7y cumulant to be

soft

7—0cut
)
/0 e = 2 HP @) s ) (o0 )

1
—— exp( 2Ky + 2Ky + Ko — 1 |y +1
i G e (D))

2
(oo o (wen v om(2))

2 71_2
T 6} +0(a2) ) (3.43)

— oW+

We will use this last equation in the next section to prove that the total cumulant
of the resummed spectrum is equal to that of the resummed-expanded one
(i.e. the Tg spectrum before the resummation).

3.7 The resummed-expanded cross section
The 7o spectrum of the differential cross section before the resummation can be

simply obtained by directly substituting the expressions for the soft, beam and
hard functions presented respectively in egs. (3.14), (3.22] and (3.30) evaluated
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at the resummation scale p = @ in eq. (3.4]), and at NLO reads

dogrg

oo iT ZH (@0) f§ (0, Q) fi (1, Q) 6(To)
19 oo ()5
+Z/%;ff(?,62) (B - mrE L0 -2)

+5<Z)>p ()((l—z)ﬁl(l—z) 1ogz)+6<g>ij( )”

1A (@0,0) (0. Q) 6(2))]‘}3(%, Q)+ (a0 b) + O(a2).
(3.44)
Since -
/O AT L, (g) - niﬂ 1og”“(72;t) (3.45)

the NLO 75 cumulant becomes

dogre

o, (T6") = ZH” (®0) £ (za, Q) J§ (x4, Q)
+ %7?) Zk: (Hli%)((bo) {f}?(fEmQ) Crk [ log” (Tgt) - 7{;}
+Z/ % fo (2o [log(Tgt> (1— 2) PAP(2) Lo(1 - )

+ PP (2) ((1 —2)Li(1—2) —logz) +P,;j(z)”

+ S HD @0,Q) [ (70, Q) ) f2(@0,Q) + (a 3 b) + 0(a2).
(3.46)

We now want to show that the total cumulant (i.e. the cumulant up to the
maximum kinematically allowed value of zero-jettiness 7;"** for the configura-
tion ®g) of the resummed-expanded contribution equals that of the resummed
contribution. Since we have only computed the resummed cumulant of the soft
function, we need to do the same for the resummed-expanded one. In the ap-
proximation where beam and hard functions are treated at LO, the resummed-
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expanded cumulant reads

da.boft

d®g

E (T = > HO (@) f(2a, Q) f1 (21, Q)

k

{1+ 2(7?) Chi [ 410g2(72;m) + 7:] +(’)(a§)}.
(3.47)

Under the assumption that the soft scale becomes equal to the fixed-order scale
Q for the maximum kinematically allowed value of 7y

ps(Tg™™) = Q, (3.48)

since
2

bO(1) = — v =T (3.49)
from eq. (3.43) the total resummed cumulant of the soft function reads

do.soft

res max Z H(O @0 fk La, Q) f]%(xl” Q)

by "
max 2
x {1+ 7322?) Cror [—410g2<76Q ) + 2} +0(a§)},

(3.50)

which is exactly equal to the total resummed-expanded cumulant presented in
eq. (3.47).

3.8 Some SCET parameters

We finally report here the explicit expressions for Kr, nr and K., which are
given in eq. (D.13) of ref. [30] or equivalently in eq. (B.16) of ref. |31| and read

Kr (o, 1) = — % [4”) (1 -2 logr>

453 Oés(ﬂo
+ (E; = g;) (1—7r+logr)+ % log? r} + O(ag) (3.51)
nr(po, p) = QFBO {1 ogr + LT to) (g; - g;) (r— 1)] +0(a2) (3.52)
Ky (1o, 1) 25 logr + O(as), (3.53)
her
o r= el) (3.54)
as(po)’ .
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and, from eqs. (D.15) of ref. [30],

11 4
ﬁO = ?CA - gTan
(3.55)

34 20
81 = 3 Cz — <3C’A + 4CF> Teng.

Finally, from egs. (D.16-D.18) of ref. [30], in the case of quark-induced processes

'y =4Cy
3.56)
67 w2 20 (
' =4C: |:<9 — 3> Cy— 9Tan:| y
and
Yso =0 Vs, = 6Ck Yirg = —6Ch, (3.57)

while, from egs. (B.19-B.21) of ref. [31], in the case of gluon-induced processes

Ty =4C,
3.58)
67 72 20 (
'y =4C, |:(9 — 3> Cy— 9Tan:| ;
and
Yso = 0 TBo = 200 Yo = —200- (3'59)
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Chapter 4

The Geneva Monte Carlo
differential cross section

4.1 The phase space mappings

Any event generator that aims to a QCD accuracy beyond leading order (LO)
needs to rely on mappings between phase spaces with different number of final-
state partons. If we call d®y, dP,, and d®5 the phase spaces with 0, 1, and 2
final-state partons respectively, for a NNLO event generator we need to intro-
duce a mapping from d®; to d®g, and one from d®, to d®;. The composition
of the two mappings gives the mapping from d®, to d®g.

Such mappings allow us to define finite differential cross sections beyond LO.
In particular, we can write

doeo
D Bo(®o) + Vo(Po) + Wo(Po)
d‘bl dq)2
15, <B1(<I>1) + Vi (P1) + 10, BQ(‘I)Q)) (4.1)
dO.NLO d@
d(; = Bi(®1) + Vi(®1) + / Té B () (4.2)
dO.LO
d;j = By(®y). (4.3)

In the expressions above, we exploited the possibility of writing the phase space
d® 41 with N + 1 partons as the product of the projected phase space d®y
with N partons times a radiation phase space. The expression [d®y41/d®n
denotes an integral over the radiation phase space of d® 1 limited to the 41
configurations which are projected onto @ by the N +1 — N mapping. The
differential cross section of eq. then contains all the contributions from the
®( configurations, and those from the ®; and ®, configurations that are pro-
jectable onto d®, which gives it NNLO accuracy. The differential cross section

23



of eq. contains instead all the contributions from the ®; configurations,
and those from the ®, configurations that are projectable onto d®;, which gives
it NLO accuracy. Finally, the differential cross section of eq. contains all
the contributions from the ®4 configurations, which gives it LO accuracy.

In general, not all the points of &1 can be mapped to a valid &y config-
uration, which makes it useful to classify the ®; and ®5 configurations into two
sets: the projectable, which can be mapped to a configuration with one parton
less, and non-projectable ones, which cannot. Since all the configurations that
are close to an infrared limit need to be projectable (otherwise the mapping
would not be infrared safe), the non-projectable configurations are free from
QCD singularities. We can then write the integrated NNLO cross section for
the production of a color singlet as

do¥y-o do¥ie Ao
NNLO — d@ = d@ -~ 1l,nonproj d(I) 2~ 4,nonproj 44
Tos / " Tap, / Yae, / 2 g, M

where we have introduced the label nonproj to indicate that the integral is
limited to the non-projectable configurations.

4.2 The zero-jettiness spectrum

The goal of GENEvA is to generate partonic events at NNLO in QCD match-
ing the NNLL’ resummed 7 spectrum with the fixed-order contributions. To
present the formula for the matching, we first need to introduce the fixed-order
spectrum, which from eq. can be written as

do.gIEI)LO d(I)l do™°
20 [By(®y) + Vo(Do) + Wo(Pp)] 6 ———— (45
ATy dT, [ 0( 0) + 0( 0) + O( 0)] (76) + d®o dTy dP, ( )
and the non-singular spectrum
At _ 0% dow | (46)
ddq dTy d®g d76 d®o dTo NNLO

defined as the difference between the fixed-order and the NNLO expansion in
the strong coupling of the resummed spectra. Since the terms at order a2 cancel
in the above difference, we refer to the accuracy of the non-singular spectrum as
NLO; (instead of NNLO): with the subscript 1 we indicate that the contribution
has an oy expansion that begins one order higher with respect to the Born cross
section of the process.

Under the assumption that the total cumulant (i.e. the integral over all the
kinematically allowed values of 7j) of the NNLL’ resummed spectrum and its
NNLO expansion are equal, we can write

Jomax doNLo1 doNNLO Tomax do™NLL
/ d% nonsing __ >0 _ / d% O}L’ (47)
0 d®o d7Ty d®g 0 d®o dTo
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where 73" is the maximum kinematically allowed value of 7y for the given ®q
configuration. From now on we will denote the 75 cumulants with the upper
integration limit between parenthesis, so that the above formula can be equiv-
alently rewritten as

Aoty ey AOSEM0 ot
dTog(% )= d<_1>0 - AP, (To") - (4.8)

By inverting the above equations, we can write the NNLO differential cross

section of eq. (4.1)) as

dgNNLO Tore* d NNLL/ doNEo1
20 _ / ATy [ Somee o Do ) (4.9)
d®g 0 d®odTy  dPodTy

The above is the master formula for the matching between the resummation
and the fixed-order calculation, and allows to generate events with a NNLL/
accurate Ty spectrum without spoiling the NNLO accuracy of the distributions
that are inclusive over the radiation.

4.3 The splitting functions

The resummed spectrum appearing in egs. and cannot be directly
used to generate events with one parton, since it does not have a full dependence
on the d®; phase space. For this reason we need to introduce the concept of
splitting functions.

In general, a splitting function Py_sn41(Pni1) is a function defined on
the phase space with one extra parton d®py;1 such that, for every function

f(®n,TN)

/ djg;l F(@x,To) Pyosnan (Davsr) = / ATx f(@n.Th).  (4.10)
In other words the splitting function provides the dependence on the extra
variables that make the Ty spectrum differential over d® 1 without spoiling
the distributions that depend only on ® and 7Ty.

In our case we can define the NNLL’ resummed contribution differential over
d®; as the product between the Ty spectrum and the 0 — 1 splitting function

dO_NNLL’ dO_NNLL’
d<I>1 = d(I)roeSd% Py_1(®q) . (4.11)

4.4 0-jet exclusive and 1-jet inclusive
cross sections

The formula presented in eq. (4.9) cannot be directly implemented in a Monte
Carlo event generator, unless a NLO; local cancellation of the infrared diver-
gences appearing in the two terms of eq. (4.6]) is provided.
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Since that is not currently available in GENEVA, we need to introduce a reso-
lution parameter 75" and divide the NNLO cross section into a 0-jet exclusive
and a 1-jet inclusive contributions. The 0-jet exclusive cross section describes
events without resolved final-state partons, and its expression is given by the
cumulant of the 7y distribution up to the resolution parameter 73"

daMc t dUrIiI:LL, cut do.rljol;l(s)iln cut
d£o (To™) = T%(% )+ dTog(% ) (4.12)

In most implementations of color-singlet production processes within GENEVA,
Ts is chosen to be of the order of 1 GeV. The 1-jet inclusive cross section
instead describes events with at least one resolved final-state parton. Its expres-
sion is given by the sum of the contributions coming from the projectable ®; con-
figurations, whose spectrum is described by eq. (4.9), and the non-projectable
ones

do¥§  (doNN doNtoL Ao, onproi
= _ res nonsing 9 _ cut < ~,nonproj 413
dd, ( o, T da, ) To=T") + — 49, (4.13)

where we have implicitly used the splitting function Py_,1(®;1) to provide the
®; dependence to the resummed spectrum, as described in eq. (4.11f). From the
sum the 0O-jet exclusive and the 1-jet inclusive contributions, upon integration
over the radiation phase space of ®;, we recover the NNLO differential cross

section of eq. (4.9)
dog'®

d®g

dd, do¥s  do¥ye
d®, d®,  d¥,

(T5™) + (4.14)

The third and final contribution to the total cross section is given by the non-
projectable ®5 configurations

doM< ) do% )
>2,nonproj _ 2>2,nonproj , (4 15)
d(bQ d(I)2

so that, similarly to what we did in eq. (4.4), we can write the total cross section
for the production of a color singlet as

doMc dUI\;f do‘l\;g )
NNLO — (p 0 @ = d(p - 4,nonproj . 41
Ocs /d 0 by +/d Oy +/ 2T, (4.16)

4.4.1 Approximation of the non-singular cumulant

The formula presented in eq. could be directly implemented in GENEVA

only if a NNLO local subtraction of the infrared divergences were available.
Since that is not the case, we need to approximate the NLO; non-singular

cumulant with the LO; one, and rewrite the 0-jet exclusive differential cross

section of eq. (4.12)) as

dO'g[C dO.NNLL’ LOl‘.b
cut — res cut nonsing cut . 4 17
da (T6™) = o (T5™) + — 2= (T5™) (4.17)
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Since the non-singular spectrum is integrable up to 7y = 0, the missing contri-
butions are power corrections in 7" (which means that they become smaller as
75" becomes smaller). The choice of the value of 75 will then be dictated by
a compromise between minimizing the power corrections coming from the above
approximation and maximizing the stability of the integration of the inclusive
1-jet cross section, where the cancellation of the logarithmically enhanced con-
tributions is not fully local.

As we did for the 0-jet exclusive cross section, we also neglect the a? con-
tributions below 75" appearing in the 1-jet inclusive cross section of eq. ,
which becomes

doM¢ doNNLL doNEO1 doNLo N
>1 Ores 4 —Znonsing >1,nonproj 9(76 )
dq)l dq)l dq)l dq)l
o%9 .
+ ‘dTJ 0(Ts" —To) » (4.18)

and in the non-projectable contributions of eq. (4.15]), which become

do—glg.nonpro' dO—;OQ nonproj t
4P, = 4, 0T = T6™). (4.19)

Since the value of the NNLO total cross section for the processes under study
can be independently obtained from publicly available fixed-order calculations,
after the events have been generated, we can furthermore perform a reweight of
those with no final-state partons to recover the contributions lost in the above
approximation. By choosing appropriately the value of 7;"*, the total size of
the missing contributions can be reduced below 1% of the total cross section.

4.5 1-jet exclusive and 2-jet inclusive
cross sections

The next step is to introduce a second resolution parameter 7;°** to distinguish
between events with 1 and 2 resolved final-state partons, and divide the 1-
jet inclusive cross section given in eq. into a 1-jet exclusive and a 2-jet
inclusive contributions, with the goals of

1. Performing the 77 resummation.
2. Preserving the 1-jet inclusive differential cross section

MC
do}

d®,q

MC MC
dd, dU22 B dU21

T+ | 3%, a, — da,

(4.20)

3. Giving pointwise NLO accuracy to the 1-jet exclusive cross section and
LO accuracy to the 2-jet inclusive cross section.

27



We follow a multiplicative approach and, after calling Uy (@1, 7:°"*) the one-

jettiness Sudakov form factor and U fl) (®q, Tr*) its first order as expansion, we
write the exclusive 1-jet cross section as

do—%ﬂc cut _ dJI\>/[§: cut d >1 (1) cut
A, (1) = {d@l Ur (@1, 77) — 40, Uy (@1, T17)
d(:DQ dU>2 7 22,proj cut cut
o e (T — T (T — )
O s g Lo
+ %, ( 0) - (4.21)

After calling U{(®1,71) the derivative of the Sudakov form factor with respect
to 71, and Ul(l)/(tI’l,Tl) its first order expansion in the strong coupling, we
can instead write the contribution to the inclusive 2-jet cross section from a
projectable ®5 configuration as

do.l\/[C do.MC dO.LO
4T3 t :
2R b (T - T 0Ty — T
2
dos nonproj o rent 4.29
e (T Tg™) (4.22)

where P;_,2(®2) is the 1 — 2 splitting function, and satisfy the relation given
in eq. with N = 1.

It can be seen that the above definitions for the 1-jet exclusive and 2-jet
inclusive contributions preserve the 1-jet inclusive differential cross section, as

stated in eq. (4.20). Furthermore, expanding eqs. (4.21)) and (4.22)) with respect

to the strong coupling, we obtain

dO-MC cut daglio d(b2 do ;OQ ~7 22,proj cut cut
40 e \
+ = Lmonrel e oy 4 0(08) (4.23)
d®dq
and
do¥§ doty dJI;% )
Zs ,pProj Lut Z2monproj | g _ (,ut 3 4.24

which show that the 1-jet exclusive differential cross section has NLO accuracy
for To > Ty and LO accuracy for Ty < T3, and the 2-jet inclusive differential
cross section has LO accuracy for To > Tg™.
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4.5.1 Approximation of the 1-jet inclusive cross section

The computation of the 1-jet inclusive differential cross section appearing in
the formulae of egs. and can become significantly time consuming
from the computational point of view, since in the fixed-order contribution it
requires a NLO; calculation to be performed for every ®; or ®5 configuration
generated by the Monte Carlo integrator.

To avoid that, when computing the 1-jet inclusive cross section, we approxi-
mate the matrix elements of the configurations with two final-state partons with
their infrared limit. In the formulae, we label the contributions computed under
this approximation with a C subscript. To compensate for this approximation,
we need to add back the difference between the exact and the approximated
1-jet inclusive cross section

LO LO
/dq’z [d‘7>2,pmj do53 O oros 9

dd, | ddy, dd,

(To = 75™), (4.25)

which allows us to approximate the 1-jet exclusive differential cross section of

eq. (4.21)) as

doy'® do3i : do3l ) ‘
cut) =1, P cut) = P cut
d‘b] (7—1/ ) { d(bl Ul ( 1771 ) d(b] Ul ( 1 1 )
APy [A055 ooi ) do%Y € pros ,
Z2,proj g(qreut _ _ =2,C,proj 0 _ qcut
v [ SR [t g ) - b | Ao - 7
do—lé(i,nonpmj 0 Tcut T 4.26
+ d@l ( 0 - 0)7 ( . )

and the 2-jet inclusive differential cross section of eq. (4.22)) as

do¥s [ [do¥s .
de, )| | de,

LO
dosq

U{ (¢1a7—1) - d(I)l

Ufl)/(‘l’l, 7’1)} Pi_5(®2)

4755 : :
g 0T = T 0T~ T5™)
d®,

dO.LO
 ZZmonwrol g ety (4.27)
1D, 0o~ Jo ) '

We highlight that, after this approximation, the conditions given in egs. (4.20)),
(4.23) and are still satisfied.

4.6 The parton shower

After generating the two hardest emissions with GENEvA, we have to pass the
events to a parton shower. Ideally, we would like to use a shower strongly
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ordered in N-jettiness, such that, if we call Ty_; the (N — 1)-jettiness after N
emissions, and Ty the N-jettiness after IV + 1 emissions

Tn < Tn-a- (4.28)

In this case, the (IV + 1)-th emission of the shower (on top of a & configuration
with N final-state partons) would be distributed according to

Sni1 = Un(A, T (4.29)

dd
N+1 U]lv(TN, T]{[ﬂax) PN—>N+1((I>N+1) G(TN _ A) H(T]{Indx _ TN) :

+ d®

where Uy is the Sudakov form factor, Uj, its derivative with respect to T,
A the shower cutoff, T3** ~ Tny_1 the maximum allowed value for 7Ty, and
Pn_,n+1 the splitting function used to make the event differential on ®p 41,
such that

dd ,
/ dg;l UN(TN) T]’\?ax) PN*}N+1(¢N+1) Q(TN _ A) G(T&nax . TN)

max
= [ AT UR T T = Un (TR T) ~ UL TR (430)
We can immediately notice that, as long as Un (77, Tp>) = 1, the emission
is unitary.

Since T-ordered parton showers are not currently available, we instead com-
bine GENEVA with the PyTHIA8 parton shower, which is ordered in the transverse
momentum. To do that, we still need to guarantee that there is no double count-
ing, i.e. the hardest emission generated by the shower has

7—2 < 7’]:&110w<=,<-17 (431)

where 7;"°¥°? is the one-jettiness of the hard event computed after discarding
the expressions of 77 that do not select a valid QCD clustering. However, since
the PyTHIAS parton shower is not ordered in N-jettiness, the first emission is
not always the one with the highest Ty . Since the ideal parton shower that we
are trying to reproduce is strongly ordered in Ty we can assume that the 75 of
the final event with all the emissions is similar to the would-be T3 after three
emissions of a Ty-ordered parton shower. In this way we can impose the veto
given in eq. (4.31]) after all the emissions have been generated.

Events generated by GENEvA with no final-state partons are distributed ac-
cording to the 7y cumulant of the cross section up to 75" (see eq. ), S0,
after the shower, they must keep

To < o, (4.32)

Furthermore, if the parton shower adds them one single emission, the resulting
configuration ®; must be projectable on the original configuration ®y. Similarly,
events generated by GENEvA with up to one final-state partons are distributed
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according to the 77 cumulant of the cross section up to 77 (see eq. (4.26)), so,
after the shower, they must keep

T < Te (4.33)

Furthermore, if the parton shower adds them one single emission, the resulting
configuration ®5 must be projectable on the original configuration ®.

We are now left with fixing the starting scale of the parton shower. In an
ideal parton shower ordered in N-jettiness the starting scale Ty for events
with NV final-state partons would be 75, 7" and 77" for events with 0, 1
and 2 final-state partons, respectively. In a pr-ordered parton shower instead
it must be the maximum allowed value for the transverse momentum p, of the
hardest emission provided by the shower such that 7n < Tx*?. Calling p the
momentum of such an emission and assuming that Ty = pg — ps3, since

P2 — 93 = /T (bo + p3) < \/TN\/E < \/md\/g (4.34)

if we start the shower from the scale \/73*y/s we are covering the entire phase
space.

Finally, we have to deal with the case of processes where the maximum
number of final-state partons generated by GENEvVA is one, instead of two. In
this case the veto to apply to events with one final-state partons becomes

7'1 < %allowed. (435)

4.6.1 The first emission generated by the parton shower

The preservation of the NNLL’ partonic spectrum by the parton shower relies
on the assumption that for events generated by GeENEva with N > 1 final-state
partons, the zero-jettiness 7o computed at partonic level is spoiled by the shower
by an amount of order

Tv < To. (4.36)

Such variation is typically small enough for events with two final-state partons,
for which
7'2 << 7'1allowed << 76’ (437)

but could lead to significant numerical deviations for events generated with a
single final-state parton. In this case, we provide manually the generation of
the first shower emission, using a (quasi) To-preserving mapping (see sections
and [A]). Such emission is distributed according to eq. ([#.29), with N =1, A <
T and T = 7.
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Chapter 5

The splitting functions

To provide an explicit expression for the N — N +1 splitting function Py, n41,
we need to write the subset of the phase space d®y11 with N + 1 final-state
partons projectable onto the underlying phase space d®y with N final-state
partons as a product of d®  times three radiation variables, one of which needs
to be the N-jettiness 7Ty and the other two we will call z and ¢. In this way
the integral over the projectable d® 1 phase space at fixed ®n and Ty, can
be written as

N+2 (&N, TN) ok (BN, TN,2)
d¢N 1 / max max
E dz (] IN, 2 dgb 5.1
lq)]\] lT Jk( N, /N, ) ) ( )

zk (®Nn,TN) ¢k (®N,TN,2)

where the index k runs over the N + 2 possible emitter partons (that in the
following we will call mothers) of the @y configuration, and we have made the
only assumption that the Jacobian

dP N+

Ji(®n, TN, 2) = 1By dTx dzdo
k

(5.2)

does not depend on ¢. As we will see, this is true for the cases we are interested
in for this work (i.e. Py_y; and Pj_9). We introduce here the names ISRA
(initial-state radiation A), ISRB (initial-state radiation B), and FSR (final-
state radiation), to indicate the three possible mothers we will have to deal
with: the parton from the first and second beam, and the final-state parton,
respectively. We furthermore label ISRA and ISRB collectively as ISR. The
integral over the d®y1 phase space summed over the n,.,, signatures (in the
following we will call signature the set of particles of a configuration) with N +1
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final-state partons can now be written as
Nreal

Nreal
Z /d‘I)NH Z / d®ny1 +
B=1 unprojectable ®n 1

k
MBorn N+2 )‘I]zLX (I’NyTN ¢n;dx(¢N7TN>Z) Msplit
> /d<I>N /dTN / dz Jk(<I>N,TN,z)/ ¢ >,
a=1 j=1

mm(q:'NvTN ¢§nin(¢N!TN7z)
(5.3)

where npepy is the number of signatures with IV final-state partons, and nspht
the number of possible QCD splittings of the parton k. The unprojectable ® 1
configurations are those for which the two closest partons do not represent a
valid QCD splitting, or the ® configurations obtained from the projection is
not kinematically allowed or it is not a valid @ signature.

The splitting function Py y+1(Pn+1) has to be identically null in the un-
projectable regions of d® 41, and satisfy the equation

N+2 2k (BN, TN) ok (BN, TN,2) n:plit
Z / dz Je(Pn, TN, 2) do Z Pyont1(Pnyr) = 1.
rin(@NTN) OF (PN, TN ,2) =1
(5.4)
We choose to define it such that in the projectable regions of d® 1
Py ni1(@ng1) = (5.5)
Tri (PN, TN, 2, 0)
NA2  ragad @, TN) o (BN Tr.2')  Meplie
Z/ dZ/Jk'(q)N,TN,Z’)/ d¢’ Z frrjr (I)N,TN,Z ¢)
k=1 r’:],m(‘I’NaTN) ¢§:in(q>1v,7—zv,z’) =1

where fi;(®n, TN, 2,¢) could be in principle a fully generic function. If we
assume that fi; does not depend on ¢ (this is true for the expressions of f;
discussed in this work), we can simplify the above equation to

Py_ns1(Pnyr) =
frj (®n, T, 2)

N+2 ozl (PN, TN) , f;ht
E / dz' Jo (N, T, 2') IS (B, Ty, &) E frrj (P, TN, 2')
k/
k’'=1 mm(q:‘N TN 7'=1
(5.6)

where
I5(@N, T, 2) = ¢F, (BN, TN, 2) — &5 (PN, T, 2) - (5.7)

In section we will discuss the explicit expressions that we use for fy;.
In the most recent version of GENEvA it has been introduced the possibility
of evaluating the splitting functions on-the-fly, performing the integral at the
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denominator of eq. for every ®py41 configuration generated. To do this,
we need to compute, both for the 1 — 0 and 2 — 1 mappings, the integration
limits on z and ¢ and the Jacobian Ji(®x, Ty, z). We highlight that, whenever
the constraints on z and ¢ are in the form of an inequality involving both the
variables, computing analytically the integration limits on z is not necessary,
since they can be imposed on-the-fly setting to zero the integrand function
whenever the range of integration for ¢ is empty.

5.1 Altarelli—Parisi splitting functions

All the observables that can be written as a function of the N-jettiness Ty and
the variables of d® 41 preserved by the N +1 — N mapping do not depend
on the particular expression of the splitting function Py_,n4+1 as long as it
fulfills the normalization condition of eq. . This is true because every bin
of the distribution will contain all the z and ¢ allowed points for the given @y
and Ty. All the other distributions will instead be sensitive to Py_n+1. In
particular, such a choice can affect significantly the efficiency of the Monte Carlo
event generator in the region of small 7Ty, where the cancellation between the
logarithmically enhanced terms appearing in the fixed-order and the resummed
expanded contributions happens. For this reason the main criterion we follow
in the choice of the actual expression to use for the splitting functions is to
provide the most accurate possible infrared limit, which leads us to defining the

fr; functions appearing in eq. (5.5) as

as(piw) f5 (Tay pir) fgb(xb,uF)zP,%P(z) if k is ISRA

fri(®n T, 2,0) = & os(in) fo (@a, p) f1 (@0, pe) 2 P (2) if k is ISRB
O[S(MR) fga(xaa,u‘l?) fgb(xbaNF)Pfkp(Z) if k is FSR,
(5.8)

where p, and Py, are the initial-state partons of the underlying signature, ag(uz)
is the strong coupling evaluated at the renormalization scale g, f; (Th, pr) is
the PDF of the parton p in the hadron & evaluated at the momentum fraction xy,
and factorization scale up, and P,jjp are the Altarelli-Parisi splitting functions
given in eq. . The renormalization and factorization scales are set to

Hr = Hp = Mcs- (5-9)

We highlight that in the definition of the splitting functions provided in eq.
we chose to evaluate the PDFs at the actual fraction of momenta carried by
the incoming partons in the configuration ®y 1, instead of its collinear limit.
This allows to provide a better description of the tail of distributions like the
transverse momentum of the color singlet pr «s. In the 0 — 1 splitting presented
in chapter @ the expression of pr s in terms of the @y, 7o and z variables is

given by
1—2

p?r,cs = mecsTo (5.10)
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From this definition it can be seen that ®; configurations with small values
of z can have a large pr s despite having a small 75. Such configurations,
despite belonging to the tail of the pr ¢ distribution, receive contributions from
the resummed terms, and thus depend on the explicit expressions used for the
splitting functions.
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Chapter 6

The 1 — 0 mapping

6.1 Definition of the mapping and zero-jettiness

We consider the process of production of a color singlet (that decays into n
particles) in association with one parton. In the laboratory frame, we call P, and
P, the momenta of the incoming beams, x, and x; the fraction of such momenta
that undergo the hard process, ¢; and m; for ¢ from 1 to n the momenta and
masses of the particles that compose the color singlet, and p; the momentum
of the final-state parton. The 1 — 0 mapping is defined such that

1. It preserves the mass mcg of the color singlet.
2. It preserves the rapidity yos of the color singlet.

3. It does not change the momenta of the decay products in the center-of-
mass frame of the color singlet.

It can be seen that the above conditions uniquely identify the mapping.
The zero-jettiness 7Ty of the process can be written as

To = min(ﬁf,ﬁf) ) (6.1)
We can assume without loss of generality that
Pl <1, (6.2)

so that
To = b (6.3)

If this is not the case, the results presented below still hold after exchanging the
labels of the beams.
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6.2 Phase space

The phase space for the process reads

d®, = dz, dzy, ﬁ d'a: 5(q2 —m?) 6(q?) p: 5(p3) 0(n?)
a 41 (271_)3 ) 7 ) (27’()3 1 1
X (277)4 54 <Z ¢ +p1— o Py — beb> . (6.4)
i=1

After calling ¢ the momentum of the color singlet (i.e. the sum of the momenta
of its decay products), we multiply the above expression by

dm2 d4 2 2 4 -
s 5 - ) o) 2 54<;qi—q> 1 69)

so that we can rewrite the phase space as

_ dmZg d'q 2 2 oy d'p1 2 0
d®, = dx, dxy o (271_)3 5(q - mcs) H(q ) (271_)3 5(p1) H(pl)
x (2m)* 64 (q + p1 — Ta P — 2 Py) dPes (m2y) (6.6)
with
i=1 i=1

At this point we can call
dm?, d*
_dmgg q 5(q2 . mgs) a(qo)

rad 27T (27(_)3

d®

X (277)4 6 g+ p1 — 2o Py — 1 P) =

dm?, 1 m2,\ dcosfdg
32m2
(6.8)

where s = (x4 Py + beb)2 and 6 and ¢ are the polar angles of p; in the partonic
center-of-mass frame. If we introduce

2

£=1- % (6.9)
y = cosb, (6.10)
we can finally write
AP,y = 5 §d dy do, (6.11)
and Swomyt
APy = Z200E da, da, € dy do des, (6.12)
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where we called S = (P, + P,)°.
We have chosen to write the phase space in terms of the variables z,, y, &,
y, and ¢ because their integration limits are constant

Zay Tp, § € (0,1) y € (—1,1) ¢ € (0,2m). (6.13)
However, at this point our goal is to rewrite d®; using the new variables mg,

Yos, To, and
Mcs

7= (6.14)
Mecs + Py
After writing them in terms of the old variables
Mes =/ Szaxp (1 —§)
_1 log( 22 ) +1o 2-6U+y)
yC572 g Tp g 2_6(1_?/)
VSx.x 2—-&(1+ 6.15
To = b £(1—y) §(1+y) ( )
2 2-¢(1—y)
1
z= ,
14804y j2-8d—y)
21 —€\ 2—-€(1+y)
and computing the Jacobian matrix we can write
m
dd, = Wﬁ;% dmZg dycs dTo dz dp dPes (m?y) - (6.16)
Since 2 d
Ady = % d® s (m2,) (6.17)
we finally arrive to
Mcs
d®, = 39,8 22 d®o dTo dz de. (6.18)

6.3 Integration limits

The last objects needed to compute the integral at the denominator of the
splitting functions are the integration limits on z and ¢ at fixed ®g and Ty.
Since we already know from eq. (6.13]) that

¢ € (0,2m), (6.19)

we are left with deriving the integration limits on z.
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To simplify the expressions in the rest of this section, we introduce the three
auxiliary variables

mcs_2\/1_§ 2_5(1_3/)

_l-2 f(+y) [2-€(1-y)
== T o/I—¢E\2-€¢(1+y) (6.21)

and
NE

Mecs .
From their definition and the integration limits on £ and y provided in eq. (6.13)
we can immediately see that they are both positive in the range of integration.
Furthermore, the condition given in eq. (6.2]) imposes that

0<a<p. (6.23)

(6.22)

R =

At this point we can write the old variables x,, =y, £, and y in terms of &, ycs,
a, and 3 as follows

:z:a:ey:s (ﬂJr\/lJrozﬁ)
mb:e " <a+ 1+a6)
s (6.24)
e —0PB-0) — (@ +5) +(a+f)VI+aP
(+aB—a?) (1+af— 57
| (=0)VIFaB (o= viFaR) (- viFan)
0B (B~ ) — (% + ) + (a+ ) VIt aB

and derive the integration limits on the new variables k, ycs, «, and 5 from
those on x,, oy, &, and y provided in eq. (6.13). It can be immediately seen
that, under the condition given in eq. |6.23, the requirements that § € (0,1),
y € (—1,1), 4 > 0, and z, > 0 are automatically satisfied. We are then left
with asking that x, < 1 and x; < 1, which is equivalent to imposing

B+ 1+ aB < ke Yes

a+ 14+ af < ke¥es.

(6.25)

At fixed K, ycs, and «, the solutions to the above inequalities with respect to 8
impose that

2
/8 < /81 = K-/e_yCS + % _ \/1 + Koe—Ycs + (%)
(6.26)
{(neycs —a)’ - 1} :

QIr

B<By=
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Putting the above solutions together with the original condition of eq. (6.23)),
we obtain the constraints on g

a < B < min(B1, fa), (6.27)

from which we can extract the integration limits of z

1
<z

1 4 min(py, 52) STta (6:2%)

The phase space with one final-state parton is simple enough to allow us
to compute analytically the integration limits for all the variables. From the
constraints given in eq. (6.25)), it can be seen that

S S
0 < mes < VS —log < Yos < log \/>, (6.29)
Mcs Mcs
and, at fixed ®q,
NE} m2
0< T < ~Zelyesl _ ZZcs lyes] 6.30
P2 25 (630
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Chapter 7

The 2 — 1 mapping

We consider a configuration ®, that describes the process of production of a
color singlet (that decays into n particles) in association with two partons. In
the laboratory frame, we call P, and P, the momenta of the incoming beams, x,
and xp the fractions of such momenta that undergo the hard process, ¢; and m;
for 4 from 1 to n the momenta and masses of the particles that are produced from
the decay of the color singlet, and p; and ps the momenta of the two final-state
partons. Our goal is to define a mapping that projects ®5 onto an underlying
configuration ®; with one final-state parton. For such configuration, in the
laboratory frame we call Z, and Z; the fractions of momenta of the incoming
beams that undergo the hard process, ¢; for ¢ from 1 to n the momenta and
masses of the particles that are produced from the decay of the color singlet, and
p1 the momentum of the only final-state parton. In general, the mapping does
not need to be defined throughout the entire d®5 phase space, but its existence is
mandatory in the singular regions of d®,, where the condition of infrared safety
dictates that the underlying configuration is obtained by clustering together the
two collinear partons or removing the soft one.

7.1 One-jettiness

In the d®, phase space the one-jettiness is defined as

2
Ti=) min(p;,p; pi-n), (7.1)

i=1

where n can be any lightlike vector with n® = 1. We distinguish between two
possible cases.

1. FSR: There exists at least one vector n such that for both the final-state
partons the expression in the sum of eq. (|7.1) is minimized by p; - n, in
which case

512 ) (7.2)

T = mgn((ﬁl +P2) - n) =Py —
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where we have introduced
P12 = p1 + p2. (7.3)

2. ISR: At least for one of the two final-state partons the expression in the
sum of eq. 1' is minimized by ﬁ:r or p; . In this case we can always
choose n to be parallel to the other momentum, so that

Since up to now we have never distinguished between the two final-state
partons, we can limit ourselves to studying the case where

71 = min(p3,p5 ) - (7.5)

If that is not the case, all the formulae derived in the following will still
hold after exchanging the labels of the two final-state partons. From now
on, we will call hardest the parton with momentum p; and softest the one
with momentum p,. We are then left with two possible cases.

(a) ISRA: In this case
Ti = b (7.6)

(b) ISRB: In this case
Ti =0y (7.7)

We will only present the formulae for the ISRA case, since those for the
ISRB one can simply be obtained from a parity transformation.

7.2 Fully recursive zero-jettiness

We have seen how the expression for the one-jettiness can be used to measure
which couple of partons in the ®5 configuration is the closest to an infrared limit.
This allows us to introduce the fully recursive zero-jettiness 7;"™", which differs
from the exact zero-jettiness 7y since it is computed after clustering together
the two closest partons if the emission belongs to the FSR class. In other words,
in the ISR case 75" has the same definition of 7y which, from eq. can be
expressed as

To = min(pf + p3,p7 +p3 . b1 + P35, D1 +53) (7.8)

while in the F'SR case Ty™® has to be computed on a ®; configuration with a
single final-state parton of momentum pio, so that

To™ = min(py, hra) - (7.9)

Ideally, we would like to use a 2 — 1 mapping that preserves the exact 7y. How-
ever, due to the complicated expression of such a parameter, we limit ourselves
to preserving 7™, since it has the same singular structure of 7.
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In the ISR case Tg'® = 7o, whose expression is given in eq. (7.8)), and we
need to impose that it is equal to the zero-jettiness computed on the projected
®; configuration, which, from eq. (6.1]), reads

To = min(py,py ) - (7.10)
We distinguish among four possible cases.

1. Same Hemisphere ISRA: In this case both p; and po are in the hemisphere
of the first beam, so that

To" =pi +b3 Ti=p;. (7.11)

The condition of infrared safety imposes that, in the limit of small 77, p;
approaches p;, which imposes that the projected ®; configuration must
have

To = bt (7.12)

2. Opposite Hemisphere ISRA: In this case p; is in the hemisphere of the
second beam, while ps is in that of the first beam, so that

To™ =Py + P Ti = ;- (7.13)

The condition of infrared safety imposes that the projected ®; configura-
tion must have

To =Dy - (7.14)

3. Same Hemisphere ISRB: In this case both p; and po are in the hemisphere
of the second beam, so that

T = b1 + 7 Ti = 7. (7.15)

The condition of infrared safety imposes that the projected ®; configura-
tion must have
To =01 - (7.16)

4. Opposite Hemisphere ISRB: In this case p; is in the hemisphere of the
first beam, while ps is in that of the second beam, so that

T =pf +p; T =95 (7.17)

The condition of infrared safety imposes that the projected ®; configura-
tion must have

To=p1 - (7.18)
In the FSR case instead we need to impose that the zero-jettiness given in

eq. ((7.10) computed on the projected ®; configuration is equal to the fully-
recursive zero-jettiness of eq. (7.9). We distinguish between two possible cases.
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1. FSRA: In this case

76FR = 151+2 T = 13(1)2 -

ﬁu\ . (7.19)

The condition of infrared safety imposes that, in the limit of small 77, P12
approaches pi, which imposes that the projected ®; configuration must
have

To = bt (7.20)

2. F'SRB: In this case

76FR:131_2 T :ﬁ(fz*

512‘ . (7.21)

The condition of infrared safety imposes that the projected ®; configura-
tion must have
To=py - (7.22)

We will only present the formulae for the F'SRA case, since those for the FSRB
one can simply be obtained from a parity transformation.

As can be seen from the equations above, the difference between 7y and
To™ arises only in the case where the two closest partons are the two final-
state ones (FSR case) and, despite being the closest, their momenta are in
different hemispheres, so that the expression for the exact zero-jettiness is given
by min(ﬁf + Py .07 + ﬁ;), which is different from that for the fully recursive
zero-jettiness of eq. .

7.3 Direct mapping

The 2 — 1 mapping used in GENEVA is defined under the conditions that it
preserves

1. The mass mcg of the color singlet.

2. The rapidity ycs of the color singlet.
3. The fully recursive zero-jettiness 75™.
4

. The momenta g; of the particles belonging to the color singlet in its center-
of-mass frame.

The remaining two conditions needed to uniquely identify the mapping are cho-
sen differently between the ISR and FSR cases.

1. ISR: We require that

—+ +
Zj% = p%? (7.23)
Py P
and the azimuthal angle of the hard parton is preserved
o, = d,. (7.24)
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2. FSR: We require that
PL D1 = PiaPias (7.25)

and the azimuthal angle of the color singlet is preserved

B, = Byo. (7.26)

The condition presented in eq. ensures that in the FSR case both the
possible expressions for 7F™® (presented in eqs. and are preserved,
which allows us to use the same mapping for both the F'SRA and FSRB cases.
The motivations behind the condition presented in eq. are instead more
subtle, and are discussed in section of the appendix.

The 5 different expressions for 7; presented in egs. and divide
the phase space into 5 different regions (two ISRA, two ISRB, and one FSR).
Each of the regions still admits two possible expressions for 75" as discussed
in section [7.2] which takes the total number of required different expressions
for the mapping to 10. However, as explained in section [7.1) among the four
possible ISR regions we will limit ourselves to studying the ISRA one where
the softest parton has momentum ps, since the formulae for the other three
can be extracted from those for the first one through simple manipulations.
We further notice that the condition presented in eq. ensures that both
the possible expression for 757" in the FSR case are preserved, which makes
the F'SRA and FSRB mappings equivalent. In the following we then present
the explicit expressions for the mapping in the three relevant regions: Same
Hemisphere ISRA, Opposite Hemisphere ISRA and FSR.

7.3.1 Same Hemisphere ISRA

By imposing that the zero-jettiness of eq. (7.12) computed on the projected ®
configuration is equal to the fully recursive zero-jettiness of eq. ((7.11)), and from
the conditions given in section we find the expressions for p and ¢

Gt — e~ vcs 5 DU 2
2 5 - g =e Mgs + — (D1 + P
it =t 52 \/ ot L)
A D1 . A J— ﬁ; A At 2
Py o= (B +p7) qﬂ”%@+%ﬁ+ﬁ

p}_ P
P2 = (pf +p8)° o P b a2
1T ﬁf 1 2 qT:ﬁ"" (pl +p2)
1

(i)l = (I)l.

(I)q =0+

(7.27)
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Finally, from the equations of momentum conservation we find the expressions
for z, and Z,

B eycs ﬁ7 N . 2 ﬁ7 N N
o= [y ) 2 )
1 1

(7.28)

)

D1 . N2 .
\/m%s+ﬁ1+ (b1 +p3)" +p{ + b5
1

where we called S = (P, + P,)°.

7.3.2 Opposite Hemisphere ISRA

By imposing that the zero-jettiness of eq. ((7.14)) computed on the projected ®;
configuration is equal to the fully recursive zero-jettiness of eq. ((7.13)), and from
the conditions given in section [7.3 we find the expressions for p and g

¥
. 7T — o—Ycs 2 P1o(s— 51>
e gt =e \/m + L (b7 +53)
pr ==L (b1 +57) .
el 2 +12
pr = b1 +57 T =y fmes + 2 (b +03)
1
.
29 _pl A— A+2 h A N 2
pT1—ﬁ; (b1 +13) @32231, (b1 +93)
Py
P, =Py _
<I)q:<1>1+7r.

(7.29)
Finally, from the equations of momentum conservation we find the expressions
for z, and Z,

_ eycs ) f)i*' A_ 42 A_ A+
La = Mes + = (p1 "‘pz) +D1 + Do
\/§ P1
Y : ) (7.30)
et Plooe a2 DL
Iy = \/g m%s—’_f)l— (pl +p2) +ﬁ1_ (pl +p2) 9

where we called S = (P, + P,)%.

7.3.3 FSR

By imposing that the zero-jettiness of eq. (7.20) computed on the projected ®,
configuration is equal to the fully recursive zero-jettiness of eq. (7.19)), and from
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the conditions given in section we find the expressions for p; and ¢

gt =eves \/ Mg + Prabiy

R At

Py = P12

PR G = e¥es\/m2, + Probls (7.31)
7.31

29 A— A

Pir = P1abia Tr = Praby

O, = Dys. =

b, = B,

Finally, from the equations of momentum conservation we find the expressions

for z, and Ty
_ eyCS 5 e o
Ty = NG (\/ Mg + PraPio +p12)

(7.32)
N Gl (O AP
Ty = NG Mmes + P1aP12 + P12 |
where we called S = (P, + Pb)g.
7.4 Inverse mapping
7.4.1 Same Hemisphere ISRA
From the expression of 7; given in eq. (7.6) and after introducing
SZq
VS (7.33)

= ="\
VS, + evespy

we find the expression for ps. At that point p; is obtained by inverting the
formulae for p; given in eq. (7.27)).

pi =0 =T
Py =T . T

P =D (1_A>
ﬁz‘:e*mfzalgz . P 72 (734)
Py = oo VE7, T Ae=siit (1)

® = o,

47



Finally, from the conservation of mcs and ycs we find

eycs A_ A_ R N R -

Toq = ﬁ < 1 tPy + \/m%S + P2y + D3y + 2P11Por cos(p — (1)1))
e~ Ycs A o 5 5 o A

Ty = W 1 +Dy + \/mcs + D1 + Do + 211D COS(Cb - ‘I)l) .

(7.35)
Since z, and xp depend on ¢, we cannot us the above expressions inside the fy;
functions presented in eq. , because otherwise we would need to perform
a numerical integration over ¢ (see eq. (5.5)). To avoid that, we evaluate the
PDFs inside the splitting functions at the approximated values

eYcs L A_ N - 5
Ty = ﬁ 1 tpy + \/m(%s + (plT _p2T)

e Yos

VS

The above expressions guarantees that both z, and x; are still in the allowed
interval (0,1). Furthermore, we remind that the normalization of the splitting
functions ensures that such an approximation has no effect on the distributions
that depend only on ®; and 7;. The effect on the other distributions has also
proven to be well below the theoretical uncertainties estimated through the
ordinary scale variations.

(7.36)

Ty = (ﬁi‘_ +]5§_ + \/mgs + (ﬁlT 132T)2> .

7.4.2 Opposite Hemisphere ISRA

The only differences with respect to the formulae presented above are in the
expression for pi, since now we need to invert the expressions of p; given in
eq. ([7.29) and we find

A 2 T
by = Dby (1 i)

1
pr=h —Ti

7.37)

. . T\? (
Pre =D p*(l—i)

D
q)lz(i)l
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7.4.3 FSR

From the expression of 77 given in eq. (7.2) and by inverting the formulae for
p1 from eq. (7.31)) we find the expression for p;o

ﬁTz = ﬁl
i = B
A;2 lg_ A A 24 2 (738)
Plor =0 0" =Ti (P~ +9") + Ty
Moreover, from the conservation of m¢s and ycs we find
eyCS N A N -
Tq = <p + \/mgs +p pt—-Th (ﬁ_ —Hﬁ‘*‘) + 7-12>
VS
s (7.39)
e - A A A Eay fay
W= <p+ + \/m'és +ppt = Ti(p” +p) +7'12> :
In this case we define 0
P
7= —=—— 7.40
P+ ph (740)

and ¢ as the azimuthal angle of ps in the center-of-mass frame of pis. After
calling

P12
Bo= "% (7.41)
P12
the speed of pi5 in the laboratory frame, we can then rewrite
1—
2= # (7.42)

where y = cosf, and # and ¢ are the polar angles of ps in the center-of-mass
frame of p12. These definitions allow us to have two simple expressions for p;
and py in the center-of-mass frame of p15. The corresponding formulae in the
laboratory frame can then be obtained after the appropriate Lorentz transfor-
mation.

7.5 Integration limits

The phase space for the production of the color singlet with two final-state
partons reads

d®y = dx, dxy ﬁ dlg; 5(%2 - mf) G(q?) d'py 5(p%) G(p(l))
= @)’ (2r)?
d4p2 2 0 4 ¢4 n
X (2r)? 5(p3) 0(p3) (2m)" 0*( D ai + 11+ p2 — waPa — 1y | .
i=1

(7.43)
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As we did for the 1 — 0 mapping, we first want to write it as the product of the
phase space with the undecayed color singlet times the phase space d®.4 for the
decay presented in eq. (6.7). To do this, we multiply the above expression by

dmgs d'q 2 2 0 4 ¢4 - _

so that we can rewrite d®, as

_ dm%s d'q 2 2 0 d*ps 2 0
d®y = dz, dxy o (27r)3 5(61 — mcs) 9(61 ) (27r)3 5(1’1) 9(1’1)
d4
X B 1))23 §(p3) 6(¥9) 2m) 64 (q + p1 + p2 — TaPa — 2 Py) dPes (m2s) -
T
(7.45)
7.5.1 ISRA

To compute the limits on z and ¢ in the ISRA case, it will prove to be useful to
use the + and — components of the momenta as integration variables. For this
reason we begin this section by writing the formulae that, given a momentum
p, allow to write

1
d'p = 5 dp™ dp* dp. dp,, (7.46)
and
3*(p) =26(p™) 6(p*) 3(p2) 6(py) - (7.47)
in terms of p* and p~. Furthermore, given a mass m > 0, it can be seen that
5(p2 — m2) G(po) =6(p pt — P2 — mz) O(p~)0(p"). (7.48)

Constraints imposed by the mapping

At this point, we exploit the invariance of the phase space under Lorentz trans-
formations to rewrite the expression for d®, given in eq. (7.45) as

dm?, d%q d*pr
d®y = dx, d o8 5(q®> —m2.)0(q° 5(p2) 0(pY
2 Lg GTh o (27‘_)3 (L] mcs) (q ) (27r)3 (pl) (pl)
d*Po oy o N +
) ot 20" (5475 4 Vi V1
X 5<ﬁf + P35 +Va gt —VSayy Z+>
X 5(ﬁ1x + Pag + qgc) 5(1313; +ﬁ2y + Qy) d®s (m(2js) , (749)
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where we used the formula of eq. (7.47) to decompose the § function. After
imposing
_ _ 3 5 A2 s— ot
qx = — Plz — P2z plT - p1 pl (7 50)
qQy = _ﬁly _]521; ﬁ%T :]52_[);_
we can use four of the ¢ functions appearing in the expression above to remove
the corresponding integrals, so that we arrive to

dp; dﬁf‘ dd; . _ A
—_—— 0 0
N (27T)3 (pl ) (pl )

dpy dps d o . o [qt
X WQ(PQ)Q(p;)(s(ZH +py + \/qquL*\/gl’a Z_)

d®y = dzx, dxy almgS dq dq™ 9(q_) 0(q+)

4(2m)®
ot 55+ Ve VB2 ) avo)
X 5(q—q+ —Pr Py — Py D3 — 2\/P1 Pi Py Py cos(¢ — ®1) — mis) ,

(7.51)

where we also made use of the formulae of egs. ((7.46]) and (7.48) to simplify the
expression. At this point we introduce the new variables ¢~ g™ and

1 q-
Yecs = 5 log(q+> , (7.52)
and rewrite
dg=dg"0(¢7)0(q") =d(q q") dyes0(q q"). (7.53)

Since the ¢ function appearing in the last line of above expression for the phase
space already imposes that

2
g q" > (\/Mf - \/ﬁzﬁi) +mZs >0, (7.54)

we can remove the factor (¢~ q™"). Finally, after setting

eycs A, A,

o= O (5 55 4 V) (159
e Yos R ~

™=~ (pf+pz++ q*q*), (7.56)

and

g q" = prpf + Py B3 +2\/ By B Py by cos(é — @) + mi. (7.57)
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we can use the last three remaining ¢ functions to remove three more integrals,
and arrive to

dm2, dyes dpy dpy d®y .\, dpy dpfdd ..
et e BB o o
x6(VBeves — i —py — ara ) 0(VEeres — it —pf — Varat),

(7.58)

d®y =

with the two 6 functions coming from the requirements that z, and xz;, are
smaller than 1. The integration limits on z and ¢ are then given by the condi-

tions that

v qqt < Ve ves — Py —Da (7.59)

Va gt < V/Seves — pf — py.
The reason why it is useful to write the integral in such a way is that the integra-
tion variables mcs, Yos, D7 » ﬁf, $, and ﬁ; are only functions of the underlying
phase space d®; and the one-jettiness 77, and we can directly associate p, to
the expression of z given in eq. (7.33). The integration limits we are looking
for are then given by the solutions of the two above inequalities with respect to
¢, which exist only if both the right-hand sides of the inequalities are positive.
Since the second one does not depend neither on z nor on ¢, meaning that
it does not provide any condition on such variables, we can limit ourselves to
requiring that

Py < VSeT¥es —pr. (7.60)

Finally, after solving the inequalities, we find that ¢ is constrained by the con-
ditions

(VSeves —pr 3 ) — by bt — 503 —m,
2\ [ b7z 0F
(VSeres 5t —58) —prot — b33 —m,

Constraints imposed by the slicing of the phase space

cos(¢p — 1) <
(7.61)

cos(¢p — Pq) <

At this point, we have to keep in mind that the integral over z and ¢ should cover
only the phase space where the one-jettiness, among the five possible different
expressions presented in egs. and , reads 7; = pj, and the zero-
jettiness, among the four possible different expressions presented in eq. ,
reads To = p{ + p; for the Same Hemisphere ISRA case or Ty = p; + p; for
the Opposite Hemisphere ISRA case. This imposes further constraints on z and
¢ to be combined with those already derived in egs. and . The
condition that

Ti = pf < win(pf, 57,07 8% — [pe)) (7.62)
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gives us four inequalities, of which only two depend on z and ¢. By solving
them, we find the two further constraints

Py > s (7.63)
and NP o
D1 (pz *pz) — P2 Do
24/p1 91 D2 B3
After enforcing the constraint given in eq. (7.63)), the condition on the zero-
jettiness simplifies to pj < p; in the Same Hemisphere ISRA case and p; < p;

in the Opposite Hemisphere ISRA case. Since neither p; nor p; depend on z
and ¢, this does not impose any further constraint on such variables.

cos(¢p — ®1) <

(7.64)

7.5.2 FSR
Constraints imposed by the mapping

As we did for the ISRA case in the section above, we start from the expression
for d®4 given in eq. (7.45). This time we multiply it by

dM2 d4p12

ot (2ﬂ)3 5(17?2 - MQ) 9(17(1)2) 2m)* 64 (pr + p2 — p12) = 1, (7.65)

so that we can write

dPs = dx, dxy,

dmgs dM2 d4q 9 5 0 d4p12 ) ) o
2r 21 (2r)° 3(q” —mes) 0(a”) (21)° 3(pta — M?) 0(pf,)

x (2m)* 64 (q + pra — TaPo — 2y Py) d®,,u (M?) d®os(m2y) (7.66)

factorizing out the radiation phase space

_ d*p 2 0y d*p 2 0 4 54 _ dydo
ad,,, = e §(p?) 0(p?) ) 6(p3) 0(py) (2m)" 6*(p1 + p2 — p12) = 39,2
(7.67)

where y = cosf, and # and ¢ are the polar angles of ps in the center-of-mass
frame of p1o. At this point, we follow the steps that took us from eq. (7.45)) to
eq. ([7.58)), which allows us to write

dm?2 dycs dM? dpi, dpi, d®

d(I)2 - S 2 4 (271')3 H(ﬁl_Q) 9(]3?2) d(I)rad (MQ) d(I)cs (m(QjS)
(7.68)
where
0 q" = Prably — M? +mis. (7.69)
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Since the dependence on z and ¢ is entirely within the radiation phase space
d®,., and y € (—1,1), from the expression of z given in eq. (7.42)), at fixed ®;
and 77 the integration limits imposed by the FSR mapping on z and ¢ are

z6<1—250,1—;50) ¢ € (0,2r). (7.70)

Constraints imposed by the slicing of the phase space

As we did for the ISRA case, we now need to impose that the expression for 7y
in the FSR case, given in eq. (7.2), is smaller that those we would use in the
ISR case, given in eq. ([7.4)), or in other words

Ti < min(p],py, P35 ) - (7.71)

However, to do that, we need first to define the offset of the azimuthal angle ¢.
We begin by introducing © and ® as the polar angles of p;5 in the laboratory
frame, and Y = cos ©, so that we can write

1
_ M VvV1—-Y2cos®
Pe=Ta—5 | bo| Vi—YZsino

Y

(7.72)

At this point we can express p; and py in terms of M, By, Y, @, y and ¢,
thus specifying the offset of ¢. Since such expressions are lengthy, we report
them separately in page From them we can finally write the four additional
constraints that y and ¢ needs to fulfill as

>T

etves T [1 - Boxy/qf(ﬂ;z_ DY o TV Vecos(o— ®)
—Fo

6:‘:1/05% 1+6O%+y)yimmcosw—‘b)l >T
— Py

(7.73)
where the expressions for fy and Y in terms of the integration variables used in

eq. ((7.68)) are given by

- N2
\/(eycspu —eTVes )" + propiy — M?

= 7.74
/BO eycsﬁf2 + e—ycsﬁB ( )

and - -
Y = i T Bk i U (7.75)

L N2 '
\/(6ycsp12 —eTYes )" + Propiy — M2
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By solving the above inequalities with respect to ¢ we find the four additional
constraints to impose to be

cos(6— @) < 1 <1—ﬁoy— (Bo—y)Y meycs>
VI—2VI-Y? I M

cos(p — @) > _Mh (1 —ﬂO%— WY 2;\4—161/08)

cos(p — @) > _ﬂh (1 +ﬁ0ij/1i;8+ WY 2]\74'16—%8)

cos(p — @) < Wlm <1 +50%+ »Y 2]\7416@;05) .

(7.76)

Constraints imposed by the signature

In the case where there are two gluons in the final state, we always call p, the
one with less energy, so that we need to impose the extra condition

1
2> (7.77)

7.6 Jacobian

Starting from the expression of eq. and following the same steps that took
us from eq. (|7.45]) to eq. (7.58]), we can write the phase space with one final-state
partons as

dpy dpt dd .
P T 0(57) 0(57 ) des (m2)

d®; = dm?, dycs

4(2m)?
% 9(\/§e—ycs _ﬁ; _ /(j_(j+) 9(\/§eycs _ﬁir _ q—q-ﬁ-) ,
(7.78)
where
G q" =pip] +mes (7.79)
7.6.1 ISRA

At this point, we need to factorize out the underlying phase space d®; pre-
sented above from the expression of d® given in eq. ((7.58]). We begin by using

egs. ([7.34) and (7.37)) to rewrite

dpy dpi d®y = dp; dp} dd, (1 - 7T}> . (7.80)
0
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Since dﬁ;r = dT; and, from eq. (7.33),
d
iy = \@zae—ycsz—j, (7.81)

we can finally write

(7.82)

dd, _ V/Szgeves (1 B 7'1) 1
d®, dTi dzd¢ 4(2#)3 To) 22

7.6.2 FSR

We start the derivation of the Jacobian from the expression for d®s given in

eq. ([7.68]). From eq. ([7.38]) we can write

dpry dpiy d® = dpy dpy dP, (7.83)
and dM? dTi
1 /2 S
o = oo —2T). 7.84
5 = 5 (p~+p" —2Th) (7.84)

Furthermore, from eqgs. (7.67)) and (7.42))

dzd
d®,.,(M?) = 290 (7.85)
4(2m)" Bo
so that we can finally write
d®, P +pt-2Th

1 dT, d=dp 4 (2n) o (7.86)
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Chapter 8

IR subtraction in the
non-singular cumulant

In the fixed-order contribution to the 0-jet exclusive differential cross section,
we have to deal with the subtraction of the infrared divergences appearing in
the virtual and real matrix elements. In GENEvA this problem is solved by
performing a Monte Carlo integration on the radiation phase space of eq.
parametrized with the FKS variables &, y and ¢. However, with respect to
a pure fixed-order calculation we have a further complication due to the fact
that we need to move the real contributions with 7o > 75** to the 1-jet cross
section. This amounts to giving a logarithmically-enhanced dependence on 75**
to the fixed-order term, which will be cancelled by the corresponding resummed-
expanded term. There are then two cancellations of different nature inside
the non-singular contribution: one is the proper subtraction of the infrared
divergences within the fixed-order term, while the other is the cancellation of
the logarithmically-enhanced (with respect to Tf"*) terms between the fixed-
order and resummed-expanded contributions.

The easiest way of performing the infrared subtraction discussed above would
be just to implement a (75" — To) function that sets to zero the real contri-
butions with 7y > 75**. In this section we will instead try to optimize the
calculation by performing an analytic separation of the terms that are not
power-suppressed with respect to 7" and cancel in the sum with the resummed-
expanded contribution (which we will call counterterms) from those that enter
in the proper infrared subtraction. The first are numerically by far the larger
contribution, but their integration requires a high precision (comparable to that
used in the cumulant of the resummed-expanded term). The second can instead
become significantly time consuming from the computational point of view, since
they depend on the real matrix elements. Their separation allows us to obtain
two computational improvements.

1. By setting differently the number of points used in the integration we
can keep the computational time under control without sacrificing the
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precision of the integral of the counterterms.

2. Since the counterterms do not depend on the real matrix elements, we can
perform the integration over y analytically.

To separate the two contributions, we need to compute the integration limits
on ¢, y and ¢ taking into account the constraint 7o > 7;**. Furthermore, since
we want to perform the integration over y analytically, we choose to compute
the limits on y at fixed &, instead of the opposite.

8.1 Integration limits
The constraints imposed by the 1 — 0 mapping presented in section [6] on the

FKS variables are given by eq. (6.25)), and, using egs. (6.20]) and (6.21]), can be

rewritten as

I, 2-¢((1—-y)
Za(y) VIi—e\2-¢(1+y) <1 (8.1)
Em [2—e+y)
z(y) VI—EV2-€6(1-y) <b
where
Ty = Mecs  yos Tp = MMos ,—yos (8.2)

We notice that x, and x; are respectively a growing and a decreasing function
of y in the interval y € (—1,1), with

o (=1,1) = <xa,1ff§> o (—1,1) = (xm lff£>. (8.3)

In order for both the inequalities to be satisfied we need to impose that the
point y where z,(y) = 2p(y) = z is such that 2 < 1, which imposes that

€€ (0,1 —Z,Tp). (8.4)

For a fixed £ in the above range, the integration limits for y then read

L 2-€1-7 ¢ L2813 ¢
- mln(l, Elﬂf%f) <y< mln(l, ng“) . (8.5)

The constraints imposed by the inequalities of eq. discard the points on
the left of the blue and orange curves presented in figure [8.1
When integrating over the radiation phase space for a given underlying con-
figuration ®3 we need to divide d®; into different regions to deal with the
different infrared limits. In this case there are two singular regions (ISRA and
ISRB), separated by the condition given in eq. , which, in terms of the
FKS variables, simply reads
y > 0. (8.6)
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Figure 8.1: The four constraints on £ and y.

In the rest of this section we will focus on the ISRA case (identified by the above
equation), since the ISRB one can be obtained from a parity transformation.
The above condition selects the points above the green line in figure 8} This
new constraint on y introduces the possibility that the upper integration limit
on ¢ is dictated by the crossing of the blue and green lines of figure [8.1] instead
of the blue and orange ones. This imposes the new constraint

¢<1-1, (8.7)

to be combined with those given in eq. (8.4).
We are now left with imposing the constraint 7o < 75, which from eq. (6.15))
reads

mes E(1—y) [2-E(1+y)
2 VI-¢\2-¢&(1-y)

Since T is a monotonically decreasing function of y with

To: (0,1) — (0, % \/1579 (8.9)

To(y) = < Tg (8.8)

it sets an additional lower limit on y if

Mcs 3 cut
> Vi ¢ > To™. (8.10)
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After introducing, for ease of notation, the auxiliary variables

r=£(1—y) w=1-¢ g = 20

Mcs

such a limit on y is given by the real solution to the cubic equation
2+ 2wz? + Klwr — 252w = 0,

which, after defining

n 2
z=x+ -w,
3
can be further simplified to
24 prdq=0,

where we have introduced

_ 4 2 _ 8 o 2 w
p——w<3w—/<;> q-2w[27w m(l—&-?))].

The three complex solutions to eq. (8.14) are given by

2 3 B
_yl_a, e P 3
Z_\/fL IR . 7
3
VT T

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

where the square and cubic roots have to be understood as complex multivalued

functions. There are then two possibilities.

LIt .
q p
(R S
it

(8.17)

the argument of the cubic root is real and we can simplify the expression

of eq. (8.16) to be

2pmi 34 @ P s 4 R
- S L S Y S N R
= \/27L g T te’ \/2 [Ty B8

where k can be any integer number and this time the squared and cubic
roots have to be understood as real functions. Out of the three possible

values for z only one (that with k& = 0) is real.

2. If instead ) 5
q P
g To7 <0
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the argument of the cubic root is not real anymore, but its squared mod-
ulus is equal to —m/3, so that we can write

of 4 € P i(evzka) [P
- OUIDY . ST i 2
\/ s TVt gy =€ 3 (8.20)

for some real phase 6 that we can always choose such that

T T
——<0< = 8.21
3 <0<3 (8.21)
At this point the expression of eq. (8.16]) can be simplified to
2
z= 2cos(9+ 3k7r) —g, (8.22)

which gives us three different real solutions.

We now want to show that the solution with £ = 0 (which we will call principal
solution) provides the lower integration limit on y we are looking for. Since such
a solution must be a continuous curve parametrized by the variables Z,, x and
w, we will provide the demonstration in two steps. First, we will show that the
principal solution can never reach the boundaries of the principal region (where
0 = £7/3), and then we will prove that there exist one choice of the parameters
for which the principal solution is the only real solution (meaning that it is the
solution we are looking for). The principal solution would reach the boundaries
of the principal region only if the argument of the cubic root became real and
negative. This would mean that

(8.23)

By solving the above inequalities in terms of x and w, we find that there are no
solutions. It can be immediately seen that in the limit of high x the argument
of the cubic root is a positive number, meaning that the principal solution is
the only real solution. This completes the demonstration.

This new constraint sets the integration region on y to be above the red
curve in figure [8.1] However, it also introduces the possibility that the upper
integration limit on £ is dictated by the crossing of the blue and red lines of
figure [81] instead of the blue and orange, or the blue and green ones. Similarly
to what we did for z,(y) and x(y), we have to impose that the point y for which
x=xq(y) = To(y) /Tg"" is such that = < 1. This imposes the new constraint

—KZq + /1622 + 8KT, + K2T2
<1-— Ta @ a s 8.24
¢ * ( 2(2Zq + k) ( )

to be combined with those given in egs. (8.4) and (8.7).
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8.2 Fixed-order cumulant

In this section we consider a generic process of diboson production. We call p,
and p, the flavors of the incoming partons in the LO process and Z, and T
the fraction of hadronic momenta they carry. We also call f(x) and f°(z) the
PDFs of the parton ¢ carrying a fraction of momentum x of the hadrons a and
b respectively, and H©) the LO amplitude for the process. The cumulant of the
fixed-order is given by the sum of three independently finite contributions: the
soft-virtual term, the collinear remnants, and the IR-subtracted real amplitude.

8.2.1 Soft-virtual contribution

The soft-virtual contribution can be recovered from eq. (2.99) of ref. [9] and in
our case is given by

2 2
_ fa (= b~y s of M T
Ororvvine = S, (Ta) [, (@) 5 { [Ck (log ( Q3S> B 3>

— 2% 1og<Q )} HO 4 1>(MR,Q2)} (8.25)

where p is the factorization scale, H(Y (12, Q?) is the one-loop amplitude evalu-
ated at the renormalization scale uy and subtraction scale @) in the subtraction
scheme used by OpeNLoors (see eq. (4.2) of ref. [33]), & = ¢ for the quark-
initiated processes, k = g for the gluon-initiated ones, and

3
Cq =Cy Vo = 501:
C,=C,4 Ny = 11C, — 4Tan'

(8.26)

Since

2 2
H(glL)( R’QQ) H(l) (mcs’mz ) [ Ck (10g2<7§2 > + 7r6>

CSs

ol Q* MR (0)
Trlog| o )+ nBo log 2 H™, (8.27)
S S

(e} C

where n is the power of the strong coupling in the LO amplitude, we can rewrite
the soft-virtual contribution given in eq. (8.25) as

_ _ «
Ogottvirt — Z%Ia (xa) ;;‘)b (il?b) i { |: Ck - 2’716 log(,n/,fF )

Cs

2
+nbo log(TZ )} HO —l—H(l) (m2s,m2g )} (8.28)

Cs
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Real Collinear

€€ (0,&max) €€ (0,1 —2z,)

Y € Yumin: Yimax) ye(=1,1)
Soft Soft-Collinear

ge(0,1) €€ (0,1)

y € (0,1) ye(=L1)

Table 8.1: Original integration limits on £ and y for the unsubtracted real and
the soft, collinear and soft-collinear counterterms. The limits of the same color
should be made the same to guarantee the subtraction to be local.

8.2.2 Collinear remnants contribution

The expression for the collinear remnants can be derived from eq. (2.102) of [9]
and read

1 —
« B dz Tq
Gcollremn = 2;_ ZZ_;b (xb) H(O) / 7 § f]a (?) { (1 - Z) P;ar; (Z)
Tq J

2

") dai(1- 2| + 7,00 } (8.29)

X [50(1 —2) log(

21

where P and Py, are given in eq. (3.24) and we have defined

log" x

+d(z - p)

lognﬂﬂ} . (8.30)

Lnlw) = Jm, [Q(x_ﬁ) nt1

8.2.3 Subtracted real contribution

The subtraction of the infrared counterterms from the real contribution is done
in GeneEva with a Monte Carlo integration after parametrizing the radiation
phase space with the FKS variables £, y and ¢. For a given ®y configuration
the integral of the real contribution runs over all the ®; configurations with
To < Tq* whose projection is ®y. These constraints restrict the integration to
the region where € € (0,&,.x) a0d ¥ € (Yumin, Ymax)s Where &, is a function of
®p and Ty and Yo and y,... are functions of @y, 7™ and . However, in the
FKS parametrization the integration limits on ¢ and y for the collinear, soft and
soft-collinear counterterms are different. We report the values in the case of an
ISRA region in table Since in the Monte Carlo integration the variables
¢ and y are built from two random numbers belonging to the interval (0, 1),
having different integration limits could spoil the locality of the subtraction. In
particular, we have highlighted with the same colors the integration limits which
should be the same to guarantee such locality. In the following paragraphs we
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will see how we can change the integration limits to become equal to those for
the real contribution by changing the integrand function without affecting the
subtraction.

Real contribution

The contribution to the cross section of the real matrix elements depends on the
specific process we are considering. However, in the soft (¢ — 0) and collinear
(y = 1 or y — —1) limit the real amplitude for the production of a color singlet
averaged over the azimuthal angle ¢ of the radiation factorizes on the Born
amplitude H©® as

kj::azms 1-¢
TomEs E(1-y?)

Furthermore, we can rewrite the radiation phase space of eq. (6.11)) as

Pr(1—¢&)HO. (8.31)

e d¢ dy do, (8.32)

where this time we have included in the definition of d®,., also the factor (1 — &)
coming from the ratio between dx,dx, and dZz, dZ,. At this point, the real
contribution to the non-singular cumulant in such an approximation can be
written as

o . of Ta \ Bpg(1=8 17 2
T = ) 3 “”/def( R e T

< O(1 — 24) 0(1 — ) O(TE™ — To) (8.33)

where €; and €, are technical cuts used to avoid numerical instabilities in the
infrared region. The three # functions in the above expression enforce the con-
straints of eqs. and and set the integration limits on & to (0, &,...)
and those on 4 t0 (Yumins Ymax ), Which allows us to rewrite the integral as

. ma . . PAaP _g
o= e e HO [ M (22) oo

Bmax g
X / dy - 01—y —e¢y). (8.34)

min

Collinear counterterm

From the y — 1 limit of eq. (8.31) we can see that in the collinear limit the real
amplitude factorizes on the Born one as

16mas 1—¢
RPaJ — — Smpg;(l —&HO, (8.35)
Cs

65



Using the radiation phase space introduced in eq. (8.32), the collinear countert-
erm can then be written as

00— (3,) 25 HO) /”a ngf«,z( Zq ) Prai(1 =€) /“y dy
e T T T e eI T L Ty
(8.36)
As described before, at this point we need to modify the integration limits
on y to match those of the real contribution. After noticing that for every
£ € (0,1 —Z4) Ymax = 1, in a fully general way we can change the range of
integration on y from (—1,1 — €,) t0 (Y, 1) by exploiting the relation

=e dy boay 1—y 2
— = —— 01—y —€,)+ 10( >] 8.37
/;l 1 - y /y 1 - y |: ( y y) 1 - ymin g 1 - ymin ( )

min

Finally, if we take the limits of integration of £ to be (0,1 — Z,) and the limits
of integration of y to be (Y, 1) the collinear counterevent reads

1—Z, — PAP (1 —
ot =~ a1 [ ae s () B D g
J

27 —¢£ 1-¢

1
dy { 1—y 2
X —— 01—y —¢,) + log . (8.38)
/y 1_y Y ]-_ymin ]-_ymin

min

Soft counterterm

From the & — 0 limit of egs. (8.31) and (8.32)) we can see that in the soft limit
the real amplitude factorizes on the Born one as

6471'045 Ck H(O)

Rso t = ) 839
S, €1 (8:39)
and the soft radiation phase space reads
2
. m
(bsoft — CsS . 4
A5 = T ¢ de dy do (8.40)
The soft counterterm can then be written as
1 1—e
a a /= _ Qg O) df Y 2
ot = —fo(ZTa) f2 (Zp —= 20, H( / —= dy . 8.41
= 12 () () (2w e

At this point we need to modify the integration limits on £ and y to match those
of the real contribution. In this case we can change the range of integration on
& from (eg, 1) to (0, &max) by exploiting the relation

L e S L))
/65 ¢ _/o ¢ {9@ 65)—1—gmax log )| (8.42)
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and that on y from (0,1 — €,) t0 (Y, 1) by exploiting the relation

l-ey ¢ L4 1—y? L+ Yo
y y y ymln
= (1 —y —e,) + lo ( )} .
/o 1— 2 /ymmlyQ[( Y e kol G
(8.43)

This allows us to rewrite the soft counterterm as

< &max d 1
ol =—fo (ZTa) ﬁb(jb) ;—W 2C}, H(O)/O ?5 [9(5 —€)+ éix log(gmaxﬂ

1 2
2 1_y 1+ymin
dy ——= |0(1 —y — 1 . (8.44
></ Ay {( Y ey)+2(1_ymm) og(l_yminﬂ (8.44)

Ymin

Soft-collinear counterterm

From the £ — 0 and y — 1 limits of egs. (8.31) we can see that in the soft-
collinear limit the real amplitude factorizes on the Born one as

27 C
725 27’6]{(0)
Mgs 5 (1 - y)

Using the soft radiation phase space given in eq. (8.40)), the soft-collinear coun-
terterm can then be written as

Rooticon = (8.45)

a a [~ _ ., « ldé‘ 1—ey dy
T = Fiu ) S G20 H® [ E [T (sap)
65 —

By using egs. (8.37) and (8.42) to change the integration limits on £ from (e¢, 1)
t0 (0, &uax) and those on y from (—1,1 — €;) t0 (Yuin, 1), the soft-collinear coun-
terterm can be rewritten as
£xnax
a _ ra (= — Qg 0 df 5 1
T = B @) £y ) 5220 1O [ E ot = e+ o

1
dy { 1—y 2
></ —— 01—y —¢y) + log( ﬂ (8.47)
v 1—y Y 1 — Yin 1 = Ymin

min

8.2.4 Bulk of the fixed-order cumulant

To separate the fixed-order cumulant into two integrals, we begin by summing
the real contribution in the limit of small 7y given in eq. (8.34)) with the collinear

counterterm given in eq. (8.38))

Zq )Pﬁ,‘}(l—ﬁ)
£ 1-¢

iy 0y =e) (o do
1 + y 1 - ymin 1 - ymin 271-,

(8.48)

_ .\«
Aol + doty = f5, (@) 5> HO dEOE —ee) Y [} ( -
J
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and the soft and soft-collinear counterterms given in eqs. (8.44]) and (8.47)

% a0 s
¢ [Pt loelg

x dy 70(17y76y)+ ! log 2 9
1 + y 1 - ymin 1 + ymin 27T '

(8.49)

do®, +do®, . = [ (Ta) ﬁb(@b)%ﬁzckmo

soft softcoll Da

Both the above expressions are now finite in the collinear ¥y — 1~ limit. To
check the cancellation of the soft divergences, we take the £ — 07 limit of the

expression given in eq. (8.48)

Q@ d
oty + dotty = f5,(@0) £, (@) 52200 HO F 016 — )

% dy 0l-y—¢) 1 log 2 d¢
I+y 1= Yumin 1= Yoin /| 270

(8.50)
and sum it with eq. (8.49)), obtaining
do.raeal + do-goll + do-saoft + do-saoftcoll
_ _\ Qg d§ 9(5 - EE) 14+ Ymin
= f9 (Zq) [ —92C, HO = dyd — 1
Pa (:L' ) Db (xb) o Ck E Y 1 _ Yorin 0og 1 _ Yin
1 01 —y— 1 2 d
+ ¢ log< ) [ (1-y—e) + log( ﬂ 741)
€max £n)ax 1 + Y 1- Ymin 1 + Ymin 27r
(8.51)

The expression above is finite in the £ — 07 limit since, for £ small enough,
Ymin = 0. At this point, after integrating over y and ¢, we define the bulk of the
real subtracted integral as

e\ PE-9) . (14
a b=\ Y 170 af Ta Paj Ymin
=—f — H d : 1 .
Ok Db (xb) o /€£ gzj: f] <1 s 1—¢ og 1— g
(8.52)
We now want to show that the above expression contains all the terms that

are not power suppressed in 7;"* by matching them to those of the cumulant of
the resummed-expanded. In the limit of small 75" the constraint on 7 given

in eq. (8.8) reduces to

To= 26 (1—y) < Tg™ (8.53)

The expression above can be obtained equivalently by taking the limit & — 0T
or y — 17 in eq. (8.8, since those are the only limits for which 75 — 0. By
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solving the above inequality we find the expression of y,,;, in the limit of small

Ts™ to be
K
1—— iféE>k
ymin = f (854)
0 if & < k.

In such a limit the bulk of the integral of the subtracted real contribution
presented in eq. (8.52) becomes

a B P T I e
o =~ Hh70) 5 HO [ dgzj:fj<1—5> EE: 10g<ﬁ1>'
(8.55)

At this point, we call

1=t gm0 ({2 om0 659
J

1-¢ 3
and write
o-gulk = o—gulksoft + O—gulkcoll7 (8'57)
where )
a dg 2¢
Opuiksoft — / ? f(O) 10g</{ - 1) (8.58)
and
11—z 1
¢ d§ 2¢ dé¢ 2
Otk = /"€ ? (f) 10g<ﬂ - 1) - /K ? (0) log(ﬂ —-1]). (8.59)
Since
1 2
d£ 2§ Mecs Mcs . Mes T
— 1 —=—1) =1 1 -1 L 1-— —
() (i e(5 1) v (- ) 4
1 9 mCS 7.(.2 ’760ut
= — 1 —_— — .
5 og (76““> 2 + O(mcs s (8 60)

the soft contribution to the bulk can be expressed as

2 cut
" B o _ | Qg 0 2 [ Mcs ™ To
Opuiksote — — Jpq (Za) ﬁb(mb) o H' )Ck [log <7?)CM) - 6:| " O('mcs) .
(8.61)

The collinear contribution can instead be written as

T I 2 g 2
Obulkeonl = 511)%1+ |:/,B ? &) log(n> _/g z 8) 10g<[£):| + O(k)

-/ e s [Iog(iii) Lo€) + £1<s>] ‘0 (TO) (5.62)

0 Mes
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and, after introducing the new integration variable z = 1 — &, it is finally equal
to

1 _
u N dz ol Za
Ohulkeoll — gb(xb) 2;_ H(O)/: ? E :f] ( > ) (1 - Z) Pgapj(z)
Tq i

x [bg(%if) Lo(1 —z)—i—El(l—z)} +O<T°w>. (8.63)

Mcs

After summing half (since we are just considering ISRA emissions) of the soft-
virtual contribution from eq. with the collinear remnants of eq. (8.29)
and the bulk of the IR-subtracted real integral given by eqgs. and (8.63)),
we arrive to the final expression for the cumulant of the fixed-order contribution

1
a cut) __ a a a
Oro (76 ) = 5 0sotevirs T O, + Ohulksoft + O ulkeoll

2 collremn

2
= % ZZ T (0) a (7 — 2 Mes _ l
o 7 (zp) H {fpa (Z4) Ck { log (76@> 12]

_/; %ij(7> (1—2) P2 (2) {/:0(1 —z)log(ﬂT}C‘i) — L1 —z)]
)

[B5.5(2) = Fp3(2) log 2] }

@ J
Os e =y gb (= L) To
+ % Pa (xa) Do (l'b) iHM—S‘f‘ O(mcs R (864)

where we have set uy = pur = mgs. We notice that the above expression exactly
matches the resummed-expanded cumulant presented in eq. (3.46) up to 75"
power corrections.
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Chapter 9

Phenomenological results

9.1 Physical parameters

The phenomenological results presented in this chapter were obtained for a
proton-proton collider with a hadronic center-of-mass energy v/'S = 13 TeV. We
used the PDF set NNPDF31_nnlo_as_0118 from LHAPDF [34] and the evolution
of ag provided by the same package, treating all the quarks except for the top
as massless (5-flavor scheme).

The EW constants are set in the G, scheme, where the Fermi constant G,
and the masses my and m, and widths I'yy, and I', of the W and Z bosons
are taken as independent parameters, from which the EW coupling agy and
the Weinberg angle 6, are derived. Furthermore, we work in the complex-mass
scheme [35] and define the complex masses of the V = W, Z bosons as

p2 =mi —iTymy. (9.1)

Using the above definition, the Weinberg angle 6y, is given by

2
cos? By = /%V (9.2)
Z
and the EW coupling reads
V2 :
Qg = 7Gu ‘u%v sin? 9W| . (9.3)

The physical distributions presented in this section were obtained setting the
Fermi constant to [36]

G, = 1.1663787 x 107° GeV 2 (9.4)

and the on-shell masses and widths of the W and Z bosons to [37]

mos = 80.379 GeV oS =2.085 GeV 05)
mos = 91.1876 GeV 9% = 24952 GeV. '
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Finally, following the prescription of ref. [38], the pole masses and widths of
the V = W, Z bosons are obtained from the corresponding on-shell masses and
widths as ) )

2
m = —- - I's = .
(m9s)? + (T9s)? Y (@) + (Tgs)”

Starting from the order o2 in the strong coupling expansion, Feynman dia-
grams with top-quark loops appear. To evaluate them, we set the mass of the
top quark to [39]

my = 173.1 GeV. (9.7)

Since such diagrams may contain Higgs-boson propagators, we set the mass my
and width T'y of the Higgs boson to [40]

my = 125 GeV Iy =4.07 x 1073 GeV. (9.8)

9.2 External code and theoretical parameters

The phase space for the process is generated by the Monte Carlo integrator
MunicH, also used in the Matrix NNLO calculations [41]. The matrix elements
up to one loop are instead computed by OpEnLoors2 [33| 42, 43|, while those
with two loops were implemented analytically within GENEvA starting from the
master integrals provided by the VVawmp code [44].

The phenomenological distributions presented in this chapter were obtained
using the 2 — 1 mapping that does not preserve the transverse momentum
gr of the color singlet (see section @, and setting the N-jettiness resolution
parameters appearing in the GENEva formulae (see egs. (4.17)), (4.26)) and (4.27)
to

Tem =1 GeV Te =1 GeV. (9.9)

The factorization and renormalization scales are set to the mass of the color
singlet and the theoretical uncertainties are estimated through a 3-point scale
variation where such scales are multiplied and divided by a factor K = 1/2,1,2
and the minimum and maximum results are taken as the envelope of the uncer-
tainties.

9.3 Analysis cuts

In the following we will present distributions for two different final-state signa-
tures associated to the production of two Z bosons, for which we define two sets
of phase-space cuts.

1. The different-flavor signature pp — e~ et u~ u™. In this case, we include
in the definition of the cross section only the configurations where the
masses of the two lepton-antilepton pairs m.-.+ and m,-,+ are in the
range

50 GeV < my—p+ < 150 GeV. (9.10)
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Figure 9.1: Matrix and GENEvA NLO distributions for the transverse momen-
tum pr.- of the electron and the mass myy of the 4-lepton system in the process
pp — e~ et p~ put + X. The bands represent the theoretical uncertainties es-
timated through three-point scale variations. The lower panes show the ratio
between the two curves.

This ensures the removal of the EW singularities in the limit m,—,+ — 0.

2. The same-flavor signature pp — e~ e e~ eT. In this case we remove the
EW singularities by asking that any electron-positron pair has mass

Me-er >4 GeV. (9.11)

At this point, we call Z; the intermediate off-shell Z boson given by the
sum of the momenta of the electron-positron pair whose mass is the closest
to the physical mass m, given in eq. , and Zs the other pair. We limit
the definition of the cross section to the configurations where

60 GeV < my,,mz, <120 GeV. (9.12)

All the phase-space cuts described above are applied on observables that are
preserved by both the 1 — 0 and 2 — 1 mappings. Because of this, we can
apply them at the generation level (i.e. not generating the configurations that
are outside the boundaries), thus improving the efficiency of the event generator.

9.4 Validation

To validate the implementation of the code, we begin by comparing the two NLO
calculations on which the GENEVA results are based to the fixed-order predictions
provided by Marrix. In figure [9.1] we show the comparison between the MATRIX

73



95
=~ MATRIX 25
=10t —— GENEVA )
> 20
<3 =)
é 5 1.5 Do — et pmptj + X (NLOY
- = VS =13 TeV, pte = pin = ma
<1072 = 50 GeV < e, My < 150 GoV
& ) ety + X g L0 e
= pp = eme"pptj + X (NLO) ~= Antikr, R = 0.4, prj > 30 GeV
E VE= 13TV, ptp = . = mag B} MATRIX
~= 50 GeV' < m-ee, My < 150 GeV 0.5 B )
Anti-ky, R =04, py; > 30 GeV GENEVA
1073 0.0
1.1 1.1
=t H/ o)
== il o — o i
*5 1.0 -7 5 75 3 T =5 7P B ?é 1.0 -Ijrim;-—»k o T O r'{'ﬁﬁ,-bv
0.9 0.9
0 50 100 150 200 250 300 5 3 9 1 0 1 3 3 4
prj [GeV] Yj

Figure 9.2: Matrix and GENEvA NLO distributions for the transverse momen-
tum py; and rapidity y; of the hardest jet in the process pp — e~ et p= pt j+X.
The bands represent the theoretical uncertainties estimated through three-point
scale variations. The lower panes show the ratio between the two curves.

and GENEVA NLO predictions for the transverse momentum of the electron and
the mass of the 4-lepton system in the process pp — e~ et u~put + X. In
figure instead we consider the process pp — e~ e™ u~ u™ j + X with one
additional jet in the final state and show the comparison between the MaTRIX
and GENEvVA NLO predictions for the transverse momentum and rapidity of such
a jet. Since we are just comparing two fixed-order calculation we expect and
observe a perfect agreement (within the statistical fluctuations) in both cases.

In figure and instead we compare the GENEvA prediction before the
reweighting with the NNLO results from MaTrix. In this case there are two
effects that can potentially introduce discrepancies between the two results.
The first is due to the missing O(ag) power corrections to the 0-jet exclusive
cross section. The second instead is due to the fact that the resummation moves
contributions across phase spaces with different parton multiplicities. Because
of this, only the observables that are preserved by both the 1 — 0 and 2 — 1
mappings are theoretically expected to have the same distribution they would
have in a fixed-order calculation. In figure|9.3| we show three distributions that
are preserved by the two mappings: the mass my, and rapidity y4 of the 4-
lepton system, the mass m,.-.+ of the electron-positron pair and the rapidity
ye— of the electron. Despite the missing power corrections, all of them display
a good agreement with MaTRIX. Furthermore, we show the distribution for the
rapidity y.- of the electron, which, despite not being preserved by the mappings,
is in good agreement with the fixed-order predictions. This does not happen
instead for the two distributions presented in figure namely the transverse
momenta of the electron-positron pair (pr.-.+) and the electron (pr.-), for
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Figure 9.3: Matrix and GENEva NNLO distributions for the mass my, and
rapidity y4¢ of the 4-lepton system, the mass m,-.+ of the electron-positron
pair and the rapidity y.- of the electron in the process pp — e~ et u~ u™ + X.
The bands represent the theoretical uncertainties estimated through three-point
scale variations. The lower panes show the ratio between the two curves.
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Figure 9.4: MaTrix and GENEva NNLO distributions for the transverse momenta
of the electron-positron pair (pre-.+) and the electron (pr.-) in the process
pp — e~ e p~ut + X. The bands represent the theoretical uncertainties
estimated through three-point scale variations. The lower panes show the ratio
between the two curves.

which the effect of the resummation is larger.

Finally, in figure [0.5] we show the effects of the Pytaia8 QCD parton shower
on the mass myy and rapidity y4¢ of the four-lepton system, the transverse mo-
mentum pr.-.+ of the electron-positron pair, and the zero-jettiness 7y. The
effects of the parton shower are small on all the inclusive distributions, as ex-
pected. Furthermore, the deviations introduced in the peak of the Ty distribu-
tion are numerically under control.

The same extensive checks were performed for the process where the four
final-state leptons have the same flavor pp — e~ eT e et + X.

9.5 Comparison with the experimental data

After validating the implementation of the code, we can now proceed to the
comparison with the data from the ATLAS [45] and CMS [46] experiments.
Differently from what we did in the previous section, in this case we let PYTHIAS
perform the QED shower, add the multiparton interactions (MPI) and perform
the hadronization of the produced partons as well as the subsequent hadron
decays. Following what is done in the two experimental analyses, we define the
momenta of the dressed leptons as the sum of their naked momenta (i.e. the
momentum that they have in the event) and the momenta of the photons within
a radius ARy, = 0.1 from their direction. We refrain from describing all the
details of the two analyses (which can be found in the original papers), and limit
ourselves to reporting the relevant phase space fiducial cuts.
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Figure 9.5: Comparison between the partonic and showered GENEvA NNLO dis-
tributions for the mass my4, and rapidity y4, of the four-lepton system, the trans-
verse momentum p...-.+ of the electron-positron pair, and the zero-jettiness 7y
in the process pp — e~ et~ u™ + X. The bands represent the theoretical
uncertainties estimated through three-point scale variations. The lower panes
show the ratio between the two results.
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Figure 9.6: Comparison between the GENEvA+PyTHIA8 NNLO distributions and
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uncertainties estimated through three-point scale variations. The lower panes
show the ratio between the two results.
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Figure 9.7: Comparison between the GENEvA+PyTHIA8 NNLO distributions and
the CMS experimental results for the transverse momentum pr 4, of the
four-lepton system, the mass my, of the four-lepton system, the azimuthal angle
Aoz, z, between the two reconstructed Z bosons, and the transverse momentum
pre of the leptons in the process pp — ¢~ ¢t ¢/~ 't + X. Each of the above
distributions is divided by the total fiducial cross section. Furthermore, the last
bin of every distribution is an overflow bin. The bands represent the theoretical
uncertainties estimated through three-point scale variations. The lower panes
show the ratio between the two results.
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9.5.1 ATLAS

The four hard leptons £=, ¢+, £/~ and ¢'T are selected as those that minimize
the sum
M=+ — M| + [Mp- g+ — My (9.13)

where my-p+ and my-g+ are the virtuality of the two pairs of same-flavor
opposite-charge leptons and m, = 91.1876 GeV. This automatically defines the
momenta of the two reconstructed Z bosons Z; and Zs to be given respectively
by the sums of the momenta of £~ and ¢t and those of ¢~ and ¢'*. Both Z;
and Z, are required to have a mass between 66 and 116 GeV, and, if £ = ¢,
the lepton-antilepton pairs £~ ¢'" and ¢~ ¢ must have mass larger than 5 GeV.
Furthermore, the four leptons of the quadruplet, ordered from the hardest to
the least hard, are required to have transverse momentum larger than 20, 15,
10 and 5 GeV, respectively, and absolute value of the rapidity smaller than 2.7.
Finally each same-flavor lepton pair of the quadruplet must have an angular
separation ARy, > 0.1 and each opposite-flavor lepton pair of the quadruplet
must have an angular separation ARy, > 0.2.

In figure we show the comparison between the GENEVA+PyTHIAS NNLO
distributions and the ATLAS experimental results for the transverse momen-
tum pr 4¢ of the four-lepton system, the absolute value |yse| of the rapidity
of the four-lepton system, the absolute value |Ayyz, z,| of the rapidity differ-
ence between the two reconstructed Z bosons, and the transverse momentum
of the hardest lepton. We observe a reasonably good agreement between the
theoretical predictions and the experimental results, even if the former tend to
underestimate the latter in the peak regions. Such a behavior has been observed
for several other event generators (see figs. 9-12 of ref. .

9.5.2 CMS

The first reconstructed Z boson (called Z) is chosen as the same-flavor lepton-
antilepton pair £~ ¢ whose mass is closest to m, = 91.2 GeV. If there are more
than four leptons in the final state, the second reconstructed Z boson (called
Z5) is chosen as the remaining same-flavor lepton-antilepton pair £~ with
the largest scalar sum of the transverse momenta of £~ and ¢'*. Both Z; and
Zs are required to have a mass between 60 and 120 GeV, and, if £ = ¢, the
lepton-antilepton pairs ¢~ ¢ and #~¢T must have mass larger than 4 GeV.
Furthermore, the four leptons of the quadruplet, ordered from the hardest to
the least hard, are required to have transverse momentum larger than 20, 10, 5
and 5 GeV, respectively, and absolute value of the rapidity smaller than 2.5.
In figure we show the comparison between the GENEvaA+PyTHIAS NNLO
distributions and the CMS experimental results for the transverse momentum
Dr,4¢ of the four-lepton system, the mass my, of the four-lepton system, the az-
imuthal angle A¢z, z, between the two reconstructed Z bosons, and the trans-
verse momentum pr ¢ of the leptons. Each of the distributions is divided by the
total fiducial cross section. Furthermore, the last bin of every distribution is an
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overflow bin (i.e. it contains all the contributions up to the maximum kinemati-
cally allowed value for that observable). We observe an overall good agreement
between the theoretical predictions and the experimental results, with some dis-
crepancies in the tail of the distributions, that could be explained by the absence
of higher-order EW effects.
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Chapter 10

The MiNNLOpg method

The MINNLOps method [16], [17] provides a framework for building a NNLO
Monte Carlo event generator and combining it with parton showers. It was
born as the natural NNLO extension of the original MINLO method |11} |12,
47], which was able to reach NLO accuracy both for the observables inclusive
over radiation and those requiring a final-state jet. Calling @) and p; the mass
and transverse momentum of the color singlet respectively, the differential cross
section for the production of the color singlet in the MINNLOps approach is
given in eq. (2) of ref. [17] and reads

dO.MiNNLO

d [ _5.
ZiT = Z @ (e Sm(PT)Cm}(?%‘)) Q(Q — pT) FCO”(@I) + Rf, (10.1)
& T

where d®; is the phase space for the production of the color singlet accompanied
by one parton, the index k runs over the possible flavors of the initial-state
partons, the Sudakov form factor e~ %s%(PT) and the luminosity factor L.z (pr)
provide the p, resummation of the differential cross section and the term Ry
contains all the contributions to the production of the color singlet in association
with one jet that are non-singular in the py — 0 limitB Finally, the function
Fe=(®q) plays the same role of the splitting function Py_,1(®P1) described for the
GENEVA event generator: i.e. it provides a full ®; dependence to a contribution
that would be otherwise differential in p, only, without spoiling the distributions
that only depend on the underlying phase space d®g and p-.

In the implementation of the differential cross section given in eq. in the
MINNLOps code, instead of using the 8(Q — pr) function, all the logarithms log(Q/pr)
are substituted by the modified logarithms 1/plog(l+ (Q/pt)?). If the value of p is large
enough (p £ 3) the differences between the two approaches in the distributions inclusive over
radiation is negligible. The results of this work were obtained with the default value p = 6.
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10.1 The resummed contribution

10.1.1 The Sudakov form factor

The expression for the exponent of the Sudakov form factor is given in eq. (2.9)
of ref. [16] and reads

_ Q* dq2 Q2 B
St = [, 0 |aion( %) + Busta)] (102)
w2 4 q
where
2
~ . as(q) (1) as(q) (2) as(q) (3)
Ala) =5 = A+ (5 ) At ) A
(10.3)
B ~as(q) JROEE q) 23(2)
Kk (9) = on ki T\ Ton W
and >
H(2) _ p(2) (1) 0 r7(1)
BY = BY 26 (AY) + JH). (10.4)

We will introduce the coefficient H ]S—ﬁ) in the next section. Since in the following

we will need the first coefficient of its oy expansion, we write it as

~ ag(pr) 5
Suelre) = S 50 () + 0(2). (105
with o
) Al 2 2
S (p,) = i 1og2(;22) +BY 1og(§2) : (10.6)

The expressions for the A,z and B, coefficients appearing above can be found
in egs. (B.9) and (B.10) of ref. [16]. We limit ourselves to reporting the value

of AS;;) and Blg—g7 which read

AY =20, Bl =-3C,

qaq

1 1 (10.7)
Al =20, By = —po.

10.1.2 The luminosity factor

From eq. (23) of ref. [17], the luminosity factor £, is given by the truncation
to order a? in the expansion with respect to the strong coupling of

Lyi(pr) = Hip(pe) Y [(@kj ® fj[-“]>(xa,pT) (é;;jf ® f][lf])(xb,pT)

i

+ (G @ A7) warpe) (G © £ ) @) (108)

84



where Hyj (1), Ch;(2, ) and Gy; (2, i) are respectively the hard-virtual and the
quark and gluon collinear coefficient functions evaluated at the renormalization
and factorization scales u, and f][h] (z,p) is the PDF of the parton j carrying
a fraction = of the momentum of the hadron h evaluated at the factorization
scale p. Finally, the convolution operator is defined so that, given two generic
functions f and g,

La x

(too@ = [ Zree(2). (10.9)

© z

The hard-virtual coefficient function is given by the amplitude for the production
of the color singlet with no jets computed in the MS subtraction scheme and
can be expanded as

o) = () )
10.10

where ng is the power of the strong coupling in the Born matrix elements of the
process and

2
© | as(pr) ) as(pr) \~ A2
a9+ 2 1+ () 0|

A2 =H% —2;4 0B (10.11)

The collinear coefficient functions for color-singlet production are instead pro-
cess independent and their expansion with respect to the strong coupling is
provided in eq. (B.16) of ref. [16]. The quark coefficient functions can be writ-
ten as

Crj(z,pr) = 0 6(1 — 2) + %2(?) O (2) + (%?) C2(2),  (10.12)

where (2) (2) (1) p(0)

(2 2 1) (0

Cyj (2) = Cpf (2) = 2GA L Py (2) (10.13)
We will introduce the function P,E(;)(z) in the next section. In particular, from
eq. (B.17) of ref. [16] the first coefficient of the expansion reads

2
m
i (2) = Piy(2) — Cra T3 0k 0(1—2), (10.14)

with the expressions for Cyr and Pj;(z) given in egs. (3.15) and (3.24). The

expansion of the gluon coefficient functions instead starts at order ag and can

be written as (px)
As(Pr
Gy, pr) = =50 G (2). (10.15)

(2)

The derivation of the additional terms proportional to (3 appearing in Bk];,

ngé) and C'g)(z) is provided in section 4 of ref. [16].
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Expansion with respect to the strong coupling

To expand the luminosity factor of eq. (10.8)) with respect to the strong coupling,
we begin by writing the Dokshitzer—Gribov-Lipatov—-Altarelli-Parisi (DGLAP)
evolution equation [48], which reads

O (x, ) _ 2 as(p) ©) _ ,lhl )
“on p on ; (ij ® fj )(x,u)+(9(as), (10.16)
with "
. B
P (2) = Py (2) = =25 61 6(1 — 2), (10.17)

where the coeflicients B,SC) were given in eq. 1} and P,jjp (z) are the regular-
ized Altarelli-Parisi splitting functions defined as

DAP 2) = 1+22
By () = Co gy
Par(s) =T [2 4+ (1-2)°] s
) 10.18
Pz = A
P;;(z)_wA{G_ZZ) +1;Z—|—z(1—z) .
+

In the above equations we made use of the + distribution, which for a generic
function f is defined such that

/dz(lf(z) PGy (O} (10.19)

—z), 1—2

At this point, we can use the solution to the DGLAP equation

ag(pr 2
) = )+ 22D S (B9 & 1) (@,p) log(;‘z) +0(a?).

(10.20)
to impose that the scale-dependent terms of the luminosity factor cancel order
by order in the ag expansion, so that we can write

2
(% oy « T
Ly (pr) = Eé%)(pTva)‘i‘ 82(7pT ) ‘Célk)(pTva)'i'(S?(;”) ‘C;(j;)(pmp'r)v (10.21)
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where the first two coefficients of the expansion read

L e, ) = HY £ (wa, ) £ (o, 1) (10.22)

2
0 (prp) = {H,i?j (e 1) o) = (P & 117 o (1)

j T
1 a
+ 3 B 00) £ o ) }f,—i“ (w5, ) + (a ¢ 0). (10.23)

Since e~k (@) = 1 (see eq. ), the total p; cumulant of the resummed
contribution appearing in eq. (10.1)) is given by

Ly (Q) = % HY 11 (24, Q) fM (20, Q) + %f) { O

1d a a / ’ @
T E Q) re - Hou e

+ %H&)(Q) A (20, Q) } U2, Q) + (a 45 b) + O(a?).

(10.24)

10.2 The non-singular contribution

The non-singular contribution R appearing in eq. contains the difference
between the fixed-order differential cross section for the process of production of
the color singlet accompanied by one jet and the expansion of the p; resummed
spectrum truncated at order a2. To provide an explicit expression for the latter,
we begin by writing the p; spectrum of the resummed contribution as

d & &
i (e Skk(pT)EkE(pT)) =e Sk D 2 (pr) (10.25)
where we have introduced
ALz dS,;
Dy (pr) dpkk (pr) = Ly (pr) dpkk (pr) - (10.26)

(2)

At this point, we can expand the two derivatives appearing in the above equation
dgki'e as(pr) dgkl_c
(pr) = == | 2% (pr,pr) + O(ad)

as
(1) o . =
as(pr) dSyr,
dpr 2w dpr (pr, pr) + ( 2T ) [ dpr

ALy, as(pe) [dLz ] as(po)\ * [dLiz 1% 5
dp. Pr) = g | PP (o dpe | (Propr) +O()
(10.27)
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where the first orders of the expansions reads

L
_ 2 2
[625%1 (Prsp) = —— [A(l log<Q ) +B(1)}
Pr Pr pT
dc,; 1 2 .
] ) = 2 1 S (P 157 o) £ 1) + (0 ).
J

dpr
(10.28)

From the above results, we can write the expansion of D,z (pr) as

Dyj(pr) = % (pr) ](Clk)(pT,pT) + (0632(7I:T)) D](fk)(pTapT) +O(OL§), (10.29)

where the first order of the expansion read

2 1 Q? a
D&)(pT,u):H,i?{Q[A&?log( )+ 5|
Pr pi

+Z( <o>®fa])(%7m} Py, 1) + (a2 b). (10.30)

Finally, from the above equation the spectrum of the resummed-expanded con-
tribution in the MINNLOps method can be written as

dURE Qg (,U) 2 (0
= H 1 a
d®q dpy 2T po Z — Gl log Q2 Ix (Ta, )

+Z/ —f“ )P,ﬁjp(z)}fﬁ(wb7u)+(a<—>b)+(’)(a§).

(10.31)

The O(a?) term of the above expression can be found in the appendix of ref. [17].

10.2.1 Modifications to the original MiNNLOpg method

In the formulation of the MINNLOps method presented in ref. [17] the expression
used for the non-singular contribution is

dakk LO

R _ Zefg%(m) dalcglsciii\:zc( ) + aS(pT) Sv({)( ) CS+Jet( )
f - dq)l pT 271_ kk pT d(I)l pT

- |f1$(pT) D;S;)(pT,pT) + (aS(iT)> Dl(jé)(pTapT) oo () }

2
(10.32)

In the above formula dalégfjft/dél(u) and daégﬁgc/dél(u) are the LO and
NLO (integrated over the second QCD emission) differential cross sections for
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the production of the color singlet accompanied by one jet involving partons
of flavor k evaluated at renormalization and factorization scales p. Their ex-
plicit expressions are given by the sum over the corresponding signatures of
do by, /AP (p) and doll e /d® (i) respectively (see egs. dﬁgél-l) and M)

We highlight that the formula presented in eq. (10.32) is not fully expanded
with respect to ag, but keeps the exponentiated Sudakov form factor in front.
This multiplicative approach was inherited by the original MINLO method [11]
12]. From the numerical point of view, the presence of the Sudakov form factor
increases the stability of the Monte Carlo integration of the non-singular con-
tribution up to very small values of pr, where the subtraction of the divergent
terms appearing in the fixed-order and resummed-expanded contributions is not
fully local in the phase space d®;. On the other hand, when comparing with the
results from a fixed-order calculation, the Sudakov form factor and the choice
of a scale u = pr are sources of potential discrepancies, which, despite being
formally beyond the claimed NNLO accuracy, can be numerically relevant.

In ref. [2] we presented two modifications to the above expression for Ry with
the aim of minimizing the discrepancies with respect to a fixed-order calculation
(where the factorization and renormalization scales are set to Q).

1. We set the scale p to the mass of the color singlet (), instead of its trans-
verse momentum pr.

2. We substitute the exponent S,z of the Sudakov form factor given in

eq. (10.2]) with
Q* 2
Sy (pr :/ dq O‘S {A(l)l (222)+Bf;j], (10.33)
P

truncating the expansions with respect to the strong coupling of A;; and
B,.;. at the first order.

After these two modifications, the expression for Ry presented in eq. (10.32) is
substituted by

da_kk PWG . N do lélsc Lot
Ze‘skk“’”{ Peen (@) + 5L 50 ) Vet )
2
- [az(f) D, (02, Q) + (O‘S’Q(f)) D3 (02, Q)| Foorr(@ )}
(10.34)

Validation of the modified method

The difference between the two formulations is beyond the claimed NNLO accu-
racy and are expected to be numerically negligible for processes where the size
of the non-singular contributions is small compared to the total cross section.
To check this, we applied the modified MINNLOps method to the processes of
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Figure 10.1: Comparison between the predictions from the fixed-order calcu-
lation implemented in MATRIX and the Les Houches partonic events generated
by the Powneg Box REes with the original and modified formulations of the
MINNLOps method for the rapidity of the color singlet for the processes of Drell-
Yan (y,+,-) and Higgs (ym) production. The original and modified MiINNLOps
formulations are labeled respectively no FOatQ and FOatQ. The bands represent
the estimated theoretical uncertainties of the distributions. In the lower panes
of the figures, the ratio between the two curves is shown.

Drell-Yan and Higgs boson production and compared the results with those ob-
tained with the original method and presented in ref. . For each of the three
processes (Drell-Yan, Higgs boson and 7y production) we compared the total
NNLO cross section o™ to the resummed contribution alone o™ given by the
integral of the first term of eq. (10.1)) (the non-singular contributions are given
by the difference of the two terms), finding

o0 = 1919+ 1pb  ofs = 1904+ 3 pb

o0 =39.64+0.01 pb  o}* = 34.03 £ 0.07 pb (10.35)
oNN©O = 1557+ 1.0 pb 0% = 55.7+ 0.6 pb.

For diphoton production, ¢ contributes to only about one third of the total
cross section, at difference with Drell-Yan and Higgs boson production, thereby
justifying the choices made in this chapter. As a further validation, in fig-
ure [I0.1] we compare the rapidity distribution of the color singlet obtained with
the original and new formulations (labeled respectively as no FOatQ and FOatQ)
for Drell-Yan and Higgs boson production. The MINNLOps distributions shown
in the figure are from the PowHEG partonic events (often called Les Houches
events). Furthermore, we show the NNLO results from the fixed-order calcu-
lation implemented in the public version of the MATRIX code , where the
renormalization and factorization scales have been set to the mass of the color
singlet Q. For this comparison only, we use the same PDF sets used in ref. .
The curves show a very good agreement between the NNLO and the MINNLOpg
results obtained with both the formulations, both for the central scale and the
uncertainty band. In particular, since the Drell-Yan process features a very
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small perturbative uncertainty band, the remarkable agreement between the
NNLO and F0atQ curves displayed in the left pane of figure [T0.1] represents a
robust validation of the new formulation of the MINNLOps method.
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Chapter 11

The Powheg method

The generation of the events according to eq. relies on the PowHEG Box
Monte Carlo event generator [10], which also provides the resummation of the
transverse momentum of the second emission appearing in the NLO differential
cross section dore® /d®; (from now on doB¥S,, /d®;) for the production of
the color singlet accompanied by one jet. To give a brief introduction to the
PowsEG method, discussed in details in refs. [8] and (9], we begin by describing
how the ®, configurations are mapped into the phase space d®;.

The amplitude of a ®5 configuration diverges in the limit of small relative
transverse momentum k-, between any couple of partons that represents a valid
QCD splitting. This results in a maximum of three divergent regions «,. that we
call [0,1], [0,2] and [1,2] parametrized respectively by the transverse momentum
of the first (k[TO’l]) or second (k[o 2]) final-state parton with respect to the beam
or the relative transverse momentum k[Tl’Z] between the two final-state partons.
Instead of assigning a fixed projection to every ®5 configuration, the POwWHEG
Box event generator divides the contribution from every real signature f, into
one contribution from every divergent o, region given by

dolr' dolrko
;f;wt = ;fbf”t for(@2). (11.1)
with the aid of a function f*r such that
dolrty dolr k9
ar(fH -1 lim Cs+2jet _ CS+2‘]et. 11.2
QZ“; for(®2) ka0 d®y d®, (112)
fr,LO

This guarantees that each contribution doly5. /d®s is divergent in one
region only. At this point, a different mapping is defined for every contribution
following the requirements of infrared safety. This allows us to write the NLO
cross section for the process as

do fv,NLO
NLO _ /d‘b1 CS+Jct (11.3)

CS-‘r]et
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where daég’fﬁ? /d®, contains the integral over the ®5 configurations from the

a, contributions whose projection is the configuration ®; with signature f;.

At this point we introduce several definitions to comply with the standard
PowneG notation. We call the LO and NLO differential cross section for the
production of the color singlet accompanied by one jet respectively

deb’LO ~ do fv,NLO
Bfe(®,) = ;;)ﬁ“ B (®)) = %ﬁ“, (11.4)
1 1

and the LO differential cross section for the production of the color singlet
accompanied by two jets associated to the singular region .

R () — 996520 "

From eq. (4.17) of ref. [9], the Powntc master formula for the differential cross
section for the production of a color singlet accompanied by one jet reads

dot¥s Zbe ) ddy | AT (D, kg

CSjet —

R (® o o cuey AP
+ 3 ) Ay k) otk — k) B2, (11.6)

where k$* is a resolution parameter (i.e. the ®, configurations with kp < kS
are considered unresolved and only contribute to the generation of ®; events),
and, from eq. (4.16) of the same reference, the Pownea Sudakov form factor is
defined as

d®, R
A (D1, ky) = exp Z/dq)j B )a(kauk) : (11.7)

ar‘fb

The term in the square brackets of eq. (11.6)) implements the resummation of
the relative transverse momentum of the second emitted parton with a mul-
tiplicative approach. The unitarity of the approach is guaranteed by the fact
that

d® R ()
I cut 2 2 fi _ eeut) __
A (D, kS /dq)1 § B A @k Ok — k3 =1, (118)

which allows us to write

do_fb,PWG deb,NLo

CS+jet CSjet D fb
— — Bl (®,). 11.9
dd, dd, (®1) (11.9)
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Chapter 12

Handling of the QED
singularities

Any event generator that aims to reach more than LO accuracy in QCD needs
to rely on ®,,,1 — ®,, mappings between phase spaces d®,,;1 and d®,, with dif-
ferent parton multiplicities. Indeed, the presence of infrared QCD singularities
makes it necessary to combine contributions with different number of final-state
partons in the differential cross section of the same event. In general, because
of that, among the observables that are inclusive over the QCD radiation, only
the distributions of those that are preserved by all the mappings can be in exact
agreement with those obtained from a fixed-order calculation. All the others
may display deviations that are power-suppressed functions of the transverse
momentum k. of the radiation (i.e. they vanish in the limit of small k., where
the requirement of infrared safety forces the observable to have the same value
when evaluated at both ®,, and ®,,41).

However, in the case of production of a photon pair, the picture is com-
plicated by the presence of QED divergences, which lead to two additional
problems.

1. The configurations that are far from every QED singular region should
not be mapped into configurations close to a QED singular region, and
viceversa. If that was not the case, events that are not discarded at the
analysis level could receive contributions from unphysical divergent am-
plitudes, or events that are discarded could carry physical contributions.
The requirement can be lifted if the contributions from such configurations
are given a strong kinematic suppression.

2. The generation of events which are close to the QED singular regions
should be suppressed to keep the event generator efficient.

Furthermore, we would like to avoid introducing any hard cut or isolation criteria
at the generation level, leaving the user free to apply their own ones at the
analysis level.
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12.1 1 — 0 mapping

The projection that we use is determined by the requirements that it preserves
1. The mass of the color singlet.
2. The rapidity of the color singlet.
3. The direction of one of the photons in the laboratory frame.

By doing this we make sure that QED-finite configurations with one final-state
parton are not projected to singular configurations with no final-state partons.
As far as the MINNLOps formulae are concerned, we would just need to de-
fine a 1 — 0 mapping that projects the ®; configurations to the ®, ones.
Nonetheless, we will also introduce its inverse, namely a function that, given a
®( configuration and three additional radiation variables, associates to them a
®; configuration. In practice, we have implemented such function in the code
and use it to generate the d®; phase space from the d®, one. After doing that,
we save the original ®( configuration, so that we do not need to project it later.
This represents also a very strong check of the correctness of the mapping.

12.1.1 Preservation of mass and rapidity of the diphoton

To preserve the mass and rapidity of the diphoton, we can use the formulae for
the FKS mapping, already discussed in chapter [6} In the laboratory frame of
®( the diphoton mass and rapidity read

1 Za
Moy =V STeTp Yyy = = log(fb> , (12.1)

where S is the squared hadronic center-of-mass energy and z, and T, are the
fractions of hadronic momenta carried by the two partons that undergo the hard
interaction.

In the partonic center-of-mass frame of ®; instead the momentum of the
final-state parton can be written in terms of the FKS variables &, y and ¢ as

b= 2 (1Y sing/I— o7 cosou). (12.2)

where s is the squared partonic center-of-mass energy of the system. In such a
frame the momentum of the diphoton in ®; then reads

by = Y2 (26 € VTR w6 TP eoss€9) (23

and its mass and rapidity are given by

Myy = \/m yﬁff = ;bg(;:f(l_'_y)) ’ (124)
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Introducing z, and z; as the fractions of hadronic momenta carried by the two
partons that undergo the hard interaction so that s = Sx,zp, we can finally
write the mass and rapidity of the diphoton in the laboratory frame as

Moy = \/STaty (L —€)  Ypy = % [log(ii) +1og(m)] . (12.5)

By equating the expressions of egs. (12.5) and (12.1)), we find the relation
between Z,, Tp and x,, Tp to be

_ _Za 2-£{(1—y)
VI—E\2-&6(1+y)
_ M 2-¢{(1+y)
VI—EV2-6(1—-y)

(12.6)

Tp

12.1.2 Preservation of the direction of one photon

Instead of simply boosting the momenta of the ®3 diphoton system to give
them the total momentum of eq. , as in the FKS mapping, we now want
to enforce the preservation of the direction of one photon. To do that, we need
to express the momenta of &y and ®; in two frames where the diphoton system
has the same rapidity. We choose to work in the partonic center-of-mass frame
of ®; because in such a frame the ®; momenta have simple expressions (see
egs. and (12.3)).

After writing the momenta of the two photons of the configuration ®¢ in
their center-of-mass frame as

Py = 21 (1,sin @ sin ¢, sin 6 cos ¢, cos 6)
2
K o o ) (12.7)
Py = % (1, —sin@sin ¢, —sin d cos ¢, — cos f)

we apply a longitudinal boost with rapidity (12.4]) and arrive to

5l = 27&7@00&9,sinésingﬁ,sinécosg?),—(275)00597@

Dy,
T2 \Ve—e ey (2-€)>— 2y
13;2 = m;.y 2-¢+ &y cosd , —sin fsin ¢, — sin A cos ¢, — (28 cosb &y
(2—€) —£2y2 (2—€)%—€2y2
(12.8)

At this point, we can impose that the momentum p,, of the configuration ®;
in the partonic center-of-mass frame has the same direction of ;5; .- To do that,
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we introduce the dimensionless parameter £ and write p,, as

26— Eycosh ,sin A sin ¢, sin 0 cos ¢, (2—¢)cost — &y

(2-¢)" - ¢2y? (2-¢)" - &2y?
(12.9)
Finally, we fix the value of £ by imposing that the second photon, whose mo-
mentum reads

p"/1 :5\/g

Py =Vs|1— g —-& 2—§—§ycos2027_§ V1 —y2sing — Esinfsin @,
2-8" - &%

o o _ -
_2M008¢—5sin9c03¢)’_%_5( &) cosh — &y ’
2
(2— €)% — €22
(12.10)
is massless, which imposes
- — : (12.11)

(26 — €242 + /T — ¢2 sinfcos(¢ — )

12.1.3 Jacobian

To implement the generation of the d®, phase space using Z,, Zp, 6 and ¢
along with the FKS variables &, y and ¢, we still need to compute analytically
the Jacobian of the transformation, which, using egs. (6.12)) and (12.6]), can be

written as

i,  Szum, € dD,
dzodzy dédydpdeosfdy — (4m)3 (1 —¢)? deosOdd

(12.12)

Since d®., is a Lorentz invariant, we can compute it in any suitable reference
frame. In particular, if we call 8’ and ¢’ the polar angles of one photon in the
center-of-mass frame of the diphoton system, we can write

dcost d¢’
d@»y»\/ - W, (1213)
so that we are left with computing the value of
/ /
_ deost dg (12.14)
dcos8do

To do that, we need to find the sequence of boosts that take the momenta of the
two photons from the partonic center-of-mass frame of ®; to the center-of-mass
frame of the diphoton system. We begin by performing a longitudinal boost on
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the momentum p,, given in eq. (12.9)) to the frame where the diphoton system
has zero longitudinal rapidity. Using the expression for yJ3' given in eq. (12.4),
we find that in such a frame

P, =EVs (1, sin @ sin ¢, sin f cos ¢, cosf) . (12.15)
Since in this frame the momentum of the photon pair reads
S / % . Y
p’Y’)’Zg ( (275)2752y27 75 17y2 SlIl(,ZS, 75 17y2 COS(ba 0>7

(12.16)
to get to the diphoton rest frame, we need to perform a transverse boost with

velocity
U = VI-y (sin @, cos ¢, 0), (12.17)
(287 — &2

after which the spatial components of the four-vector representing the momen-
tum of the photon become

Py = My & (AsinqSJchosgb, Acos ¢ — Bsing, 24/1 ffcosé),

2 1-¢
(12.18)
where we have introduced, for ease of notation, the two auxiliary variables

A=1/(2 —5)2 — &2y? sinfcos(¢ — @) + /1 — y2

) . (12.19)
B =24/1 —gsinﬁsin(qﬁ— gi)) .
Finally, we need to equate the result of eq. (12.18)) to
Py = mQW (sin@'sin ¢, sin @’ cos ¢, cosf'), (12.20)
which imposes
cosd — 2€ cos 0
= =
. ¢ (12.21)
, Asing + Bcos¢
tan ¢’ = —
Acos¢p — Bsing
so that finally the expression for J reads
4(1 -
J = (1=¢) 5 (12.22)

[ (2—5)2 — &y2 + &\/1 — y?sinfcos(¢ — o)
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12.2 The damping function

The formula presented in eq. cannot be directly applied to the process
of photon pair production, since events that are far from every QED singular
region (and thus not discarded by the analysis) could still receive contributions
from divergent amplitudes through the B’ function. In this section, we describe
a general way to deal with processes that present QED divergences at the Born
level within the PowHEG formalism, with the aim of generating events without
introducing any phase space cuts or photon isolation criteria at the generation
level[T]

So far, for every real signature f,., we have divided the real contribution R/
into up to three terms R“", so that each of them is divergent in one kS — 0
limit only. We now further split R%" as

R = R, + R, (12.23)

so that R%r_ is divergent in the QED singular regions, but QCD finite, and

QED
viceversa. To do this, we introduce the damping function Fr(®5) and define

Ry, = F° RO R2p, = (1— Fr) R, (12.24)

QCD

The explicit expression for the damping function is given by

()
FO(T — da,,,

— , (12.25)
1 P e gl 1 P
(@) 22 ()
ar i=1 j=1 ciyvjl
where
4 pij if 7 is an initial-state particle,
li.4] = 9 min(EiQ, EJQ) (1 —cosb;;) if ¢ and j are final-state particles,
(12.26)

and the sum in the denominator runs over the n. massless charged particles
and the n, photons. In eq. , p is a positive real number, p.; and F;
are the transverse momentum and energy of the particle j, and 60;; the angle
between the particles ¢ and j, everything computed in the partonic center-of-
mass frame. The reason why we have not used the invariant mass of the ij pair
in the definition of d|; ;; in the case where i and j are both final-state partons
is to ensure that in the soft limits d|; ; has the same scaling with respect to the
energy of the radiated parton both in the initial- and final-state case.

At this point, after a few modifications to the formula provided in eq. ,
the Powngc differential cross section for the production of a photon pair accom-

1To the best of our knowledge, a similar procedure was first used in ref. [49].
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panied by one jet can be written as

cut RGen (P2) N
do’s’\‘}/vﬂiet = Z ngcD ((I)l) dd, [Aé%D ((131, ij ) + % Ag)(lD((bl’ kTT)
fo ar|fr
X e(k/,fr)lr _ kcut + ZRQED <I>2 dCDQ, (1227)

where the contributions from RggD(CDQ) are now considered to be unprojectable

and therefore not included in BQCD (®1), and the new Pownec Sudakov form
factor reads

d®y B35, (P2)
Al (P = Rain(®2) oy, ) 12.2
i (@1, ) = exp ZI;/dq)l S ok ke | (1228)

We now want to show that the method we have just introduced satisfies the
first requirement made in the above section. First, we have to show that it
prevents ®5 configurations that are far from every QED singular regions from
being mapped into ®; configurations that are close to a QED singular region,
to avoid generating ®, events from a divergent B¢ (®;). Let us consider a ®
configuration where the closest QED splitting is characterized by a transverse
momentum £3"P. There are two possibilities.

1. The closest singularity is due to QCD (i.e. k¢~ < kS"P). Since the map-
ping is expected to change the momenta of the particles involved in the
QED splitting by an amount of order k¢ < k3"P, such QED-finite &,
configurations are not expected to be projected to QED-singular ®; con-
figurations.

2. The closest singularity is due to QED (i.e. k" < k7). In this case
there is the possibility that the projected ®; configuration carries a QED-
divergent contribution proportional to

Bt x — — ~ —. (12.29)

However, in the QED-singular limit the damping function provides a kine-
matic suppression proportional to

d P
For ~ (f) : (12.30)

Even though Bf* and F® are computed using momenta belonging to
configurations with different multiplicities, by choosing a large enough
value for p we can guarantee that the contributions from the regions close
to the QED divergence are negligible. In our case p = 2 has proven to be
an adequate choice.

100



Finally, we have to show that Bf*(®;) does not take divergent contributions
from ®5 configurations that are close to a QED singularity. This is again guar-
anteed by the fact that the ®5 configurations that are close to a QED divergence
(i.e. have k@®P < kSr) are given a kinematic suppression inside B/*(®;) pro-

portional to
d p
For ~ <d7q) . (12.31)

12.2.1 The suppression factors

With the method described in the previous section, we have made sure that
all the events that pass the analysis cuts do not receive contributions from
configurations that are too close to the QED singular regions (and thus non
physical). We are still left with the problem that the differential cross section
presented in eq. is not integrable over the entire d®; phase space due to
the QED singularities. A way to solve this problem would be to implement the
same cuts that we adopt in the analysis at the generation level. However, unless
the cut is made on an observable preserved by the mappings, we would risk to
discard configurations that would have contributed to events that are kept by
the analysis. To avoid this problem, we could still apply generation cuts that
are much tighter than the analysis one, but we would lose efficiency generating
a lot of events that are finally discarded. To avoid this, the PownEG Box event
generator offers the possibility of applying two suppression factors Sg(®;) and
Sr(®1) to B/*(®;) and R (®,) respectively, to make the product SpB/> and
SgrR integrable over the entire phase space. The physical distribution is
finally recovered by giving to the event a weight 1/Sp or 1/Sg. The explicit
expressions we use for the two suppression factors are

SB _ pg’h p%’m R;Ll’)’l R?l')? (12 32)
= — — = = .
pi’h +p$ﬁ pi“/z +p?l“7 R;'Ll% + R?W R?I'YZ + R;’Y
and
SR — pz’h pi"/z R.?l"/17 R?l’ﬁf R.‘;Z'Yl _ R?’z’)’zi
p%% +p%’¥ p%’yz +p$7 R,?l')/l + R?’Y R?l’vz + R?’Y R?Th + R?’Y R?2’Yz + R?V

(12.33)
where p; is the transverse momentum of the particle ¢ with respect to the
beam axis, and R;; the angular distance between the particles 7 and j in the
azimuth-pseudorapidity plane

Rij = \/(m =) + (¢i — ;)" (12.34)
In our simulation we have set

Pry = 22 GeV Rj, =04 a=1. (12.35)
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Chapter 13

Phenomenological results

13.1 Physical parameters

The phenomenological results presented in this chapter were obtained for a
proton-proton collider with a hadronic center-of-mass energy v/S = 13 TeV.
We used the LHAPDF [34] PDF set NNPDF31_nnlo_as_0118 and the evolution
of ag provided by the same package. The electromagnetic coupling for the final-
state photons has been set to v = 1/137, and the mass of the top quark to
my = 173.2 GeV.

We apply the photon isolation prescription of Ref. [50] to the two final-state
photons. For each photon, we compute the angular distance R;, with respect
to the i-th final-state parton. We discard the event unless, for every photon and
every R < R.,

Npart

Z pri0(R — Riy) < EX*™ x(R), (13.1)
i=1

where n.,,. is the number of final-state partons, p; is the transverse momentum
of i with respect to the beam, and

X(R) = (ﬁ_;(f;;f) . (13.2)
In our analysis, we have set
Ex =4 GeV Reone =04 n=1. (13.3)
In addition, the two photons have to fulfill
Pryy > Dy [ My > Mo, (13.4)

where pr,, and p;,, are the transverse momenta of the hardest and next-to-
hardest photons, and m~ is the mass of the photon pair, and

Prayy = 25 GeV, Doy = 22 GeV, myy =25 GeV.  (13.5)
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13.2 Matrix elements

The matrix elements for the process pp — vy j at NLO in QCD were obtained
from OpeNLoops2 [33| 42, 43| [51, 52]. The two-loop amplitudes for ¢g — v~
have instead been taken from refs. [53} |54] and implemented into the code. We
work in the approximation of 5 light quarks, and neglect the contributions given
by two-loop diagrams with one massive loop. We consider instead the contri-
butions given by top-quark loops in the single-loop diagrams for the process
PP =]

When comparing with the experimental results from the LHC we include
in our predictions the LO contribution from the gluon-initiated process of pro-
duction of a photon pair through a closed quark loop g g — vy, which, besides
being of the same order a2 of the NNLO corrections to the quark-initiated pro-
cess discussed so far, is further enhanced by the sizable gluon luminosity at the
LHC. The analytic amplitudes for this process were taken from ref. [55] and
implemented in the PowneEc Box REs framework after neglecting the top-quark
loop contribution, which amounts for at most a few percent in the kinematic
distributions we are showing (see e.g. figure 3 of ref. [56]).

13.3 Validation of the code

To validate the implementation of our code, we compared some distributions of
phenomenological interest against those produced with the NNLO fixed-order
calculation implemented in the public version of the MaTrix code [41} 57, 42|
58, 153}, [59} [60]. The two predictions are theoretically expected to agree up to
terms beyond the NNLO accuracy.

The MaTrIX results presented in this section were obtained setting the slicing
parameter 7., = 0.0005 (i.e. they neglect non-singular contributions with p; <
0.0005 Q)E and the renormalization and factorization scales equal to the mass
of the photon pair uy = ur = Q. The theoretical uncertainty was estimated via
a seven-point scale variation obtained by multiplying and dividing the central
renormalization and factorization scales by a factor 2. Furthermore, we used
the PDFs, fiducial cuts and isolation criterion reported in the previous section.

The central values of the MaTrix and MINNLOpg total cross sections are in
agreement within the statistical errors and read respectively]

UE\y/I’jtrix _ 1557 :l: 10 pb UE\Y/I,.;NNLO — 1549 :l: 02 pb’ (136)

while the corresponding theoretical uncertainties are given by

oA = 155.7 F5% pb GAINNLO = 154.9 T pb, (13.7)

IMATRIX also provides extrapolated results for the total cross section down to ey, = 0.
However, the extrapolation makes the statistical error much larger, so that we prefer to limit
ourselves to the comparison with the results for the lowest non-zero rc,; value.

2The extrapolated value for the total cross section is equal to 0'2{'7“”‘ = 153.9 + 1.9 pb.

3The extrapolated theoretical uncertainty is equal to cri‘f,ya‘“" = 153.9 fi;y/z pb.
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Figure 13.1: Comparison between the predictions from the fixed-order calcu-
lation implemented in MaTrix and MINNLOps for the mass m.. and rapidity
Y~ of the photon pair, and the transverse momentum of the hardest (pr,,) and
second-to-hardest (pr-,) photons. The bands represent the estimated theoreti-
cal uncertainties of the distributions. In the lower panes of the figures, the ratio
between the two curves is shown.

Both the results are in agreement with each other.

Finally, in figure we compare the distributions of the mass m.. and
rapidity y,- of the photon pair, and the transverse momentum of the hardest
(pr+,) and second-to-hardest (pr,) photons along with the corresponding es-
timated theoretical uncertainties. We find an overall good agreement between
the MaTrix and MINNLOpg curves, and a compatible size for the scale-variation
bands. We ascribe the difference in the high-m., region to effects beyond the
NNLO accuracy of our result.

13.4 Distribution of the partonic events

To study the phenomenology of the process, we generated about 16 million
events without any generation cuts apart from imposing a minimum mass of
the photon pair of 10 GeV. Since the mass of the photon pair is preserved by
all the mappings that we use, this generation cut has no effects on the final
distributions as long as it is smaller than the fiducial cut on the mass of the
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Figure 13.2: Comparison between the predictions from the fixed-order calcu-
lation implemented in MATRIX and the Les Houches partonic events generated
by the Pownec Box REs for the mass m,, and rapidity y,, of the photon
pair, and the transverse momentum of the hardest (pr., ) and second-to-hardest
(prvy,) photons. The bands represent the estimated theoretical uncertainties of
the distributions. In the lower panes of the figures, the ratio between the two
curves is shown.

photon pair mZ.'. Except for this constraint, the events can then be used for
making predictions with arbitrary fiducial cuts.

We begin by comparing the distributions obtained from the PowHEG par-
tonic events (often denoted as Les Houches events) with the MaTrix predic-
tions. In figure [I3.2) we show the distributions of the mass m.. and rapidity
Y~ of the photon pair, and the transverse momentum of the hardest (pr,,) and
second-to-hardest (pr,,) photons. We observe a good agreement between the
two predictions, both for the central value and the estimated theoretical uncer-
tainties. At variance with similar comparisons for other processes not involving
photons, this is not trivial due to the presence of an isolation criterion in the
definition of the cross section of the process.
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Figure 13.3: Comparison between the distributions obtained from the generated
events before and after the PyTHia8 parton shower for the mass m.. and rapidity
Y~ of the photon pair, and the transverse momentum of the hardest (pr+,) and
second-to-hardest (pr.,) photons. The bands represent the estimated theoretical
uncertainties of the distributions. In the lower panes of the figures, the ratio
between the two curves is shown.

13.5 Distributions after the parton shower

After comparing the distributions of the partonic events with the fixed-order
calculation, we now want to study the effects on the same distributions of the
parton shower performed by PyTHia8 62].

To interface PyTHiA8 to the PowHEG Box RES event generator, we rely on
the main31 configuration file (distributed with PyTnia8). The results presented
in this section were obtained after switching off multiparton interactions (MPI),
QED radiation and hadronization effects, and using the Monash tune presented
in ref. . Furthermore, we set the PyTHIA8 parameter POWHEG:pThard to
2 (i.e. we used the prescription introduced in section 4 of ref. ), and the
SpaceShower:dipoleRecoil to 1E|

In figure we compare the distributions obtained from the generated
events before and after the PyTHIA8 parton shower for the mass m., and rapidity

4In the LO contribution from the gluon-initiated process (included only in the comparison
with data) the upper limit for the transverse momentum of the shower evolution is set equal
to the mass of the photon pair.
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Figure 13.4: Comparison between the NNLO+PS predictions from MINNLOpg
combined with PyTnia8 and the ATLAS data for the mass m. and transverse
momentum pr., of the photon pair. The bands and the bars represent respec-
tively the estimated theoretical and statistical uncertainties of the distributions.
In the lower panes of the figures, the ratio between the two curves is shown.

Y~ of the photon pair, and the transverse momentum of the hardest (p.,) and
second-to-hardest (pr,,) photons. We observe a reduction of around 5-10%
of the cross sections after the parton shower, especially in the region of high
transverse momenta of the two photons. We ascribe this behavior to the fact
that, with the increased multiplicity of the partonic activity, the photons in the
events after the parton shower are less likely to satisfy the isolation criterion,
thus leading to a smaller cross section. We observed the same pattern also in a
fully independent (and significantly simpler) code implementing QCD NLO+PS
diphoton production in the PowHec Box REs. A similar behavior was observed
also in ref. [65].

13.6 Comparison with the ATLAS results

We conclude the discussion on the phenomenology of the process by comparing
the NNLO+PS predictions obtained combining MINNLOps with the PyTHIA8
parton shower to the experimental results presented by the ATLAS collabora-
tion in ref. [66]. To do this, we rely on the analysis provided by River [67].
As discussed above, to make a better comparison with the data, we add to the
NNLO-accurate MINNLOpg results for the process ¢q — v~ the LO contribu-
tion from the gluon-initiated process g g — 7. Since there are no interferences
among the Feynman diagrams of the two processes up to order a? we compute
the final distributions by simply adding the results from the two calculations
for every bin of the histograms and combining the errors in quadrature.

The ATLAS results were obtained at a hadronic center-of-mass energy v/S =
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Figure 13.5: Comparison between the NNLO+PS predictions from MINNLOpg
combined with PyTHiA8 and the ATLAS data for the transverse momentum of
the hardest (pr-,) and second-to-hardest (pr.,) photons. The bands and the
bars represent respectively the estimated theoretical and statistical uncertainties
of the distributions. In the lower panes of the figures, the ratio between the two
curves is shown.

13 TeV, with a fiducial volume defined by the requirements that
Dy, > 40 GeV pry, > 30 GeV AR,, > 04 (13.8)

and

<137 1.52< |y,

- <237 i=1,2, (13.9)

where pr,, and pr,, are the transverse momenta of the hardest and second-
to-hardest photons, AR, is the angular distance between the two photons as
defined in eq. , and y., is the rapidity of the i-th photon. Furthermore,
the photon-isolation criterion described in section 4.1 of ref. [66] is applied.

In figure we show the distributions for the mass m.,, and transverse
momentum pr~ of the photon pair. We find a good agreement between the data
and theoretical predictions throughout the entire range of the pr., distribution
and in the bulk of the cross section for the m.., distribution. Given the cuts
of egs. (13.8]) and , the region where m,, < 80 GeV is populated only
by «v accompanied by at least one jet, making our result only NLO accurate,
as confirmed also by the wider uncertainty bands. For m,, < 40 GeV, the
MINNLOps results overshoot ATLAS data by an amount compatible with what
has been observed, for other predictions of similar accuracy, in ref. [66]. The
fact that this region is characterized by a large NLO K-factor [68] hints at
the possibility that the inclusion of higher-order corrections will improve the
agreement with data. At large m.~ values we observe differences up to about
15%, which might be due to higher-order contributions. Top-quark mass effects
above the threshold m., =~ 2my, that we are neglecting in the quark-induced
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Figure 13.6: Comparison between the NNLO+PS predictions from MINNLOpg
combined with PyTHIAS and the ATLAS data for the azimuthal separation of the
two photons A¢,, and ¢} (see the definition in eq. ) The bands and the
bars represent respectively the estimated theoretical and statistical uncertainties
of the distributions. In the lower panes of the figures, the ratio between the two
curves is shown.

2-loop amplitudes as well as in the g g — vy channel, can also induce differences
at the percent level.

In figure instead we show the distributions for the transverse momenta
of the hardest (pr,) and second-to-hardest (pr-,) photons, for which we find a
good agreement between the data and theoretical predictions.

Finally, in figure we show the distributions of two angular observables:
the azimuthal separation Ag.,., of the two photons and ¢y, defined as

2
o tan(ﬁz%> \/1 - (tanh AZW) , (13.10)

where Ay, is the rapidity difference between the two photons. Such a variable,
first introduced for Drell-Yan processes in ref. [69], while being sensitive to the
same dynamics governing the pr spectrum, allows for a better resolution at small
values of pr. The agreement between the data and the theoretical predictions
is rather good on the whole range of the two distributions.
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Chapter 14

Conclusions

In this thesis, I've presented the implementations of two processes of boson
pair production in two different Monte Carlo event generators: GENEvA and
MINNLOps+PowHEG Box. Despite sharing the same formal NNLO QCD ac-
curacy, the two methods are different from each other. While the MINNLOpg
approach relies on the p; resummation, both for the transverse momentum
of the first and the second jet (the latter is performed through the Powntc
method), the GENEvA event generator is natively based on the 7 resummation
(although the method itself is independent from the type of resummation and
has also been used with the p; resummation [19]).

The matching between the resummation and the fixed-order matrix elements
is also performed differently in two different event generators. The GENEva
method follows an additive approach, where the resummed and fixed-order 7
spectra are added to each other after subtracting the expansion of the resummed
term to avoid double counting. This method is in principle cleaner, since, for
every underlying configuration ®( the resummed and resummed-expanded total
cumulants exactly cancel each other, thus making the distribution of every ob-
servable that is preserved by both the 1 — 0 and 2 — 1 phase-space mappings
(e.g. the mass and rapidity of the color singlet) identical to that obtained from a
fixed-order calculation. However, in the actual implementation of the code the
above statement is spoiled by the missing non-singular NNLO contributions for
the configurations with 7o < 75", whose computation would require the imple-
mentation of a NNLO local infrared subtraction. By choosing a small value for
Ts*, the size of such contributions can be typically reduced to be of the order
of or smaller than 1% of the total cross section, but cannot be completely re-
moved since a too small 7" would make the calculation numerically unstable.
If the result from an independent NNLO fixed-order calculation is available, the
generated events can be reweighted so as to recover the correct integrated cross
section.

The MINNLOps+PowHEG Box event generator follows instead a multiplica-
tive approach, building on the original MINLO method |11} 12]. The presence of
on overall Sudakov form factor that exponentially suppresses any infrared diver-
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gence in the limit of small p. allows to avoid introducing any resolution cut, thus
formally including all the NNLO contributions in the calculation. The downside
resides in the appearance of spurious terms beyond the claimed NNLO accuracy,
which, despite being formally subleading, can become numerically relevant, as
was the case for the process of study.

Due to their complexity, every quantum field theory calculation of phe-
nomenological interest heavily relies on several approximations. The availability
of different NNLO QCD Monte Carlo event generators is an important tool for
better quantifying the effect of some of these approximations and to provide a
more accurate estimate of the theoretical uncertainties associated to the calcu-
lation. The direct comparison between the distributions produced by the two
event generators goes beyond the scope of this thesis. Nonetheless it could be
an interesting topic for future works.
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Appendix A

The 2 — 1 mapping
(¢qr preserving)

A.1 Direct mapping

The gr-preserving 2 — 1 mapping implemented in GENEVA is defined under the
conditions that it preserves

1. The fully recursive zero-jettiness 75 .

2. The momenta ¢; of the particles belonging to the color singlet.

A.1.1 Same Hemisphere ISRA and FSRA

We can treat together the Same Hemisphere ISRA and FSRA cases since they
share the same expressions for the fully-recursive zero-jettiness (see egs. (7.11))
and (7.19)) and the underlying zero-jettiness computed on the projected ®; con-

figuration, given in egs. (7.12)) and (7.20)). By imposing that the two expressions
are equal and from the equations of momentum conservation, the formulae for

p1, T, and Ty read

N

Py = P12 eves (A p%T
2 Ty =%q — ——= 1_2* A+>

A p

by == VS P12 (A1)
P12 Ty = Tp,

Dir = Piar

where we called S = (P, + P,)%.
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A.1.2 Opposite Hemisphere ISRA

Following the same steps as above, the mapping in the Opposite Hemisphere
ISRA case reads

2
ﬁf = Piov ycs
A— At _ e . "
Py +p2 Lg = Tq — \/g (pZ _p;)
Dy = 131_ + ﬁg_ e—vos <A+ p%QT (A'Q)
Ty = Tp — p12_A_A+>7
Dir = Piar VS L+ P

where we called S = (P, + P,)°.

A.2 Inverse mapping

A.2.1 Same Hemisphere ISRA

The formulae for p; only depend on the expressions for 71, given in eq. (7.11)), z,
given in eq. ((7.33)), and ¢, so they are the same derived for the default mapping
and presented in eq. ((7.34). Once we know them, we can invert the formulae of
eq. to write the expression of the inverse mapping for the Same Hemisphere
ISRA case

151+ = ﬁf - 162+ evos 2
gy = O (- )
5 _ (Pir = Pon) S Piz (A.3)
P = =1 '
p1 — P2 Ty = Tp.

Pir = D1t — Por

A.2.2 Opposite Hemisphere ISRA

Similarly to what we did above, we take the formulae for py from eq. (7.34]), and
invert the formulae of eq. (A.2)) to write the expression of the inverse mapping
for the Opposite Hemisphere ISRA case

b (ﬁlT _ﬁQT)2

P = = T B evos R

Py — D2 grjaznca—i—\ﬁ(p2 —p;)
ey VS (A.4)
Py =P1 —Pg e—Ycs

Pir = D1t — Por
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A.2.3 FSRA

From the expression of 71 given in eq. (7.2]), and by inverting the formulae of
eq. (A.1) we find

ﬁTQ = ﬁii_ eyas 2
22— ot 24 2 To =g+ —F+= <ﬁ12 - p12T>
. D1D +Tipy — T4 \FS 13—1"_2
P12 = T
P L Ty = Tp.
DPi2r = Pir

A.3 Integration limits

A.3.1 FSRA

For the FSRA case we can recycle the entire calculation done in section [7.5.2
for the mapping that does not preserve g, granted that this time M? and p,
have a different expression in terms of p; and 7;. The constraints on z and ¢
are then the same as those given in eqs. (7.70)), (7.76) and (7.77).

Additional constraint

When generating the phase space GENEvA puts the ®9 configurations that do
not satisfy the condition

p3 <Py (A.6)
among the non-projectable ones for technical reasons. This is allowed since
such configurations are never divergent, but must be taken into account when
computing the integration limits on z and ¢. From the definition of z given in

eq. (7.40) and the expression of p; given in eq. (A.1]) the condition of eq. (A.6))

translates into the further constraint

p172pf2 — p%QT (A 7)
F (Lot :

P12 (p12 Jr1’12)

It can be seen from the expression of p; in the mapping that does not preserve

gr, given in eq. (7.31)), that the condition of eq. (A.6) does not impose any
further constraint on z and ¢.

z >

A.3.2 ISRA
Constraints imposed by the mapping

We start from the expression for d®o given in eq. (7.49), which, using the
formulae presented in eq. (7.47)) and (7.48]) and imposing

- —h — 2 _ 2
Pix : _]221’ - qx ’rAT;CSi Aq_ At (AS)
ply - sz Qy Dot = P Po
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to remove four integration variables, can be rewritten as
dq~ dq* dg? d®

dpy dpt
d®y = di, dxbf"ﬂ(q*) 0(q") %9@ ) 0(p1)

X 5<ﬁfﬁf — Py Py — a3 — 2\/132_13;(13 cos(¢ — (I)q))
dp7 dpt d - "
Me(p )0(p2)5<p1 + Py +\/qq+\/§xawg_>

4 (2m)®
><5<p1 +p35 +Va q*\fxb\/7> dPes(qa ¢ —q2).  (A9)

At this point we can use two of the three remaining ¢ functions to remove the
integration over z, and z;, and impose

. BT + Py +Va N A P A
a q+ \/— b= P \/§ .

(A.10)
Since the integral over both z, and x; was limited to the interval (0,1), we have
to enforce that the above expressions are in such a range. We can immediately
see that the positivity of ¢—, ¢, Py, ;[)f, Py and ﬁ;r guarantees that the above
expressions for z, and z;, are always positive. We are then left with requiring
that they are smaller than 1 by adding two more 6 functions, which leads us to

L dgdgt @by o dp i
ddy, = 195 9(9 )G(q ) 2(2ﬂ)3 0(1’1)9(171)

. 5(@? by pE — @ — 2Py P B cos(o — <I>q>)

N ey
X 9(\/5 Z*;_ *ﬁi_ *ZA);_ -V qq+> d‘1>cs((17qJr - q%) . (A.11)

To compute the integration limits on z and ¢, we need to have six independent
integration variables that do not depend on z and ¢ (i.e. they are only functions
of ®; and 7;). The variables ¢—, ¢T, ¢2, &, and 13;' satisfy such a requirement.
We will choose the sixth variable to be p] in the Same Hemisphere ISRA case
and p; in the Opposite Hemisphere ISRA case.

Same Hemisphere ISRA Starting from eq. (A.11]), after imposing

P2 Py + @+ 2\/Dy Py g3 cos(¢ — )
(A.12)

24

pr =
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we can use the last  function to remove the p; integration variable and arrive
to the final expression

dq~ dq* d¢? d®, N dpy dpy do
dd —9 0 % —= =90 0
2 8@’ S (a7)0(q") o7 (1) 4@’ (P2) 0(p3)
+ Do Pt + g2 + 21/ Py i g2 cos(¢p — P
><9 \/g Zi—ﬁg—\/ﬁ 2 V2 T p2 2 41 ( )
V 1

X 9<f\/7 Py — D3 — q‘q+> dPes(qa ¢ —¢2) . (A.13)

The constraints on z and ¢ that we are looking for will then be given by the
two 6 functions that depend on p; and ¢. The first one just imposes that p; is
positive, which from eq. translates into requiring that z < 1. We are left
with solving the inequality

N . R . qt
by (BT + D3 ) + 21/ Py 3 43 cos(p — Dg) — pf <\/§qu - \/q‘q+> +4¢3<0

(A.14)
with respect to ¢, which imposes the constraint

b (\f\/» q q*) — g —py (Bf +03)
21/P3 Py 43 .

Opposite Hemisphere ISRA  Starting from eq. (A.11)), after imposing

st o [om ot o
~ Dy Py +qr +24/D3 D3 G2 COS(QS* (I)q)

2

cos(¢p — @) (A.15)

we can use the last § function to remove the p| integration variable and arrive
to the final expression

dg~ dgt d 2dCIJ dp; dps dpT d
2y = S0 ) 0l o) P29 80 5 ()
2y 4<27T)

sk 9 A= ot 2
/ RZEK +24/py Dy g2 cos(¢p — @)
% 0 \f p2 /7 2 P2 T 2 72 4T q

b1

X 9(\7\/> L — Dy — Va4 q*) dPes(q ¢ —q3). (A.17)
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This time there are three § functions that depend on p; and ¢. As we have
seen before, the first one just imposes that z < 1. The last one still does not
depend on ¢ and imposes that

- at -
P <\/§\/qt—\/q‘q+—p1- (A.18)
Finally the third condition reads

~— a— — q “
Py D3 + 24/ Py Py g2 cos(¢ — Dg) — Py <\/§”q+ -Vaqt p§> + 42 <0,

(A.19)
and imposes that

e q N A_ o
b (\/§ i \/q‘q+> —q; — Py (Py + D7)
24/P5 b3 42

Constraints imposed by the slicing of the phase space

(A.20)

cos(p — @) <

Following what we did for the mapping that does not preserve ¢, we now need
to impose that ﬁ;r is the smallest among all the possible expressions for the
one-jettiness (see eq. ) Furthermore, this time p; and p; could depend
on z and ¢, meaning that we also need to enforce that the expression we are
using for 7 is the smallest among those given in eq. . To do that, we have
to distinguish between the Same Hemisphere ISRA and Opposite Hemisphere
ISRA cases.

Same Hemisphere ISRA In this case the condition on the zero-jettiness
reads

P <P, (A.21)
and, together with the constraints of eq. ((7.62)), imposes that
Py > Dy (A.22)

and )
SN2 et 2
cos(p — ®y) > (0r)" —pabs —az

2\/ 3 Py 42 (A.23)

Pips =y (P +53)

2\/P; b3 43

cos(¢p — @4) >
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Opposite Hemisphere ISRA In this case the condition on the zero-jettiness
reads

Py <Dy, (A.24)
and, together with the constraints of eq. (7.62)), imposes that
Py > B3 (A.25)

and

(7)) = by Pt — ¢

cos(¢p — P4) >
24/ D2 P2 4
Ber
+ > — ) + Py T pT
cos(¢p — Bg) > — (P23 +4a3) (b2 —P3) + Pa b3 Py .

24/P3 b3 a2 (by + D3 — P3)
A.4 Jacobian

ISRA

Starting from the expression of eq. (6.6)) and following the same steps that took
us from eq. (7.45)) to egs. (A.13)) and (A.17)), we can write the phase space with
one final-state parton in the Same Hemisphere ISRA case as

dg~ dg* dg? d®, dTo
Ao, = ———-" 19 0 — 6‘ To) d® - gz
1 5@ S (@) 0(a") == 0(To) des( ar)
x9<\/§1/ —Vq q+> (\/>1/ ~To-Vaia+ >
(A.27)
and in the Opposite Hemisphere ISRA case as
dg~ dgqt dg2 d®, ., _ dTo ~
Ao, = ————="—19 0(q") —0(To) d® — ¢
1 8@’ S (Q)()%(o) o7 —a3)
— =2
< 0(Vs —f%fﬁ o(vs, |~ _ Jgqt).
at T
(A.28)
At this point, starting from the result of egs. (A.13)) and (A.17)), since
dpy dTo
i T (429
and dpy = dTy, using eq. (7.81)), we finally arrive to
b T e~ Ycs
d®s B VSZqe To (A.30)

APy dTidzdd — 4(2m)° 22 To—Th
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FSRA

In this case we start from the expression of d®; and d®; given in egs. (7.68)
and ([7.78). From eq. (A.5) we can write that pi, = pj, ® = ®;, and

dpry dM? =T

2
qs a
1+ ———=|dp; dTi. A.31

(75—71)2] o .

At this point, from the above equation and eq. (7.85]), we finally arrive to

2

d®y To 4z
= 1+ . A.32
d®ydTidzdd  4(27)° By [ (To _ﬂ)Q] .

We highlight that 77 is always strictly smaller than 7j so that the denominator
in the above expression is never 0.

A.5 Comparison of the two 2 — 1 mappings

The default 2 — 1 mapping used in GENEvA (which was also used for producing
all the NNLO distributions presented in this work) is the one that does not pre-
serve the transverse momentum of the color singlet. Such a choice is dictated by
the effect that the mapping has on some of the exclusive distributions. Indeed,
while the distributions of the observables that only depend on ® 5 and 7Ty have,
by construction, no dependence on the N +1 — N mapping, all the others have.

In particular, the 2 — 1 gp-preserving mapping introduces an unphysical
distortion in the distribution of the rapidity difference y;, — yos between the
color singlet and the hardest jet. Calling p; the momentum of the hardest
parton, we can write such observable as

Y31 — Yoo = = log L1
J1 Ccs 2 ﬁi_

(A.33)

The condition presented in eq. under which the 2 — 1 mapping that does
not preserve ¢, is built ensures that the ®, configurations where the hardest
parton has p; < ﬁf are projected on ¥, configurations where the parton still
has p; < py, thus preventing y;, — ycs from changing sign, which would spoil
the peak of the distribution.
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Appendix B

Theoretical uncertainties in
the MiNNLOpg method

The theoretical uncertainties in the MINNLOps method are estimated via a
seven-point scale variation, where the factorization and renormalization scales
e and py are multiplied respectively by the factors Ky and Ky, whose values
can be 1, 2 or 1/2. Out of the nine results, those with K = 1/2 and Ky = 2 or
Ky =2 and Ky = 1/2 are discarded, and the maximum and minimum values
among the remaining seven provide the estimate of the theoretical uncertainties.

B.1 RG and DGLAP equations

The explicit dependence of the luminosity factor and Sudakov form factor from
Kr and Ky can be derived by imposing that it cancels, order by order in
the ag expansion, the dependence of the PDFs and the strong coupling from
the same parameters. To do this, we first need to write the solution to the
renormalization-group (RG) evolution equation for the strong coupling |70} |71]

n+2

G T

where we have introduced (with the aim of simplifying the expression of the
following equations) the coefficients 3, = 3, /2 (the latter given in eq. (3.55))),
and the DGLAP equation for the PDF's [48]

afk Z Z ( (n) )(x,,u) <Ozs25,TU)>"+1 | B2)
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where the splitting functions P]gg) were given in eq. 1} The solution to the
RG equation is given by

as(p) _ as(pr) (as(pT)>25O log(Zi)

2m 2m 2m 2

_ (as2(7z:T)>3 [51 1og<g§) Sy log2<]’lj22)] L0(d). (B3)

T T

The solution to the DGLAP equation (which improves the result of eq. (10.20)
instead reads

2

7 = 1) + 250 2 (P9 @ 1) @poyvs (5 )
I S—
or - kj J o pi

0 0 h 1. o p?
2 (P © P @ A1) (@,p1) 218 <p2)
Ji’

2
5 (0) o ¢[h] L o2 (H
EOMGHER D ERE (%)

+0(a?). (B4)

T

B.2 Scale dependence of the resummed term

Using the results of egs. and to expand the strong coupling and the
PDFs around the scale py, we can now derive the explicit dependence on pp
and pg of all the terms appearing in the resummed contribution. The scale-
dependent hard-virtual coefficient functions appearing in eq. then reads

_ 2
H () = Hy (p2) + 1 fo log<Z§> Y (B.5)

T

_ 2
HD () = HD (pa) + (n + 1) fo 1g<;j) HY (1)

T

2 2
= +1) =
|:nB /Bl log (M; ) B nB (nB ) 68 10g2 <M§ > :| /E:%) .
e 2 p.
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The quark collinear coefficient function reads
2
W
O i) = O ) = P 2 1o (4 (8.7
T

i 2
O (2, iy i) = O (2) = > (C(l) © Py, ))(Z) 1og(g§>

J

~ P(2) 1og( §> Z (PIE?') ® Pj(O) 10g (2)
T T
= 2(0) 212 | 7 ) Ha
+ 50ij (Z) 5 log (;) + ﬂOij (ZvﬂFa/u‘R) 10g<;>
D7 Pr
(B.8)

and the coefficients of the Sudakov form factor

2 2 1 2 1)
AP () =AY + AW Blog(K2)  BY (k) = BY + B3, log(K?])B .
Finally, the scale dependence of the gluon collinear coefficient function is trivial,
since it appears at LO only.

B.3 Scale dependence of the non-singular term

After using the above equations to compute the scale variations of the resummed
contribution, we are left with the doing the same for the non-singular term. The
derivatives of the Sudakov form factor and the luminosity factor up to second
order in the ag expansion reads

~ 1@
dSir 2 [, Q? (1)
lde (pr, r) = o {AkE log el + B, (B.10)
~ 12 ~ 71
dSy 2 (2) Q? @) dSik T
=——< A71] — B 1 —
[de (pTvluR) pT kk Og pgr + kk +60 de (pT7IU/R) Og pgr
(B.11)
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and

[l 1Y 2 .
dpk’“ (P e ) = = HYS (PIE?) ® f) ])(:vmup) F @y, 1) + (a <5 b)
L T T

J

(B.12)

(AL _ 2 g0 (p g 4l ¥y )
I dp., ] pTaNFy/J/R) = ITT Kk - kj j (xa;,uF) 2 (-Tbqu

a b
+ 103 [(0) @ P @ 1) (s o) £ o, )
3i’

+ (P @ 1) (0, o) (€5} © 110 0, 10|

0 0 0 a b
o Hli]}) Z |:(Pl£j/) ®P](’]) ®fj[ ])<xaaMF)ff£]($ba,uF)

33’

+ (B @ 1) (o i) (B @ 117 0, 1) | o (gi)

T

+ B i) S (P © 117) (as i) £ 0, 1)
J

+(asb) - BOL;(:,TC) (Prs fes o)

1@ 2

+ Bo [d;';k] (pT,uF,uR)log(Z?‘:) } (B.13)
In the non-singular contribution Ry of the original MINNLOps approach pre-
sented in eq. , the presence of the Sudakov form factor and the use of
factorization and renormalization scales py = pr = pr introduce O(ag’) devi-
ations with respect to a fixed-order calculation that, despite being beyond the
claimed accuracy, could have sizable numerical effects. However, there is typi-
cally a numerical cancellation between the two effects, due to the fact that the
Sudakov form factor tends to reduce the total cross section and the scale pp
(instead of @) has typically the opposite effect. If we call

doNSto dakfc,Lo

k jet as(p) Ha
do 1) = g, W) = =5 D (pr, 1) (B.14)
do NSO doEPwe s (1)
kk CS+jet s\ (1)
= — 7D ~
d@l (/’[’) d@l ( ) 27T Lk (pT7 /’[/)

+ (as;:)y [D;(j;) (Prs 1) = Sli%)(pT)} }Fcorr(q)l)’

(B.15)
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the original Ry can be written as

5 dO_N§,NLo o (p ) ~1 d NS,LO
Rf:efskz;(m) %(pT)+ SZTrT Sl(c,;)(pT) dlilﬁl (pT)]7 (B.16)

and we can write

e—gkk(pT) —1— M 5«](;}) <pT) G (Oés)2 + O<a3)

2m 2m s
do NSO doNSNLO 3 (B17)
kk _ Y%k Qs 4
o) =~ @+ G (5) +0(ad),

where C7 and Cs are two functions that we typically expect to be positive, so
that the product reads

NS,NLO dJNS,NLO
> Qg

& do,; - 3
—Swr(pr) Kk _ kk_ _ 4
e 4D, (pr) = 4, (@) + (Cz Cl) (TW) +0(ad), (B.18)

and we have called C; the product between C; and the Sudakov form factor.
However, this is not anymore the case once scale variations are taken into ac-
count. Indeed, both the scale variations are of order O(a3)

efng(PTsK) — e*SkE(PT) — D, (%)3 + O(O/Sl)
i
Ao NSO o NENLO o 3 (B'lg)
s
%(KPT) = 2%{)1(1%) + Dy (%) +0(af),

where Dq and D5 are two other functions. However, after the multiplication we
find

NS,NLO NS,NLO

& o, & o 3
e~ Sk (pr.K) 21?7{)1([(1%) = e~ Ski(PT) ;Ifi{)l(PT) + Dy (%ST) +0(ag)
(B.20)

which means that the scale variation is dominated by one contribution alone,
and the numerical cancellation that we observed before is not there anymore.
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