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ABSTRACT State recognition of food images is a recent topic that is gaining a huge interest in the
Computer Vision community. Recently, researchers presented a dataset of food images at different states
where unfortunately no information regarding the food category was included. In practical food monitoring
applications it is important to be able to recognize a peeled tomato instead of a generic peeled item. To this
end, in this paper, we introduce a new dataset containing 20 different food categories taken from fruits
and vegetables at 11 different states ranging from solid, sliced to creamy paste. We experiment with most
common Convolutional Neural Network (CNN) architectures on three different recognition tasks: food
categories, food states, and both food categories and states. Since lack of labeled data is a common situation
in practical applications, here we exploits deep features extracted from CNNs combined with Support Vector
Machines (SVMs) as an alternative to the End-to-End classification. We also compare deep features with
several hand-crafted features. These experiments confirm that deep features outperform hand-crafted features
on all the three classification tasks and whatever is the food category or food state considered. Finally, we test
the generalization capability of the most performing deep features by using another, publicly available,
dataset of food states. This last experiment shows that the features extracted from a CNN trained on our
proposed dataset achieve performance quite close to the one achieved by the state of the art method. This
confirms that our deep features are robust with respect to data never seen by the CNN.

INDEX TERMS Image state recognition, food state recognition, object state recognition, image understand-
ing, image classification, CNN-based features.

I. INTRODUCTION
In the last few years, one of the most active topics in the
Computer Vision community is the image understanding for
object recognition [1], [2]. Within this context, automatic
food analysis [3]–[7] is one application scenario that received
great attention recently.

Accurate tracking of daily nutrition intake is not only
conducive for people to maintain a healthy weight, but
also important to treat and control food-related health prob-
lems like obesity and diabetes. Conventionally, this has
been accomplished by exploring daily recorded manual logs.
Nowadays, technology can support the users to keep track of
their food consumption in a more user-friendly way allowing
for a more comprehensive daily dietary monitoring. Com-
puter vision techniques can help to build systems to auto-
matically locate and recognize diverse foods as well as to
estimate the food quantity. For example, one may simply take
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a picture of a plate of food using a smartphone and the whole
process towards measuring the total calorie in the plate can
be achieved by a visual understanding framework [8]–[11].
Cooking videos can be processed in order to extract food
items, utensils and cooking procedures to construct an inter-
active, computer-aided system for learning how to cook
healthy recipes [12]–[14].

Automatic food recognition is thus an important task for
different applications. However, food recognition is a chal-
lenging task due to the intrinsic properties of the food items.
For instance, food is a non-rigid object. It is characterized by
intrinsic high intra-class variability where the same food can
have a very diverse visual appearance in different images due
to different preparations, placements in the plate, or acquisi-
tion point of view. This can be seen in Figure 1 that shows
different images of ‘‘Panette e crocchette’’.

Moreover, if we consider a video recipe, during the prepa-
ration of the dish, a food item (e.g. a zucchini) assumes
different shapes and appearances. For example, if we look
at the video recipe of the ‘‘Zucchini cream’’ in Figure 2,
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FIGURE 1. Visual differences of the same food: ‘‘Panette e crocchette’’.

FIGURE 2. Video recipe example: ‘‘Zucchini cream’’. We can see the different food states induced by the cooking procedures.

we can see that the zucchini and the leek are initially whole
and raw, then they are chopped in different styles (i.e. oblong
and round for the leek and zucchini respectively), mixed,
stir-fried, and finally whisked. During all these processing
steps the appearance of the initial food significantly varies.
The food is transformed in different states induced by the
preparation steps themselves, and these states must be dealt
with if we want to correctly identify the food throughout the
whole video recipe.

Food state recognition is a topic that has not been exten-
sively studied. The only previous works that tackled this
problem are those by Jelodar et al. [15] that first introduced
a new food state challenge dataset, and Salekin et al. [16].

According to [15], object states are characteristics into
which an object can be transformed by some activity, and it
can be described as a form of changes in form, color, or tex-
ture. As it can be seen in Figure 2, the texture of the zucchini is
greatly changed as it undergoes the processing transformation
required by the recipe. Its visual texture changes as it is
being sliced and whisked as well as its color and shape are
heavily affected by the cooking process. The object is always
a zucchini, but the states are very different and each of them
should be dealt with.

An ideal food recognition system needs to recognize food
independently by its state, but also it needs to identify a food
state within the recipe. This is very important for automatic
video recipe transcript as well as fine-grained human activity
understanding. The recognition of the different states of food
is essential if we want also to determine the nutritional values

of the food. While the food transition from one state to
another, its nutrientsmay change due to seasoning, cooking or
other cooking procedures. Being able to fully describe a food
and its states will enable the implementation of intelligent
dietary monitoring systems supporting users in controlling
their food intake.

In this paper, inspired by the work of Jelodar et al. [15],
we want to investigate the following issues:

• Can we recognize foods across different states?
• Can we recognize a food state independently by its
identity?

• How robust are end-to-end Convolutional Neural
Networks (CNNs)?

• How robust are CNN-based features with respect to
hand-crafted features?

To answer these questions we created our own dataset of
food states that differs from the one in [15] in that it allows
us to perform three classification tasks: recognizing a food
item across different states, identifying a food state across
different foods and recognizing a food item at a given state.
This is not possible with the existing dataset which allows
only to perform the first task. Our dataset has been carefully
curated and is composed of 11,943 images. It contains 20 cat-
egories of fruits and vegetables acquired in 11 states: batons,
creamy paste, floured, grated, juiced, julienne, peeled, sliced,
wedges/quarters, and whole. We used the dataset for the clas-
sification experiments evaluating different state-of-the-art
hand-crafted features and learned features from recent
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Convolutional Neural Networks architectures. We evaluated
the generalization capability of our best CNN-based features
on the food state recognition task using the dataset in [15].

The rest of the paper is organized as follows. In section II
we present the most common used visual description for
food classification. In section III we present the dataset,
the hand-crafted features, and CNNs used in the experiments.
Section IV presents results achieved with the end-to-end
classification strategy, deep features, hand-crafted features
and finally results achieved on the dataset presented in [15].
In section V we comment on the results achieved and present
future works.

II. VISUAL DESCRIPTIONS FOR FOOD CLASSIFICATION
A huge variety of features have been proposed in the lit-
erature for describing the visual content. They are often
divided into Hand-Crafted (HC) features and Learned Fea-
tures (LF). Hand-crafted descriptors are features extracted
using a manually predefined algorithm based on expert
knowledge. Learned descriptors are features extracted using
Convolutional Neural Networks (CNNs). In the following
subsections, we will provide an overview of works related
to food classification approaches exploiting hand-crafted fea-
tures and learned features [17], [18].

A. HAND-CRAFTED FEATURES
Many works in the literature exploit hand-crafted visual fea-
tures for food recognition and quantity estimation both for
desktop and for mobile applications. Since using only a single
feature is not enough to describe image contents, most of the
approaches in the literature exploit several image descriptors
at once in an early fusion or late fusion framework.

For example, [19] proposes a fusion of color and texture
features for fruit recognition. Color features are extracted
as statistical measures from the H and S color channels
of the HSV color space, while texture features are derived
from co-occurrence matrices. A voting-based, late decision
fusion classifier is considered in [20]. Color statistics, entropy
statistics, predominant color statistics, and energy responses
of Gabor filter banks [21] as used for global descriptors,
while local color, local entropy color, Tamura perceptual
features [22], Gabor filters, SIFT descriptor [23], SURF [24],
Steerable filters [25], and DAISY descriptor [26] as consid-
ered as local descriptors. A late fusion approach enabled to
achieve a 7% improvement in recognition with respect to the
single classifiers.

In [27], different features are integrated into a Multiple
Kernel Learning (MKL) classification approach for single
food recognition. The features comprise color histogram,
Gabor texture features, Histogram of Oriented Gradient
(HOG) [28], SIFT bag-of-features [29]. MKL is also used
in [3] for multiple food recognition. The images are pro-
cessed with a candidate region detection aimed at locating
food regions. Each region is described in terms of SIFT
and CSIFT bag-of-features ( [30]), HOG, Gabor texture, and
color histograms [31]. [32] uses a k-NN classifier on local

and global features. In [33] a vocabulary is constructed on
textons and the food images are classified using SVM. The
same classifier is used in [34] where local binary pattern and
relationship between SIFT interest points are used to code
the local and spatial information. SVM, Artificial Neural
Networks and Random Forest classification methods are used
in [35] where 14 different color and texture descriptors are
evaluated. The one that provided the best result was the
HSV-SIFT descriptor that describes local textures in the color
channels.

Ten different features are considered in [36]: color his-
tograms in different color spaces, shape with Pyramid of
HOG, and GIST [37], texture with local Binary Patterns [38],
Local Phase Quantization [39], Local Configuration Pat-
tern [40], Binary Gabor Pattern [41], and MSR4-Gabor filter
bank [42]), and data-driven features (CNN features). All these
features are fed to a committee of classifiers built on Extreme
Learning Machines whose outputs are combined in the final
result.

Food recognition can leverage from the contextual infor-
mation derived from the place where the food is consumed i.e.
the restaurant. In [43] the food images are first geo-localized
then several features are extracted and fed to an MKL clas-
sifier for recognition. The image descriptors are based on
colors such as Color Moments Invariants, and Hue His-
tograms, and on variants of the SIFT descriptor. Local and
global features are tested in [44]. The list of features used is:
CEDD [45], Gabor Features, Opponent Gabor Features, LBP,
Local Color Contrast, Chromaticity Moments, and Com-
plex Wavelet Transform [46]. Among these features, CEDD
achieved the best recognition results.

The arrangement of food ingredients is also a possible
cue for food recognition. Given soft labeling of food pix-
els, in [47] spatial relationships between pixels of different
food ingredients are described using pairwise local features.
Results showed that, on the evaluated dataset, the approach
outperforms other bag-of-features models.

Notwithstanding the large literature in hand-crafted fea-
tures, these descriptors need to be carefully chosen for the
task at hand, or a suitable feature selection procedure must
be applied to limit the information redundancy and the curse
of dimensionality.

B. LEARNED FEATURES
CNNs are a class of learnable architectures adopted in many
domains such as image recognition, image annotation, image
retrieval, etc... [48]. CNNs are usually composed of several
layers, each involving linear as well as nonlinear operators.
The layers’ parameters are learned jointly in an end-to-end
manner to solve a particular task. ACNN that has been trained
for solving a given task can be also adapted to solve a different
task. It is common to use a CNN that is pre-trained on a very
large dataset and adapt it for new tasks [49].

Several studies have investigated deep neural networks for
food recognition as end-to-end classifiers, or feature extrac-
tors. One of the first works that used features extracted from
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CNNswithin the context of food recognition was by [50]. The
food images are described with the features extracted from
the FC7 layer of an AlexNet-style architecture pre-trained on
ImageNet and classified with SVM. Reference [51] evaluated
different CNN-based techniques for food recognition. These
techniques include network pre-trained with the large-scale
ImageNet data, fine-tuned network for food classification,
and the use of the activation features extracted from the CNN.
In [5] the AlexNet network is used as a feature extraction
module for the classification of food images acquired in a
canteen environment. Experiments with traditional features
using k-NN and SVM classifiers showed the superiority of
the CNN-based features. Reference [52] usedGoogle’s image
recognition architecture Inception V3. The network, com-
posed of 54 layers, was designed to tackle the ImageNet’s
ILSVRC15 and it was fine-tuned for classifying food images.
The network greatly surpasses the performances of previ-
ous approaches. Another approach based on the Inception
architecture is DeepFood [53]. In this case, 1×1 convolu-
tional layers are introduced to reduce the network complexity
with some loss in performances. [54] devised the WIde-Slice
Residual Network (WISeR) designed to specifically handle
structures that can be found in food images. The network out-
performed the Inception V3 architecture. CNNs can be also
used to tackle different tasks simultaneously. Reference [55]
used this ability to build a deep convolutional neural network
architecture for simultaneous food ingredients recognition
and food categorization. Reference [56] proposed NutriNet,
a modified version of the AlexNet architecture which uses
fewer parameters compared with the original design. The
network was trained on a very large food database of more
than 130,000 images.

The Residual Network ResNet-50 [57] is one of the
most powerful and performing CNN architecture. The net-
work is exploited in [58] for extracting features to be
used for image retrieval in a dataset of 1,200 distinct
dishes. The CNN-based features greatly outperform tradi-
tional bag-of-SIFT and textons features [33]. In [59] an
extensive evaluation of different techniques for food recog-
nition and retrieval is conducted on a dataset of more than
240,000 images of 475 different food dishes (Food-475).
Seven different CNN architectures for end-to-end classifi-
cation are evaluated: AlexNet, Caffe-Reference, GoogleNet,
VGGNet-16, VGGNet-19, InceptionV3, and ResNet-50.
Among these architectures, the ResNet-50 showed the best
recognition accuracy. In the same work, CNN-based features
are also evaluated. The features are extracted from a ResNet-
50 trained with different food datasets and recognition is
performed using a k-NN classifier. The same features are
also tested in a retrieval task. Experiments showed that robust
features can be obtained from very large and heterogeneous
food datasets.

Recognizing a food identity during a dish preparation
is quite challenging. Reference [15] was the first work to
explicitly introduce and address the food state classification
problem. By analyzing cooking procedures, eleven states of

the most frequent foods are identified and a new dataset of
food states is introduced. They proposed a ResNet based deep
model solution to the state identification problem. Since state
identification has a strong correlation with the type of food,
individual models are fine-tuned for each food in the dataset.
This strategy showed significant improvement with respect to
a food-independent model. The Inception V3 architecture is
used instead in [16]

CNNs are exploited also for other food-related tasks such
as food localization, segmentation, ingredients recognition,
quantity, and calories estimation. Readers interested in these
tasks can refer to [60] and [61] for a comprehensive survey
of recent techniques.

III. MATERIALS AND METHODS
The aim of this paper is twofold: the collection of a new
dataset containing foods in different states, and the evaluation
of features and classification methods. Specifically, we are
interested in food recognition across different states, food
state classification across different foods, and joint food and
state recognition. In this Section, we first illustrate the proce-
dure we adopted for the collection of the dataset and then we
illustrate the classification pipeline as well as the procedure
we adopted for the evaluation of the classification methods.

A. DATASET
The construction of our dataset is inspired by [15]. We iden-
tified 11 food states representative of the states that
can be found in food recipes. The states are: batons,
creamy paste, floured, grated, juiced, julienne, peeled, sliced,
wedges/quarters, and whole. Most of these states apply to
fruits and vegetables so we focus our attention on these food
classes. Among the possible foods, we selected those with
at least two states. The final list of fruits and vegetables is:
apple, apricot, aubergine, banana, beet, carrot, garlic, lemon,
melon, onion, orange, peach, pear, pepper, potato, pumpkin,
strawberry, tomato, watermelon, and zucchini.

We searched and downloaded the images using the Google
search engine using a Python script. Textual queries with
combinations of food and state words (such as ‘‘apple’’ and
‘‘diced’’) were submitted in several languages (i.e. English,
Chinese, French, German and Italian). The downloaded
images were manually reviewed to ensure that they were per-
tinent to our food/state classification. We discarded images
depicting food in cans since most of the time the food is
covered by a large label.We also discarded images containing
different foods or different states. Furthermore, we edited
images having a very large background area in comparison
to the food area to limit the influence of non-relevant regions
during the classification. At the end of the analysis process,
each image is filed in a double layer categorization: food iden-
tity, and state. In this way, we can perform food classification
across states, state classification across different foods, or a
paired food and state classification. Starting from an initial set
of 180,000 downloaded images, we obtained 11,943 images
manually inspected and categorized.
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TABLE 1. Dataset classes with respect to the State categorization.

TABLE 2. Dataset classes with respect to the Food categorization.

Table 1 shows the organization of the dataset accord-
ing to the state categorization. We can see that the state
‘‘floured’’ is the one containing the fewer images (i.e. 79),
while the ‘‘whole’’ state is the class containing the most
images.We also report the number of foods that are present in
each state. It can be seen that not all states contain all foods.
Table 2 details the content of the dataset according to the food
categorization. In this case, the number of images in each
class has less variability than in the previous categorization.
The number of images ranges from 300 to about 1,000. None
of the 20 foods has all the 11 states. Beet, potato, and zucchini
have 10 states, while garlic has only three states.

Figure 3 shows some examples of images in our dataset.
These images are representative of the food/state categoriza-
tion. We can notice that the food states have a very large
visual diversity. Also within a state, the visual appearance of

the foods is influenced by the distance of acquisitions, lights,
colors, and textures.

The images in our original dataset have been split into
three sets by allocating 70% (8,233 images) for the train-
ing, 15% (1,855 images) for validation, and the last 15%
(1,855 images) for testing.

B. METHODS
We evaluated several hand-crafted and deep learning based
feature extraction methods. The evaluation pipeline includes
a feature extraction module and a classification module (one
for each task) based on an SVM classifier with a radial basis
function (RBF). The validation set of the dataset is used
for the choice of the RBF parameters. Learned features are
extracted from several CNNs trained using our dataset. For
the sake of comparison, we also evaluate the trained CNN
architectures for end-to-end classification. In the following
subsectionswe describe the chosen hand-crafted features, and
the CNN models.

1) HAND-CRAFTED FEATURES
We considered both color and grey-scale hand-crafted fea-
tures. The grey-scale image L is defined as follows: L =
0.299R + 0.587G + 0.114B, where R = Red, G = Green
and B = Blue. All feature vectors have been l2 normalized
(they have been divided by its l2-norm):
• 256-dimensional grey-scale histogram (Hist L) [31];
• 768-dimensional RGB and normalized RGB space (rgb)
marginal histograms (Hist RGB and Hist rgb) [38];

• 144-dimensional color and edge directivity descrip-
tor (CEDD) features. This descriptor uses a fuzzy
version of the five digital filters proposed by the
MPEG-7 Edge Histogram Descriptor (EHD), forming
6 texture areas. CEDD uses 2 fuzzy systems that map the
colors of the image in a 24-color custom palette [45];

• 8-dimensional Dual Tree Complex Wavelet Trans-
form (DT-CWT) features obtained considering four
scales, mean and standard deviation, and three color
channels [46], [62];

• 580-dimensional Histogram of Oriented Gradients fea-
ture vector [28]. Nine histograms with nine bins are
concatenated to achieve the final feature vector (HoG);

• 243-dimensional Local Binary Patterns (LBP) feature
vector for each color channel. We selected the LBP with
a circular neighborhood of radius 2 and 16 elements, and
18 uniform and both no-rotation invariant patterns (LBP)
and rotation invariant (LBP-RI) [38];

• 729-dimensional LBP RGB combined with the LCC
descriptor, as described in [63]–[65]

• 512-dimensional Gist features obtained considering
eight orientations and four scales for each channel (Gist
RGB) [37];

2) DEEP LEARNING-BASED FEATURES
For our experiments, we have decided to test four dif-
ferent CNNs [66] (see table 3): GoogLeNet [67] which
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FIGURE 3. Example of foods and their relative states in our dataset.

won the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) contest in 2014, Inception-v3 [68] which

overcame the GoogLeNet in 2016, MobileNet-v2 [69]
which is the most performing mobile network architecture,
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TABLE 3. Overview of the CNN architecture considered.

and ResNet-50 [57] which is part of the ensemble of CNNs
that won the contest in 2015. The models were pre-trained on
ImageNet so we fine-tuned them for food state recognition
by modifying the last layers to match our classification tasks.
Fine-tuning has been performed using the SGDM optimizer
(Stochastic Gradient Descent with Momentum), a mini-batch
of size 10, and a learning rate of 0.0003 for 12 epochs.

The CNN architectures are used as end-to-end classifiers
as well as feature extractors. We extract the features from
the fully connected layers before the actual classification
layer in each model. Specifically, the extracted features have
the dimension of 1024 values for the GoogLeNet, 2048 for
both the Inception-v3 and ResNet, and of 1280 values for
the MobileNet-v2. The features are used to train an SVM
classifier (with RBF kernel) in the same way as we have done
for hand-crafted features.

IV. RESULTS
We performed different classification experiments using the
hand-crafted features and CNN-based features. More in
details, we investigated the performance of the features in
recognizing a food state regardless of the food identity,
the recognition of the food across the different states, and
jointly recognizing the food and state. All the experiments
have been performed considering the three splits of our
dataset as described in Section III-A and averaging the
obtained results. We also evaluated the robustness of the
best performing CNN-based features for the recognition of
states of the dataset in [15]. For brevity, in the following
tables, we have indicated the names of networks as G.Net,
Inc-v3, M.Net and R.Net for the GoogLeNet, Inception-v3,
MobileNet-v2, and ResNet50 respectively.

Detailed results are reported in terms of per-class Accuracy
while the overall results are reported in terms of Average
Accuracy and F1-Score.

A. END-TO-END CNN CLASSIFICATION
In the first experiment, we evaluated the performance of
the fine-tuned CNN models in an end-to-end classification
scenario. Results for the food classification task are shown
in Table 4, while the results for the state classification task
are shown in Table 5. As can be seen, the four networks
can achieve very good classification results on most of the
classes. For the food classification task, the recognition of
the ‘‘pumpkin’’ seems to be the most difficult with the

TABLE 4. Results of the fine-tuned networks for the food classification
task.

TABLE 5. Results of the fine-tuned networks for the state classification
task.

best results obtained by the GoogLeNet with 80%. Also the
‘‘pear’’ exhibits a general recognition accuracy lower than
the other classes. With respect to the state classification task,
the ‘‘batons’’, and ‘‘flower’’ have the lowest accuracy.

If we examine the average accuracy of each network on
all the classes in Table 6, we can see that all the models are
able to achieve a food classification accuracy above 87%.
The Inception-v3 and the ResNet-50 are the best models
with an average accuracy of about 92%. It is worth noting
that the MobileNet-v2 has only 2% drop in accuracy and
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TABLE 6. Overall classification results (Average Accuracy) of the
fine-tuned networks on all the different tasks. The best results are in bold.

TABLE 7. Overall classification results (F1-Score) of the fine-tuned
networks on all the different tasks. The best results are in bold.

the network is by far the most lightweight of the four. With
respect to the fine-tuned network for state recognition, all the
networks are able to achieve an accuracy above 92%. In this
scenario, the best model is the Inception-v3 with 95.39%,
followed by GoogLeNet (94.49%), ResNet-50 (92.90%), and
MobileNet-v2 (92.88%). Again it is worth noting the very
good performances of the MobileNet-v2. We also evaluate
the joint classification of food and state. Table 6 shows that
the Inception-v3 network achieves the best result with an
accuracy of 90.48%. All the networks are able to recognize
both information with an accuracy of at least 85%.

Table 7 shows the overall results on the three tasks com-
puted in terms of F1-Score. The values do not exhibit a
different behaviour than those in Table 6.

B. CNN-BASED FEATURE CLASSIFICATION
The previous experiments proved that the trained networks
can effectively classify food and states with high accuracy.
However, we were more interested in the features that have
been learned by the networks. For this reason, we used the
networks to extract the features embedded in the last layers
of the networks. Specifically, we extracted the features from
the following layers: ‘‘pool5-drop_7x7_s1’’, ‘‘avg_pool’’,
‘‘global_average_pooling2d_1’’, and ‘‘avg_pool’’ for the
GoogLeNet, Inception-v3, MobileNet-v2, and ResNet-
50 respectively. Classification has been performed by training
an SVMclassifier with a RBF kernel and using the same splits
as before.

The detailed results for the food classification task are
reported in Table 8, while the results for the state classi-
fication task are reported in Table 9. For the end-to-end
classification results, we cannot see specific increments or
decrements in the accuracy for all the classes. In some cases
the CNN-based features exhibit worse performances than the
end-to-end counterparts (e.g. for the G.Net the ‘‘apple’’ drops
from 84.44% to 80.00%), while in other cases the accuracy
increases (e.g. for the M.Net, the accuracy increases from
80.00% to 85.28%). If we consider the average results on

TABLE 8. Results of the CNN-based features for the food classification
task.

TABLE 9. Results of the CNN-based features for the state classification
task.

TABLE 10. Overall classification results (Average Accuracy) of the
CNN-based features on the different tasks. The best results are in bold.

TABLE 11. Overall classification results (F1-Score) of the CNN-based
features on the different tasks. The best results are in bold.

all the classes reported in Table 10, we can see that the use
of the embedded features coupled with the SVM classifier
does not exhibits significant drops in classification accuracy.
The drop is in the order of 1 percentage point on average.
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TABLE 12. Classification results of the hand-crafted features on the food classification task across states.

TABLE 13. Classification results of the hand-crafted features on the state classification task across foods.

TABLE 14. Comparison, in terms of Average Accuracy, between learned features and hand-crafted features on the Food, State, and Food-and-State
classification tasks. The best results are in bold. The best results for the hand-crafted features are underlined.

TABLE 15. Comparison, in terms of F1-Score, between learned features and hand-crafted features on the Food, State, and Food-and-State classification
tasks. The best results are in bold. The best results for the hand-crafted features are underlined.

This means that the features are indeed robust enough to
solve both classification problems. The use of a non-linear
classifier allows the models to achieve, in some cases, even
slightly better results than the end-to-end counterpart. This
can be seen in the case of the joint food and state classification
task. In this case, all the features have better results than the
end-to-end counterparts with the MobileNet-v2 exhibiting an
increase in accuracy of 2.2 percentage points.

Table 11 shows the overall results in terms of F1-Score.
As before, there are no significant differences with respect to
the results in Table 10.

C. COMPARISON WITH HAND-CRAFTED FEATURES
Table 12 and Table 13, show the per-class accuracy of
the ten hand-crafted features described in Section III-B.1.
The hand-crafted features are not able to capture enough
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TABLE 16. Comparison, in terms of Average Accuracy, between the best deep-based feature (Inc-v3) and its concatenation with each hand-crafted feature
on the Food, State, and Food-and-State classification tasks. The best results are in bold.

TABLE 17. Comparison, in terms of F1-Score, between the best deep-based feature (Inc-v3) and its concatenation with each hand-crafted feature on the
Food, State, and Food-and-State classification tasks. The best results are in bold.

TABLE 18. Classification results of the learned features on the state
classification task of the Jelodar dataset.

information about the image contents to discriminate between
the different classes. Concerning the food classification task,
we can see that some foods are more easily recognizable with
the hand-crafted features than others. For example, the beet,
carrot, tomato and zucchini are the classes that have higher
recognition accuracy. This could be due to the characteristic
color and shape of the food. On the other hand, the peach and
pear are the fruits that are more difficult to recognize by the
hand crafted features. If we look at the CNN-based features,
the most difficult food to recognize is the pumpkin followed
by the pear.

Concerning the state classification task, the best results are
obtained for the ‘‘whole’’ state for both the CNN-based and
hand-crafted features. This is not surprising since it corre-
sponds to a traditional image recognition task. The most diffi-
cult state to be recognized is the ‘‘floured’’ one. This could be
related to the fact that this state is not atomic but must be con-
sidered in conjunction with another state (e.g. sliced floured
zucchini). Surprisingly, the HIST-RGB feature achieves an
accuracy of about 31%, while other hand-crafted features do
not reach 15% and some are completely unable to recognize
this state.

Table 14 compares the results of the CNN-based features
against the hand-crafted ones in terms of average accu-
racy. As expected, the CNN-based features achieve the best
results among all the features. The best CNN-based features

TABLE 19. Learned features extracted from CNNs trained on the
proposed dataset and used, coupled with SVM for classify states of the
Jelodar dataset.

are those extracted from the Inc-v3 network. Among the
hand-crafted features, the best overall result is obtained again
by the GIST features (i.e 41.24%). This could be due to the
fact that this descriptor summarizes texture information at
different scales and orientations. Again, similar conclusions
can be derived from the performances computed in terms of
F1-Score as shown in Table 15.

D. COMBINATION OF DEEP-BASED AND
HAND-CRAFTED FEATURES
We concatenated the best performing features extracted
from the Inception-v3 network (Inc-v3) with each of the
hand-crafted feature. The aim was to investigate if the com-
bination of different features can further improve the overall
classification performance. Table 16 and Table 17 report
the overall performance in terms of average accuracy and
F1-Score respectively.

Concerning the food classification task, the accuracy is
above 91% and the F1-Score is above 90% for all the com-
binations. The differences with respect to Inc-v3 are very
small. The best combination achieves extra 0.18 points for the
average accuracy, and 0.24 points for the F1-Score. Concern-
ing the state classification task, the results are more diverse.
The best result is achieved by Inc-v3+LBP-RI with 95.29%
of average accuracy against 94.96% of the Inc-v3 alone.
This is also true for the F1-Score (95.29% against 94.76%).
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FIGURE 4. Confusion matrix of the Food classification task with the CNN-based features extracted from the best performing network
(Inception-v3).

However, the overall gain is less than 1 percentage point.
In the case of the food-and-state classification task, we notice
very small differences. The Inc-v3+LBP-RI is again the
best combination with 90.71% against 90.53%, and 90.71%
against 90.89% for the average accuracy and F1-Score respec-
tively. These results show that there is no significant advan-
tage in combining CNN-based and hand-crafted features for
our problem.

E. COMPARISON WITH THE STATE-OF-THE-ART
We also tested how the CNN-based features can recognize
the food states on a dataset in the state-of-the-art. Specif-
ically, we evaluated the features extracted by the four net-
works on the Jelodar dataset [15]. This dataset is the only

public dataset that is comparable to ours. The dataset contains
some states common to our dataset but also new, unseen,
states. For example, the ‘‘mixed’’ state is present in the
dataset, and this state corresponds to different finely chopped
ingredients that are blended. The ‘‘other’’ state is an het-
erogeneous class and comprises all the states that are not
already considered. Results of our CNN-based features are
reported in Table 18. As expected, the ‘‘other’’ state exhibits
the worse results among the eleven states. On the over-
all the accuracy of our CNN-based features on the Jelodar
dataset is lower than in the case of our dataset. This is
to be expected in a transfer learning problem. If we com-
pare the results obtained with the CNN-based features with
those obtained in [15] (see Table 19), we can see that the

VOLUME 8, 2020 32013



G. Ciocca et al.: State Recognition of Food Images Using Deep Features

FIGURE 5. Confusion matrix of the State classification task with the CNN-based features
extracted from the best performing network (Inception-v3).

best classification accuracy is obtained with the ResNet-50
(82.16%) followed by the Inception-v3 (81.25%). In this case,
the MobileNet-v2 exhibits the lowest performances with an
accuracy of 78.37%. The best combination of CNN-based and
hand-crafted features achieves an accuracy of 81.15% which
is one percentage point lower than the Inc-v3 only. Again
there is no clear gain in combining the features.

As a comparison, we also report the results reported in [15].
In this case, a direct comparison is not possible because the
dataset used in the original paper differs from the one used
here. The results of the five methods in Table 19 have been
obtained on a revised version of the original dataset that has
been provided to us by the authors. However, we can see that
our results are similar or better than those reported in [15] in
the case of a single network, while, if multiple networks are
trained on each state class, the results are about 5 percentage
points lower.

From the analysis of the results we can deduce that the
CNN-based features extracted from the Inception-v3 network
are those that are able to achieve the overall best results on all
the three tasks (see Table14). The second best features are
those extracted from the ResNet-50 network. Good results
of the Inception-v3 features notwithstanding, we can see that
for some classes, we still have some errors. Figure 4, shows
the confusion matrix of these features on the food classifi-
cation task, while Figure 6 shows some examples of food

FIGURE 6. Examples of food recognized incorrectly.

incorrectly classified. We can see that apples and potatoes are
often confused. Apricots are often confused with peaches in
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FIGURE 7. Examples of state recognized incorrectly.

some states. Peppers are confused with tomatoes, and this is
true in many states, but especially whole, but not the reverse.
Garlic and onions, if diced cannot be easily distinguished.
Pumpkins are mistaken for carrots in many states and this
is true also for the reverse, even if at a lower error rate.
Strawberries are often confused with tomatoes especially
when they are juiced, or finely diced.

Figure 5, shows the confusion matrix of the Inception-v3
features on the state classification task, while Figure 7
shows some examples of state classification errors. ‘‘batons’’,
‘‘floured’’, ‘‘julienne’’ and ‘‘wedges’’ are the states where
more mistakes are made. For ‘‘batons’’ and ‘‘julienne’’ the
reason is that they are mistaken for each other. This is mainly
due to the caliber of the cut, being 6mm or more for batons
and 2-3mm for julienne. ‘‘floured’’ and ‘‘wedges’’ foods
are often mistaken for ‘‘sliced’’, but not the reverse. These
problems could also be attributed to the fact that these classes
have fewer images than others.

V. CONCLUSION
In this paper we presented a new dataset of images for food
and state recognition. A similar dataset exists in the literature,
but it tackles only the problem of state recognition.We started
our investigation with several questions: Can we recognize
foods across different states? Can we recognize a food state
independently by its identity? How robust are end-to-end
Convolutional Neural Networks (CNNs)? How robust are
CNN-based features with respect to hand-crafted features?
Our experiments effectively show that, with the proper net-
work, we can obtain robust features to be used for different
food-related classification tasks. These features outperform
hand-crafted features by a large margin. Moreover, there is

no significant advantages in combining hand-crafted features
with learned ones. On the overall, it seems that the state
recognition problem is more approachable by the CNN-based
features than the food classification one. This could be associ-
ated with the visual appearance of the state classes where the
texture is more important in the discrimination of the different
states. Although the best features are those extracted from
the Inception-v3 network, we must acknowledge the very
good results of the features extracted from the MobileNet-v2
network. For applications where the computational cost is
important, the MobileNet-v2 is a perfect candidate having
very good results and efficient implementation. If food clas-
sification and state classification are important tasks in a
general food recognition application, it is also important to
classify food at a particular state. In our experiments, we have
shown that, although with slightly minor success for the
two base tasks, this can be also achieved with the use of
the CNN-based features. Also, if applied to unseen food
states, our features are able to achieve comparable or even
better results than an ad-hoc network trained end-to-end to
those specific states. This demonstrates the generalization
capability of the features on new domains. This also demon-
strates that CNN-based features are robust with respect to the
intra-class visual variability of food images. For a general
food recognition system, this is a very important feature.

Good results notwithstanding, we need to further inves-
tigate the robustness of machine learning methods to the
variability of real world foods in images and videos in terms
of illumination, scale, point of view, and cluttered scenes. For
example, discerning some type of food across some states
(i.e. creamy carrot vs creamy pumpkin, or juiced strawberry
vs juiced tomato) is very difficult if we rely only on visual
features. An idea could be to consider other type of related
features such as nutrients, ingredients, or recipe procedures.
Also some food and states can be confused if the images
are acquired at different scales. From the acquisition point
of view, illumination plays an important role. Different light-
ing conditions can make it problematic to distinguish dif-
ferent foods [70]. An integration with a carefully designed
pre-processing procedure could alleviate this problem as
demonstrated in [71]. For all these reasons, as future works,
we intend to perform a more systematic investigation on the
effect of these issues on the recognition of the foods and
states, and design possible solutions. Finally, some of our
classes are under-represented and this could be a problem for
proper recognition. We are planning to increase the number
of images for those under-represented classes. To let other
research groups contribute to the food and state recognition
problem, we intend to make our dataset publicly available.1

ACKNOWLEDGMENT
(Gianluigi Ciocca, Giovanni Micali, Paolo Napoletano are
contributed equally to this work.)

1http://www.ivl.disco.unimib.it/activities/
food-state-recognition/

VOLUME 8, 2020 32015

http://www.ivl.disco.unimib.it/activities/food-state-recognition/
http://www.ivl.disco.unimib.it/activities/food-state-recognition/


G. Ciocca et al.: State Recognition of Food Images Using Deep Features

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[2] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[3] Y. Matsuda, H. Hoashi, and K. Yanai, ‘‘Recognition of multiple-food
images by detecting candidate regions,’’ in Proc. IEEE Int. Conf. Multi-
media Expo, Jul. 2012, pp. 25–30.

[4] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, M. Yunsheng, S. Chen, and
P. Hou, ‘‘A new deep learning-based food recognition system for dietary
assessment on an edge computing service infrastructure,’’ IEEE Trans.
Serv. Comput., vol. 11, no. 2, pp. 249–261, Mar. 2018.

[5] G. Ciocca, P. Napoletano, and R. Schettini, ‘‘Food recognition: A new
dataset, experiments, and results,’’ IEEE J. Biomed. Health Inform., vol. 21,
no. 3, pp. 588–598, May 2017.

[6] W. Min, B.-K. Bao, S. Mei, Y. Zhu, Y. Rui, and S. Jiang, ‘‘You are what
you eat: Exploring rich recipe information for cross-region food analysis,’’
IEEE Trans. Multimedia, vol. 20, no. 4, pp. 950–964, Apr. 2018.

[7] G. Ciocca, P. Napoletano, and R. Schettini, ‘‘IVLFood-WS: Recognizing
food in the wild using deep learning,’’ inProc. IEEE 8th Int. Conf. Consum.
Electron.-Berlin (ICCE-Berlin), Sep. 2018, pp. 1–6.

[8] A. Mariappan, M. Bosch, F. Zhu, C. J. Boushey, D. A. Kerr, D. S. Ebert,
and E. J. Delp, ‘‘Personal dietary assessment using mobile devices,’’ Proc.
SPIE, vol. 7246, Feb. 2009, Art. no. 72460Z.

[9] Y. Kawano and K. Yanai, ‘‘FoodCam: A real-time food recognition system
on a smartphone,’’Multimedia Tools Appl., vol. 74, no. 14, pp. 5263–5287,
Jul. 2015.

[10] A. Myers, N. Johnston, V. Rathod, A. Korattikara, A. Gorban,
N. Silberman, S. Guadarrama, G. Papandreou, J. Huang, and K. Murphy,
‘‘Im2Calories: Towards an automated mobile vision food diary,’’ in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1233–1241.

[11] D. Sahoo,W. Hao, S. Ke,W. Xiongwei, H. Le, P. Achananuparp, E.-P. Lim,
and S. C. H. Hoi, ‘‘FoodAI: Food image recognition via deep learning
for smart food logging,’’ in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2019, pp. 2260–2268.

[12] K. Doman, C. Y. Kuai, T. Takahashi, I. Ide, and H. Murase, ‘‘Video
CooKing: Towards the synthesis of multimedia cooking recipes,’’ in
Proc. Int. Conf. Multimedia Modeling. Berlin, Germany: Springer, 2011,
pp. 135–145.

[13] S. Bianco, G. Ciocca, P. Napoletano, R. Schettini, R. Margherita,
G. Marini, and G. Pantaleo, ‘‘Cooking action recognition with iVAT:
An interactive video annotation tool,’’ in Proc. Int. Conf. Image Anal.
Process. Berlin, Germany: Springer, 2013, pp. 631–641.

[14] S. Bianco, G. Ciocca, P. Napoletano, and R. Schettini, ‘‘An interactive tool
for manual, semi-automatic and automatic video annotation,’’Comput. Vis.
Image Understand., vol. 131, pp. 88–99, Feb. 2015.

[15] A. Babaeian Jelodar, M. Sirajus Salekin, and Y. Sun, ‘‘Identifying object
states in cooking-related images,’’ 2018, arXiv:1805.06956. [Online].
Available: http://arxiv.org/abs/1805.06956

[16] M. S. Salekin, A. Ba. Jelodar, and R. Kushol, ‘‘Cooking state recognition
from images using inception architecture,’’ in Proc. Int. Conf. Robot.,
Electr. Signal Process. Techn. (ICREST), Jan. 2019, pp. 163–168.

[17] P. Napoletano, ‘‘Visual descriptors for content-based retrieval of remote-
sensing images,’’ Int. J. Remote Sens., vol. 39, no. 5, pp. 1343–1376,
Mar. 2018.

[18] P. Napoletano, ‘‘Hand-crafted vs learned descriptors for color texture
classification,’’ in Proc. Int. Workshop Comput. Color Imag. Cham,
Switzerland: Springer, 2017, pp. 259–271.

[19] S. Arivazhagan, R. N. Shebiah, S. S. Nidhyanandhan, and L. Ganesan,
‘‘Fruit recognition using color and texture features,’’ J. Emerg. Trends
Comput. Inf. Sci., vol. 1, no. 2, pp. 90–94, 2010.

[20] M. Bosch, F. Zhu, N. Khanna, C. J. Boushey, and E. J. Delp, ‘‘Combining
global and local features for food identification in dietary assessment,’’ in
Proc. 18th IEEE Int. Conf. Image Process., Sep. 2011, pp. 1789–1792.

[21] B. S.Manjunath andW.Y.Ma, ‘‘Texture features for browsing and retrieval
of image data,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 8,
pp. 837–842, Aug. 1996.

[22] H. Tamura, S. Mori, and T. Yamawaki, ‘‘Textural features corresponding
to visual perception,’’ IEEE Trans. Syst., Man, Cybern., vol. 8, no. 6,
pp. 460–473, Jun. 1978.

[23] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[24] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, Jun. 2008.

[25] W. T. Freeman and E. H. Adelson, ‘‘The design and use of steerable filters,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 9, pp. 891–906,
Sep. 1991.

[26] E. Tola, V. Lepetit, and P. Fua, ‘‘DAISY: An efficient dense descriptor
applied to wide-baseline stereo,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 5, pp. 815–830, May 2010.

[27] H. Hoashi, T. Joutou, and K. Yanai, ‘‘Image recognition of 85 food cate-
gories by feature fusion,’’ in Proc. IEEE Int. Symp. Multimedia, Dec. 2010,
pp. 296–301.

[28] O. L. Junior, D. Delgado, V. Gonçalves, and U. Nunes, ‘‘Trainable
classifier-fusion schemes: An application to pedestrian detection,’’ in Proc.
12th Int. IEEE Conf. Intell. Transp. Syst., Oct. 2009, pp. 1–6.

[29] Y. Yang and S. Newsam, ‘‘Bag-of-visual-words and spatial extensions
for land-use classification,’’ in Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst. (GIS), 2010, pp. 270–279.

[30] A. E. Abdel-Hakim andA. A. Farag, ‘‘CSIFT: A SIFT descriptor with color
invariant characteristics,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. (CVPR), vol. 2, Jul. 2006, pp. 1978–1983.

[31] C. L. Novak and S. A. Shafer, ‘‘Anatomy of a color histogram,’’ in Proc.
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jan. 2003,
pp. 599–605.

[32] Y. He, C. Xu, N. Khanna, C. J. Boushey, and E. J. Delp, ‘‘Analysis of
food images: Features and classification,’’ in Proc. IEEE Int. Conf. Image
Process. (ICIP), Oct. 2014, pp. 2744–2748.

[33] G. M. Farinella, M. Moltisanti, and S. Battiato, ‘‘Classifying food images
represented as bag of Textons,’’ in Proc. IEEE Int. Conf. Image Pro-
cess. (ICIP), Oct. 2014, pp. 5212–5216.

[34] D. T. Nguyen, Z. Zong, P. O. Ogunbona, Y. Probst, andW. Li, ‘‘Food image
classification using local appearance and global structural information,’’
Neurocomputing, vol. 140, pp. 242–251, Sep. 2014.

[35] M. M. Anthimopoulos, L. Gianola, L. Scarnato, P. Diem, and
S. G. Mougiakakou, ‘‘A food recognition system for diabetic patients
based on an optimized bag-of-features model,’’ IEEE J. Biomed. Health
Inform., vol. 18, no. 4, pp. 1261–1271, Jul. 2014.

[36] N. Martinel, C. Piciarelli, C. Micheloni, and G. L. Foresti, ‘‘A structured
committee for food recognition,’’ in Proc. IEEE Int. Conf. Comput. Vis.
Workshop (ICCVW), Dec. 2015, pp. 92–100.

[37] A. Oliva and A. Torralba, ‘‘Modeling the shape of the scene: A holistic
representation of the spatial envelope,’’ Int. J. Comput. Vis., vol. 42, no. 3,
pp. 145–175, 2001.

[38] T. Ojala, M. Pietikainen, and T. Maenpaa, ‘‘Multiresolution gray-scale and
rotation invariant texture classification with local binary patterns,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002.

[39] E. Rahtu, J. Heikkilä, V. Ojansivu, and T. Ahonen, ‘‘Local phase quanti-
zation for blur-insensitive image analysis,’’ Image Vis. Comput., vol. 30,
no. 8, pp. 501–512, Aug. 2012.

[40] Y. Guo, G. Zhao, and M. Pietikäinen, ‘‘Texture classification using a linear
configuration model based descriptor,’’ in Proc. Brit. Mach. Vis. Conf.,
2011, pp. 1–10.

[41] L. Zhang, Z. Zhou, and H. Li, ‘‘Binary Gabor pattern: An efficient and
robust descriptor for texture classification,’’ in Proc. 19th IEEE Int. Conf.
Image Process., Sep. 2012, pp. 81–84.

[42] M. Varma and A. Zisserman, ‘‘A statistical approach to texture classifica-
tion from single images,’’ Int. J. Comput. Vis., vol. 62, nos. 1–2, pp. 61–81,
Apr. 2005.

[43] V. Bettadapura, E. Thomaz, A. Parnami, G. D. Abowd, and I. Essa, ‘‘Lever-
aging context to support automated food recognition in restaurants,’’ in
Proc. IEEE Winter Conf. Appl. Comput. Vis., Jan. 2015, pp. 580–587.

[44] G. Ciocca, P. Napoletano, and R. Schettini, ‘‘Food recognition and leftover
estimation for daily diet monitoring,’’ in Proc. Int. Conf. Image Anal.
Process. Cham, Switzerland: Springer, 2015, pp. 334–341.

[45] S. A. Chatzichristofis and Y. S. Boutalis, ‘‘CEDD: Color and edge directiv-
ity descriptor: A compact descriptor for image indexing and retrieval,’’ in
Computer Vision Systems. Berlin, Germany: Springer, 2008, pp. 312–322.

[46] M. E. Barilla and M. Spann, ‘‘Colour-based texture image classification
using the complex wavelet transform,’’ in Proc. 5th Int. Conf. Electr. Eng.,
Comput. Sci. Autom. Control, Nov. 2008, pp. 358–363.

[47] S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar, ‘‘Food recognition
using statistics of pairwise local features,’’ in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 2249–2256.

32016 VOLUME 8, 2020



G. Ciocca et al.: State Recognition of Food Images Using Deep Features

[48] J. Schmidhuber, ‘‘Deep learning in neural networks: An overview,’’Neural
Netw., vol. 61, pp. 85–117, Jan. 2015.

[49] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, ‘‘CNN fea-
tures off-the-shelf: An astounding baseline for recognition,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 512–519.

[50] Y. Kawano and K. Yanai, ‘‘Food image recognition with deep convolu-
tional features,’’ in Proc. ACM Int. Joint Conf. Pervas. Ubiquitous Comput.
Adjunct Publication (UbiComp), 2014, pp. 589–593.

[51] K. Yanai and Y. Kawano, ‘‘Food image recognition using deep convolu-
tional network with pre-training and fine-tuning,’’ in Proc. IEEE Int. Conf.
Multimedia Expo Workshops (ICMEW), Jun. 2015, pp. 1–6.

[52] H. Hassannejad, G. Matrella, P. Ciampolini, I. De Munari, M. Mordonini,
and S. Cagnoni, ‘‘Food image recognition using very deep convolutional
networks,’’ in Proc. 2nd Int. Workshop Multimedia Assist. Dietary Man-
age. (MADiMa). New York, NY, USA: ACM, 2016, pp. 41–49.

[53] C. Liu, Y. Cao, Y. Luo, G. Chen, V. Vokkarane, and Y. Ma, ‘‘DeepFood:
Deep learning-based food image recognition for computer-aided dietary
assessment,’’ in Proc. 14th Int. Conf. Inclusive Smart Cities Digit. Health,
vol. 9677, 2016, pp. 37–48.

[54] N. Martinel, G. L. Foresti, and C. Micheloni, ‘‘Wide-slice residual net-
works for food recognition,’’ in Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), Mar. 2018, pp. 567–576.

[55] J. Chen and C.-W. Ngo, ‘‘Deep-based ingredient recognition for cooking
recipe retrieval,’’ in Proc. ACM Multimedia Conf. (MM). New York, NY,
USA: ACM, 2016, pp. 32–41.

[56] S. Mezgec and B. K. Seljak, ‘‘NutriNet: A deep learning food and drink
image recognition system for dietary assessment,’’ Nutrients, vol. 9, no. 7,
p. 657, Jun. 2017.

[57] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[58] G. Ciocca, P. Napoletano, and R. Schettini, ‘‘Learning CNN-based features
for retrieval of food images,’’ in New Trends in Image Analysis and
Processing—ICIAP. Cham, Switzerland: Springer, 2017, pp. 426–434.

[59] G. Ciocca, P. Napoletano, and R. Schettini, ‘‘CNN-based features for
retrieval and classification of food images,’’ Comput. Vis. Image Under-
stand., vols. 176–177, pp. 70–77, Nov. 2018.

[60] W. Min, S. Jiang, L. Liu, Y. Rui, and R. Jain, ‘‘A survey on food comput-
ing,’’ ACM Comput. Surv., vol. 52, no. 5, pp. 1–36, Sep. 2019.

[61] M. A. Subhi, S. H. Ali, and M. A. Mohammed, ‘‘Vision-based approaches
for automatic food recognition and dietary assessment: A survey,’’ IEEE
Access, vol. 7, pp. 35370–35381, 2019.

[62] F. Bianconi, ‘‘Theoretical and experimental comparison of different
approaches for color texture classification,’’ J. Electron. Imag., vol. 20,
no. 4, Oct. 2011, Art. no. 043006.

[63] C. Cusano, P. Napoletano, and R. Schettini, ‘‘Illuminant invariant descrip-
tors for color texture classification,’’ in Proc. Int. Workshop Comput. Color
Imag. Berlin, Germany: Springer, 2013, pp. 239–249.

[64] C. Cusano, P. Napoletano, and R. Schettini, ‘‘Combining local binary
patterns and local color contrast for texture classification under varying
illumination,’’ J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 31, no. 7, p. 1453,
Jul. 2014.

[65] C. Cusano, P. Napoletano, and R. Schettini, ‘‘Local angular patterns for
color texture classification,’’ in Proc. Int. Conf. Image Anal. Process.
Cham, Switzerland: Springer, 2015, pp. 111–118.

[66] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, ‘‘Benchmark analysis
of representative deep neural network architectures,’’ IEEE Access, vol. 6,
pp. 64270–64277, 2018.

[67] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[68] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking
the inception architecture for computer vision,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[69] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[70] G. Ciocca, D.Mazzini, and R. Schettini, ‘‘Evaluating CNN-based semantic
food segmentation across illuminants,’’ in Computational Color Imag-
ing (Lecture Notes in Computer Science), S. Tominaga, R. Schettini,
A. Trémeau, and T. Horiuchi, Eds. vol. 11418. Cham, Switzerland:
Springer, 2019, pp. 247–259.

[71] S. Bianco, C. Cusano, P. Napoletano, and R. Schettini, ‘‘Improving CNN-
based texture classification by color balancing,’’ J. Imaging, vol. 3, no. 3,
p. 33, Jul. 2017.

GIANLUIGI CIOCCA received theM.Sc. degree in
computer science from the University of Milano,
in 1998, and the Doctor of Philosophy (Ph.D.)
degree in computer science from the University of
Milano-Bicocca (UNIMIB), in 2006. Since 2006,
he has been a Research Scientist with UNIMIB.
He is currently an Associate Professor in com-
puter science with the Department of Informatics,
Systems and Communications, UNIMIB. He has
published more than 100 refereed articles in inter-

national journals and conferences. His research interests focus on image and
video understanding, pattern recognition, classification, and machine learn-
ing. He is also a member of theMilan Center for Neuroscience (NEUROMI).

GIOVANNI MICALI received the degree in com-
puter science from the University of Milano-
Bicocca (UNIMIB), in 2019, discussing a thesis
about recognition the state of food images, where
he is currently pursuing the M.Sc. degree in com-
puter science. His current research interests are in
the field of food image analysis.

PAOLO NAPOLETANO received the master’s
degree in telecommunications engineering from
the University of Naples Federico II, in 2003,
and the Doctor of Philosophy degree (Ph.D.)
in information engineering from the University
of Salerno, Italy, in 2007. He is currently an
Assistant Professor of computer science (tenure
track–RTDB) with the Department of Informat-
ics, Systems and Communication, University of
Milano-Bicocca. His master’s thesis focused on

transmission of electromagnetic fields and the Ph.D. thesis focused on com-
putational vision and pattern recognition. His current research interests focus
on signal, image and video analysis and understanding, multimedia informa-
tion processing and management, and machine learning for multimodal data
classification and understanding.

VOLUME 8, 2020 32017


