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We provide an efficient algorithm deciding chaos for linear cellular automata (LCA) over 
(ℤ∕𝑚ℤ)𝑛, a large and important class of cellular automata (CA) which may exhibit many of the 
complex features typical of general CA and are used in many applications. The efficiency of our 
algorithm is mainly due to fact that it avoids the computation of the prime factor decomposition 
of 𝑚 which is a well-known difficult task. Instead of factoring 𝑚 we make use of a new and 
efficient generalized technique for computing the greatest common divisor (gcd) of polynomials 
with coefficients not belonging to a field, which in itself is an interesting result. We wish also to 
emphasize that the gcd computations required by our algorithm always involve polynomials of 
degree at most 𝑛.
We also illustrate the impact of our algorithm in real-world applications regarding the growing 
domain of cryptosystems, the latter being often based on LCA over (ℤ∕𝑚ℤ)𝑛 with 𝑛 > 1. As a 
matter of facts, since cryptosystems have to satisfy the so-called confusion and diffusion properties 
(which are ensured if the involved LCA is chaotic) our algorithm turns out to be an important tool 
for building chaotic LCA over (ℤ∕𝑚ℤ)𝑛 and, hence, for improving the existing methods based on 
them.

1. Introduction

This paper is about one-dimensional linear cellular automata (LCA) over the alphabet (ℤ∕𝑚ℤ)𝑛, i.e., one-dimensional cellular 
automata (CA) with local rule defined by 𝑛 × 𝑛 matrices with elements in ℤ∕𝑚ℤ. Despite their simplicity, they are able to exhibit the 
complex behaviours of general CA. Moreover, they are used in many applications in several scientific domains. We recall that LCA 
over the alphabet (ℤ∕𝑚ℤ)𝑛 with 𝑛 = 1 have been extensively studied. In that case, all the dynamical properties including chaos not 
only were proved to be decidable but also efficiently computable characterizations was provided for them [13,15].

Although LCA over (ℤ∕𝑚ℤ)𝑛 with 𝑛 > 1 are used in many important applications such as data encryption, design of secret sharing 
schemes, data compression and image processing, there were few results regarding decidable characterizations of the dynamical 
properties for such LCA. Actually, the setting 𝑛 > 1, which is more expressive and gives rise to much more complex dynamics than 
𝑛 = 1 (see, for instance [10]), is more difficult to deal with. The proof techniques from [13,15] used when 𝑛 = 1 for obtaining 
decidable characterizations of dynamical and ergodic properties could no longer be exploited when 𝑛 > 1 for achieving the same 
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goal. Only injectivity and surjectivity had been characterized (in terms of decidable conditions on the matrix associated with the 
LCA [3,14]).

Anyway, in [7] we took an important step forward: we proved that important properties describing CA complex behaviours as 
chaos, ergodicity, topological transitivity, and topological mixing are decidable, beyond being equivalent, for one-dimensional LCA 
over (ℤ∕𝑚ℤ)𝑛. However, the decision algorithm provided in [7] for one-dimensional LCA over (ℤ∕𝑝𝑘ℤ)𝑛, where 𝑝 is a known prime 
number and 𝑘 > 0 is a known natural, turns out to have an exponential complexity and the scenario worsens when LCA over (ℤ∕𝑚ℤ)𝑛
for any natural 𝑚 > 1 are considered. Indeed, the way of deciding chaos for LCA over (ℤ∕𝑚ℤ)𝑛 exploits that algorithm once the prime 
factor decomposition of 𝑚 is known, while no algorithm has been published yet that can factor any natural in polynomial time.

In this paper we provide an algorithm for deciding chaos for LCA over (ℤ∕𝑚ℤ)𝑛 without the prime factor decomposition of 
𝑚 is known and without the algorithm decomposes 𝑚 into prime factors (very recently, in [8], we provided an easy to check 
characterization of positive expansivity for additive cellular automata over a finite abelian group). First of all, we provide an efficient 
algorithm for deciding chaos for LCA over (ℤ∕𝑝𝑘ℤ)𝑛 based on an idea which is completely different from that of the early algorithm 
in [7]. Indeed, unlike [7], the characteristic polynomial det(𝑡𝐼𝑛 −𝑀(𝑋)) of the matrix 𝑀(𝑋) associated with a LCA over (ℤ∕𝑝𝑘ℤ)𝑛
is now considered as Laurent polynomial with coefficients from (ℤ∕𝑝𝑘ℤ)[𝑡] (instead of a classic polynomial in the indeterminate 𝑡
and, since LCA over (ℤ∕𝑝𝑘ℤ)𝑛 are involved, with Laurent polynomials over (ℤ∕𝑝𝑘ℤ) as coefficients). The algorithm is based on the 
results proved in Theorems 6 and Lemma 7 as a consequence of which chaos turns out to be equivalent to a decidable condition on 
the degree of the gcd of those polynomial coefficients (elements from (ℤ∕𝑝𝑘ℤ)[𝑡]) when their coefficients (elements from ℤ∕𝑝𝑘ℤ) are 
taken modulo 𝑝. In this way, the exponential factor in the complexity of the decision procedure provided in [7] no longer appears.

Then, we exhibit an efficient algorithm for deciding chaos for LCA over (ℤ∕𝑚ℤ)𝑛 that is based on Theorems 13 and where, by 
efficiency, we mean that the prime factor decomposition of 𝑚 is bypassed, while the latter is required in [7]. The procedure has as 
input the coefficients (elements from (ℤ∕𝑚ℤ)[𝑡]) of the Laurent polynomial by which the characteristic polynomial of the matrix 
associated with a given LCA over (ℤ∕𝑚ℤ)𝑛 can be rewritten and it aims at testing a condition equivalent to chaos which is essentially 
the same than the one for LCA over (ℤ∕𝑝𝑘ℤ)𝑛, but now, since (ℤ∕𝑚ℤ) is not in general a field, an “unconventional gcd” is involved 
and hence the situation is more complicated. As a matter of fact, the procedure exploits an unconventional use of the Euclidean 
algorithm for the computation of the gcd of two polynomials from (ℤ∕𝑚ℤ)[𝑡], where, by unconventional use, we means that the 
Euclidean algorithm is used although ℤ∕𝑚ℤ is not a field. Namely, its run proceeds until it encounters a division of two polynomials 
that can not be performed because the leading coefficient of the divisor is not coprime with 𝑚. If such a situation happens, we say 
that a “crash” occurs and, as a consequence, 𝑚 is decomposed as a product 𝑚1 ⋅𝑚2 (or as power 𝑚𝑠1

1 ) where 𝑚1 and 𝑚2 are coprime. 
In this way, a given LCA over (ℤ∕𝑚ℤ)𝑛 is decomposed into the product of two LCA too, one over (ℤ∕𝑚1ℤ)𝑛 and the other over 
(ℤ∕𝑚2ℤ)𝑛 (or, a single LCA over (ℤ∕𝑚1ℤ)𝑛 is determined), and, once the procedure recursively decides chaos for each of the two 
components (or, for the single LCA over (ℤ∕𝑚1ℤ)𝑛), it is able to decide chaos for the given LCA over (ℤ∕𝑚ℤ)𝑛. Otherwise, i.e., if 
no crash occurs - and this situation defines the basis case of the recursion - the procedure computes an “unconventional gcd” of 
polynomials from (ℤ∕𝑚ℤ)[𝑡] and it decides chaos on the basis of its degree. We stress that the decidable characterisation of chaos 
for LCA over (ℤ∕𝑝ℤ)𝑛 provided in Theorem 6 and ensuring together with Lemma 7 the correctness of the algorithm for LCA over 
(ℤ∕𝑝𝑘ℤ)𝑛 will be essential for proving the correctness of the one for LCA over (ℤ∕𝑚ℤ)𝑛 .

Let us explain the importance of our algorithms in applications by considering the growing domain of cryptosystems. Indeed, LCA 
over (ℤ∕𝑚ℤ)𝑛 with 𝑛 > 1 are often involved in designing cryptographic techniques. Moreover, it is well-known that safe cryptosys-
tems have to satisfy the so-called confusion and diffusion properties. Since the dynamical counterparts of confusion and diffusion [1]
are ergodicity and chaos and the latter are equivalent for LCA over (ℤ∕𝑚ℤ)𝑛, our algorithms are important tools to be used in the 
applications for building chaotic/ergodic LCA over (ℤ∕𝑚ℤ)𝑛 and, hence, for improving the existing techniques which are based on 
them. We show how our algorithms can be used regarding some representative applications in the domain of cryptosystems, namely, 
data encryption methods (for images and plain texts) and secret sharing schemes, some of them which are specific for greyscale 
secret images. Clearly, they turn out to be very useful in many domains and for all those numerous applications where such CA are 
involved and a chaotic behaviour is required.

The paper is organized as follows. In Section 2 all the notations and basic definitions used in the paper are introduced. Section 3
recalls the known results and the existing algorithm deciding chaos for LCA over (ℤ∕𝑚ℤ)𝑛, while in Sections 4 and 5 we illustrate 
the efficient algorithms deciding chaos for LCA over (ℤ∕𝑝𝑘ℤ)𝑛 and over (ℤ∕𝑚ℤ)𝑛, respectively, along with the results regarding 
their correctness. Since the proof of the correctness of the algorithm for LCA over (ℤ∕𝑚ℤ)𝑛 is very long, we located it in Section 6. 
Section 7 illustrates the impact of our results in real-world applications. Finally, the last section contains our conclusions.

2. Basic notions

Throughout this paper ℕ = {0, 1, …} is the set of natural numbers.
Let 𝕂 be any commutative ring and let 𝐴 ∈ 𝕂𝑛×𝑛 be an 𝑛 × 𝑛-matrix over 𝕂. We denote by 𝜒𝐴 the characteristic polynomial 

det
(
𝑡𝐼𝑛 −𝐴

)
∈𝕂 [𝑡] of 𝐴, where 𝐼𝑛 always stands for the 𝑛 ×𝑛 identity matrix (over whatever ring we are considering). Furthermore, 

𝕂[𝑋, 𝑋−1] denotes the set of Laurent polynomials with coefficients in 𝕂. In particular, whenever 𝕂 =ℤ∕𝑚ℤ for some natural 𝑚 > 1, 
we will write 𝕃𝑚 instead of ℤ∕𝑚ℤ[𝑋, 𝑋−1].

Let 𝕂 = ℤ∕𝑚ℤ for some natural 𝑚 > 1 and let 𝑞 be a natural with 1 < 𝑞 < 𝑚. If 𝑃 is any polynomial from 𝕂[𝑡] (resp., a Laurent 
polynomial from 𝕃𝑚) (resp., a matrix from (𝕃𝑚)𝑛×𝑛), 𝑃 mod 𝑞 denotes the polynomial (resp., the Laurent polynomial) (resp., the 
2

matrix) obtained by 𝑃 by taking all its coefficients modulo 𝑞.
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In the sequel, for every pair of elements 𝑎, 𝑏 of any commutative ring 𝕂, we will write 𝑏 ∣ 𝑎 to denote that 𝑏 divides 𝑎, i.e., there 
exists an element 𝑐 from that ring such that 𝑎 = 𝑏 ⋅ 𝑐. As usual, if 𝕂 is also an Euclidean domain, gcd stands for greatest common 
divisor.

Let 𝑄 be a finite set (also called alphabet). A CA configuration (or, briefly, a configuration) is any function from ℤ to 𝑄. Given a 
configuration 𝑐 ∈𝑄ℤ and any integer 𝑖 ∈ℤ, the value of 𝑐 in position 𝑖 is denoted by 𝑐𝑖. The set 𝑄ℤ, called configuration space, is as 
usual equipped with the standard Tychonoff distance 𝑑. Whenever the term linear is involved the alphabet 𝑄 is 𝕂𝑛, where 𝕂 =ℤ∕𝑚ℤ
for some natural 𝑚 > 1. Clearly, in that case both 𝕂𝑛 and (𝕂𝑛)ℤ become 𝕂-modules in the obvious (i.e., entrywise) way.

A one-dimensional CA (or, briefly, a CA) over 𝑄 is a pair (𝑄ℤ,  ), where  ∶ 𝑄ℤ →𝑄ℤ is the uniformly continuous transformation 
(called global rule) defined as ∀𝑐 ∈𝑄ℤ, ∀𝑖 ∈ℤ,  (𝑐)𝑖 = 𝑓 (𝑐𝑖−𝑟, … , 𝑐𝑖+𝑟),for some fixed natural number 𝑟 ∈ ℕ (called radius) and some 
fixed function 𝑓 ∶ 𝑄2𝑟+1 →𝑄 (called local rule of radius 𝑟). Elementary CA (ECA) are those CA defined by elementary local rules, i.e., 
the ones where 𝑄 = {0, 1} and 𝑟 = 1. According to [16], each elementary rule, or ECA, is associated with a natural number from the 
set {0, … , 255}. In the sequel, when no misunderstanding is possible, we will sometimes identify any CA with its global rule.

We recall that a CA (𝑄ℤ,  ) is topologically transitive if for any pair of nonempty open subset 𝑈, 𝑉 ⊆ 𝑄ℤ there exists a natural 
ℎ > 0 such that ℎ(𝑈 ) ∩ 𝑉 ≠ ∅, while it has dense periodic orbits if the set of its periodic points is dense in 𝑄ℤ, where a periodic point 
for  is any configuration 𝑐 ∈𝑄ℤ such that ℎ(𝑐) = 𝑐 for some natural ℎ > 0. Surjectivity of the global rule is a necessary condition 
for both topological transitivity and denseness of periodic orbits. A CA is said to be chaotic if it is topologically transitive and, at 
the same time, it has dense periodic orbits. We also recall that a CA (𝑄ℤ,  ) is ergodic with respect to the normalized Haar measure 
𝜇 ∶  → [0, 1] if for every set 𝐸 ∈  it holds that 

(
𝐸 = −1(𝐸)

)
⇒ (𝜇(𝐸) = 0 or 𝜇(𝐸) = 1), where  is the usual collection of 

measurable sets of 𝑄ℤ.

Linear CA Let 𝕂 =ℤ∕𝑚ℤ for some natural 𝑚 > 1 and let 𝑛 ∈ ℕ with 𝑛 ≥ 1.
A local rule 𝑓 ∶ (𝕂𝑛)2𝑟+1 → 𝕂𝑛 of radius 𝑟 is said to be linear if it is defined by 2𝑟 + 1 matrices 𝐴−𝑟, … , 𝐴𝑟 ∈ 𝕂𝑛×𝑛 as follows: 

∀(𝑥−𝑟, … , 𝑥𝑟) ∈ (𝕂𝑛)2𝑟+1, 𝑓 (𝑥−𝑟, … , 𝑥𝑟) =
∑𝑟

𝑖=−𝑟 𝐴𝑖 ⋅ 𝑥𝑖 . A one-dimensional linear CA (LCA) over 𝕂𝑛 is a CA  based on a linear local 
rule. The Laurent polynomial (or matrix)

𝑀(𝑋) =
𝑟∑

𝑖=−𝑟

𝐴𝑖𝑋
−𝑖 ∈𝕂𝑛×𝑛[𝑋,𝑋−1] ≅ (𝕃𝑚)𝑛×𝑛

is said to be the matrix associated with  .
We recall that the dynamical behaviour of LCA over 𝕂𝑛 when 𝑛 = 1 has been successfully investigated by means of 𝑀(𝑋)

(see [13,15]). In that case, all the dynamical and ergodic properties, including those we will deal with in this paper, have been 
characterized and, in particular, they turn out to be decidable. For this reason, in the sequel we will deal with naturals 𝑛 > 1 as far 
as new results are concerned.

3. Known results and the existing algorithm deciding chaos for LCA over (ℤ∕𝒎ℤ)𝒏

We start to recall some useful results. The first one concerns surjectivity.

Theorem 1 ([13,14,3]). Let  be a LCA over (ℤ∕𝑚ℤ)𝑛 with associated matrix 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛, where 𝑛 > 0. The following facts hold:

(𝑖) if 𝑛 = 1 then  is surjective if and only if the gcd among 𝑚 and the 1 × 1 matrices defining its local rule is equal to 1;

(𝑖𝑖) if 𝑛 > 1 then  is surjective if and only if det(𝑀(𝑋)) is the 1 × 1 matrix associated with a surjective LCA over ℤ∕𝑚ℤ.

Remark 2. Whenever 𝑚 = 𝑝𝑘 for some prime 𝑝 and some natural 𝑘 > 0, for every matrix 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛 it holds that det(𝑀(𝑋)) is 
the matrix associated with a surjective LCA over ℤ∕𝑚ℤ if and only if 𝑝 ∤ det(𝑀(𝑋), i.e., if and only if det(𝑀(𝑋) mod𝑝) ≠ 0.

The following result is an immediate consequence of the generalisation of [4, Lemma 3.2] to (ℤ∕𝑚ℤ)𝑛.

Lemma 3. Let  be a LCA over (ℤ∕𝑚ℤ)𝑛 with associated matrix 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛. Let 𝑚1, 𝑚2 ∈ ℤ∕𝑚ℤ be such that 𝑚 = 𝑚1 ⋅ 𝑚2 and 
gcd(𝑚1, 𝑚2) = 1. The LCA  is topologically transitive if and only if both the LCA over (ℤ∕𝑚1ℤ)𝑛 and (ℤ∕𝑚2ℤ)𝑛 having associated matrices 
𝑀(𝑋) mod𝑚1 ∈ (𝕃𝑚1

)𝑛×𝑛 and 𝑀(𝑋) mod𝑚2 ∈ (𝕃𝑚2
)𝑛×𝑛, respectively, are too.

In [9] we showed the equivalence of chaos, topological transitivity, ergodicity, and other mixing and ergodic properties for a 
class of CA wider than LCA over (ℤ∕𝑚ℤ)𝑛, namely, that of Additive CA over a finite abelian group. Furthermore, the decidability of 
those properties for LCA over (ℤ∕𝑚ℤ)𝑛 was proved in [7] (while in [10] we showed how all the decidability results are transferred 
from LCA over (ℤ∕𝑚ℤ)𝑛 to Additive CA over a finite abelian group). Precisely, as far as LCA are concerned, the following holds

Theorem 4 ([9,7]). Let  be a LCA over (ℤ∕𝑚ℤ)𝑛. The following statement are equivalent:

(𝑖)  is chaotic;
3

(𝑖𝑖)  is topologically transitive;
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(𝑖𝑖𝑖)  is ergodic;

(𝑖𝑣)  is surjective and for every natural ℎ > 0 it holds that ℎ − 𝐼 is surjective (𝐼 is the identity map).

In particular, whenever  is a LCA over (ℤ∕𝑝𝑘ℤ)𝑛 for some prime 𝑝 and some natural 𝑘 > 0, they are equivalent to the following condition

det(𝑀(𝑋)mod𝑝) ≠ 0 and gcd(𝜒𝑀(𝑋)mod𝑝(𝑡), 𝑡𝑝
ℎ−1 − 1) = 1 for all ℎ ∈ {1,… , 𝑛} , (1)

where 𝑀(𝑋) ∈ (𝕃𝑝𝑘 )𝑛×𝑛 is the matrix associated with  .

We stress that condition (1) is the heart of all the results stated in Theorem 4. Indeed in [7], once proved its equivalence with all 
the properties mentioned in that theorem, condition (1) allowed us to immediately get the following algorithm deciding chaos for 
LCA over (ℤ∕𝑝𝑘ℤ)𝑛 and with input (𝑀(𝑋), 𝑝), where 𝑀(𝑋) ∈ (𝕃𝑝𝑘 )𝑛×𝑛 is the matrix associated with the LCA under investigation1:

EXISTING(𝑀(𝑋), 𝑝)
1 𝜒𝑀(𝑋)mod𝑝(𝑡) = characteristic polynomial of 𝑀(𝑋)mod𝑝
2 if det(𝑀(𝑋)mod𝑝) ≠ 0
3 for 𝑖 = 1 to 𝑀(𝑋).size // 𝑀(𝑋).size is the number 𝑛 of rows and columns of 𝑀(𝑋)
4 if gcd(𝜒𝑀(𝑋)mod𝑝(𝑡), 𝑡𝑝

𝑖−1 − 1) ≠ 1
5 return 𝑓𝑎𝑙𝑠𝑒

6 return 𝑡𝑟𝑢𝑒

7 else

8 return 𝑓𝑎𝑙𝑠𝑒

Moreover, condition (1), or, in other terms, Algorithm EXISTING, allowed us in [7] to prove the decidability of chaos and all the 
equivalent properties for LCA over (ℤ∕𝑚ℤ)𝑛 also when 𝑚 is any natural greater than 1 by exploiting the explicit prime factor 
decomposition of 𝑚 itself. As a matter of fact, if the prime factor decomposition 𝑝𝑘11 ⋯ 𝑝𝑘𝑙

𝑙
of 𝑚 is known, any LCA over (ℤ∕𝑚ℤ)𝑛

with associated matrix 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛 is chaotic if and only if every LCA over (ℤ∕𝑝𝑘𝑗
𝑗
ℤ)𝑛 with associated matrix 𝑀(𝑋) mod𝑝𝑘𝑗

𝑗
∈

(𝕃
𝑝
𝑘𝑗
𝑗

)𝑛×𝑛 is chaotic, or, equivalently, every call EXISTING(𝑀(𝑋) mod𝑝𝑘𝑗
𝑗
, 𝑝𝑗 ) outputs true.

Although this way of proceeding is enough to prove that chaos is decidable for LCA over (ℤ∕𝑚ℤ)𝑛 , it is far from being efficient, 
first of all because the prime decomposition of 𝑚 is required. Moreover, since computing the gcd of two polynomials of degree at most 
𝑑 costs 𝑂(𝑑2) operations using classical methods, or 𝑂(𝑑 ⋅ log2(𝑑) ⋅ log(log𝑑)) operations using fast methods, Algorithm EXISTING on 
its own has an exponential computational complexity in the worst case since its run may compute the gcd of two polynomials one of 
them having degree 𝑝𝑛 − 1.

4. An efficient algorithm deciding chaos for LCA over (ℤ∕𝒑𝒌ℤ)𝒏

In this section we provide an efficient algorithm that decides chaos for LCA over (ℤ∕𝑚ℤ)𝑛 when 𝑚 is explicitly known to be the 
prime power 𝑝𝑘, for some known prime 𝑝 > 1 and natural 𝑘 > 0. Since by Theorem 4 chaos is equivalent to topological transitivity for 
LCA over (ℤ∕𝑚ℤ)𝑛, the algorithm along with all the results we are going to provide in the sequel will refer to topological transitivity.

First of all, consider the following algorithm with input any matrix 𝑀(𝑋) ∈ 𝕃𝑛×𝑛
𝑝 , for an arbitrary natural 𝑛 > 1 and an arbitrary 

prime 𝑝, and involving 𝜉(𝑋, 𝑋−1), i.e., the characteristic polynomial 𝜒𝑀(𝑋)(𝑡) of 𝑀(𝑋) expressed as polynomial in the variables 𝑋
and 𝑋−1 and, hence, with coefficients that are elements from (ℤ∕𝑝ℤ)[𝑡].

DECIDE-P-TT(𝑀(𝑋))
1 𝜒𝑀(𝑋)(𝑡) = characteristic polynomial of 𝑀(𝑋)
2 𝜉(𝑋,𝑋−1) = 𝜒𝑀(𝑋)(𝑡) expressed as polynomial in the variables 𝑋 and 𝑋−1

3 𝛾(𝑡) = gcd of the coefficients of 𝜉(𝑋,𝑋−1)
4 if deg(𝛾(𝑡)) < 1
5 return 𝑡𝑟𝑢𝑒

6 else

7 return 𝑓𝑎𝑙𝑠𝑒

We are going to show that DECIDE-P-TT (𝑖) outputs true when it is invoked with input 𝑀(𝑋) iff the one-dimensional LCA over 
(ℤ∕𝑝ℤ)𝑛 having 𝑀(𝑋) as associated matrix is topologically transitive; (𝑖𝑖) it can be exploited for deciding topological transitivity for 
LCA over (ℤ∕𝑝𝑘ℤ)𝑛; (𝑖𝑖𝑖) it is more efficient than EXISTING, avoiding the exponential factor 𝑝𝑛 − 1 in the computational complexity 
of EXISTING.

Before proceeding, let us illustrate by an example how DECIDE-P-TT works in two distinct situations.
4

1 Here we report the correct version of the algorithm deciding chaos for LCA over (ℤ∕𝑝𝑘ℤ)𝑛 , i.e., without the typos present in [7].
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Example 5. Let 𝑝 = 5 and 𝑛 = 2. Consider the LCA over (ℤ∕𝑝ℤ)𝑛 with associated matrix

𝑀(𝑋) =
[

0 1
1 +𝑋 𝑋

]
.

We get 𝜒𝑀(𝑋)(𝑡) = 𝑡2 +4𝑋𝑡 +4𝑋 +4, 𝜉(𝑋, 𝑋−1) = (4𝑡 +4)𝑋 + 𝑡2 +4, and 𝛾(𝑡) = gcd(4𝑡 +4, 𝑡2 +4) = 1 + 𝑡. Hence, DECIDE-P-TT(𝑀(𝑋))
outputs false, while it outputs true if, for instance,

𝑀(𝑋) =
[
0 1
𝑋 𝑋

]
,

a situation leading to 𝜒𝑀(𝑋)(𝑡) = 𝑡2 + 4𝑋𝑡 + 4𝑋, 𝜉(𝑋, 𝑋−1) = (4𝑡 + 4)𝑋 + 𝑡2, and, 𝛾(𝑡) = gcd(4𝑡 + 4, 𝑡2) = 1.

We now prove that DECIDE-P-TT is an algorithm that actually decides topological transitivity for LCA over (ℤ∕𝑝ℤ)𝑛 .

Theorem 6. Algorithm DECIDE-P-TT decides topological transitivity, i.e., chaos, for LCA over (ℤ∕𝑝ℤ)𝑛. In other terms, the following 
condition is a decidable characterisation of topological transitivity, i.e., chaos, for LCA over (ℤ∕𝑝ℤ)𝑛:

deg(𝛾(𝑡)) < 1 ,

where 𝛾(𝑡) is the gcd of the coefficients of 𝜉(𝑋, 𝑋−1), the latter being the polynomial characteristic 𝜒𝑀(𝑋)(𝑡) expressed as polynomial in the 
variables 𝑋 and 𝑋−1 of the matrix 𝑀(𝑋) associated with any LCA over (ℤ∕𝑝ℤ)𝑛, for any prime 𝑝 and any natural 𝑛 > 1.

Proof. Let 𝑝 > 1, 𝑛 > 1, and 𝑀(𝑋) ∈ (𝕃𝑝)𝑛×𝑛 be any prime, natural, and matrix, respectively. Let 𝜒𝑀(𝑋)(𝑡), 𝜉(𝑋, 𝑋−1), and 𝛾(𝑡) be 
as in the statement and in Algorithm DECIDE-P-TT. Let  be the one-dimensional LCA over (ℤ∕𝑝ℤ)𝑛 with associated matrix 𝑀(𝑋). 
We are going to show that  is topologically transitive if and only if DECIDE-P-TT outputs true, or, equivalently, if and only if 
deg(𝛾(𝑡)) < 1.

We start to prove that if DECIDE-P-TT outputs false then  is not topologically transitive. Then, let us suppose that deg(𝛾(𝑡)) ≥ 1. 
Without loss of generality, we can assume that 𝛾(𝑡) is monic. Indeed, on the contrary, it can be transformed in a monic polynomial 
by a multiplicative constant (that exists since ℤ∕𝑝ℤ is a field). Therefore, we can write 𝜒𝑀(𝑋)(𝑡) = 𝜉(𝑋, 𝑋−1) = 𝛾(𝑡) ⋅ 𝜋(𝑡, 𝑋, 𝑋−1), 
where 𝜋(𝑡, 𝑋, 𝑋−1) is a suitable polynomial in the variables 𝑡, 𝑋, 𝑋−1. We deal with the following two cases:

𝑖) 𝑡 ∣ 𝛾(𝑡). In this case the known term of 𝜒𝑀(𝑋)(𝑡) is det(𝑀(𝑋)) = 0. By Remark 2,  is not surjective and hence it is not even 
topologically transitive.

𝑖𝑖) 𝑡 ∤ 𝛾(𝑡). Let 𝜂(𝑡) ≠ 𝑡 be an irreducible monic factor of 𝛾(𝑡) and let 𝑑 be its degree (0 < 𝑑 ≤ 𝑛). An algebra well-known result ensures 
that 𝜂(𝑡) is also a factor of 𝑡𝑝𝑑−1 − 1. By condition (1) from Theorem 4, it follows that  is not topologically transitive.

We now prove that if DECIDE-P-TT outputs true then  is topologically transitive. Assume that  is not topologically transitive. 
If, in addition,  is not surjective, by Remark 2 it holds that det(𝑀(𝑋)) = 0 and, hence, 𝑡 ∣ 𝜒𝑀(𝑋)(𝑡), this latter implying that 𝑡 ∣ 𝛾(𝑡), 
too. Therefore, deg(𝛾(𝑡)) ≥ 1. If, instead,  is surjective, by condition (1) from Theorem 4, there is a natural ℎ ∈ {1, … , 𝑛} such that 
gcd(𝜒𝑀(𝑋)(𝑡), 𝑡𝑝

ℎ−1 − 1) ≠ 1. Since 𝑡𝑝ℎ−1 − 1 can be written as product of all the monic irreducible polynomials (different from 𝑡) of 
degree ℎ′ ≤ 𝑛 with ℎ′ ∣ ℎ, there exists a polynomial 𝜂(𝑡) of degree ℎ′′ with 0 < ℎ′′ ≤ 𝑛 and such that 𝜂(𝑡) ∣ 𝜒𝑀(𝑋)(𝑡). Thus, we get again 
deg(𝛾(𝑡)) ≥ 1. Therefore, in both cases DECIDE-P-TT outputs false and this concludes the proof. □

We now show that DECIDE-P-TT can be employed to decide chaos also for LCA over (ℤ∕𝑝𝑘ℤ)𝑛. First of all, let us prove the 
following result that will be useful in the sequel, too.

Lemma 7. Let 𝑚 > 1, 𝑠 > 1, and 𝑛 > 1 be any three naturals and let 𝑀(𝑋) ∈ (𝕃𝑚𝑠 )𝑛×𝑛 be any matrix. The LCA  over (ℤ∕𝑚𝑠ℤ)𝑛 with 
associated matrix 𝑀(𝑋) is topologically transitive if and only if the LCA over (ℤ∕𝑚ℤ)𝑛 having (𝑀(𝑥) mod𝑚)) ∈ (𝕃𝑚)𝑛×𝑛 as associated 
matrix is too.

Proof. By item (𝑖𝑣) of Theorem 4 and item (𝑖𝑖) of Theorem 1,  is topologically transitive if and only if det(𝑀(𝑋)) and det(𝑀(𝑋)ℎ−
𝐼𝑛) for every natural ℎ ≥ 1 are all 1 × 1 matrices associated with surjective LCA over ℤ∕𝑚𝑠ℤ. Each of them is surjective if and only if 
the LCA over ℤ∕𝑚ℤ obtained by it taking the coefficients of its local rule modulo 𝑚 is surjective. Indeed, by item (𝑖) of Theorem 1, 
any LCA over ℤ∕𝑚𝑠ℤ is surjective if and only if the gcd among 𝑚𝑠 and the coefficients of its local rules is equal to 1, a condition which 
holds if and only if the gcd among 𝑚 and those coefficients taken modulo 𝑚 is equal to 1, since the prime factors of the coefficients 
keep unchanged (but with possible distinct powers) when the modulo operation is performed. Therefore,  is topologically transitive 
if and only if det(𝑀(𝑋) mod𝑚) and det((𝑀(𝑋) mod𝑚)ℎ − 𝐼𝑛) for every natural ℎ ≥ 1 are all 1 × 1 matrices associated with surjective 
LCA over ℤ∕𝑚ℤ, i.e., again by item (𝑖𝑣) of Theorem 4 and item (𝑖𝑖) of Theorem 1, if and only if the LCA over (ℤ∕𝑚ℤ)𝑛 having 
5

(𝑀(𝑥) mod𝑚) ∈ (𝕃𝑚)𝑛×𝑛 as associated matrix is topologically transitive. □



Information Sciences 657 (2024) 119942A. Dennunzio, E. Formenti and L. Margara

Corollary 8. Algorithm DECIDE-P-TT decides chaos for LCA over (ℤ∕𝑝𝑘ℤ)𝑛. Namely, for any LCA  over (ℤ∕𝑝𝑘ℤ)𝑛 with 𝑝 prime and 𝑛, 𝑘
naturals such that 𝑛 > 1 and 𝑘 > 1, DECIDE-P-TT with input (𝑀(𝑋) mod𝑝) outputs true if and only if  is chaotic, where 𝑀(𝑋) ∈ (𝕃𝑝𝑘 )𝑛×𝑛
is the matrix associated with  .

Proof. By Theorem 6 and Lemma 7, DECIDE-P-TT with input (𝑀(𝑋) mod𝑝) outputs true if and only if the LCA over (ℤ∕𝑝𝑘ℤ)𝑛 having 
𝑀(𝑋) ∈ (𝕃𝑝𝑘 )𝑛×𝑛 as associated matrix is topologically transitive. □

Regarding the computational complexity of DECIDE-P-TT, now the gcd computation always involves polynomials of degree at 
most 𝑛. Therefore, the exponential factor 𝑝𝑛 − 1 inside the complexity of EXISTING is avoided.

5. An efficient algorithm deciding chaos for LCA over (ℤ∕𝒎ℤ)𝒏

We are now going to provide an efficient algorithm that decides topological transitivity, i.e., chaos, for LCA over (ℤ∕𝑚ℤ)𝑛 when 
𝑚 is any natural with 𝑚 > 1 and nothing is known about the prime factor decomposition of 𝑚. We anticipate that the results of 
Section 4, especially the decidable characterisation of chaos for LCA over (ℤ∕𝑝ℤ)𝑛 provided in Theorem 6, will be essential for 
proving the correctness of the algorithm. Moreover, a crucial point of our procedure is that it exploits the Euclidean algorithm for 
the computation of a gcd of two polynomials in an unconventional way, i.e., outside of the standard settings, namely, in a situation 
where the involved polynomials belong to ℤ∕𝑚ℤ[𝑡] without ℤ∕𝑚ℤ being necessarily a field.

So, we start by explaining the unconventional way in which the Euclidean algorithm is used. Consider two polynomials from 
ℤ∕𝑚ℤ[𝑡] and with leading coefficients that are both coprime with 𝑚. Although ℤ∕𝑚ℤ is not in general a field, let us run the 
Euclidean algorithm with input those two polynomials until its execution possibly encounters a division of two polynomials that 
can not be performed because the leading coefficient of the divisor is not coprime with 𝑚. We stress that, if such a situation does 
not happens, i.e., the leading coefficient of the divisor is coprime with 𝑚, every division can be performed, allowing the run of the 
Euclidean algorithm to go on. All this leads us to introduce the following notion.

Definition 9 (Crash). Let 𝜋(𝑡), 𝜋′(𝑡) ∈ ℤ∕𝑚ℤ[𝑡] be two polynomial with leading coefficients that are both coprime with 𝑚. The run 
of the Euclidean algorithm with input (𝜋(𝑡), 𝜋′(𝑡)) has a crash, and in that case it halts without reaching as final reminder a null 
polynomial, if the non null polynomial computed as reminder at a certain iteration has a leading coefficient that is not coprime with 
𝑚.

When used in the above illustrated unconventional way, the Euclidean algorithm has the following property.

Proposition 10. Let 𝜋(𝑡), 𝜋′(𝑡) ∈ℤ∕𝑚ℤ[𝑡] be two polynomial with leading coefficients that are both coprime with 𝑚. Regarding the Euclidean 
algorithm executed on input (𝜋(𝑡), 𝜋′(𝑡)), one of the following two mutually exclusive facts happens:

(1) it has a crash;

(2) it reaches a null final reminder and it outputs the last non null reminder which is a polynomial 𝜋𝐸 (𝑡) ∈ℤ∕𝑚ℤ[𝑡] with leading coefficient 
that is coprime with 𝑚; furthermore, if 𝛿(𝑡) ∈ℤ∕𝑚ℤ[𝑡] is any polynomial such that 𝛿(𝑡) ∣ 𝜋(𝑡) and 𝛿(𝑡) ∣ 𝜋′(𝑡) then 𝛿(𝑡) ∣ 𝜋𝐸 (𝑡).

Proof. The dichotomy between (1) and (2) directly follows from the notion of crash. We only need to prove what is further stated in 
(2). So, assume that (2) happens and let 𝛿(𝑡) ∈ℤ∕𝑚ℤ[𝑡] be any polynomial such that 𝛿(𝑡) ∣ 𝜋(𝑡) and 𝛿(𝑡) ∣ 𝜋′(𝑡). Then, 𝛿(𝑡) ∣ 𝜌1(𝑡) where 
𝜌1(𝑡) is the reminder computed by the first iteration of the Euclidean algorithm when ran on input (𝜋(𝑡), 𝜋′(𝑡)). By repetition, 𝛿(𝑡)
divides the reminder computed by each step, i.e., by each division, executed by Euclidean algorithm. Hence, 𝛿(𝑡) divides 𝜋𝐸 (𝑡). □

Remark 11. Although ℤ∕𝑚ℤ is not in general a field, on the basis of item (2) of Proposition 10, with an terminological abuse we 
will say that 𝜋𝐸 (𝑡) is a gcd of 𝜋(𝑡) and 𝜋′(𝑡) when no crash occurs during the run of the Euclidean algorithm on input (𝜋(𝑡), 𝜋′(𝑡)).

Notation In the sequel, we will denote by U-GCD(𝜋(𝑡), 𝜋′(𝑡)) the unconventional version of the Euclidean algorithm for the com-
putation of a gcd of two given polynomials 𝜋(𝑡), 𝜋′(𝑡) ∈ ℤ∕𝑚ℤ[𝑡] and returning the triple (𝑐𝑟𝑎𝑠ℎ, 𝑔, 𝛾(𝑡)), where 𝑐𝑟𝑎𝑠ℎ is true if 
U-GCD(𝜋(𝑡), 𝜋′(𝑡)) has a crash and in that case 𝑔 ≠ 1 is the gcd of 𝑚 and the leading coefficient of the last reminder computed, false, 
otherwise, and in that case 𝛾(𝑡) is a gcd of 𝜋(𝑡) and 𝜋′(𝑡).

Consider the following procedures DEC-TT and REDUCE with input parameters (𝑚, 𝛾(𝑡), 𝑐, ⃗𝜅(𝑡)) and (𝑚, 𝑏), respectively, where 𝑚
is any natural greater than 1 and, regarding the first input,

- 𝛾(𝑡) is any polynomial from ℤ∕𝑚ℤ[𝑡];
- 𝜅⃗(𝑡) = (𝜅1(𝑡), … , 𝜅𝑧(𝑡)) ∈ (ℤ∕𝑚ℤ[𝑡])𝑧 is the vector of all the 𝑧 coefficients of the characteristic polynomial 𝜉(𝑋, 𝑋−1) = 𝜒𝑀(𝑋)(𝑡)

of any matrix 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛 when 𝜒𝑀(𝑋)(𝑡) is expressed as polynomial in the variables 𝑋 and 𝑋−1 and no matter about the 
order those coefficients appear inside 𝜅⃗(𝑡);
6

- 𝑐 is any natural with 1 ≤ 𝑐 ≤ 𝑧,
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while, concerning REDUCE,

- 𝑏 ∈ℤ∕𝑚ℤ is any element such that 𝑏 > 1 and there exists 𝑎 ∈ℤ∕𝑚ℤ with 𝑏 = gcd(𝑚, 𝑎).

DEC-TT(𝑚, 𝛾(𝑡), 𝑐, ⃗𝜅(𝑡))
1 𝛾𝑐𝑢𝑟(𝑡) = 𝛾(𝑡)
2 for 𝑛𝑐 = 𝑐 to 𝜅⃗(𝑡).length − 1
3 (𝑐𝑟𝑎𝑠ℎ, 𝑔, 𝛾𝑛𝑒𝑥𝑡(𝑡)) = U-GCD(𝛾𝑐𝑢𝑟(𝑡), 𝜅𝑛𝑐+1(𝑡))
4 if 𝑐𝑟𝑎𝑠ℎ = 𝑡𝑟𝑢𝑒

5 (𝑚1,𝑚2) = REDUCE(𝑚,𝑔)
6 if 𝑚2 ≠ 1
7 return DEC-TT(𝑚1, 𝛾

𝑐𝑢𝑟(𝑡)mod𝑚1, 𝑛𝑐, 𝜅⃗(𝑡)mod𝑚1) AND DEC-TT(𝑚2, 𝛾
𝑐𝑢𝑟(𝑡)mod𝑚2, 𝑛𝑐, 𝜅⃗(𝑡)mod𝑚2)

8 else

9 return DEC-TT(𝑚1, 𝛾
𝑐𝑢𝑟(𝑡)mod𝑚1, 𝑛𝑐, 𝜅⃗(𝑡)mod𝑚1)

10 else

11 𝛾𝑐𝑢𝑟(𝑡) = 𝛾𝑛𝑒𝑥𝑡(𝑡)
12 if 𝑑𝑒𝑔(𝛾𝑐𝑢𝑟(𝑡)) < 1
13 return 𝑡𝑟𝑢𝑒

14 else

15 return 𝑓𝑎𝑙𝑠𝑒

REDUCE(𝑚, 𝑏)
1 𝑔 = 𝑏

2 𝑖 = 0
3 while DIVISIBLE(𝑚,𝑔𝑖+1)// DIVISIBLE returns true iff the second argument divides the first one
4 𝑖 = 𝑖+ 1
5 if 𝑚 = = 𝑔𝑖

6 return (𝑔,1)
7 if GCD(𝑚∕𝑔𝑖, 𝑔𝑖) = = 1// GCD computes the (standard) gcd of two numbers
8 return (𝑚∕𝑔𝑖, 𝑔𝑖)
9 𝑔 = GCD(𝑚∕𝑔𝑖, 𝑔)

10 goto 2

As we will prove later, DEC-TT is just the algorithm that decides if the LCA over (ℤ∕𝑚ℤ)𝑛 defined by any matrix 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛 is 
topologically transitive, and that, to provide the answer, has to be called with arguments 𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡), where 𝜅⃗(𝑡) is the vector of 
the coefficients of the characteristic polynomial 𝜉(𝑋, 𝑋−1) of 𝑀(𝑋), as above explained.

If a crash never occurs, the behaviour of DEC-TT is exactly the same as that of DECIDE-P-TT, as if 𝑚 was a prime number (even 
though is not): the gcd of the coefficients of the characteristic polynomial 𝜉(𝑋, 𝑋−1) is iteratively computed (lines 2–11 where, by the 
assumption, the line 11 is executed at every iteration) and, then, once its degree is suitably checked, a true/false answer is returned 
(lines 12–15) according to Lemma 16 (see next Section).

Otherwise, DEC-TT makes use of the procedure REDUCE that, invoked with arguments 𝑚 𝑔, where 𝑔 is the gcd of 𝑚 and the 
leading coefficient of the last reminder determined by U-GCD, computes and returns a pair (𝑚1, 𝑚2) ∈ (ℤ∕𝑚ℤ)2 of coprime numbers 
such that either 𝑚 =𝑚1 ⋅𝑚2 with 𝑚2 ≠ 1 or 𝑚2 = 1 and 𝑚 = (𝑚1)𝑠 for some natural 𝑠 > 1. In other words, by means of REDUCE, either 
𝑚 is decomposed into the product of two coprime smaller numbers 𝑚1 and 𝑚2 or it is expressed as a power of some and smaller 
number 𝑚1. In this way, at lines 6–9, DEC-TT compute the answer in a recursive way by exploiting Lemmata 3 and 7. We emphasize 
that the third argument of the recursive calls of DEC-TT is the value 𝑛𝑐 of the current iteration and, correspondingly, in the second 
argument 𝛾𝑐𝑢𝑟𝑟(𝑡) appears, i.e., the gcd of 𝜅1(𝑡), … , 𝜅𝑛𝑐 (𝑡). Indeed, to compute the gcd of those polynomials (now taken modulo 𝑚1
or 𝑚2), the run of each recursive call of DEC-TT do not need to restart from the beginning, i.e., from the first polynomial, but it 
can exploits the polynomial 𝛾𝑐𝑢𝑟𝑟(𝑡) that has been already determined by the caller by the execution of line 3 during the previous 
iteration.

Remark 12. We stress that the overall crashes occurring in the runs of all the recursive calls of DEC-TT executed starting from 
DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) provide a factor decomposition of 𝑚 as 𝑚 = 𝑚

𝑠1
1 ⋯ 𝑚𝑠𝓁

𝓁 where the 𝑚𝑒 ’s (with 𝑒 ∈ {1, … , 𝓁}) are pairwise 
coprime and they are computed by means of REDUCE. Precisely, the 𝑚𝑒’s are the values of the first argument of the calls DEC-TT
corresponding to the leaves of the tree of recursive calls having DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) as root.

We also point out that if the 𝑚𝑒 ’s were known before the initial call DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)), during the run of every hy-
pothetical call DEC-TT(𝑚𝑒, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) no crash would occur and, hence, every DEC-TT(𝑚𝑒, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) computes a gcd of 
7

𝜅1(𝑡) mod𝑚𝑒, … , 𝜅𝑧(𝑡) mod𝑚𝑒.
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Furthermore, we want to highlight that the answer returned by DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) is true if and only if every 
DEC-TT(𝑚𝑒, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) returns true, or, equivalently, if and only if for every 𝑒 ∈ {1, … , 𝓁} it holds that ℎ𝑒 < 1, where ℎ𝑒 is 
the degree of a gcd of 𝜅1(𝑡) mod𝑚𝑒, … , 𝜅𝑧(𝑡) mod𝑚𝑒.

Finally, we remark that the set {𝑚𝑠1
1 , … , 𝑚𝑠𝓁

𝓁 } can be viewed as a partition of {𝑝𝑘11 , … , 𝑝𝑘𝑙
𝑙
}, where 𝑝𝑘11 ⋯ 𝑝𝑘𝑙

𝑙
is the prime factor 

decomposition of 𝑚. Indeed, each 𝑚𝑠𝑒
𝑒 is the product of some 𝑝𝑘𝑗

𝑗
’s and these latter are factors only of that 𝑚𝑠𝑒

𝑒 .

We now state the main result of the paper, namely, that Algorithm DEC-TT actually decides topological transitivity, i.e., chaos, 
for LCA over (ℤ∕𝑚ℤ)𝑛 and it carries out the decision task without decomposing 𝑚 into prime factors, the latter being the reason why 
it is efficient. Since the proof of the main result is very long, it is located in the next section.

Theorem 13. Let 𝑚 > 1 and 𝑛 > 0 be any two naturals. DEC-TT decides topological transitivity, i.e., chaos, for one-dimensional LCA over 
(ℤ∕𝑚ℤ)𝑛.

6. Proof of Theorem 13

We first review some needed concepts and facts regarding the Chinese reminder theorem.

Let 𝑚 = 𝑝
𝑘1
1 ⋯ 𝑝𝑘𝑙

𝑙
be the prime factor decomposition of 𝑚. The Chinese reminder theorem ensures that there exists an isomorphism

 ∶ℤ∕𝑚ℤ→ℤ∕𝑝𝑘11 ℤ ×⋯ ×ℤ∕𝑝𝑘𝑙
𝑙
ℤ

known as direct decomposition of ℤ∕𝑚ℤ and defined for any 𝑥 ∈ ℤ∕𝑚ℤ as (𝑥) = (𝑥 mod𝑝𝑘11 , … , 𝑥 mod𝑝𝑘𝑙
𝑙
). Moreover, there exist 

𝑎1, … , 𝑎𝑙 ∈ℤ∕𝑚ℤ such that for any (𝑥1, … , 𝑥𝑙) ∈ℤ∕𝑝𝑘11 ℤ ×⋯ ×ℤ∕𝑝𝑘𝑙
𝑙
ℤ it holds that −1(𝑥1, … , 𝑥𝑙) = 𝑎1𝑥1 +… 𝑎𝑙𝑥𝑙 . The following 

Lemma regarding  will be useful in the sequel.

Lemma 14 ([2]). Let  ∶ℤ∕𝑚ℤ →ℤ∕𝑝𝑘11 ℤ ×⋯ ×ℤ∕𝑝𝑘𝑙
𝑙
ℤ be the isomorphism derived from Chinese reminder theorem and let 𝑎1, … , 𝑎𝑙 ∈

ℤ∕𝑚ℤ be the coefficients defining −1. The following facts hold:

𝑖) for each 𝑖 ∈ {1, … 𝑙}, (𝑎𝑖) = (0, … , 0, 1, 0, … , 0), where 1 appears in position 𝑖;
𝑖𝑖)

∑𝑙
𝑖=1 𝑎𝑖 = 1;

𝑖𝑖𝑖) 𝑎2
𝑖
= 𝑎𝑖 for each 𝑖 ∈ {1, … 𝑙};

𝑖𝑣) 𝑎𝑖 ⋅ 𝑎𝑗 = 0, for each 𝑖, 𝑗 ∈ {1, … 𝑙} with 𝑖 ≠ 𝑗.

Lemma 15. Let 𝑚 > 1 and 𝑚 = 𝑝
𝑘1
1 ⋯ 𝑝𝑘𝑙

𝑙
be its prime factor decomposition. Let 𝜅⃗(𝑡) = (𝜅1(𝑡), … , 𝜅𝑧(𝑡)) be any vector of 𝑧 polynomi-

als from ℤ∕𝑚ℤ[𝑡], each of them with a leading coefficient that is coprime with 𝑚 and such that no crash occurs during the run of 
DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)). Let 𝜋𝐸 (𝑡) ∈ ℤ∕𝑚ℤ[𝑡] be the non null reminder computed by the last execution of U-GCD in that run, i.e., a 
gcd of 𝜅1(𝑡), … , 𝜅𝑧(𝑡). If ℎ = deg(𝜋𝐸 (𝑡)) > 0, then for each 𝑗 ∈ {1, … , 𝑙} the polynomial 𝜐𝑗 (𝑡) = (𝜋𝐸 (𝑡) mod𝑝𝑘𝑗

𝑗
) ∈ ℤ∕𝑝𝑘𝑗

𝑗
ℤ[𝑡] has degree 

deg(𝜐𝑗 (𝑡)) > 0 and it divides every (𝜅𝑖(𝑡) mod𝑝𝑘𝑗
𝑗
) with 1 ≤ 𝑖 ≤ 𝑧.

Proof. Choose arbitrarily 𝑗 ∈ {1, … , 𝑙} and 𝑖 ∈ {1, … , 𝑧}. We prove that 𝜐𝑗 (𝑡) ∈ ℤ∕𝑝𝑘𝑗
𝑗
ℤ[𝑡] divides (𝜅𝑖(𝑡) mod𝑝𝑘𝑗

𝑗
). By hypothesis, 

𝜋𝐸 (𝑡) divides 𝜅𝑖(𝑡), i.e., 𝜅𝑖(𝑡) = 𝜋𝐸 (𝑡) ⋅ 𝜑(𝑡), for some polynomial 𝜑(𝑡) ∈ ℤ∕𝑚ℤ[𝑡]. It easily follows that 𝜐𝑗 (𝑡) divides (𝜅𝑖(𝑡) mod𝑝𝑘𝑗
𝑗
). 

We now prove that deg(𝜐𝑗 (𝑡)) > 0. Since ℎ > 0, it is enough to show that 𝑢ℎmod𝑝𝑘𝑗
𝑗

> 0, where 𝑢ℎ is the leading coefficient of 

𝜋𝐸 (𝑡). For a sake of argument, suppose that 𝑢ℎmod𝑝𝑘𝑗
𝑗

= 0. Thus, we get gcd(𝑢ℎ, 𝑚) ≥ 𝑝
𝑘𝑗
𝑗

> 1, that is contradicted by item (2) of 
Proposition 10. □

Lemma 16. Let 𝑚 be an arbitrary natural with 𝑚 > 1 and let 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛 be the matrix associated with a LCA  over (ℤ∕𝑚ℤ)𝑛. Let 
𝜅⃗(𝑡) = 𝜅1(𝑡), … , 𝜅𝑧(𝑡) ∈ ℤ∕𝑚ℤ[𝑡] be the vector of the coefficients of the characteristic polynomial 𝜉(𝑋, 𝑋−1) = 𝜒𝑀(𝑋)(𝑡) of 𝑀(𝑋) when 
𝜒𝑀(𝑋)(𝑡) is expressed as polynomial in the variables 𝑋, 𝑋−1, no matter about the order those coefficients appear inside 𝜅⃗(𝑡). If each of the 
leading coefficients of 𝜅1(𝑡), … , 𝜅𝑧(𝑡) ∈ ℤ∕𝑚ℤ[𝑡] is coprime with 𝑚 and no crash occurs during the run of DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)), then 
the LCA  is topologically transitive if and only if DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) returns true, or, equivalently, if and only if ℎ = deg(𝜋𝐸 (𝑡)) = 0, 
where 𝜋𝐸 (𝑡) ∈ℤ∕𝑚ℤ[𝑡] is the non null reminder computed by the last call of U-GCD in that run, i.e., a gcd of 𝜅1(𝑡), … , 𝜅𝑧(𝑡).

Proof. Let 𝑚 = 𝑝
𝑘1
1 ⋯ 𝑝𝑘𝑙

𝑙
be the prime factor decomposition of 𝑚.

Assume that ℎ > 0. We are going to prove that  is not topologically transitive. By Lemma 15, for each 𝑗 ∈ {1, … , 𝑙} the 
8

polynomial (𝜋𝐸 (𝑡) mod𝑝𝑘𝑗
𝑗
) ∈ ℤ∕𝑝𝑘𝑗

𝑗
ℤ[𝑡] divides every (𝜅𝑖(𝑡) mod𝑝𝑘𝑗

𝑗
) with 1 ≤ 𝑖 ≤ 𝑧. Moreover, it holds that deg(𝜋𝐸 (𝑡) mod𝑝𝑘𝑗

𝑗
) > 0. 
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Furthermore, for each 𝑗 ∈ {1, … , 𝑙} not only the polynomial ((𝜋𝐸 (𝑡) mod𝑝𝑘𝑗
𝑗
) mod𝑝𝑗 ) = (𝜋𝐸 (𝑡) mod𝑝𝑗 ) ∈ ℤ∕𝑝𝑗ℤ[𝑡] divides ev-

ery ((𝜅𝑖(𝑡) mod𝑝𝑘𝑗
𝑗
) mod𝑝𝑗 ) = (𝜅𝑖(𝑡) mod𝑝𝑗 ) but also its degree is non null. Indeed, by hypothesis, for each 𝑗 ∈ {1, … , 𝑙}, 𝑝𝑗

can not be a factor of the leading coefficient of (𝜋𝐸 (𝑡) mod𝑝𝑘𝑗
𝑗
). Hence, deg((𝜋𝐸 (𝑡) mod𝑝𝑘𝑗

𝑗
) mod𝑝𝑗 ) > 0. Therefore, the gcd of 

((𝜅1(𝑡) mod𝑝𝑘𝑗
𝑗
) mod𝑝𝑗 ), … , ((𝜅𝑧(𝑡) mod𝑝𝑘𝑗

𝑗
) mod𝑝𝑗 ) has non null degree. Since 𝜒𝑀(𝑋) mod 𝑞 = 𝜒𝑀(𝑋)mod 𝑞 , this implies that, by The-

orem 6, for each 𝑗 ∈ {1, … , 𝑙} each LCA over (ℤ∕𝑝𝑗ℤ)𝑛 having (𝑀(𝑋) mod𝑝𝑗 ) as associated matrix is not topologically transitive, 
or, equivalently, by Lemma 7, each LCA over (ℤ∕𝑝𝑘𝑗

𝑗
ℤ)𝑛 having (𝑀(𝑋) mod𝑝𝑘𝑗

𝑗
) as associated matrix is not topologically transitive. 

Therefore,  is not topologically transitive.
Conversely, suppose now that ℎ = 0. We will prove that  is topologically transitive. Clearly, for each 𝑗 ∈ {1, … , 𝑙} the polynomial 

(𝜋𝐸 (𝑡) mod𝑝𝑘𝑗
𝑗
) of null degree divides every (𝜅𝑖(𝑡) mod𝑝𝑘𝑗

𝑗
) with 1 ≤ 𝑖 ≤ 𝑧. We now want to show that for each 𝑗 ∈ {1, … , 𝑙} there exists 

no polynomial 𝜐𝑗 (𝑡) ∈ ℤ∕𝑝𝑘𝑗
𝑗
ℤ[𝑡] with deg(𝜐𝑗 (𝑡)) > 0 dividing every (𝜅𝑖(𝑡) mod𝑝𝑘𝑗

𝑗
) with 1 ≤ 𝑖 ≤ 𝑧. This ensures that each LCA over 

(ℤ∕𝑝𝑘𝑗
𝑗
ℤ)𝑛 having (𝑀(𝑋) mod𝑝𝑘𝑗

𝑗
) as associated matrix is topologically transitive and then  is too. So, we proceed by assuming, for a 

sake of argument, that there exists 𝑜 ∈ {1, … , 𝑙} and a polynomial 𝜐𝑜(𝑡) ∈ℤ∕𝑝𝑘𝑜𝑜 ℤ[𝑡] with deg(𝜐𝑜(𝑡)) > 0 dividing every (𝜅𝑖(𝑡) mod𝑝𝑘𝑜𝑜 )
with 1 ≤ 𝑖 ≤ 𝑧. By Lemma 14, 𝜅𝑖(𝑡) = 𝑎1(𝜅𝑖(𝑡) mod𝑝𝑘11 ) +… + 𝑎𝑙(𝜅𝑖(𝑡) mod𝑝𝑘𝑙

𝑙
), where 𝑎1, … , 𝑎𝑙 defines define −1. Hence, for every 𝑖

with 1 ≤ 𝑖 ≤ 𝑧 we can write

𝜅𝑖(𝑡) = 𝑎1(𝜅𝑖(𝑡)mod𝑝𝑘11 ) +…+ 𝑎𝑜𝜐
𝑜(𝑡)𝜑𝑜

𝑖 (𝑡) +…+ 𝑎𝑙(𝜅𝑖(𝑡)mod𝑝𝑘𝑙
𝑙
)

for some polynomial 𝜑𝑜
𝑖
(𝑡) ∈ℤ∕𝑝𝑘𝑗

𝑗
ℤ[𝑡]. By items 𝑖𝑖𝑖) and 𝑖𝑣) of Lemma 14, it follows that

(𝑎1 +…+ 𝑎𝑜𝜐
𝑜(𝑡) +…𝑎𝑙) ⋅ [𝑎1(𝜅𝑖(𝑡)mod𝑝𝑘11 ) +…+ 𝑎𝑜𝜑

𝑜
𝑖 (𝑡) +…+ 𝑎𝑙(𝜅𝑖(𝑡)mod𝑝𝑘𝑙

𝑙
)] = 𝜅𝑖(𝑡)

and, hence, 𝜐(𝑡) = 𝑎1 +… + 𝑎𝑜𝜐
𝑜(𝑡) +… + 𝑎𝑙 divides every 𝜅𝑖(𝑡). Moreover 𝑎𝑜 ⋅ 𝑏𝑜 ≠ 0, where 𝑏𝑜 ≠ 0 is the leading coefficient of 𝜐𝑜(𝑡). 

Indeed, if 𝑎𝑜 ⋅ 𝑏𝑜 = 0, it would hold that 𝑎1 ⋅0 +… +𝑎𝑜 ⋅ 𝑏𝑜+… +𝑎𝑙 ⋅0 = 0, i.e., (0) = (0, … , 𝑏𝑜, … , 0) implying that 𝑏𝑜 = 0. Therefore, 
we get deg(𝜐(𝑡)) > 0 and this contradicts that ℎ = deg(𝜋𝐸 (𝑡)) = 0. □

We are now able to prove Theorem 13.

Proof. Let  be any LCA (ℤ∕𝑚ℤ)𝑛 with associated matrix 𝑀(𝑋) ∈ (𝕃𝑚)𝑛×𝑛. Let 𝜅⃗(𝑡) = 𝜅1(𝑡), … , 𝜅𝑧(𝑡) ∈ ℤ∕𝑚ℤ[𝑡] be the vector 
of the coefficients of the characteristic polynomial 𝜉(𝑋, 𝑋−1) = 𝜒𝑀(𝑋)(𝑡) of 𝑀(𝑋) when 𝜒𝑀(𝑋)(𝑡) is expressed in the variables 
𝑋, 𝑋−1, no matter about the order those coefficients appear inside 𝜅⃗(𝑡). We are going to prove that  is topologically transitive iff 
DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) returns true.

Let 𝑚 =𝑚
𝑠1
1 ⋯ 𝑚𝑠𝓁

𝓁 be the factor decomposition of 𝑚 provided by the overall crashes occurred in the runs of all the recursive calls 
of DEC-TT executed when running DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)).

By Remark 12, DEC-TT(𝑚, 𝜅1(𝑡), 1, ⃗𝜅(𝑡)) returns true iff every DEC-TT(𝑚𝑒, 𝜅1(𝑡) mod𝑚𝑒, 1, ⃗𝜅(𝑡) mod𝑚𝑒) returns true. Since no crash 
occurs during the run of DEC-TT(𝑚𝑒, 𝜅1(𝑡) mod𝑚𝑒, 1, ⃗𝜅(𝑡) mod𝑚𝑒), by Lemma 16, every DEC-TT(𝑚𝑒, 𝜅1(𝑡) mod𝑚𝑒, 1, ⃗𝜅(𝑡) mod𝑚𝑒) re-
turns true iff every LCA over (ℤ∕𝑚𝑒ℤ)𝑛 with associated matrix 𝑀(𝑋) mod𝑚𝑒 is topologically transitive. By Lemma 7, the latter holds 
iff every LCA over (ℤ∕𝑚𝑠𝑒

𝑒 ℤ)𝑛 with associated matrix 𝑀(𝑋) mod𝑚𝑠𝑒
𝑒 is topologically transitive, i.e., by Lemma 3, iff  is topologically 

transitive. □

7. Applications

In this section we illustrate how our results can be exploited in applications with the achievement of improving them. Considering 
the rapid growing of cryptographic techniques and the fact that LCA are often involved in designing these latter, we will deal with 
some representative applications in the domain of cryptosystems, namely, data encryption methods. Such applications are based on 
one-dimensional LCA over (ℤ∕𝑚ℤ)𝑛 for some natural 𝑚 > 1. It is well-known that, in order to ensure the security level expected in 
real scenarios, good cryptosystems have to satisfy the so-called confusion and diffusion properties (along with some variants of them). 
Ergodicity and chaotic behaviour are just the dynamical counterparts of the required cryptographic properties [1] and then they have 
to be exhibited by the dynamical system on which the cryptosystem is based. Actually, Algorithms DECIDE-P-TT and DEC-TT allow 
one to establish in an efficient way whether one-dimensional LCA exhibit such behaviours. Therefore, they are important tools to be 
used in the above mentioned applications for building one-dimensional LCA with the required properties and, then, for improving 
the existing methods which are based on such LCA.

Recently, in [12], the authors present an image encryption scheme based on hybrid (i.e., non-uniform) ECA composed of two 
different “chaotic” global rules. They state that such CA are used to establish a novel pseudo-random coupled map lattices (PRCML) 
model with the declared goal to enhance the chaotic properties of such a kind of model. We recall that a non-uniform cellular 
automata is defined by a family {ℎ𝑗}𝑗∈ℤ of local rules ℎ𝑗 ∶𝑄2𝑟𝑗+2 →𝑄, each of them of its own radius 𝑟𝑗 . Similarly to CA, the global 
rule of a non-uniform cellular automata is the map 𝜈 defined as
9

∀𝑐 ∈𝑄ℤ, ∀𝑖 ∈ℤ, 𝜈(𝑐)𝑖 = ℎ𝑖(𝑐𝑖−𝑟𝑖
,… , 𝑐𝑖+𝑟𝑖

)
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A non-uniform CA over the alphabet 𝑄 = ℤ∕𝑚ℤ is said to be linear if all its local rules are linear. An interesting subclass of non-
uniform CA is the one of peculiar periodic non-uniform CA that are defined by an even natural 𝑛 > 1 and two local rules 𝑓 and 𝑔 of 
radius 𝑟 in such a way that

ℎ𝑗 =

{
𝑓 if 𝑗mod𝑛 ∈ {0,… , 𝑛∕2 − 1},
𝑔 otherwise .

In other terms, the rules 𝑓 and 𝑔 defining any of these non-uniform CA are distributed in the lattice space ℤ in such a way that in 
every segment of positions {𝑗𝑛, … , 𝑗𝑛 + 𝑛 − 1} the rule 𝑓 acts in the first half of positions, while 𝑔 in the second half, as far as the 
update of any configuration is concerned. We want to put in evidence that these periodic non-uniform CA are nothing but (i.e., they 
are topologically conjugated to) one-dimensional CA over 𝑄𝑛 each of them defined by a suitable local rule. Moreover, if 𝑓 and 𝑔
are linear local rules over ℤ∕𝑚ℤ, the resulting periodic non-uniform CA turns out to be LCA over (ℤ∕𝑚ℤ)𝑛. The previous described 
periodic non-uniform CA are just the ones involved inside the encryption application presented in [12].

Let us discuss some important aspects regarding how they are used inside that application. First of all, we want to stress that 𝑓 and 
𝑔 are two ECA local rules chosen from a list of rules, each of them, as stated by the authors, individually giving rise to a “chaotic” CA 
global transition function. However, the involved term “chaos” is inappropriate since it refers to a qualitative classification (see [16], 
for instance) and the list actually contains elementary rules that do not give rise to a real chaotic global behaviour at all. As an 
example, the ECA local rule 110 has a global transition function that is not surjective and, hence, it is not chaotic according to the 
formal and recognized definition of chaos from [11]. The same holds for ECA local rule 18. Secondly, the fact that combining two 
rules each of them exhibiting a chaotic global behaviour gives rise to a chaotic non-uniform CA should be proved, but the authors 
take it for granted, while it is not actually true in general.

Anyway, they consider an actual scenario in which the ECA rules chosen for building the non-uniform CA do not always give 
rise to a chaotic CA global transition function and in addition nothing is ensured regarding a real chaotic behaviour of the non-
uniform CA built combining two of them. As a paradigmatic example, they propose the combination of the rules 18 and 102, the first 
individually giving rise to a non-surjective CA that, as a consequence, can not be chaotic at all. Moreover, it is not difficult to prove 
that neither the obtained non-uniform CA is chaotic, although it is well known that the global CA transition function defined by the 
rule 102 is. Indeed, since 𝑛 is sufficiently large (𝑛 = 100 in the paper) there exists a configuration containing a pattern that has no 
pre-image as far as the ECA 18 is considered and that is located inside the segment of positions where the rule 18 itself acts. In this 
way, neither non-uniform CA is surjective and, therefore, it is not chaotic.

However, if 𝑓 and 𝑔 are both linear, the results of this paper can be exploited for considerably improving the proposed application. 
Indeed, if the 1 ×1 matrices (with elements in ℤ∕𝑚ℤ) defining the local rules 𝑓 and 𝑔 are 𝑎−1, 𝑎0, 𝑎1 and 𝑏−1, 𝑏0, 𝑏1, respectively, then 
the periodic non-uniform CA built combining 𝑓 and 𝑔 is nothing but the LCA over (ℤ∕𝑚ℤ)𝑛 with the following associated matrix

𝑀(𝑋) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎0 𝑎1 0 … … … … … 0 𝑎−1𝑋
𝑎−1 𝑎0 𝑎1 0 … … … … 0 0
0 𝑎−1 𝑎0 𝑎1 0 … … … 0 0
0 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮
0 ⋱ 0 𝑎−1 𝑎0 𝑎1 0 … 0 0
⋮ ⋮ ⋮ 0 𝑏−1 𝑏0 𝑏1 0 … 0
0 0 0 … ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 … … 0 𝑏−1 𝑏0 𝑏1 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ 0 𝑏−1 𝑏0 𝑏1

𝑏1𝑋
−1 0 0 … … … … 0 𝑏−1 𝑏0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where 𝑎−1, 𝑎0, 𝑎1 appear in the first 𝑛∕2 rows, while 𝑏−1, 𝑏0, 𝑏1 in the last 𝑛∕2 ones, and we have assumed that 𝑛 > 2.
The characteristic polynomial 𝜒𝑀(𝑋)(𝑡) of 𝑀(𝑋) can be rewritten as

𝜉(𝑋,𝑋−1) = 𝜅1(𝑡)𝑋−1 + 𝜅2(𝑡) + 𝜅3(𝑡)𝑋 ,

where

𝜅1(𝑡) = −(𝑎1𝑏1)𝑛∕2,

𝜅3(𝑡) = (𝑎−1𝑏−1)𝑛∕2,

and 𝜅2(𝑡) is a polynomial of degree 𝑛. According to the results from Section 4, when 𝑚 = 2, the LCA with associated matrix 𝑀(𝑋) is 
chaotic unless 𝜅1(𝑡) = 𝜅3(𝑡) = 0. Indeed, 𝛾(𝑡) = gcd(𝜅1(𝑡), 𝜅2(𝑡), 𝜅3(𝑡)) is a non null constant polynomial unless 𝜅1(𝑡) = 𝜅3(𝑡) = 0. If the 
linear ECA local rules 𝑓 and 𝑔 with number 150 and 102, respectively, are used in the application from [12], or, equivalently, the 
rule 18 is replaced by the rule 150, the periodic non-uniform CA built combining 𝑓 and 𝑔 is nothing but the LCA over (ℤ∕2ℤ)100
with associated matrix 𝑀(𝑋) as above and in which 𝑎−1 = 1, 𝑎0 = 1, 𝑎1 = 1, 𝑏−1 = 0, 𝑏0 = 1, 𝑏1 = 1. In this way, we get

𝜅1(𝑡) = 1,
10

𝜅3(𝑡) = 0,
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and, hence, the obtained non-uniform CA is really chaotic. The same holds when the rules 90 and 102 are combined, the first one also 
appearing inside the list from [12] and individually giving rise to a chaotic CA global transition function. Let us not that the rule 60
is inside that list and it has the same property as the rule 90, too, but, when it is combined with the rule 102, we get 𝜅1(𝑡) = 𝜅3(𝑡) = 0, 
and hence the obtained non-uniform CA is not chaotic, although it is built by means of two rules, both of them individually defining 
a chaotic CA.

We stress that the scheme can be improved by considering values of 𝑚 with 𝑚 > 2. This considerably increases the number of 
(non elementary) local rules inside the list. Clearly, Algorithm DEC-TT has to be used in order that the non-uniform CA obtained 
combining two rules from the list is chaotic.

A block cypher scheme based on a linear higher-order CA of memory 𝑛 = 2 over ℤ∕𝑚ℤ with 𝑚 = 2 was proposed in [5]. Since 
linear higher-order CA are just LCA over (ℤ∕𝑚ℤ)𝑛 with associated matrix presenting a specific structure, namely, a Frobenius normal 
form, it is possible to analyse and improve the scheme by exploiting our results concerning LCA.

The LCA  involved in the cypher scheme is defined by a local rule of radius 𝑟 = 1 and the matrix associated with  is

𝑀(𝑋) =
[
0 1
1 𝑎−1𝑋 + 𝑎0 + 𝑎1𝑋

−1

]
,

where 𝑎−1, 𝑎0 and 𝑎1 are coefficients to be suitably set up.
The functioning of the scheme is as follows. The first and the seconds half bits of a plain text are inserted inside the first and 

second component 𝑐1 and 𝑐2, respectively, of the initial configuration 𝑐 of the LCA  and, once the 𝐿 configurations  (𝑐), . . . , 𝐿(𝑐)
with 𝐿 > 2 have been computed, the content of 𝐿(𝑐) is considered as the ciphered text. Since det(𝑀(𝑋)) ≠ 0, the LCA is reversible 
and this allows recovering the initial plain text from the ciphered one.

According to the experimental observations by the authors, the following three choices 𝑎−1 = 𝑎1 = 1 and 𝑎0 = 0, 𝑎0 = 𝑎1 = 1 and 
𝑎−1 = 0, and 𝑎−1 = 𝑎0 = 𝑎1 = 1 lead the encryption scheme to exhibit good performances. A rigorous explanation of that follows from 
our results. Indeed, the polynomial characteristic of 𝑀(𝑋) is

𝜒𝑀(𝑋)(𝑡) = 𝑡2 − (𝑎−1𝑋 + 𝑎0 + 𝑎1𝑋
−1)𝑡− 1

and it can be rewritten as

𝜉(𝑋,𝑋−1) = 𝜅1(𝑡)𝑋−1 + 𝜅2(𝑡) + 𝜅3(𝑡)𝑋 ,

where

𝜅1(𝑡) = −𝑎1𝑡,

𝜅2(𝑡) = 𝑡2 − 𝑎0𝑡− 1,

𝜅3(𝑡) = −𝑎−1𝑡.

By running Algorithm DECIDE-P-TT in these three situations, one finds out that all the corresponding LCA are ergodic and chaotic. 
Therefore, the cypher scheme can be equipped by Algorithm DECIDE-P-TT to avoid bad choices and so, by ensuring confusion and 
diffusion, in such a way that attacks are much harder. Clearly, also Algorithm EXISTING allows getting the same conclusions, but 
with worse performances. Moreover, adopting Algorithm DECIDE-P-TT becomes even more relevant if the plain text is divided in a 
number 𝑛 of parts where 𝑛 is significantly greater than 2 and, as a consequence, Algorithm DECIDE-P-TT performs significantly better 
than Algorithm EXISTING. Furthermore, if the plain text is coded as a sequence of elements of ℤ∕𝑚ℤ for some natural 𝑚 with 𝑚 > 2
the choices for the expression of  to be used increase and the cypher scheme can be equipped by Algorithm DEC-TT in order to 
ensure confusion and diffusion.

In [6], authors propose a (𝑛, 𝑃 )-threshold secret sharing scheme involving 𝑃 participants and based on linear higher-order CA of 
memory 𝑛 over the alphabet ℤ∕2ℤ, i.e., LCA over (ℤ∕2ℤ)𝑛 with associated matrix in Frobenius normal form.

As discussed at the beginning of this section, the one-dimensional LCA  on which the method is based has to be chaotic in order 
to ensure the cryptographic properties of confusion and diffusion. Therefore, it is essential that Algorithm DECIDE-P-TT deciding 
chaos is inserted in the scheme just before step 4. of the setup phase from [6] with the additional requirement that steps 1. to 3., 
which by using a pseudo-random number generator produce the LCA  , have to be repeated whenever they provide a non chaotic 
LCA. Moreover, the number of the expressions to be used for  increases for schemes over an alphabet ℤ∕𝑚ℤ, where 𝑚 is any integer 
with 𝑚 > 2. The introduction of such a choice in the scheme along with Algorithm DEC-TT makes attacks much harder.

The idea from [6] of employing linear higher-order CA of memory 𝑛 in secret sharing schemes is exploited in [17] where the 
authors introduce a new method for sharing greyscale secret images. In the setup phase, a reversible linear higher-order CA of 
memory 𝑛 over ℤ∕2ℤ is built, where 𝑛 is the number of pixels of a secret greyscale image. Equivalently, a reversible LCA  over 
(ℤ∕2ℤ)𝑛 is built which evolves in the sharing phase starting from the initial configuration over (ℤ∕2ℤ)𝑛 containing the binary 
representation of the 𝑛 image pixels. Although the reversibility condition over  is a necessary requirement for recovering the secret 
image, i.e., for computing back the initial configuration by means of  , it is important that  is also chaotic in order to ensure the 
cryptographic properties of confusion and diffusion. Therefore, Algorithm DECIDE-P-TT deciding chaos should is inserted in the setup 
phase of the proposed method with the additional requirement that item 2., which produces  by using a pseudo-random number 
11

generator, have to be repeated whenever it provides a non chaotic LCA.
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8. Conclusions

We provided an efficient algorithm deciding chaos for LCA over (ℤ∕𝑚ℤ)𝑛 and we illustrated its impact in some representative 
applications in the domain of cryptosystems. Providing (efficient) algorithms that decide other meaningful dynamical properties for 
LCA over (ℤ∕𝑚ℤ)𝑛 as, for instance, strong transitivity, is an important step for further researches in this domain. This would also 
allow one to build even more robust methods based on such CA in applications. Another important research direction consists in 
considering the multidimensional setting. Besides having a theoretical value, providing algorithms that decide chaos and other dy-
namical properties for multidimensional LCA over (ℤ∕𝑚ℤ)𝑛 will be certainly useful in many applications involving multidimensional 
data.
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