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Abstract 

Early identification of children on the autism spectrum is crucial for early intervention with 

long-term positive effects on symptoms and skills. The need for improved objective autism 

detection tools is emphasized by the poor diagnostic power in current tools. Here, we aim to 

evaluate the classification performance of acoustic features of the voice in children with autism 

spectrum disorder (ASD) with respect to a heterogeneous control group (composed of 

neurotypical children, children with Developmental Language Disorder [DLD] and children 

with sensorineural hearing loss with Cochlear Implant [CI]). This retrospective diagnostic study 

was conducted at the Child Psychiatry Unit of Tours University Hospital (France). A total of 

108 children, including 38 diagnosed with ASD (8.5 ± 0.25 years), 24 typically developing 

(TD; 8.2 ± 0.32 years) and 46 children with atypical development (DLD and CI; 7.9 ± 0.36 

years) were enrolled in our studies. The acoustic properties of speech samples produced by 

children in the context of a nonword repetition task were measured. We applied a ROC 

(Receiving Operator Characteristic) supervised k-mean clustering algorithm combined with a 

Monte Carlo cross-validation to develop a classification model that can differentially classify a 

child with an unknown disorder.  

We showed that voice acoustics classified autism diagnosis with an overall accuracy of 91% 

[CI95%, 90.40%-91.65%] against TD children, and of 85% [CI95%, 84.5%-86.6%] against an 

heterogenous group of non-autistic children. Accuracy reported here with multivariate analysis 

combined with Monte Carlo cross-validation is higher than in previous studies. Our findings 

demonstrate that easy-to-measure voice acoustic parameters could be used as a diagnostic aid 

tool, specific to ASD.   



 
 

 
 

Introduction 

Autism spectrum disorder (ASD) is a class of prenatal neurodevelopmental disorders1 defined 

by the co-occurrence of two main diagnostic criteria: a socio-emotional impairment and a 

behavioral deficit manifested by repetitive behaviors and interests2. Socio-emotional 

impairments affect both the production and perception of social signal. To this day, there is no 

reliable biomarker of ASD, and diagnostic is based on a pluri-disciplinary clinical assessment 

of the child3. Finding a more objective and automated marker of ASD could help in the 

diagnosis of ASD making it simpler and more reliable4. Atypical voice prosody is one of the 

earliest markers of ASD5–8, evaluated in diagnostic tools such as ADOS9; here, we asked 

whether easy-to-measure vocal acoustic features could be used as an objective ASD-specific 

marker to help diagnosis. 

The human voice carries a wealth of information regarding a speaker, its physical 

characteristics, state of mind and health. From birth, the voice is used to signal information on 

well-being to surrounding adults, and infant cries are part of the preliminary assessment of 

neonates’ health. Atypical acoustic cry features are associated with central nervous system 

dysfunction in human neonates10 and rodent pups11. Voice production involves the entire brain 

and is under the influence of both autonomic and somatic nervous systems12. Voice production 

starts with breathing. The air coming from the lungs is sent towards the larynx, where it induces 

the vibration of the vocal folds. The vibration of the vocal folds produces a buzzing sound with 

a particular fundamental frequency, and associated harmonics. This sound is then modulated 

by its passage through the vocal tract airways. Breathing is normally considered an automatic 

process, but during speech it can be controlled voluntarily yet unconsciously12,13. Muscles in 

the larynx are controlled by two different branches of the vagal nerve: the recurrent laryngeal 

nerve (RLN) and the superior laryngeal nerve (SLN). The RLN controls muscles of the larynx 



 
 

 
 

that allow opening, closing, and adjusting the tension of the vocal folds; the SLN allows 

changing the tension of the vocal folds, therefore increasing fundamental frequency. 

Articulation of the sound depends on the position of the different elements forming the vocal 

tract airways and are under voluntary control by the primary motor cortex [e.g.,12]. Autism 

spectrum disorder is characterized by impaired functioning of both somatic and autonomic 

nervous systems, and these impairments have consequences in their vocal production. 

Consistently, previous studies have reported differences in the acoustic properties of autistic 

individuals. Nonetheless results are often contradictory and inconsistent (see5). Pitch, measured 

as the fundamental frequency (F0) of speech sounds, has been reported to be higher in autism 

14–18, although many studies do not show this result 19–22. Jitter, a measure of cycle-to-cycle 

regularity in F0, and shimmer, a measure of cycle-to-cycle variation of F0 amplitude, are 

reported to be smaller in autism with regards to neurotypical individuals 16,21; these observations 

suggest a greater stability of voicing during speech productions in ASD. It should be noted 

however that other studies report, using different measures, increased pitch variation in autism 

14,15,22, or lack of differences in pitch variability 23. Studies of vocal tract features analysis also 

report discrepant results with higher formant frequencies 18 or a smaller formantic dispersion 

16. These data converge into demonstrating that there is something special in the voice of autistic 

individuals, that could help in diagnosis. Yet, univariate analysis of specific acoustic measures 

may not be powerful enough. Here, we describe a multivariate analysis of vocal acoustic 

parameters combined with machine learning techniques to develop potential tools to aid autism 

diagnosis. 

Machine learning techniques are increasingly used for medical diagnosis, especially clustering 

which is a powerful tool for detecting patterns in datasets. Several studies have used clustering 

methods in order to develop diagnostic biomarkers of various pathologies in animal 

models4,24,25 and in human trials26–28. A classical, non-supervised, and robust clustering 



 
 

 
 

algorithm, the k-Means clustering algorithm 29, also known as nearest centroid classifier when 

used in machine learning, yields high discriminating power to diagnose a single unknown 

subject in a given disorder state 25,27. Here, we used voice acoustics (Fig. 1) as the selected 

features included in this common classifier to evaluate their classification performance of ASD 

relative to typical development and other pathologies. We evaluated the classification 

performance of voice acoustics in comparison not only to TD children (study 1) but also to 

children with other disorders sharing common deficits with ASD: sensorineural hearing loss 

and Developmental Language Disorder (DLD, study 2). These two pathologies were chosen 

due to observed commonalities in the language domain between children with DLD and autism 

30 and between children with sensorineural hearing loss and with cochlear implants (CI) and 

autism 31. The acoustic properties of speech samples produced by autistic children in the context 

of a nonword repetition task (NRT) 32 were examined. Data were analyzed with unsupervised 

and ROC (Receiving Operator Characteristic) supervised clustering algorithm. 

Methods and Materials 

Participants 

One hundred and eight children were enrolled in our retrospective studies. Study 1 (Fig. 2a) is 

composed of 38 children on the autism spectrum (1 girl; 8.5 ± 0.25 years) and 24 TD children 

(12 girls; 8.2 ± 0.32 years), and Study 2 (Fig. 3a) additionally includes 21 children with DLD 

(9 girls; 7.9 ± 0.51 years) and 25 children displaying severe-to-profound sensorineural hearing 

loss fitted with CIs (8 girls; 8 ± 0.22 years). Data of 24 children were excluded from the analysis 

(see Experimental protocol and data acquisition). Therefore, the final sample comprised 84 

children distributed as follows: 29 ASD (0 girl; 8.4 ± 0.29 years; age range [6.3 12]; ADOS 

severity score: 6.19 ± 0.45; CARS: 27.7 ± 0.7), 20 TD (10 girls; 7.99 ± 0.33 years; age range 

[6 10.5]), 20 CI (6 girls; 8.2 ± 0.19 years; age range [6.5 9.9]; 12 with bilateral CI; 6 with right 



 
 

 
 

CI; 2 with left CI; age at first implantation 1.86 ± 0.15) and 15 DLD (7 girls; 8.2 ± 0.37 years; 

age range [6.5 10.8]). Demographic and clinical information regarding the final sample is 

presented in Table 1. Youth with ASD received an expert clinical diagnosis based on Diagnostic 

and Statistical Manual of Mental Disorders – fifth Edition – (DSM-V) 33; the Autism Diagnostic 

Interview-Revised 34, and/or the Autism Diagnostic Observation Schedule 35 were used by 

experienced clinicians of the Excellence Center of Autism (Exac·t), Tours, France to inform 

diagnostic decisions. Children with DLD also received an expert clinical diagnosis based on 

the DSM-V 33 Nonverbal cognitive abilities were assessed either by Raven Progressive Matrices 

or Block Design and Matrix Reasoning of the WISC-IV (data of 5 TD children are missing). 

Only children with a minimum Mean Length of Utterances of 2.5 were included in the study 36 

to ensure that language tests could be administered.  

This study was carried out in accordance with the recommendations of the local ethics 

committee (Comité de Protection des Personnes [CPP] Tours Ouest 1, n°2006-RS), with written 

informed consent from all parents of the children and assent from the children, in accordance 

with the Declaration of Helsinki. 

Experimental protocol and data acquisition 

Acoustic data were extracted from 20 speech samples recorded in the context of a nonword 

repetition task 32, therefore reducing the influence of social interaction in voice production. The 

task focuses on complex phonological structures that have been identified as the source of errors 

in children with impaired phonology. Briefly, children had to repeat 50 or 70 nonwords of 

varying phonological complexity, presented with a computer either with only auditory or with 

both audio and visual information. Nonwords were created using 1, 2 or 3 of the three most 

common vowels among the languages of the world, namely [a], [i], [u], and from a concise list 

of consonants which included two stops ([k], [p]), two fricatives ([f], [s]), one liquid [l]. 



 
 

 
 

Nonwords had a maximum of 3 syllables to limit the influence of working memory on the 

repetition task. Nonwords had different syllable complexity: either a simple consonant vowel 

syllables, syllables with a final consonant or syllables with initial and median consonant clusters  

32. Phonological analysis of the data presented in the current manuscript are published elsewhere 

37,38. Among the 50 or 70 nonwords, the 20 ones with less phonological errors were chosen for 

acoustical analysis. The NWR took place in a quiet room and audio were digitally recorded 

using Zoom H4 microphones put on a table in front of the child. Overall performance in the 

NWR tasks is presented in the results section and was analyzed with a 1 factor Welch ANOVA. 

Acoustic parameters were analyzed using the open-source software Praat 39. For each nonword, 

we extracted 9 acoustics parameters (Fig. 1): mean fundamental frequency (f0), mean formant 

frequencies (F1 to F4), mean formant dispersion (FD), mean harmonic-to-noise ratio (HNR), 

mean jitter (cycle-to-cycle variation in frequency of f0) and mean shimmer (cycle-to-cycle 

variation in intensity of f0); they were then averaged across the 20 nonwords. In addition, 

because ASD is characterized with increased intra-individual variability 22,40,41, shape 

parameters (e.g., skewness and kurtosis) of f0, FD, HNR, jitter and shimmer were computed 

using Matlab2018b functions, leading to 19 variables (Fig. 1). Note that in the Matlab kurtosis 

function, the normal distribution has a kurtosis value of 3 (Fig. 1e). 

Acoustic data are excluded according to two categories of rejection criteria: the nonword 

repetition task performance and acoustic rejection. For the first criteria, children whose 

performance in the repetition of vowels was considered outlier ([Q1-1.5xIQR] with Q1: lower 

quartile and IQR: interquartile range) were removed from the analysis (N = 9: 2 ASD, 2 DLD, 

5 CI), to avoid bias due to the mispronunciation of certain vowels which can influence 

acoustics. For the second criteria, based on acoustical analysis (recording quality or outlier 

value of acoustic parameters with respect to the population), another 15 children (7 ASD; 4 

DLD; 4 TD) were excluded from the analysis (ROC-supervised k-means classification results 



 
 

 
 

including all participants but those with poor recordings quality are shown in Supplementary 

table 2). 

Development of clustering diagnostic model 

Our goal was to determine if acoustic features of the voice could be used as a feature 

classification specific for autism by k-means classifying ASD against typical and other atypical 

development, thus we randomly dichotomized data in a diagnostic model group (train set) and 

an unknown data group (test set). In order to validate our model performance, we used Monte 

Carlo cross-validation. Note that this method is robust to imbalance gender across groups; 

indeed, with a clustering approach, if gender was an important factor the two identified clusters 

would reflect gender separation rather than diagnostic group. 

To develop the diagnostic model, we randomly selected n ASD and n control as train data (70% 

of data), and then we applied k-means (50 iterations, Hartigan & Wong algorithm); this was 

repeated 500 times with random subsampling of the data from the entire population, e.g., Monte 

Carlo cross-validation. Because there is no general rule regarding the number of repetitions to 

use, we choose the value at which our main criteria (selectivity and sensitivity) appear stable 

beyond reasonable doubt, through multiple testing with different numbers of resampling 

(Supplementary Fig. 1). The number of clusters was set to two, since we aimed to determine 

ASD diagnostic against a control population (TD children only, or control children). We 

performed k-means clustering analysis (KCA) in an unsupervised way with the nine acoustic 

and derived acoustic variables (N = 19) and assessed its performance. Then, in order to enhance 

our KCA, we performed receiver operating characteristic (ROC) as proposed by Nikas and 

colleagues 25and used an AUC (Area Under the Curve) ROC curve, as measure of separability 

to evaluate the most discriminative acoustic parameters. This latter probability is an assessment 

of the discriminative power of a given variable with respect to two measures, here the two 



 
 

 
 

groups involved. For example, with a given variable, an AUC of 1 is synonym of a separation 

between groups with 100% accuracy, and the given variable is considered as an excellent 

classifier. On the contrary, the worst discrimination between the two groups has an AUC = 0.50 

(i.e., no discrimination capacity). In this way, the ROC curve allows us to optimize our KCA 

by supervising it using acoustic variables with the best discriminative performance. We used a 

threshold of AUC > 0.80 (80%) corresponding to a good discrimination 42. 

This model was then tested to identify the diagnostic group of the test data (30% of the entire 

data, corresponding to the data not used in model building) according to their KCA 

classification, always for each of the 500 bootstrap replications. To realize this, test data were 

added one-by-one for each participant and classified by supervised and unsupervised KCA. 

Hence, diagnostic of the participant was classified based on its data; accuracy was measured as 

the number of times a test participant was classified with the correct diagnostic, referred to as 

classification performance. 

To assess the performance of our KCA, we measured selectivity, sensitivity and the 

classification performance of our model. Moreover, by the goodness of fit as quality criteria of 

KCA, we assess clustering effectiveness by a percent of variation (PV) corresponding to the 

total within-cluster sum of squares by the total of within and between-cluster sum of squares. 

Results 

Classification of autistic children with respect to TD children  

Overall performance in the NWR task, measured on the entire set of items, differed between 

TD children (95.6%; performance range [84 100]) and children with ASD (80.4%; performance 

range [28 100]; Welch ANOVA: F(1, 31.7) = 22.3; p < 0.001).  



 
 

 
 

To investigate the discriminative power of voice acoustics between autistic children and TD 

children, we performed K-means clustering analysis (KCA). Data were randomly split into a 

train group (N = 33; 20 ASD, 13 TD) and a test group (unknown data; N = 16; 9 ASD; 7 TD); 

this was done 500 times. Unsupervised KCA with the 19 acoustics variables was conducted on 

the train group, and the model was cross validated using repeated random sub-sampling using 

unknown data from the test group. We observed a percent of variation (PV, the dispersion 

between the two clusters; see Methods) of 83.20% ± 1.33, a sensitivity of 0.74 ± 0.11 and a 

specificity of 0.92 ± 0.12 in the training group. The unsupervised KCA correctly classified 

73.1% [71.8% 74.4%] of ASD and 92.3% [91.4% 93.1%] of TD children (Fig. 2b). 

Our goal was to find optimum KCA settings, which best separate the ASD and the TD group to 

develop classification or diagnostic model. Therefore, we performed ROC curve analysis, to 

conduct ROC-supervised KCA 25,43 on training and test data with 500 bootstrap replications. 

The four most discriminant (Area Under the Curve [AUC] > 80%) acoustics parameters 

according to ROC analysis on the training group were mean F1, mean HNR, mean shimmer 

and jitter skewness. The ROC-supervised KCA setting yielded a considerable improvement 

over unsupervised KCA: as shown in Fig. 2, the ROC-supervised KCA had a PV of 63.85% ± 

3.00, a sensitivity of 0.89 ± 0.06 and a specificity of 0.94 ± 0.10; it classified correctly 89% 

[88.1% 90.0%] of ASD and 93% [92.7% 94.3%] of the TD group. ROC supervision allows 

decreasing false negatives. 

Classification of autistic children with respect to a control population 

Overall performance in the NWR task, measured on the entire set of items, was affected by 

diagnostic group (Welch ANOVA: F(3, 33.3) = 62.1; p < .001). It was higher for TD children 

than all other groups (all pairwise comparisons p < 0.001). Autistic children performed better 



 
 

 
 

than SLI (49.3% [6 76]) and IC children (42.3% [10 80]; all pairwise comparisons p < 0.001), 

who did not differ.  

Next, we evaluated the classification performance of voice acoustics in comparison not only to 

TD children but also to children with other disorders sharing common deficits with ASD: 

sensorineural hearing loss and Developmental Language Delay. As previously described, we 

conducted a ROC-supervised KCA on the data of all participants, considering children with 

DLD, children with CI and TD children in the same group of heterogeneous control group 

(CTRL). See Supplementary table 1 for details about the unsupervised KCA. 

Two acoustic parameters discriminated ASD from CTRL children according to ROC analysis: 

mean shimmer and F1, with an AUC, respectively of 85.23% and 82.36% (the separation is 

depicted in the Fig. 3c). The ROC-supervised KCA had a PV of 57.42% ± 3.04, a sensitivity of 

0.86 ± 0.05 and a specificity of 0.84 ± 0.08; it classified correctly 85.56% [84.5%-86.6%] of 

ASD and 84.2% [83.5%-85.0%] of the CTRL group. More specifically, in this latter 

heterogeneous population, 68.3% [66.8%-70.5%] of DLD, 85.6% [84.4%-86.8%] of CI and 

93.9% [93.1%-94.7%] of TD were correctly classified (Fig. 3b). 

Discussion 

Voice as clustering diagnostic approach? 

As classifier, the ROC-supervised KCA analysis, with classification performance around 90%, 

had an extremely high classification performance when separating ASD from TD children 

above previously reported classification value (between 80 and 89%4,6,22). Moreover, our 

method proves robust and reliable in discriminating autistic children from children without 

ASD, including other disorders (84%). 



 
 

 
 

Importantly, acoustic factors predictive of autism diagnosis are mainly ones related to control 

of the vocal folds’ vibrations (e.g., jitter, shimmer) rather than the f0 per se 5, consistent with 

clinical description of a peculiar voice quality in autism and previous observations 23. The 

pattern characteristics of autism, with respect to TD children, was lower average F1, higher 

HNR, higher shimmer and lower jitter skewness. A lower jitter skewness reflected a more 

normal distribution of jitter across nonwords, consistent with the observation of a greater 

stability in voice production 16; TD children presented positively skewed and less tailed 

distribution, highlighting that most vocal sounds had similar shimmer and jitter. Note that we 

found that children on the autism spectrum have a higher shimmer than NT children, contrarily 

to what was reported in adults 16, highlighting differences in the maturation of the vocal 

apparatus. A higher HNR suggested that vocal sounds of children on the autism spectrum are 

overall less noisy than those produced by TD children. The lower F1 in the ASD group did not 

reflect gender balance differences across groups as in the TD group male and female children 

had similar F1 values (938 Hz and 937 Hz). Note that when including the other pathologies, 

only mean F1 and mean shimmer remained classification features. Average F1 values were at 

the minimum 100 Hz lower in autistic children than in the other children; this is unlikely 

explained by gender imbalance as the second lowest F1 was observed for female (815 Hz) of 

the CI group, and F1 was the largest in male of the same group. F1 frequency is related to the 

length of the vocal tract 44 and tend to decrease with age; a lower F1 could reflect either an 

accelerated maturation of the vocal tract or differences in cranio-facial anatomy 45 and the 

presence of increased minor physical anomalies in autistic children 46. Shimmer, which is a 

measure of cycle-to-cycle variation in amplitude of the f0, presented an increased value of 

almost 16% in autism; although discriminant as in Guo et al., 6, the opposite result was found 

in children speaking mandarin. Shimmer differences could reflect morphological differences or 

differences in control of the vocal cords of autistic children and other children 47. Therefore, 



 
 

 
 

these voice features could be an external marker of atypical neurodevelopment occurring before 

birth 1. Note that in the current study we aimed to test whether voice could be used as a 

classification tool, and therefore we tested older children with stable diagnostic. Future studies 

should aim at studying the classification performance of infant’s cries at birth or within the first 

year of life to test the validity of voice acoustics as a true biomarker of autism. 

Previous studies that compared ASD to other populations are sparse and rely on different 

grouping strategies: Oller et al., 48 reported 62% accuracy in the classification of ASD children 

with DLD in a non-TD group, Bone et al., 49 reported a 78% of correct classification between 

ASD and DLD. Here, classifying children with DLD in the typically developing group, we 

obtained high classification rates of ASD not only with respect to TD, but also to other 

pathologies. The approach developed here combining feature selection, through ROC-

supervision, a clustering analysis and Monte Carlo cross-validation demonstrates that voice 

features have a strong, specific, diagnosis power for ASD: accuracy was well-above chance for 

children with DLD and children with CI. This provides new information on the classifying 

power of voice features in ASD, in relation to other neurodevelopmental disorders in particular 

(e.g., DLD). 

Central nervous system dysfunction affects vocal folds and by domino individual's voice. This 

is why automated voice analysis using recordings of patient speech is increasingly being used 

in psychiatry 50 and neurology as digital biomarkers of disease (i.e., in Major depressive 

disorder 51, schizophrenia 52, Parkinson’s disease 53, Alzheimer's Disease 54, …). However, this 

computational method should not be delegated solely to machines 55, even if it is based on 

formal reasoning, this method should be used in complementarity to clinical diagnosis of 

experts. 

This clustering method is a first step towards the development of an early diagnostic biomarker 

specific to ASD. Indeed, in this study, all children had had at some minimum, strong verbal 



 
 

 
 

capabilities and data were selected to have the most optimum dataset; future studies should 

assess the classification performance of vocal acoustic based on non-linguistic vocal samples 

acquired in less controlled environment. In addition, data presented here comes from children 

between 6 and 12 while, in high-income countries the average age of ASD diagnosis is around 

age 4 56, and around 5 worldwide 57. To be truly a biomarker of autism and understand its 

potential diagnostic value, these results should be replicated in younger children and possibly 

using cry features of babies. Moreover, in order to develop a sensitive diagnosis test, future 

works should include typical cases met in clinical practice, with disorders more often seen as 

comorbidities of ASD such as attention deficit hyperactivity disorder (ADHD), motor problems 

without social impairment, severe anxiety, and other behavior disorders 56. 

Conclusion 

Overall, our work suggests that easy-to-measure voice features, potentially linked to abnormal 

early neurodevelopment, can help in the diagnosis of autism spectrum disorder. Voice features 

in supervised clustering methods can be used as a potential feature classification for autism and 

paves the way to a new objective tool to aid clinical and differential diagnosis of ASD. The 

method developed here is in part automated, and in the future, a hand-in tool should be 

developed to automatically output diagnostic information. Early detection of ASD is crucial 

because it is likely to lead to an improved outcome. Thus, based on our simple clustering 

algorithm method, future work should investigate the acoustic cry features of baby as a potential 

biomarker for autism. 
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Figure and their legends 

 
Fig. 1. Experimental design. a, Spectrogram of one of the nonwords produced in the nonword 

repetition task. b, Average power spectrum. c, Amplitude waveform. d, Zoom on the amplitude 

waveform to illustrate shimmer and jitter. e, Distribution of mean f0 measured in the 20 selected 

nonwords for a skewness (left panel; skewness = 0), and kurtosis (middle panel; kurtosis 

normalize = 0) corresponding to a normal distribution and for altered (right panel) skewness 

(3.1) and kurtosis (9.5). 



 
 

 
 

 

Fig. 2. Classification of autistic children with respect to TD children (study 1). a, Procedure 

of inclusion of the participants and random dichotomization of the data in diagnostic model 

group and unknown data group. NRT: Nonword Repetition Task; ASD: Autism Spectrum 

Disorder; TD: typically developing children. b, Extrapolation of the classification on 100 

subjects. Participants with good diagnosis are surrounded by a green rectangle (93%), the 

misclassified by a red one. c, Illustration of the acoustic profile by radar chart according to the 

four most significant voice features, namely, harmonic-to-noise ratio (HNR), formant 

frequencies 1 (F1), skewness of Jitter [s(Jitter)] and Shimmer generated the best ROC-

supervised KCA setting. 



 
 

 
 

 

Fig. 3. Classification of autistic children with respect to a diverse control population (study 

2). a, Procedure of inclusion of the participants and random dichotomization of the data in 

diagnostic model group and unknown data group. OD: Other Disorders; NRT: Nonword 

Repetition Task; ASD: Autism Spectrum Disorder; CTRL: heterogeneous control group 

(composed of children with developmental language disorder [DLD] and cochlear implant 

[CI]). b, Extrapolation of the classification on 100 subjects. Participants with good diagnosis 

are surrounded by a green rectangle (84%), the misclassified by a red one. c, The top two most 

significant voice features, namely, formant frequencies 1 (F1) and Shimmer generated the best 

ROC-supervised KCA setting. Those three parameters are plotted against each other. 



 
 

 
 

Data availability 

All data generated and/or analyzed during this study are available from the corresponding 

author (ML) on reasonable request. For all clustering runs, we used R (http://cran.r-project.org). 

Code used in this manuscript is available on GitHub 

(https://github.com/FredericBr/VoiceMarker).   



 
 

 
 

Table 

  N 
Male / 

Female 
Age (years) 

FRI ± sem 

(Percentile) 

RPM ± sem 

(Percentile) 

NRT Score ± sem 

(%) 

ASD 29 29 / 0 8.42 ± 0.29 
88.6 ± 5.56 

(22) 

50.7 ± 13.8 

(7) 
80 ± 3.1 

TD 20 10 / 10 7.99 ± 0.33 
121.7 ± 4.43 

(15)  
96 ± 0.92 

DLD  15 8 / 7 8.15 ± 0.27 93 ± 3.14 (11) 
36.9 ± 10.7 

(4) 
49 ± 6.3 

CI 20 14 / 6 8.16 ± 0.16 
96.6 ± 4.26 

(20)  
42 ± 4.6  

              

 

Table 1: Demographic and clinical information of the sample. Numbers in brackets 

represent the number of participants contributing data to the measure. FRI: Fluid Reasoning 

Index calculated with the prorate sum of Block Design and Matrix Reasoning scores in WISC-

IV; RPM: Raven’s Progressive Matrices; NRT: Nonword Repetition Task; ASD: Autism 

Spectrum Disorder; TD: Typically developing children; DLD: children with Developmental 

language disorder and CI: children with Cochlear Implant.   



 
 

 
 

Supplemental information  

Table S1: Summary of the results of N = 500 KCA. Each clustering method was tested both 

in an unsupervised and ROC-supervised way. The percent of variation of a clustering method 

assesses the clustering fitting of that method in a given setting. ASD: Autism Spectrum Disorder 

participants; CTRL: heterogeneous control group (composed of children with developmental 

language disorder [DLD] and cochlear implant [CI]); CI95%: Confidence interval of 95%. Data 

are presented as mean (Standard Deviation). 

Table S2: Summary of the results of N = 500 KCA after acoustic rejection. Each clustering 

method was tested both in an unsupervised and ROC-supervised way. The percent of variation 

of a clustering method assesses the clustering fitting of that method in a given setting. ASD: 

Autism Spectrum Disorder participants; CTRL: heterogeneous control group (composed of 

children with developmental language disorder [DLD] and cochlear implant [CI]); CI95%: 

Confidence interval of 95%. Data are presented as mean (Standard Deviation). 

Supplementary Fig. 1. Number of bootstraps for K-means clustering Analysis decided by 

convergence criteria. The number of bootstrap samples that it takes to get a stable histogram 

is the optimal, increasing bootstraps will not change the sensitivity and specificity. Here for the 

study 2, 500 bootstrap iterations were used and materialized by red vertical dotted line. 


