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1 Introduction

The Eigenstate Thermalization Hypothesis (ETH) [1, 2] is expected to be one of the most
universal properties of chaotic quantum many-body systems, which captures important
aspects of thermalization (see [3] for a review). The ETH ansatz stipulates that the matrix
elements of simple operators (like few-qubit operators on chaotic spin chains) in energy
eigenstates adopt a universal structure

〈Ei|O |Ej〉 = fO
(
Ē
)
δij + gO

(
Ē, ω

)
e−S(Ē)/2Rij , (1.1)

where Ē and ω are the mean energy and energy differences, while fO and gO are smooth
functions and S is the microcanonical entropy. Rij are erratic pseudo-random numbers which
are fixed for any given Hamiltonian, but are often taken to be independent random variables
with a Gaussian distribution of zero mean and unit variance. This ansatz guarantees that
thermal (or microcanonical) one and two-point functions are correctly reproduced. While
an actual proof of the ETH remains to be found, it can be checked numerically (see for
example [4, 5]) and is widely expected to hold.

In recent years, it has been understood that taking the variables Rij to be uncorrelated
is in fact only an approximation, and can lead to inconsistencies if taken too seriously. For
example, this Gaussian ansatz with independent random variables will fail to reproduce
higher-point functions and, in particular, out-of-time-ordered correlation functions [6–8]
(see also [9, 10] for other issues that follow from having independent Gaussian variables).
Assuming connected four-point functions to be of order unity,1 [6] constrained the higher
moments of the matrix elements Oij with certain cyclic contractions

Oi1i2Oi2i3 . . . Oiki1 ∼ e
−(k−1)S , (1.2)

which gives a net weight for the connected k-th moment of O to be of order

Ok-th moment
ij ∼ e−

k−1
k
S . (1.3)

In this sense, one can view the ETH ansatz with Gaussian random variables as a leading
approximation that gets corrected by higher moments further suppressed in the entropy. It is
important to emphasize that even though the higher moments are suppressed, they can lead
to competing effects in correlation functions due to the extra sums over intermediate states.

Applying ETH-type ideas to chaotic conformal field theories is of great interest for
several reasons. It ties in with the understanding of quantum chaos in continuum quantum
field theory and has far-reaching consequences for quantum gravity through the AdS/CFT
correspondence [11]. Indeed, thermalization of a holographic CFT is closely connected
to black hole formation in the bulk. The state/operator correspondence of CFTs gives a

1In holographic CFTs, the fact that connected correlation functions are 1/N2 suppressed can lead to
extra polynomial suppressions in the entropy for the higher moments.
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particularly nice interpretation to the ETH ansatz [12]2

〈Ei|Oa |Ej〉 = 〈0|OiOaOj |0〉 ≡ Caij , (1.4)

since matrix elements of local operators in energy eigenstates are given by OPE coefficients,
where the scaling dimensions of the operators creating the state ∆i,j → ∞ (this is the
thermodynamic limit). On the other hand, the scaling dimension ∆a of the simple operator
is held fixed. The ETH ansatz is therefore a statement about the statistical distribution of
OPE coefficients.

However, conformal field theories raise questions that do not have a natural counterpart
in quantum mechanics. It is interesting to ask what the statistical distribution of other
OPE coefficients is, when either one or all three of the operators are taken to be heavy.
We call these OPE coefficients Cabi and Cijk. One may be tempted to view these as the
expectation value of a very complicated operator in a simple low-energy eigenstate and
as the expectation value of a complicated operator in a high energy state, respectively.
Unfortunately, thermalization does not obviously offer any insight into the structure of
these statistical distributions. Nevertheless, we expect that in a chaotic theory high energy
states should be very difficult to distinguish. This led to the conjecture that all OPE
coefficients involving heavy operators also have a pseudo-random distribution which is
described to leading order by a Gaussian [18].3 This conjecture is particularly relevant for
holographic CFTs, for which correlations of operator matrix elements and OPE coefficients
have attracted much interest due to the connection to wormholes [18–25].

Proving ETH or the OPE randomness hypothesis (ORH) is of course extremely difficult.
Unlike quantum mechanics where one can get numerical evidence for ETH by direct
diagonalization, this is extremely difficult for conformal field theories which always have
an infinite-dimensional Hilbert space. A direct numerical test of ETH using the conformal
bootstrap is still far beyond reach.4 However, crossing symmetry (and modular invariance
in d = 2) highly constrains the distribution of OPE coefficients and one can extract averaged
OPE and spectral densities from these constraints. These averaged OPE and spectral
densities are known as asymptotic formulas [27–38], the most famous of which is the Cardy
formula [39]. It is important to emphasize that these formulas are in no way proofs of the
ETH, since they cannot describe individual OPE coefficients and, in fact, they apply to all
CFTs including free or integrable theories. However, they are consistency checks to show

2A subtlety of the ETH in CFTs is that due to the presence of conformal symmetry, one should distinguish
primary and descendant operators. It is easy to see that descendants violate the ETH ansatz, so one should
really view it as applying to primary states only. This question becomes particularly subtle for 2d CFTs due
to Virasoro symmetry [13–17], but we still expect ETH to hold when applied to Virasoro primaries.

3This conjecture is meant to apply to chaotic CFTs, by which we mean any CFT that displays level
repulsion in the spectrum of primary operators (this is equivalent to displaying a linear ramp in the spectral
form factor). In d = 2, level repulsion should be understood for Virasoro primaries only. Level repulsion
may be equivalent to the CFT having c > 1 and no extended chiral algebra, but there currently is no proof
of such a statement.

4Some progress has been achieved analytically in large c 2d CFTs, assuming the dominance of the
Virasoro identity block in heavy states (see for example [26]). Note that this probes the diagonal entries of
ETH, but does not say anything about the individual off-diagonal matrix elements.
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d = 2 d > 2
CLLH |CLLH |2 X |CLLH |2 X

CLHH
CLHH X CLHH X

|CLHH′ |2 X |CLHH′ |2 X

CHHH |CHHH |2 X ?

Table 1. The status of the various asymptotic formulas known in CFT for light (L) or heavy (H)
operators. It only remains to constrain CHHH in d > 2, which will be discussed in [40].

1

2

3
4

5

6 2 1

3 4
5

C{skyline} = C134C126C523C · · · C{comb} = C114C223C345C · · ·

Figure 1. On the left the trivalent graph associated with the configuration of OPE coefficients in
the skyline channel. On the right, the comb channel.

that on average, one can obtain distributions compatible with the ETH, and therefore offer
important insights in the absence of numerics. The status of known asymptotic formulas
for the Gaussian part of the distribution of OPE coefficients is reported in table 1.

In this paper, we will address the following question: how do the higher moments of
the distribution of OPE coefficients behave, and how do asymptotic formulas constrain such
distributions? To the best of our knowledge, this is currently unexplored. We will focus on
CFTs in d = 2 and study higher moments of OPE coefficients with three heavy operators,
i.e. the Cijk. We will establish formulas for these OPE coefficients similar to 1.2 and 1.3
which were relevant for ETH. The observables we use to constrain these distributions are
higher genus partition functions. At the technical level, we rely on the Virasoro crossing
kernel [41, 42], extending the results obtained for the Gaussian part of the distribution
in [38]. For holographic CFTs, we will then investigate the implications of these higher
moments for the gravitational dual, in particular for wormhole geometries.

1.1 Summary of results

We study the higher moments of two families of OPE coefficients in two-dimensional CFTs.
The configurations we consider originate from two different conformal block decompositions
of the genus-g partition function. The two different decompositions correspond to the
“skyline” and “comb” channels depicted in figure 1. We will focus on irrational, compact,
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and unitary CFTs — i.e. theories without an extended chiral algebra that have c > 1, a
discrete spectrum and an infinite number of primary states — with a unique sl(2)-invariant
ground state.

Our first result is a formula for the average value of OPE coefficients in the skyline
channel5

C{skyline} ≈
(27

16

)3NC2 ∆1

e

(
2−5NC2

)
π
√

c−1
3 ∆1∆

5c−11
72 NC

1 , ∆i � c, Ji, |∆i −∆j |, (1.5)

where NC is the number of OPE coefficients in the average and Ji = |hi − h̄i| is the spin
of the primary operators Oi. Note that NC is always an even number. This formula is
valid for NC ≥ 2; however, it is interesting to note that it reduces to Cardy’s formula when
NC = 0. This result is the higher genus generalization of the formulas derived in [43] from
the genus-two partition function. Our result is universal in the sense that it only depends
on the central charge of the CFT and not on any other details of the theory. In section 3.1,
we use the modular invariance of the genus-g partition function to show that this equation
follows from the dominance of the identity operator in the appropriate cross-channel.

Our second result is a similar formula for the average value of OPE coefficients, this
time in the comb channel

C{comb} ≈
(27

16

)3NC2 ∆1

e

[
3
2

(
1−3NC2

)
π
√

c−1
3 −
√

2
(
NC
2 +1

)
π(αχ+ᾱχ)

]√
∆1∆

5c−11
72 NC

1 ,

∆i � c, Ji, |∆i −∆j |,
(1.6)

where αχ is a Liouville variable, defined in section 2, and χ is the lightest primary operator
in the theory that is not the identity. This time, the result is not a universal theory-
independent formula, but there is an explicit dependence on the light data of the theory. As
we will show, this comes from the fact that the contribution of the identity vanishes in the
cross-channel and we must thus go to the first non-trivial primary. A similar observation
was made in [28] for the average of Caij from torus one-point functions. A difference with
the torus one-point function is that no OPE coefficient of χ appears in the asymptotic
formula (other than C1χχ which is one in our conventions). This means that it is only
important that χ exists, but it is unimportant how it couples to other operators.

Throughout this paper, we limit our discussion to the case where the differences between
the weights of all heavy operators are held fixed. However, the techniques we use to extract
these results also work when considering other asymptotic limits. For instance, in the
skyline channel, 3.3 only assumes that the weights are large, i.e. hi � c. Thus, we could
also use this formula to study, for example, the limit where the conformal weight ratios
are held fixed instead of their differences. Moreover, we have cited the results here as a
function of scaling dimension, but the master formula 3.3 is a function of the left and right
moving weights. Therefore, one could also use it to explore the large-spin limit.

These asymptotic formulas should be understood as valid once averaged over a suitably
large energy band and so far, we have not stated what range of primary states we must

5Throughout this paper, the symbol ≈ means that in the limit of interest, the two expressions agree up
to a multiplicative constant.
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average over. A precise answer to this question can be given using Tauberian theorems;
see [32–34, 44–46] for recent applications of Tauberian theorems in this context. While the
asymptotic formulas are universal, the minimal window over which one should average can
be strongly theory-dependent, and the interpretation of the asymptotic formulas depend
on whether the theory is chaotic or not. For example, the minimal window will be much
smaller for chaotic theories than integrable ones. If we make the extra assumption that the
CFT is chaotic, we expect the typical OPE coefficients to be rather close to the averaged
value and we thus hope that the asymptotic formula gives a good estimate for the individual
coefficients.

We would also like to emphasize that the technology we develop in this paper works for
more general observables. For example, using the sequence of transformations we describe in
figures 6 and 9, we can easily find statistics for a broader class of families. The configuration
that is shown in figure 10 is one such example. It would be interesting to keep exploring
the dynamics of two-dimensional CFTs at large scaling dimension using these methods, and
eventually give a complete characterization of asymptotic formulas for 2d CFTs. We leave
this for future work.

This paper is organized as follows. In section 2 we present the notation that we will use
throughout this paper and review the Virasoro fusion and modular kernels with the example
of the four-point function on the sphere and the torus partition function. We discuss the
Moore-Seiberg construction of crossing kernels for general observables and use it to derive
the OPE statistics coming from the genus-three partition function. The main results of
this paper are derived in section 3, where we apply this technology to study the higher
moments of the OPE configurations associated with the skyline channel and the comb
channel. We also discuss the extent to which we can apply our methods to obtain a broader
set of statistics. In section 4, we investigate the consequences of these non-Gaussianities for
the square of partition functions and discuss the wormhole interpretation of our results. We
finish with some conclusions in section 5. We present most of the technical details about
the elementary fusion and modular kernels in the appendices.

2 Crossing kernels and crossing equations

This section introduces the Virasoro fusion and modular kernels coming from the sphere
four-point function and the torus one-point function, respectively. We use these examples
to set the notation and highlight the general strategy we use to find OPE statistics.

In what follows, we will write the central charge c in terms of the background charge Q
or the Liouville coupling b defined by c = 1 + 6Q2 and Q = b+ b−1. For c > 25, we choose
to work with 0 < b < 1. To label the representations, besides h, we also use P and α:

h = Q2

4 + P 2 = α(Q− α), α = Q

2 + iP. (2.1)

These definitions are redundant since they are invariant under the exchange of P → −P or
α→ Q− α. We will be working with the following conventions. For h ≤ (c− 1)/24, that is
h ≤ Q2/4, we choose α ∈ [0, Q/2] and P ∈ i[0, Q/2]. In particular, h = 0 corresponds to
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[
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34

]

Figure 2. The two conformal block decompositions of the four-point function with four different
primary operators. The fusion kernel is the change-of-basis matrix relating the two bases of conformal
blocks in the s- and t-channel.

α = 0 and P = iQ/2. We will call this regime the discrete range. For h ≥ (c− 1)/24 we
choose α ∈ Q/2 + iR and real P ; we call this the continuum range. We will refer to the
variables α and P as momenta. Whenever possible, we will use α in the discrete range and
P in the continuum. The use of the Liouville variables will simplify the expressions in the
rest of the paper.

2.1 The fusion kernel

To start, we revisit the arguments given in [38, 43] for the four-point function. We will work
in a slightly more general setting considering the four-point function depicted in figure 2
with four, potentially different, primary external operators. For now, we focus on the case
where the four external operators are in the continuum range: hi > (c − 1)/24. In the
next section, we will study what happens when some of the external operators are in the
discrete range.

Recall that we can decompose the four-point function in terms of s- or t-channel
conformal blocks

〈O1 (0)O2 (z, z̄)O3 (1)O′4 (∞)〉=
∑
Os
C12sC34sF21

34 (POs ;z)F 2̄1̄
3̄4̄

(
P̄Os ; z̄

)
=
∑
Ot
C14tC23tF23

14 (POt ;1−z)F 2̄3̄
1̄4̄

(
P̄Ot ;1−z̄

)
,

(2.2)

where the sum runs over all the primary operators in the theory. We define the spectral
density ρ21

34 (Ps, P̄s) of OPE coefficients as the distribution satisfying

∫ ∞
−∞

dPs
2
dP̄s
2 ρ21

34

(
Ps, P̄s

)
F (Ps) F̄ (Ps) =

∑
Os

C12sC34sF (POs) F̄
(
P̄Os

)
. (2.3)

Here F(Ps) does not refer to a specific conformal block, but it refers to any function that
can be written as a linear combination of the s- or t-channel conformal blocks. Note the
distinction between the continuous variable Ps and the discrete one POs . The integration is
defined over the real axis, and the density can be viewed as a sum of delta functions with
support at real or imaginary values of P .6 To account for the symmetry P → −P we have
included a factor of one half in the measure.

6For a discussion about delta functions with imaginary support, we recommend the appendices of [47].
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The fusion kernel (also known as the F-transform, crossing kernel or 6j symbol) Fst
relating the two conformal block decompositions is defined as the Fourier-like transform
satisfying

F23
14 (Pt; 1− z) =

∫ ∞
−∞

dPs
2 FPsPt

[
P2P1
P3P4

]
F21

34 (Ps; z). (2.4)

We can think of the conformal blocks as a basis of a vector space that contains the four-
point correlation function. The s- and t-channel conformal blocks simply correspond to
two different bases of the same vector space. The Virasoro fusion kernel is then defined as
the change-of-basis matrix relating the two decompositions. The fusion kernel is formally
defined when all external operators have momenta in the continuum, but we will analytically
continue away from this regime to study arbitrary primary operators. The remarkable fact
is that this kernel was written down explicitly in [41, 42] by Ponsot and Teschner. We study
its exact structure, properties, and different limits in appendix A.

The crossing equation is derived by plugging in equation (2.4) into the integral form of
the four-point function; we find that

ρ21
34 (Ps, P̄s) =

∫ ∞
−∞

dPt
2
dP̄t
2 FPsPt

[
P2P1
P3P4

]
FP̄sP̄t

[
P̄2 P̄1
P̄3 P̄4

]
ρ23

14

(
Pt, P̄t

)
=
∑
Ot
C14tC23tFPsPOt

[
P2P1
P3P4

]
FP̄sP̄Ot

[
P̄2 P̄1
P̄3 P̄4

]
.

(2.5)

By itself, formula 2.5 does not make much sense. This is because the sum does not converge
in the usual sense. Since the density of OPE coefficients is a sum of delta functions, it
does not have a smooth asymptotic behavior. This sum only converges in the sense of
distributions and requires some smearing against an appropriate function. We will write
many asymptotic formulas in this paper for the OPE densities, but these should always be
understood as being smeared over some energy window. This approach is familiar when
discussing the density of states, i.e. Cardy’s formula. Formally, the density of states is not
a function, it is a sum of delta functions and thus a distribution. The smooth formula we
consider when we write Cardy’s formula is a smeared version of the true density of states.
For more details, see [44].

An important property of the crossing equation is that the first non-vanishing term
in the sum dominates in the heavy limit Ps, P̄s → ∞. The technical result required to
show this is

logFPsPt
[

21
34

]
=−2P 2

s log4+π(Q−2αt)Ps+2
[
−c+1

8 +
4∑
i=1

hi

]
logPs+O(1), Ps→∞.

(2.6)
This equation was derived in [43] for the case of identified external operators O1 = O4
and O2 = O3. The generalization for arbitrary external operators is straightforward and
discussed in appendix A. Equation 2.6 implies that, in the heavy limit, the sum in the
formula 2.5 is well approximated by

ρ21
34

(
Ps, P̄s

)
≈ C14χC23χFPsPχ

[
P2P1
P3P4

]
FP̄sP̄χ

[
P̄2 P̄1
P̄3 P̄4

]
. (2.7)
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Here, χ is the lightest operator in the theory that couples to the external operators
Oi in the sense that C14χC23χ 6= 0. Corrections to this equation are exponentially
suppressed in Ps.

To extract the average value of the OPE coefficients C12sC34s from equation (2.7), we
note the following relationship between densities∫

dPs
2
dP̄s
2 ρ21

34

(
Ps, P̄s

)
F (Ps) F̄

(
P̄s
)

=:
∫
dPs
2
dP̄s
2 ρ0 (Ps)ρ0

(
P̄s
)
C12sC34sF (Ps) F̄

(
P̄s
)
,

(2.8)
where ρ0 corresponds to the density of primary operators. At large Ps, we know from
Cardy’s formula that

S(Ps) = log ρ0(Ps) = 2πQPs +O(1). (2.9)

Hence, after stripping off the density of states from formula 2.7, we have that

C12sC34s ≈ C14χC23χ16−∆se−π(Q+2αχ)PsP
2
(
− c+1

8 +
∑4

i=1 hi
)

s e−π(Q+2ᾱχ)P̄sP̄
2
(
− c+1

8 +
∑4

i=1 h̄i
)

s .

(2.10)
An interesting case is when the external operators are identified in pairs: O1 = O4 and
O2 = O3. This allows us to set αχ = α1 = 0 and leads to a universal formula for the average
value of C2

12s, see [38, 43]. If the operators are not identical, we have a non-universal formula
for the average value a slightly more general configuration of OPE coefficients. Corrections
to these equations are exponentially suppressed in Ps. Equation 2.10 is only valid when χ is
in the discrete range. If αχ ∈ Q/2 + iR, then one can no longer argue using equation (2.6)
that the first non-vanishing term in the formula 2.5 dominates the sum, as the other terms
are no longer exponentially suppressed.7

In the following sections, we will use the same arguments to prove more general statistics.
The computations will involve different limits of the fusion kernel. It is important to keep
in mind that this kernel has a rich structure, and its behavior changes depending on the
situation we are considering. We derive and review all the technical results we need about
this kernel in the appendices.

2.1.1 Discrete range external operators

When the external operators Oi are sufficiently light, hi < (c − 1)/24, the fusion kernel
develops a new subtlety arising from the poles in the internal momentum Ps. For generic
external dimensions and operators, the fusion kernel has eight semi-infinite lines of poles
extending in the upper half-plane and eight other semi-infinite lines extending in the
lower half-plane. These poles happen when Ps = ±i[Q/2 + i(P1 + P2) + nb + mb−1],
Ps = ±i[Q/2 + i(P3 + P4) + nb + mb−1], for n,m ∈ Z≥0, or at different permutations
of these zeros under the reflections Pi → −Pi. When P1, P2 or P3, P4 are light enough,
e.g. Re(Q/2 + i[P1 + P2]) < 0 and Im(P1), Im(P2) > 0, the poles of the kernel cross the

7This result can be seen from equation (2.6), where the exponential suppression comes from the linear
piece −2παtPs. The lightest operator will thus dominate in the sum, as long as Re(αt) < Q/2. However, if
the lightest operator already has Re(αt) = Q/2, then we no longer have an exponential suppression and
cannot separate the contribution of the lightest operator from all the other ones.

– 8 –
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Figure 3. The modular kernel relating the two different conformal block decompositions of the
torus one-point function.

integration contour. To maintain analyticity in the parameters, we must deform the contour
and include portions surrounding the relevant poles, see [43] for more details. These poles
contribute to the integral in equation (2.4):

F23
14(Pt;1−z) =−2π

∑
m

Res
Ps=Pm

{FPsPtF21
34(Ps;z)}+

∫ ∞
−∞

dPs
2 FPsPt

[
21
34

]
F21

34(Ps;z), (2.11)

where the sum runs over all the poles at imaginary Pm crossing the contour of integration.
The details of these new contributions are not relevant for our analysis. For this paper,

it suffices to note that we can add these terms explicitly in the crossing kernel [47]:

FPsPt
[

21
34

]
→ FPsPt

[
21
34

]
+
∑
m,a

xamδ
(a)(Ps − Pm). (2.12)

Here, xam = xam(Pi;Pt) are functions independent of Ps and we are fixing the contour of
integration to be over the real axis i.e., without contour deformations. For example, if
the poles are simple, only x1

m = ResPs=Pm{Fst} is nonzero; for double poles, we have two
contributions: x1

m = ResPs=Pm{Fst} and x2
m = limP→Pm(P − Pm)2FPt. Similar expressions

can be derived for higher poles. Unless there is a fine-tuning on the external parameters,
such as i(P2 +P1) = −Q/2−nb−mb−1, we do not expect to find poles at real values of Pm.
Moreover, poles are confined in the region P3 + P4 ≤ Ps ≤ P1 + P2. Hence, in the heavy
limit, Ps � Pi we can ignore these contributions. For the results we derived in the previous
section, this implies that 2.10 also holds for external operators in the discrete regime.

2.2 The modular kernel

We now introduce the Virasoro modular kernel or S-transform and briefly review how to
derive Cardy’s formula from it, see [38, 43, 44, 47–50] for more details and applications.

The modular kernel SPP ′ arises from the modular invariance of the torus one-point
function:

〈O0〉τ =
∑
O
COOO0F (PO; τ) F̄

(
P̄O; τ̄

)
= τ−h0 τ̄−h̄0

∑
O′
CO′O′O0F (PO′ ;−1/τ) F̄

(
P̄O′ ;−1/τ̄

)
,

(2.13)

where τ is the modular parameter of the torus. The two conformal block decompositions
are depicted in figure 3. The kernel is defined as the Fourier-like transform that decomposes
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the torus one-point blocks of one frame into its modular transformed frame:

F(P ′;−1/τ) = τh0

∫ ∞
−∞

dP

2 SPP ′ [P0]F(P ; τ). (2.14)

This kernel is known in closed form [51]; we study its properties in appendix B. As with
the four-point function, from the definition of the modular kernel we can write a crossing
equation between OPE densities

ρm
(
P, P̄

)
=
∫
dP ′

2
dP̄ ′

2 SPP ′ [P0]SP̄ P̄ ′ [P̄0]ρm
(
P ′, P̄ ′

)
=
∑
O′
CO′O′O0SPP ′ [P0]SP̄ P̄ ′ [P̄0].

(2.15)

In the heavy limit, Ps →∞, this sum is dominated by its first non-vanishing term

ρm
(
P, P̄

)
≈ CχχO0SPχ[P0]SP̄ χ̄[P̄0]. (2.16)

Here, χ is the first operator that couples with O0 in the sense of having a non-vanishing
OPE coefficient. The key result that establishes this formula was derived in [38] and reads

log SPP ′ [P0] = 2π
(
Q− 2α′

)
P + h0 logP +O (1) , P →∞. (2.17)

From equation (2.16), we find the following formula for the average value of the torus
one-point OPE coefficients

COOO0 ≈ CO0χχ

SPPχ [P0]SP̄ P̄χ [P̄0]
ρ0 (P ) ρ0(P̄ )

. (2.18)

If we set the external operator O0 to the identity, the first contribution comes from
χ = 1. Since COO1 = 1, we have that

ρ0 (P ) ρ0
(
P̄
)
≈ SP1[1]SP̄1[1] ∼ e2πQ(P+P̄). (2.19)

This is, of course, Cardy’s formula for the asymptotic density of primary states at large h
and h̄. If O0 is not the identity, equation (2.18) reads

COOO0 ∼ CO0χχ

SPPχ [P0]SP̄ P̄χ [P̄0]

ρ0 (P ) ρ0
(
P̄
) ∼ CO0χχe

−4π(αχP+ᾱχP̄)P h0P̄ h̄0 . (2.20)

This result was derived in [28, 52] using scaling and global blocks and it was then re-derived
in [38] using the modular kernel technology. Corrections to the formulas 2.19 and 2.20
are exponentially suppressed at large P . Note that equation (2.20) is only valid if χ, the
lightest operator that couples to O0, is in the discrete regime where α is real. If χ is in the
continuum, then αχ ∈ Q/2 + iR and corrections due to the propagation of other operators
become relevant.
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1 3 6

2

4

5
F33′

[
16
25

]

1 3′ 6

2

4

5
F22′

[
13′

1 4

]
×F55′

[
3′ 6
4 6

]

1 3′ 6

2′

4

5′

F3′3̃
[

5′ 4
2′ 4

]
1

3̃

6

2′

4

5′

S11′ [2′]
×S66′ [5′]
×S44′ [3̃]

1′

3̃

6′

2′

4′

5′

Figure 4. The crossing kernels relating the different pair-of-pants decompositions or channels of
the genus-three Riemann surface. From left to right the names of these channels are: skyline, sunset,
necklace, and comb. The trivalent graphs associated to each decomposition are shown below each
surface. Note that the fusion kernel may change the topology of the graph while the modular kernel
always leaves the diagram invariant.

2.3 Prelude: the genus-three partition function

To discuss more general observables on different Riemann surfaces, we can use the state-
operator correspondence to sew together multiple copies of the punctured sphere.8 For
example, the four-point function is built by sewing two three-point functions at a point, and
the torus one-point by sewing two different points on the same sphere. In general, any n-point
correlation function on a genus-g Riemann surface can be decomposed into a set of 2g+n−2
three-point functions (topologically equivalent via the operator-state correspondence to a
pair of pants). Different cuttings of the same surface correspond to different conformal
blocks decompositions; however, all cuttings evaluate to the same correlation function. The
general idea is to view the various decompositions as a distinct choice of basis. The crossing

8Recall that the three-point coefficients C123 correspond to the correlation function 〈O1O2O3〉 of three
operators inserted on the sphere.
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kernel responsible for the change of basis can always be built from the elementary fusion
and modular kernels using the Moore-Seiberg construction [53, 54]. We show how this
works with an example.

We consider the genus-three partition function depicted in figure 4. Each step shows
a different cutting of the surface and the elementary crossing kernel relating them. From
last to first, we have two combs, a necklace and a sunset channel decomposition. These
are common names found in the literature. We call the initial channel skyline. All these
channels have their analogs at higher genus. At genus two, the sunset and skyline channel
degenerate into the same pair-of-pants decomposition; this also happens with the comb and
necklace channels. At genus two, the necklace and comb channels are commonly referred to
as the dumbbell channel. We will adhere to this terminology throughout this paper.

The partition function on the skyline and comb channels reads

Z3 =
∑
O1... O6

C124C136C456C235FS (Pi) F̄S
(
P̄i
)

=
∑

O′1... Õ3... O′6

C1′1′2′C4′4′3̃C6′6′5′C2′3̃5′FC
(
P ′i
)
FC

(
P̄ ′i

)
.

(2.21)

Here, we have suppressed the dependence of the blocks on the moduli since we do not need
them. The crossing equation now reads

ρ
(3)
S (Pi) =

∫
dP ′3
2

∫
dP̄ ′3
2

∑
O′1... Õ3...O′6

C1′1′2′C4′4′3̃C6′6′5′C2′3̃5′K{Pi}{P ′3;P ′1... P̃3... P ′6}
K{P̄i}{P̄ ′3;P̄ ′1...

˜̄P3... P̄ ′6}
.

(2.22)
Where ρ(3)

S (Pi) is the spectral density of OPE coefficients in the sunset channel at genus
three. Unlike the previous examples, this time we have an extra step in the transformation,
so we are left with a combination of sums and integrals. The full crossing kernel reads

K{Pi}{P ′3;P ′1... P̃3... P ′6}

= FP3P ′3

[
P1P6
P2P5

]
FP2P ′2

[
P1P

′
3

P1P4

]
FP5P ′5

[
P

′
3P6
P4P6

]
FP ′3P̃3

[
P

′
5P4
P

′
2P4

]
SP1P ′1

[P ′2]SP6P ′6
[P ′5]SP4P ′4

[P̃3]. (2.23)

Note that the three modular kernels exponentially suppress the momenta 1′, 6′ and 4′,
which pushes them to be the identity. The variables 2′, 5′ and 3̃ are then also forced to be
the identity, but this time by the OPE coefficients C1′1′2′ , C4′4′3̃, and C6′6′5′ . We see that
setting O′1, O′4 and O′6 to the identity automatically sets the operators O′2,O′5 and Õ3 to
the identity as well.

Having all the primed variables but 3′ set to the identity reveals a delta function in the
crossing kernel (see formula A.27 in the appendix)

F3′1
[
14
14

]
= δ

(
P ′3 − P4

)
eO(1). (2.24)

This delta function allows us to evaluate the integral in the crossing equation and shows
that the spectral density of OPE coefficients in the skyline channel at genus three is well
approximated by

ρ
(3)
S (Pi) ∼ ρ0(P1)ρ0(P4)ρ0(P6)FP3P4

[
P1P6
P2P5

]
FP21

[
P1P4
P1P4

]
FP51

[
P4P6
P4P6

]
× (a.c.). (2.25)
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where a.c. stands for the antiholomorphic counterpart of this equation. This result is valid
when P1, P6, P4, P̄1, P̄6, P̄4 � c and corrections are exponentially suppressed in at least one
of these variables. Stripping off the corresponding densities of OPE coefficients yields the
following universal result

C124C136C456C235 ∼
F34
[

16
25

]
F21

[
14
14

]
F51

[
46
46

]
ρ0(P2)ρ0(P3)ρ0(P5) × (a.c.). (2.26)

Since we have multiple internal weights, we can study this equation in distinct heavy limits.
In this paper, however, we are interested in the limit Pi = P + δi and P � c, δi. Here, we
have the following results for the fusion kernel:

logF34
[

16
25

]
= 2(δ3−δ4)P log 27

16 +O(1), (2.27)

logF21
[

14
14

]
= 3P 2 log 27

16 +
(
−πQ+2(δ2+δ1+δ4) log 27

16

)
P+ 5Q2−1

6 logP+O(1). (2.28)

The first equation is derived in appendix A.2, while the second is one of the main results
of [38]. From these expressions, we can write

log ρ(3)
S ∼ 6P 2 log 27

16 + 4πQP + 5Q2 − 1
3 logP + (a.c.) , (2.29)

and thus conclude that

C124C136C456C235 ≈
(27

16

)6∆
e−8πQ(P+P̄) (PP̄) 5Q2−1

3 . (2.30)

Here, we have set
∑
δi = 0. This result is universal, meaning that it only depends on the

central charge of the theory. Note that the exponential suppression corresponds to a factor
of e−4S , which is further exponentially suppressed compared to the disconnected product
of two heavy-heavy-heavy C2

123 factors, which together would scale as to e−3S . This is the
first clear sign that the non-Gaussianities are exponentially suppressed in the distribution
of OPE coefficients.

3 Statistics at higher genus

We now study the statistics of OPE coefficients associated with the skyline and comb
channels. For this, we use two transformations that simplify these channels at arbitrary
genus. At the end of this section, we explain how to use this technology to find the statistics
of more general OPE configurations. The observable we use to derive these results is the
genus-g partition function. We focus on the heavy limit with large conformal weights and
fixed differences — i.e. Pi − δi = P and P � c, δi.

3.1 The skyline channel

Our analysis starts with the genus-g partition function in the skyline channel. As in the
previous example, we omit the dependence of this function on the moduli and focus on the
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1′

2

34

5

S33′◦F22′ 3′

1′

5

2′
6 6 6

4

Figure 5. The sequence of transformations we use to solve for the statistics of the OPE coefficients
associated with the skyline channel.

∼ F15
[

43
62

]
F21

[
53
53

]
S31[1]× K̄

4

56
1 3

2

4

56

Figure 6. A summary of the process we use to simplify the skyline channel statistics. This is
a relationship between two different OPE densities. Here, K̄ corresponds to the antiholomorphic
counterpart of the crossing kernel. Corrections to this relation are exponentially suppressed at large
values of the internal momenta P3, P̄3.

internal momenta Pi, P̄i

Zg =
∑

O1,...,O3(g−1)

C{skyline}FS(POi)F̄S(P̄Oi) =
∫ 3g−3∏

i=1

dPi
2
dP̄i
2 ρ

(g)
S (Pi, P̄i)FS(Pi)F̄S(P̄i).

(3.1)
Figure 5 shows the crossing transformations that we will study. The crossing equation that
follows from these transformations reads

ρ
(g)
S =

∫
dP ′1
2
dP ′2
2
dP ′3
2
dP̄ ′1
2
dP̄ ′2
2
dP̄ ′3
2

(
FP1P ′1

[
P4P3
P6P2

]
FP2P ′2

[
P

′
1P3
P5P3

]
SP3P ′3

[P ′2]× K̄

×
∑

O′1,O
′
2,...

C3′3′2′C1′2′5C1′46C · · ·
[
δ(P ′3 − PO′3)δ(P ′2 − PO′2) · · ·

] )
=

∑
O′1,O

′
2,O
′
3

FP1PO′1

[
P4P3
P6P2

]
FP2PO′2

[
PO′

1
P3

P5 P3

]
SP3PO′3

[PO′2 ]× K̄

× C3′3′2′
∑

O4,O5,...

C1′2′5C1′46C . . . [δ(P4 − PO4)δ(P5 − PO5) · · · ] .

(3.2)

Here, K̄ stands for the antiholomorphic counterpart of the crossing kernel and we have made
explicit the difference between the discrete POi variables in the sum, and the continuum Pi
variables in the integrals and delta functions. This time, we have also made explicit that
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the structure of the spectral densities of OPE coefficients is a sum over delta functions
whose weights are OPE coefficients.

As with the genus-three example, the modular kernel SP3PO′3
[PO′2 ] is exponentially

suppressed at large P3. Despite being part of the crossing kernel, the variables P ′2 and
P ′1 are not exponentially suppressed or enhanced. This makes O3′ = 1 the dominant
contribution in the sum over O3′ . Note that 3′ = 1 implies that 2′ = 1 and 1′ = 5 via the
OPE coefficients C3′3′2′ and C1′2′5. After substituting these variables in the first term of
equation (3.2), we are left with the following recursion formula for the genus-g spectral
density of OPE coefficients in the skyline channel

ρ
(g)
S ≈ F15

[
43
62

]
F21

[
53
53

]
S31[1]× K̄ ρ

(g−1)
S . (3.3)

Let us make a few comments about equation (3.3). First, although we derived this
equation in the context of the skyline channel OPE density, the approach we used to remove
one of the heavy lines in the graph of figure 5 is more general. Figure 6 summarizes the
process we are using. In the heavy limit, we can always use this sequence of transformations
to remove one heavy line from the left diagram in figure 6. The resulting density times the
three kernels is a good approximation of the previous density up to additive corrections
that are exponentially suppressed in the heavy momentum P3. Second, the formula 3.3
and the process described in figure 6 only require us to have heavy momenta so we can use
these formulas to study different asymptotic limits.

In the limit of large dimension but fixed differences, the three kernels simplify to9

logFP1P5

[
P4P3
P6P2

]
FP21

[
P5P3
P5P3

]
SP31[1] = 3P 2 log 27

16 +πQP+ 5Q2−1
6 logP+O(1). (3.4)

Now, we can use the genus-three OPE density in equation (2.29), as our base step to solve
the recursion relation in 3.3; we find that

log ρ(g)
S ∼ 3(g − 1)P 2 log 27

16 + (g + 1)πQP + (g − 1)5Q2 − 1
6 logP + (a.c.) . (3.5)

To get the OPE statistics associated with this channel, we have to subtract 3(g − 1) factors
of the entropy. The final result is

C{skyline} ≈
(27

16

)3NC2 ∆
e

(
2−5NC2

)
πQ(P+P̄) (

PP̄
) 5Q2−1

12 NC
, (3.6)

where we have written our result in terms of the number of OPE coefficients in the average
NC = 2(g − 1). This formula is valid for NC ≥ 2, or equivalently, g ≥ 2. At NC = 2, the
result simplifies to the average value of the squared of OPE coefficients derived in [38].

3.2 The comb channel

We now derive a recursion formula for the comb channel OPE statistics. The base step
of this recursion formula is the genus-two partition function, this time in the dumbbell
channel.

9In this discussion, we omit the contributions coming from the δi variables since they only affect the
order one terms in the final result.
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1 1′ 1′2 2 2′3 3′ 3′

S11′ [2]S33′ [2] F22′
[

3′ 3′

1′ 1′

]
Figure 7. The different pair-of-pants decompositions of the genus-two Riemann surface and the
crossing transformations that relate them. The leftmost cutting corresponds to the dumbbell channel
and the rightmost to the sunset channel.

3.2.1 At genus two

The sequence of transformations we will consider is depicted in figure 7. In the dumbbell
and sunset channels, the partition function reads

Z2 =
∑

O1O2O3

C112C233FDFD =
∑

O′1O
′
2O
′
3

C1′2′3′C1′2′3′FSFS . (3.7)

The crossing equation relating the two different OPE densities is

ρD(Pi, P̄i) =
∑

O′1O
′
2O
′
3

C2
1′2′3′ SP1PO′1

[P2]SP3PO′3
[P2]FP2PO′2

[
PO′

3
PO′

3
PO′

1
PO′

1

]
× K̄. (3.8)

This time, we are considering a different limit of the modular kernel. Like the fusion kernel,
the modular kernel has a rich analytic structure and its behaviour changes depending on
the asymptotics. In the large-weight limit with fixed differences, the modular kernel has
the following behaviour (see appendix B)

log SP1P ′1
[P2] =

(
−4 log 2 + 9 log 3

2

)
P 2 +

[
π
(
Q− 2α′1

)
+ 2δ1 log 27

16 + δ2 log 27
]
P

+
(

1 + 7Q2

6 − 4h′1

)
logP +O(1), P1, P2 � c, |P1 − P2|.

(3.9)

From this expression, we note that the momenta P ′1 and P ′3 in the crossing equation are
exponentially suppressed at large P . The momentum P ′2 is, on the other hand, exponentially
suppressed by the fusion kernel. Unlike the genus-three partition function, this time the
identity contribution vanishes, meaning that our results will depend on the light data of
the theory. There are several ways to show this, a particularly simple one is to use the
formula A.27 in the appendix, the result is

FP21

[
11
11

]
= δ(P2 − iQ/2). (3.10)

Since we are working in the heavy limit P2 � c and the other two terms SP11[P2] and
SP31[P2] in the crossing kernel are regular, this first contribution to the sum vanishes. From
the next three corrections to the identity kernel in the crossing equation, two of them
are zero

F2χ
[
χχ

1 1

]
= F2χ

[
1 1
χχ

]
= δ(P2 − iQ/2) = 0. (3.11)
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Figure 8. The sequence of transformations we use to find the statistics of the OPE coefficients in
the comb channel.

These results follow from equation (A.31). Thus, we are left with the relatively simple
expression

ρD(Pi, P̄i) ≈ SP1Pχ [P2]SP3Pχ [P2]FP21

[
PχPχ

PχPχ

]
× SP̄1P̄χ

[P̄2]SP3P̄χ
[P̄2]FP̄21

[
P̄χ P̄χ

P̄χ P̄χ

]
. (3.12)

This result depends on the lightest operator in the theory, regardless of whether it couples
or not to the heavy momenta. This formula can be seen as a consequence, via modular
invariance, of the OPE data C2

χχ1 = 1.

After substituting the asymptotics of the crossing kernels in equation (3.12), we find

log ρD(Pi, P̄i) ≈ 3P 2 log 27
16 + π(3Q− 4αχ)P + 5Q2 − 1

6 logP + (a.c.). (3.13)

Here, we have set (δ1 + δ2 + δ3) = 0. The final result is

C112C233 ≈
(27

16

)3∆
e−π(3Q+4αχ)P−π(3Q+4ᾱχ)P̄

(
PP̄

) 5Q2−1
6 . (3.14)

Note that the modular and fusion kernels only guarantee an exponential suppression if
the lightest operator in the sum, this time corresponding to the lightest primary operator
in theory that is not the identity, is in the discrete range (hχ < c−1

24 ). If this is not the
case, then corrections to equation (3.14) become relevant. It is interesting that this is the
expected behaviour in a putative theory of pure gravity where there are no light operators
in the spectrum. We will return to this question in the discussion section.
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4 5
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Figure 9. The general process used to simplify the comb channel. Here, K̄ corresponds to the
antiholomorphic counterpart of the crossing kernel. This relationship is valid in the limit where
Pi � c, |Pi − Pj | and corrections are exponentially suppressed in Pi.

3.2.2 At higher genus

The crossing transformations we will study in this section are described in figure 8. We
start by applying a modular transformation to the first loop in the graph

ρ
(g)
C =

∫
dP ′1
2
dP̄ ′1
2

(
SP1P ′1

[P4]SP̄1P̄ ′1
[4̄]

∑
O′1,O2,...

C1′1′4C223C345C · · ·
[
δ(P ′1−PO′1)δ(P2−PO2) · · ·

])
≈SP1Pχ [P4]SP̄1P̄χ

[P̄4]
∑

O2,O3,...

Cχχ4C223C345C · · · [δ(P2−PO2) · · · ]

=: SP1Pχ [P4]SP̄1P̄χ
[P̄4]ρ(g)

χ .

(3.15)

In the last line of this equation, we have defined the OPE density ρ(g)
χ . Now, we use the

remaining transformations to derive a recursion formula for this density. The result of the
transformation is shown in figure 6.

ρ(g)
χ =

∫
dP ′2
2
dP ′3
2
dP ′4
2
dP̄ ′2
2
dP̄ ′3
2
dP̄ ′4
2

(
SP2P ′2

[P4]FP3P ′3

[
P

′
2P

′
2

P4P5

]
FP4P ′4

[
PχPχ

P
′
2 P

′
3

]
× K̄

×
∑
O′2O

′
3...

Cχ2′4′Cχ4′3′C2′3′5C · · ·
[
δ(P ′2 − PO′2)δ(P ′3 − PO′3) · · ·

] )

=
∑

O′2O
′
3O
′
4

SP2PO′2
[P3]FP3PO′3

[
PO′

2
PO′

2
P4 P5

]
FP4PO′4

[
Pχ Pχ

PO′
2
PO′

3

]
× K̄

× Cχ2′4′Cχ4′3′
∑

O5,O6,...

C2′3′5C · · · [δ(P5 − PO5)δ(P6 − PO6) · · · ] .

(3.16)

In the sum, P ′2 and P ′4 are suppressed by the modular and fusion kernels, respectively. As
in the genus-two partition function, the identity contribution vanishes. Intuitively, this
happens because in the second step of figure 8 the OPE coefficient C2′2′3 is zero if we
take 2′ = 1. Moreover, the third diagram includes the OPE coefficient C2′45 which is zero
unless P4 = P5. These OPE coefficients do not appear in the final configuration shown
in equation (3.16), but their data are kept in the crossing kernels. We can extract this
information step by step.
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Setting 2′ = 1 in equation (3.16), implies via the final OPE, that 4′ = χ and 3′ = 5. So
we have from one of the fusion kernels

F4χ
[

5 1
χχ

]
= δ(P4 − P5); (3.17)

recovering one of the constraints. The other fusion kernel then reads,

F35
[
11
55

]
= 0. (3.18)

This corresponds to the vanishing of the OPE coefficient C2′2′3 as we take 2′ = 1.
The first nonzero term in the sum in equation (3.16) happens when 2′ = χ and P ′4 = 1.

This sets, via the OPE coefficient Cχ4′3′ , 3′ = χ. Meaning that, to leading order, we have
the following recursion formula

ρ(g)
χ ≈ S2χ[3]F3χ

[
χχ

4 5

]
F41

[
χχ

χχ

]
× K̄ ρ(g−1)

χ . (3.19)

Corrections to this equation are exponentially suppressed in P . In terms of comb-channel
OPE statistics, this equation reads

ρ
(g)
C ≈ SP2Pχ [P3]FP3Pχ

[
PχPχ

P4 P5

]
FP41

[
PχPχ

PχPχ

]
× K̄ ρ

(g−1)
C . (3.20)

The base step of this recursion are the statistics of the genus-two comb channel (i.e. the
dumbbell channel). Recall that we are working in the limit Pi − δi = P →∞. Here, the
crossing kernels simplify to10

logSP2Pχ [P3]FP3Pχ

[
PχPχ

P4 P5

]
FP41

[
PχPχ

PχPχ

]
= 3P 2 log 27

16 +π

2 (3Q−4αχ)P+ 5Q2−1
6 logP+O(1) ,

(3.21)
where we have used the asymptotics of the fusion kernel with two light external operators
discussed in appendix A. Solving the recursion formula 3.20 yields

log ρ(g)
C ∼ 3(g − 1)P 2 log 27

16 + 1
2gπ(3Q− 4αχ)P + (g − 1)5Q2 − 1

6 logP + (a.c.). (3.22)

Dividing by the corresponding densities, we arrive at the following formula for the average
value of OPE coefficients in the comb channel configuration

C{comb}≈
(27

16

)3NC2 ∆
e

[
3
2

(
1−3NC2

)
−2
(
NC
2 +1

)
αχ
Q

]
πQP+

[
3
2

(
1−3NC2

)
−2
(
NC
2 +1

)
ᾱχ
Q

]
πQP̄ (

PP̄
) 5Q2−1

12 NC
,

(3.23)
where we have expressed the result in terms of the number of OPE coefficients in the average
NC . This time, the contribution of two extra OPE coefficients to the average corresponds
to an extra factor of e−

9
2πQ(P+P̄ ), which yields a suppression of e−

9S
4 plus non-universal

corrections. Comparing this result with the skyline channel, where two additional coefficients
10As with the skyline channel, we omit the contributions coming from the δi variables, since they only

contribute to the order-one terms in the final result.
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∼ S ◦ F ◦ F

Figure 10. An example of another channel that can be simplified using the skyline and comb
reductions.

correspond to a suppression of e−
5S
2 , we see that the OPE statistics not only depend on the

topology of the Riemann surface in the partition function, but also on the topology of their
trivalent diagram.

3.3 Estimating other channels

We can use the transformations we have studied so far to solve different OPE configurations.
The relationships described in figures 6 and 9 are valid regardless of the specific channel.
The skyline recursion in figure 6 only requires the heavy momenta Pi and is valid in different
asymptotic limits. The comb recursion in figure 9 is valid when the differences between the
momenta Pi are held fixed.

As an example of another channel that can be simplified using these transformations,
consider the channel depicted in figure 10. This channel can be solved by repeatedly using
the skyline recursion formula. Solving for the statistics of this channel in the heavy limit
where the differences between the momenta are held fixed is straightforward. We start
by counting how many loops we need to contract from the diagram in order to get the
genus-two dumbbell channel; this channel corresponds to the base step of this family of
statistics. For each loop, we contract we have to multiply the base-step OPE density by the
factor given in equation (3.4). The last step is to divide by as many factors of the density
ρ0(P, P̄ ) as heavy lines in the diagram, for an n-punctured Riemann surface of genus g, this
number is 2g + n− 2. The end result for this channel is

C ≈
(27

16

)3(g−1)∆
eπ[(7−5g)Q−2αχ]P+π[(7−5g)Q−2ᾱχ]P̄

(
PP̄

)(g−1) 5Q2−1
6 . (3.24)

In general, we can use these methods to simplify densities with three heavy lines
attached to one loop or two loops attached to a single heavy line. Note that this method is
valid even if the observable is not just a partition function, but also a correlation function
since the crossing kernels act locally on a few heavy lines.

4 Euclidean wormholes and typicality

We now discuss the implications of our results for holography and Euclidean wormholes.
In [18], the proposed interpretation of Euclidean wormholes was that it corresponds to
treating the OPE coefficients of the CFT as random variables rather than using the true
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microscopics. Indeed, a low energy observer11 cannot distinguish between the black hole
microstates (or precisely compute their energy or OPE coefficients), but can nevertheless
compute the distribution of such microstates over sufficiently large energy windows. We
now explain the interpretation of the results presented in this paper from that point of view.

To be concrete, we will focus our attention on computing the product of two genus-two
partition functions, and revisit the genus-two wormhole described in [55]. Consider a CFT2
living on two disconnected copies of a genus-two surface. The partition function of this
theory is

Zg=2×g=2(βi) = (Zg=2(βi))2 =
∑
O1···O6

C2
123C

2
456|FS ({hO123},{βi}) |2|FS ({hO456},{βi}) |2

6∏
i=1

q∆i
i ,

(4.1)
where for simplicity, we study the case where the two genus-two surfaces share the same
moduli βi, where qi = e−2πβi . The general prescription for computing this object in the bulk
is to find the solutions of the gravitational equations of motion with appropriate boundary
conditions:

Zgrav
g=2×g=2(βi) =

∫
∂M=Σ(βi)×Σ(βi)

Dg e−SEH(g) =
∑
g∗
e−SEH(g∗)+c−1S

(1)
EH(g∗)+···, (4.2)

Σ(βi)× Σ(βi) corresponds to the two disconnected genus-two surfaces at the boundary of
AdS3 and SEH is the Einstein-Hilbert action

SEH = 1
16πGN

∫
d3x
√
g

(
R+ 2

`2

)
, (4.3)

where ` is the AdS3 radius. The central charge of the dual CFT and the AdS3 radius are
related via [56]

c = 3`
2GN

. (4.4)

The sum over g∗ is over all classical solutions to the equations of motion, and S(1)
EH is the

one-loop correction to the classical action.12 The terms inside the ellipsis denote the infinite
series of subleading perturbative corrections.

The sum over geometries includes disconnected solutions known as handlebodies, as
well as Euclidean wormholes connecting the two asymptotic boundaries. The simplest
connected geometry is the genus-two wormhole, a locally AdS3 metric whose metric is

ds2

`2
= dρ2 + cosh2 ρdΣ2

g , (4.5)

where Σg is the constant curvature metric on the genus-two surface. The on-shell action of
this geometry vanishes (see [59]).

11By this, we mean any physical quantity that can be calculated with the low-energy effective action of
gravity, i.e. by the Einstein-Hilbert action.

12There seem to be cases where including non-saddle geometries in the path integral over metrics still
yields sensible results — see for example [57, 58]. Here, we will only discuss the path integral in terms of
saddle-points, but it would be interesting to understand the role of non-saddle geometries better.
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Connected contributions like the genus-two wormhole seem to destroy the factorization
of the CFT partition function on two disconnected manifolds, a puzzle raised in [55]. The
proposal put forward in [18] states that gravity is not computing the exact partition function
of its dual CFT 4.1; it only computes an approximation

Zgrav
g=2×g=2(βi) =

∑
O1···O6

C2
123C

2
456|FSF̄S |

2
6∏
i=1

q∆i
i . (4.6)

Note that this is not the exact and microscopic CFT answer, which obviously factorizes.
We have replaced microscopic OPE coefficients with their averaged value in a distributional
sense. One can then compute the connected contribution from the CFT point of view

Zwormhole
g=2×g=2 = Zgrav

g=2×g=2 −
(
Zgrav
g=2

)2
=

∑
O1···O6

(
C2

123C
2
456 − C2

123 C2
456

)
|FSF̄S |2

6∏
i=1

q∆i
i .

(4.7)
At high temperatures βi → 0, the sum is dominated by states of very high energy and we
can use our asymptotic formulas for the averaged value of OPE coefficients. Taking into
account the Gaussian part of the statistical distribution, [18] found that the on-shell action
of the genus-two wormhole was correctly reproduced.

The question we would now like to ask is how the non-Gaussianities computed in
this paper refine this computation. To do so, we will introduce a generating function for
the statistical distribution of OPE coefficients, which can be justified by assuming certain
typicality properties of heavy states in CFTs.

4.1 Typicality and a generating function

While the ETH is still a conjecture for chaotic quantum systems, it can be “derived” by
assuming that simple operators are essentially random operators inside a given microcanoni-
cal window (see for example [3]). In other words, the change of basis between the eigenbasis
of the operator and that of the Hamiltonian is a random unitary.13 For example, we have

〈m|O|n〉 =
∑
i

Oi 〈m|i〉 〈i|n〉 . (4.8)

If we assume that the change of basis is random, we can replace the overlaps 〈m|i〉 by
unitaries, which should be averaged over. We then find

〈m|O |n〉 =
∑
i

OiUmiU∗in = δm,nO , (4.9)

where O = e−S
∑
iOi. By assuming that the change of basis is a random unitary, we have

derived the diagonal part of ETH. One can proceed in a similar fashion for the variance
of O, and find the correction that scales as e−S/2 [3]. In fact, one can proceed to study
k-point correlation function using typicality, which is precisely the venture undertaken by

13In the ergodic limit, i.e. if we restrict to matrix elements of energy eigenstates separated by only a few
units of mean level spacing, then one can derive that simple operators are random operators using an EFT
of quantum chaos [23, 60].
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Foini and Kurchan to study the higher-point moments of matrix elements [6]. A slight
complication that appears within this framework (which will also be relevant for the HHH
OPE coefficients) is that one must be careful whether there are repeated indices or not.
Typicality also determines the average over repeated indices, but with a slightly more
complicated structure. For example, we have [6]

OijOjiOikOki = OijOji OikOki +OijOjmOmkOki
∣∣∣
m=i

. (4.10)

For OPE coefficients with three heavy indices, the notion of a random operator acting on
the microcanonical Hilbert space is much less clear.14 However, one can still assume a form
of typicality where we take all three indices of the OPE coefficients to be randomized with
unitaries. One can even give a physical interpretation of HHH OPE coefficients as operators
acting on a tripled Hilbert space [61].

Here, instead of studying a typicality-based average of OPE coefficients and carefully
track indices that are repeated or not, we will introduce a generating function that keeps
track of this in a built-in way. Consider the following generating function15

Z(Jabc) = exp
[
f1(∆)JabcJabc + f2(∆)JaabJbcc +

5∑
i=1

gi(∆)JJJJ |i-type contraction

]
,

(4.11)
where the i-type contractions sums over are all possible connected ways to contract the
3-tensor J . Note that these are in one-to-one correspondence with the 5 possible channels to
decompose a genus-three Riemann surface.16 Because the OPE coefficients are symmetric
under the exchange of all 3 indices, one should take J to be symmetric. Note that a
generating function for Haar-random states and operator matrix elements has appeared
before in [20]. While different, the spirit of our generating function certainly shares the
same flavour as theirs.

The expression 4.11 is then simply interpreted as the generating function for the
statistical distribution of OPE coefficients

C . . . C = δ

δJ
. . .

δ

δJ
Z(J)

∣∣∣
J=0

. (4.12)

Here, the only input of typicality we have used is that the generating function should be
constructed from objects that are invariant under the unitary group. Therefore, the terms
appearing in the exponent of Z are the most general terms involving polynomials of J such

14Note that CFTs have an infinite-dimensional Hilbert space, so it is important to apply the analogy with
quantum mechanics described above within a single microcanonical window. The Hamiltonian should not be
viewed as an infinite-dimensional random matrix, but rather as a matrix split into blocks of microcanonical
windows, where each block resembles a random matrix. Moreover, this analogy also neglects the contribution
of descendants which are clearly not random.

15Note that we have not included “double-trace” type terms in this generating function. By double-trace,
we mean terms that include two disconnected sets of indices that are traced over. We comment on this in
the discussion.

16It is important to emphasize that there is no new information in this generating functional compared
to asymptotic formulas of OPE coefficients. It is simply a concise and elegant way to encode the known
information, which automatically keeps track of all index structures, including potential repetitions.
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that all indices are contracted in a unitary-invariant way. The coefficients of the individual
terms in the exponent (i.e. the functions fi, gi) are not determined directly by typicality.17

For ETH, these functions would depend on microcanonical traces of the operator and its
powers. For example, one such function would be O in 4.9, and other functions can be
determined by comparing the prediction of the generating function from the computation
of correlation functions.

Unsurprisingly, the way to fix these functions in our case is from the genus-g partition
functions. Note that there is always an equivalent number of index contractions of k Js
and number of inequivalent decompositions of a genus-g surface with k = 2g − 2. Thus one
can completely fix the generating function by knowing all the asymptotic formulas for OPE
coefficients. In this paper, we have not computed all of these functions at genus-three, but
we will nonetheless use the ones we have computed to probe the product of two genus-two
partition functions 4.1.18 In particular, we have

gskyline(∆) =
(27

16

)6∆
e−8π

√
c−1

3 ∆∆
5c−11

18 (4.13)

gcomb(∆) =
(27

16

)6∆
e

[
− 15

2 π
√

c−1
3 −
√

18π(αχ+ᾱχ)
]√

∆
∆

5c−11
18 . (4.14)

where χ is the lightest operator in the theory.
It is worth comparing results derived from the generating function to the notation

adopted in [18] for the statistical distribution of OPE coefficients. For the Gaussian part of
the distribution, the generating function would yield

CabcC
∗
def = f1(∆)δa,dδb,eδc,f + f2(∆)δa,bδc,dδe,f + permutations . (4.15)

This is exactly the same form as the postulated ansatz of [18]. The function f1 is given by
the asymptotic formula for |C123|2 [38]

f1(∆) ≈
(27

16

)3∆
e−3π
√

c
3 ∆ , (4.16)

while we derived an asymptotic formula for f2 in this paper from the dumbbell channel at
genus-two

f2(∆) ≈
(27

16

)3∆
e
−3π
√

c
3 ∆− 4π√

2
(αχ+ᾱχ)

√
∆
. (4.17)

We have already taken the large c limit in both of these expressions. At the quartic level,
we have partial information and we can write

CabcC
∗
defCghiC

∗
jkl ⊃ gskyline(∆) [δa,dδb,gδc,jδe,hδf,kδi,l + permutations]

+ gcomb(∆) [δa,bδd,eδk,lδc,gδf,hδi,j + permutations] . (4.18)
17Note that we have written them as a function of a single energy assuming all states are drawn from

the same microcanonical window, but of course, the functions can depend on multiple energy bins as well
as energy differences. We use the notation f(∆) for simplicity, but it should be understood that these are
functions of more variables.

18Note that all contributions enter with positive signs, so the different saddles do not cancel one another.
Therefore, the saddles we do compute give a non-vanishing part of the final answer, but the complete set of
saddles remains to be computed.
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We will now proceed to study the contributions of these terms for the product of genus-two
partition functions.

4.2 Euclidean wormholes

We are now ready to consider the various contributions that appear in the product of two
genus-two partition functions from the generating function Z(J). Let us start from the
Gaussian data, as was considered in [18]. This is given by considering the following two
contributions19

CabcC
∗
defCghiC

∗
jkl ⊃ f1(∆)2 [δa,dδb,eδc,fδg,jδh,kδi,l + δa,jδb,kδc,lδd,gδe,hδf,i] . (4.19)

Both contributions are Gaussian wick contractions, but they will lead to wildly different
answers when inserted in the product of genus-two partition functions due to their index
nature. From this, we can compute the product of the two genus-two partition functions
and find

(Zg=2)2
∣∣∣
Gaussian

∼
∑
∆
ρ(∆)6δa,dδb,eδc,fδg,jδh,kδi,lCabcC

∗
defCghiCjkl|FSF̄S |

2e−6β∆

∼ e
c
2
π2
β +

∑
∆
e−6β∆ . (4.20)

We have used the expression of the genus-two conformal blocks [30] and the first term
corresponds to the first Wick contraction in 4.19, while the second term is the second
contraction. We see that the second term does not have a saddle-point which yields an
answer exponentially large in the central charge. In [18], it was observed that this matches
the fact that the genus-two wormhole has a vanishing on-shell action.

With this technology in mind, we can now add in the quartic terms coming from the
non-Gaussianities in Z(J). Using 4.18, we find

(Zg=2)2
∣∣∣
skyline

≈
∑
∆
e8π
√

c
3 ∆e−8π

√
c
3 ∆e−6β∆ =

∑
∆
e−6β∆ (4.21)

(Zg=2)2
∣∣∣
comb

≈
∑
∆
e6π
√

c
3 ∆e[−

15
2 π
√

c
3−
√

18π(αχ+ᾱχ)]
√

∆e−6β∆

≈
∑
∆
e[−

3
2π
√

c
3−
√

18π(αχ+ᾱχ)]
√

∆e−6β∆ . (4.22)

We see that the comb contribution is more subleading than the Gaussian contribution, and is
far from being able to give a large saddle-point contribution. This is true irrespective of the
dimension of the lightest operator in the theory. On the other hand, the skyline contribution
is just on the threshold, much like the second Wick contraction of the Gaussian distribution.
This contribution is thus important: if one wanted to match one-loop determinants around
the wormhole geometry, it would be important to take into account the skyline channel
contribution as it is just as big as the second term in 4.20.

19There are many other contributions we are not writing, either coming from different combinations of
Kronecker deltas or coming from terms proportional to f1f2 or f2

2 . It is easy to see that these terms are
simply further exponentially suppressed compared to the terms we kept.
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The genus-two wormhole in the dumbbell channel. So far, we have focused on the
contribution of the quartic vertices coming from the genus-three partition function in the
square of the genus-two partition function, itself expanded in the sunset channel (and in the
limit of small moduli). Here, we would like to study the contribution of the quartic vertices
for the square of the genus-two partition function, this time in the dumbbell channel. Note
that while we can of course expand a genus-two partition function in any channel we want,
taking the small moduli limit in one channel probes very different physics than the small
moduli limit of another.

The first obstacle we face is that the genus-two conformal blocks are not known (at
least to the best of our knowledge) in the dumbbell channel. We will thus have to make
a guess for the scaling of conformal blocks, and leave a more detailed analysis for future
work. The simple assumption we will make is that the scaling of the conformal blocks in
the dumbbell channel is

FdumbbellF̄dumbbell ∼
(16

27

)3∆
, (4.23)

namely that the blocks scale in the same way as in the sunset channel. This is only
a mild assumption for two reasons. This scaling depends on the normalization for OPE
coefficients, and appears only because we decided to normalize the OPE coefficients such that
it measures the three-point function of operators inserted at 0, 1 and ∞. It is natural that
this normalization choice affects all blocks in a uniform fashion. Moreover, the exponentially
growing factor of the type (27/16)3∆ in the asymptotics of the OPE coefficients would
prevent convergence of the partition functions if it is not cancelled against the blocks. It
would of course still be worth checking this explicitly.

From this, we can estimate the genus-two partition function in the dumbbell channel.

Zdumbbell ≈
∑
∆
ρ(∆)3e

−3π
√

c
3 ∆− 4π√

2
(αχ+ᾱχ)

√
∆
e−3β∆ ≈ e

c+8∆χ
4

π2
β , (4.24)

where we have assumed ∆χ � c, used the Cardy formula and computed the sum over ∆ by
saddle-point. We comment on the fact that the lightest non-trivial operator appears here
in the discussion section. Similarly, one can use the Gaussian part of the random ansatz
to find

(Zdumbbell)2
∣∣∣
Gaussian

≈ e
c+8∆χ

2
π2
β +

∑
∆
e
− 8π√

2
(αχ+ᾱχ)

√
∆
e−6β∆ . (4.25)

Similar to the sunset case, we find a contribution which is the square of the genus-two
partition function plus a second term which does not lead no a large saddle. In fact, in
the dumbbell case, we see that the situation even gets worsened by the correction coming
from the lightest operator in the theory and we are no longer at the threshold of having a
large saddle.
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One can now take into account the contribution of the comb quartic term. We find

(Zdumbbell)2
∣∣∣
comb

≈
∑
∆
ρ (∆)5 e[−

15
2 π
√

c
3−
√

18π(αχ+ᾱχ)]
√

∆e−6β∆

≈
∑
∆
e[

5
2π
√

c
3−
√

18π(αχ+ᾱχ)]
√

∆e−6β∆

≈ e
25c−360∆χ

288
π2
β . (4.26)

We now see a remarkable feature! The sum over conformal dimensions can have a non-trivial
saddle point which yields an answer exponentially large in c. In the gravitational language,
this should be a new saddle-point geometry with a non-vanishing on-shell action. This
saddle-point only exists provided there are light operators in the CFT spectrum. By light
here, we do not mean light in the sense that the mass of the bulk field must be close to the
BF bound. We simply mean that the CFT spectrum should contain an operator χ with

5
2π
√
c

3 >
√

18π (αχ + ᾱχ) (4.27)

Using the definition for αχ, this translates to

∆χ <
35(c− 1)

432 = c− 1
12

(
1− 1

62

)
. (4.28)

In the presence of matter, we thus seem to expect a new gravitational saddle that would
dominate over the genus-two wormhole. We discuss this further in the discussion section.

An interesting remark is that these weights match the conformal dimension of an
operator whose bulk interpretation is a conical defect geometry with deficit angle 2π(1−1/6).
These operators have been recently studied in the context of pure three-dimensional gravity
as a minimal cure for the non-unitarity of the pure gravity partition function, see [62] for a
detailed discussion. Therefore, whether or not we expect such a solution to contribute in
pure gravity could even depend on what we mean by “pure gravity” in AdS3. If we think
pure gravity contains no matter fields and also no conical defects, then the new solution
should not contribute. If instead we allow conical defects, the solution could contribute.

5 Discussion

In this paper, we have used the Virasoro crossing kernel to give asymptotic formulas for OPE
coefficients in two-dimensional conformal field theories. We were particularly interested in
observables involving more than two OPE coefficients, such as genus-g partition functions
with g > 2. From a statistical point of view, these asymptotic formulas encode the higher
moments of the distribution of OPE coefficients, beyond the Gaussian approximation. We
gave closed-form expressions for these non-Gaussianities in two channels that have natural
liftings up to arbitrarily high genus: the skyline and the comb channel. We then discussed
the implication of these results for the calculus of squares of partition functions using the
ORH ansatz. We found that in some cases, the quartic moments of OPE coefficients can
have comparable or even bigger contributions than the connected Gaussian piece. We
conclude with some open questions.
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5.1 All asymptotic formulas at genus three

At genus three, there are five possible channels for the decomposition of a genus-three surface,
leading to five different trivalent topologies. In this paper, we have presented asymptotic
formulas for three of the five topologies: the skyline, the comb and the channel 3.24. The
two remaining ones are the necklace and the sunset channels, and we have not been able to
extract asymptotic formulas for those. The main difficulty comes from the fact that we
were not able to find an appropriate cross-channel where only light data enters. This seems
to suggest that the moduli space has the following property: when we take the moduli of
these two channels to be small, there does not exist a dual channel where all moduli are
large. If this is true, it is puzzling at the level of the asymptotic formulas. It would mean
that some asymptotic formulas are not at all universal, i.e. that they depend on the full
spectrum of the theory. It would be interesting to understand this better, and we hope to
return to this question in the future.

5.2 Lightest field dependence

Some of the new asymptotic formulas we have derived involve non-universal data of the
CFT and thus depend on more than just the central charge of the theory. In particular, we
have seen that some asymptotic formulas depend explicitly on the scaling dimension of the
lowest dimension operator of the theory. A similar observation was already made for the
asymptotic formula CHHL using modular covariance of torus one-point functions [28].

It is interesting to observe that the lightest operator of the theory can also affect the
partition function in ways that seem novel compared to the torus partition function or even
the genus-two partition function in the sunset channel. An example of this is the result
for the genus-two partition function in the dumbbell channel 4.24. One is perhaps more
used to the torus partition function, where the lightest field other than the identity gives a
correction to the leading answer that is exponentially suppressed at high temperatures. In
particular, one has

Ztorus ≈ e
c
12

4π2
β

(
1 + e

−∆χ
4π2
β

)
, (5.1)

as β → 0. This should be contrasted with the genus-two dumbbell case which behaves as

Zdumbbell ≈ e
c
4
π2
β̃ e

∆χ
2π2
β̃ . (5.2)

where we have denoted the modulus β̃ as it is no longer a real temperature. We also
have assumed ∆χ � c. Whether or not the lightest operator gives an exponentially small
correction or a prefactor correction directly depends on whether the identity can dominate
in the cross channel.

From a gravity standpoint, this is puzzling. A naive guess would be to try and interpret
this term as a 1-loop determinant of some bulk field dual to χ. The problem is that the
product structure of 1-loop determinants implies that all matter fields should contribute
in a uniform way, therefore we would expect the prefactor to take the form of a product
over all the light fields. This is clearly not the case, as the second lightest operator gives
an exponentially small correction ala 5.1. It thus appears that it must be coming from
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something different than a 1-loop determinant. Another possibility is that the lightest
operator is somehow important to “support” the geometry. For example, one could imagine
that the 1-loop expectation value of the stress-tensor of the lightest field backreacts on the
background, and produces this effect. It would be interesting to explore this further.

5.3 New gravitational saddles?

One of the most surprising outcomes of our results is the fact that the comb channel
quartic contribution leads to an exponentially large saddle for the square of the genus-two
partition function, in the dumbbell channel. This new saddle-point should give a connected
contribution to Z2 which dominates over the genus-two wormhole.

It is interesting to note that such a saddle depends on the bulk matter content. For
pure gravity with no new operators below ∆ = c

12 , there is no new saddle-point (it is
worth mentioning that such a theory may not lead to a consistent CFT). However, in
any top-down scenario such as the one discussed in [55] where the genus-two wormhole is
perturbatively stable, one has additional matter fields.

This seems to indicate that there are new solutions to AdS 3d gravity coupled to
matter with two asymptotic regions with negative curvature. The existence of matter seems
important to support the wormhole, even though the mass of the field is not important for
the existence of the saddle-point (as long as it is light enough). The fact that the value of
the mass is unimportant is peculiar, and should be contrasted with other types of AdS3 +
matter solutions that exist for higher genus surfaces [63, 64]. In those cases, the fact that
the matter field is light (i.e. close to the BF bound) is crucial. It would be interesting to
understand this better, and find the new solutions.

5.4 Does typicality completely predict the wormhole contribution?

Finally, we speculate on whether or not typicality is expected to completely fix the generating
function Z(J). The ansatz for our generating function is based on the two following
assumptions: first, we assume that the change of basis between an operator and that of the
Hamiltonian is given by a random unitary, which we effectively average over. Whether it is
a Haar-random unitary or has a different measure is not so important, but the potential for
this change of basis is only required to be unitary invariant. Second, we have assumed we
can insert only single-trace interactions for J .

This second point is more subtle, and we currently do not have a good reasoning for
this. Note that there is some ambiguity in how we define the various terms anyway, because
we are only defining the coefficients as their leading behaviour in the expansion in eS . When
doing Haar-averages, one typically picks up factors of the type

eS

eS + 1 , (5.3)

which we would have called 1. These come from the Weingarten functions that appear
in the Haar averages [61]. Note that similar factors appear in [20], and have also been
discussed in [65] in the context of unitarity restoration. The way we have constructed our
generating function, we are agnostic about the true potential for the unitaries U and are
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just matching leading order terms. From this point of view, the subleading corrections could
either be correcting the single-trace terms or could be pushed completely into double-trace
terms. Naturally, doing Haar averages gives a well-defined answer [61], but the question is
to what extent we think Haar-averaging is the right prescription.

This question is physically important. If we believe typicality to be true, and moreover
believe no multi-trace terms are required in our generating function, then the ansatz predicts
what the wormhole contribution should be. On the other hand, if one could accurately
calculate all the one-loop determinants around wormhole geometries one should be able
to check if single-trace terms are enough, or if the wormhole contribution is in some sense
defining the nature of double-trace contributions in the generating function. We leave this
for future work.
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A Results for the fusion kernel

In this appendix, we derive several results for the crossing kernel of Ponsot and Teschner [41,
42]. We begin by introducing the explicit form of the fusion kernel and study its asymptotics
in different heavy limits. The results we discuss here complement those studied in [38, 43]
where different asymptotic limits and properties are reviewed. Throughout the appendices,
n and m are non-negative integers.

The crossing kernel F is defined in two parts: a prefactor and an integral

Fst
[

21
34

]
= Pb(Pi;Ps, Pt)Pb(Pi;−Ps,−Pt)

∫
C′

ds

i

4∏
k=1

Sb(s+ Uk)
Sb(s+ Vk)

. (A.1)

The prefactor Pb is an expression in terms of Γb functions

Pb(Pi;Ps, Pt) =
Γb
(
Q
2 + i(Ps + P3 − P4)

)
Γb
(
Q
2 + i(Ps − P3 − P4)

)
Γb
(
Q
2 + i(Pt + P1 − P4)

)
Γb
(
Q
2 + i(Pt − P1 − P4)

)
×

Γb
(
Q
2 + i(Ps + P2 − P1)

)
Γb
(
Q
2 + i(Ps + P1 + P2)

)
Γb
(
Q
2 + i(Pt + P2 − P3)

)
Γb
(
Q
2 + i(Pt + P2 + P3)

) Γb(Q+ 2iPt)
Γb(2iPs)

.

(A.2)
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The arguments of the special function in the integrand are

U1 = i(P1 − P4),
U2 = −i(P1 + P4),
U3 = i(P2 + P3),
U4 = i(P2 − P3),

V1 = Q/2 + i(−Ps + P2 − P4),
V2 = Q/2 + i(Ps + P2 − P4),
V3 = Q/2 + iPt,

V4 = Q/2− iPt.

(A.3)

The special function Γb(x), called the Barnes double gamma function, is a meromorphic
function with no zeros and poles at x = −mb − nb−1. The double sine function Sb is
defined as

Sb(x) = Γb(x)
Γb(Q− x) , (A.4)

and has poles at x = −mb− nb−1 and zeros at x = Q+mb+ nb−1.
The integrand of the kernel has eight semi-infinite lines of poles. The poles to the left

come from the sine functions in the numerator at s = −Uk−nb−mb−1 and the poles to the
right come from the denominator at s = Q/2− Vk + nb+mb−1. The contour of integration
C ′ runs from −i∞ to i∞ and it is such that it passes in between these two families of poles.
In many cases, the left and right lines of poles overlap, when this happens the we must add
the corresponding residues to the integral.

A.1 Four light external operators

In this section, we present the general strategy we use to study the fusion kernel in different
asymptotic limits. We examine the asymptotic behaviour of this kernel when we have
external operators with real fixed momenta Pi in the limit Ps → ∞. At the end of the
computation, we comment on the validity of the result when the momenta of the external
operators are in the discrete range. This discussion is a slight generalization of the results
and arguments found in [43].

We start with the prefactor. For now, we take αt > 0, making the term Γb(Q+ 2iPt) =
Γb(2αt) finite. The prefactor has no other poles at large Ps with fixed Pi. There are a
few zeros that happen at the poles in the denominator, for instance when i(P1 − P4) =
−Q/2− iPt − nb−mb−1, but these can only happen when both P1 and P4 or P2 and P3
are in the discrete regime. For our case, it is safe to do an asymptotic expansion of the
prefactor when Ps →∞ without paying too much attention to the constants multiplying
the exponential contribution. We find that

log [Pb(Pi;Ps, Pt)Pb(Pi;−Ps,−Pt)]

= −2P 2
s log 4 + 2π

[
Q

2 + i(P2 − P4)
]
Ps + 2

(
Q2 − 1

4 +
4∑
i=1

P 2
i

)
logPs +O(1).

(A.5)

Here, we used the following asymptotic series for Γb(x). This result is valid when |x| → ∞
for fixed b and x in the right half-plane (see [43]):

log Γb(x) = −1
2x

2 log x+ 3
4x

2 + Q

2 x log x− Q

2 x−
Q2 + 1

12 log x+ log Γ0(b) +O
(
x−1

)
,

(A.6)
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where Γ0(b) is a constant. We will also use the asymptotics of Sb(x). The following result
is valid as |x| → ∞ for x in the upper half-plane:

logSb(x) = iπ

2 x
2 + iπ

2 Qx−
iπ

12(Q2 + 1) +O
(
x−1

)
. (A.7)

For the integrand, we will use this series and the fact that logSb(x) = − logSb(Q− x).
Understanding the analytic structure of the integrand in the limit of interest is crucial

since the exponential suppressions that matter to us appear — or do not appear — in the
integral. Before picking a particular contour of integration, we do a change of variables
s = σPs and do an asymptotic expansion of the integrand. There are different regions
because Sb(x) has different asymptotic expansions on the upper and lower half-planes. The
relevant behaviour of the integrand in each region is

log Sb(s+ Uk)
Sb(s+ Vk)

∼



+2iπQσPs Im σ > 1
−π

(
iσ2 + 2σ

)
P 2
s + 2πiQσPs 0 < Im σ < 1

+π
(
iσ2 − 2σ

)
P 2
s − 2πiQσPs −1 < Im σ < 0

−2iπQσPs Im σ < −1

. (A.8)

From the asymptotic behaviour, we see that the integrand is exponentially suppressed
in the regions Im σ > 1 and Im σ < −1. So we can take the contour in these two regions
to run along the imaginary axis, see figure 11, and it is safe to say that these two parts
contribute to a piece of size exp{−2πQPs} to the integral.

We first do a naïve approximation for this integral by taking the entire contour to
run through the imaginary axis. If the external operators are heavy enough, then no
poles cross the axis. To deal with the pole at the origin, we can regularize the integral by
doing the integration over the contour iR + ε and then take the limit ε→ 0 at the end of
the computation. With this contour, the integral is exponentially suppressed everywhere
because of the factors ±2πiQσPs in the upper and lower half-planes. Thus, we can do a
saddle point approximation, evaluate the integrand at the origin, and estimate the integral
to be less than a constant times a factor of exp{−2πi(P2 − P4)Ps}. This first result is true,
but we can constrain the integral even more. The rapid oscillations coming from the factors
∓π(iσ2 ± 2σ)P 2

s in the exponential suggest that the integral should be much less than this
first estimation.

To improve our result, we deform the contour. Note that there are two saddle points at
σ = i and σ = −i. They correspond to the saddles of the Gaussians exp

{
∓π(iσ2 ± 2σ)P 2

s

}
dominating the integrand. These saddle points are located to the left of the poles coming
from the denominator, see figure 11. We can use these saddles to approximate the integral
using the method of steepest descent. To achieve this, we deform the contour so that it
follows the path Reσ ± Im σ = 1. This path is shown in figure 11 and corresponds to the
path of steepest descent and constant phase. With this new estimate, we conclude that this
part of the contour contributes to a term of the size exp{−2πQPs}.

The new contour receives corrections from the poles at s = αt + nb+mb−1 in the real
axis. These poles come from term Sb(s+Q/2− iPt) = Sb(s+Q− αt). The important part
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Figure 11. Analytic structure of the integrand in the fusion kernel with s = σPs and Ps → ∞.
There are eight semi-infinite lines of poles extending to the left and to the right of the integration
contour. These families of poles are represented in the plot by black wavy lines. In this example,
several of these families overlap so only four wavy lines appear in the image. The dotted line is
the integration contour we use to compute the asymptotics of the integral. In the diagram, lighter
shading corresponds to a larger absolute value of the integrand in each section.

of the integrand, valuated at s = αt + nb+mb−1, is given by

− logSb(s+ V1)Sb(s+ V2) ∼ −2π
[
s+ i(P2 − P4)

]
P. (A.9)

Here, we used the Taylor series of Sb(x) around x = Q

Sb(x) = 1
2π (Q− x), (A.10)

From this, we find that the entire integral is dominated by the leftmost pole, with
n = 0,m = 0. We have shown that

log
∫
C′

ds

i

4∏
k=1

Sb(s+ Uk)
Sb(s+ Vk)

∼ −2π
[
αt + i(P2 − P4)

]
Ps. (A.11)

If αt is in the continuum regime, we have to add a second pole to our expressions,
coming from s = Q − αt + nb + mb−1. The new pole is the same as this one but with
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αt → Q− αt or, Pt → −Pt. Putting these results together, we find that

log Fst
[

21
34

]
= −2P 2

s log 4+π(Q−2αt)Ps+2
[
−3Q2 + 1

4 +
4∑
i=1

hi

]
logPs+O(1). (A.12)

This result extends to the case where some or all of the external operators are light.
The reason is that the integral is always dominated by the same pole, even if there are
fine-tuned parameters.

Explicitly, the exponential suppression of the kernels reads

log FsH
[

21
34

]
− log FsL

[
21
34

]
= −2π(αH − αL)Ps +O(1). (A.13)

Note that the exponential suppression comes from the integral; the prefactor has no
information about αt at large Ps.

A.2 All heavy momenta

We now study the asymptotics of the fusion kernel when all the momenta are heavy.
Specifically, we focus on the limit Pi − δi = Ps − δs = Pt − δt = P → ∞. The steps
to evaluate this kernel are the same as in the previous section. We begin by doing an
asymptotic expansion of the prefactor:

log [Pb(Pi;Ps, Pt)Pb(Pi;−Ps,−Pt)] = 2πQP + 2(δs − δt)P log 27
16 +O(1). (A.14)

This time, the prefactor has no poles or zeros. The second step is to evaluate the integral.
The relevant terms in the asymptotic expansion of the integrand are

log Sb(s+ Uk)
Sb(s+ Vk)

∼



+2πiQσP Im σ > 2
+π

(
iσ2 + 4σ

)
P 2 + πiQσP − 2πQP 1 < Im σ < 2

−πiσ2P 2 + πiQσP − 2πQP 0 < Im σ < 1
+πiσ2P 2 − πiQσP − 2πQP −1 < Im σ < 0
−π

(
iσ2 − 4σ

)
P 2 − πiQσP − 2πQP −2 < Im σ < −1

−2πiQσP Im σ < −2.

. (A.15)

The analytic structure of the integrand is summarized in figure 12. There are three saddle
points we can use at our advantage at σ = 2i, 0 and −2i; the paths extending from 2i
to i∞ and −2i to −i∞ are exponentially suppressed. The entire integral is of the order
of exp{−2πQP} and it is dominated by the two poles at the origin s = −i(P1 − P4) and
s = −i(P2 − P3). The important contributions to the integral are(

log Sb(s+ U2)Sb(s+ U3)
Sb(s+ V1)Sb(s+ V2)Sb(s+ V3)Sb(s+ V4)

)
s=−U1,−U3

= −2πQP +O(1). (A.16)

Both poles have the same asymptotic behaviour. The full kernel then reads

log Fst
[

21
34

]
= 2(δs − δt)P log 27

16 +O(1). (A.17)
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Figure 12. Analytic structure of the integrand in the fusion kernel in the limit where all operators
are heavy. The contour of integration is shown with a dotted line. The integral is dominated by the
two poles at the origin.

A.3 Two light external operators

Finally, we examine the asymptotics of the fusion kernel when Ps− δs = P1− δ1 = P2− δ2 =
P →∞ and all light momenta are not equal to the identity. In this limit, the prefactor has
no poles and also no zeros. Its asymptotic series is given by

log [Pb(Pi;Ps, Pt)Pb(Pi;−Ps,−Pt)] =
(
−4 log 2 + 9 log 3

2

)
P 2

+
(
πQ+ [δ1 + δ2] log 27− δs log 256

27

)
P

+
(

1 + 7Q2

6 − 4ht

)
logP +O(1). (A.18)
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The relevant asymptotics of the integrand are

log Sb(s+ Uk)
Sb(s+ Vk)

∼



+2πiQσP − πQP Im σ > 1
+π(iσ2 + 2σ)P 2 + πiQσP − 2πQP 0 < Im σ < 1
−2π(iσ2 − σ)P 2 + πiQσP − 2πQP −1 < Im σ < 0
+π(iσ2 − 4σ)P 2 − 2πiQσP + πQP −2 < Im σ < −1
−2πiQσP + πQP Im σ < −2.

. (A.19)

The analytic structure of the integrand is summarized in figure 13. Note that this time our
contour is avoiding the poles of the integrand. Using the saddle points at σ = i and σ = −2i,
and taking the path of steepest descent, we conclude that the contours going from 0 to i∞
and −i to −i∞ are of the order of exp{−3πQP}. This integral is well approximated by
the saddle point at σ = −i/2. We find that(

log
4∏

k=1

Sb(s+ Uk)
Sb(s+ Vk)

)
s=−iP/2

= −3
2πQP +O(1). (A.20)

Note that a simple saddle point approximation without the deformation of the contour
would have given a term of the order of exp{−πQP}. Putting these results together, we
find that

log Fst
[

21
34

]
=
(
−4 log 2 + 9 log 3

2

)
P 2 +

(
−πQ2 + [δ1 + δ2] log 27− δs log 256

27

)
P

+
(

1 + 7Q2

6 − 4ht

)
logP +O(1). (A.21)

A.4 Delta functions

There are a few limits in which the fusion kernel behaves as a delta function. In this section,
we study two of such cases.

A.4.1 In the skyline channel

We start our asymptotic analysis with the kernel

F31
[

11 + ε

11 + ε

]
= ρ0(P3)C0

(
P1, i

(
Q

2 − ε
)
, P3

)
. (A.22)

In the limit P1 → ∞. The function C0(P1, P2, P3) is a meromorphic function of its
arguments that encodes the behaviour of the average squared OPE heavy coefficients,
see [38] for more details. The analytic structure of this function is determined by its
poles at P1 = i(Q± nb+mb−1)/2, its zeros at P1 = P2 + P3 ± iQ/2 + i(mb+ nb−1), and
its symmetries: invariance under reflections Pi → −Pi and permutations of its variables
(P1, P2, P3). A closed expression for C0 is

C0(P1, P2, P3) = 1√
2

Γb(2Q)
Γb(Q)3

∏
±±± Γb

(
Q
2 ± iP1 ± iP2 ± iP3

)
∏
a Γb(Q+ 2iPa)Γb(Q− 2iPa)

. (A.23)
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Figure 13. Analytic structure of the integrand in the fusion kernel in the limit Ps − δs = P1 − δ1 =
P2 − δ2 = P →∞ and light momenta not equal to the identity. This time integral is dominated by
its saddle point at σ = −i/2.

In the limit of interest, C0(P1, P3, 1) is zero unless P1 = P3. Here, two poles cancel the
zero and the function evaluates to infinity. We can see the delta function contribution by
carefully analyzing the limits ε, (P1 − P3)→ 0 and P →∞. We divide C0 into three parts

C0(P1,1+ε,P3)

=
(

Γb
(
ε+i[P1−P3]

)
Γb
(
ε+i[P3−P1]

)
Γb(2ε)

)(
Γb(2Q)Γb

(
Q−ε+i[P1−P3]

)
Γb
(
Q−ε+i[P3−P1]

)
√

2Γb(Q)3Γb(2Q−2ε)

)

×
(

Γb
(
Q−ε−i[P1+P3]

)
Γb
(
Q−ε+i[P1+P3]

)
Γb
(
ε−i[P1+P3]

)
Γb
(
ε+i[P1+P3]

)
Γb
(
Q−2iP1

)
Γb
(
Q+2iP1

)
Γb
(
Q−2iP3

)
Γb
(
Q+2iP3

) )
.

(A.24)

Using the asymptotic expansions for Γb(x) and the Laurent series:

Γb(x) = Γb(Q)
2π

1
x

+ · · · , x→ 0, (A.25)

we find that:

C0(P1, 1, P3) = lim
ε→0

1
π

ε

(P1 − P3)2 + ε2
e−2πQP+O(1)

√
2

= δ(P1−P3)e
−2πQP+O(1)
√

2
. (A.26)
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Putting all equations together, we find

F31
[

11
11

]
= δ(P1 − P3)ρ0(P )e−2πQP+O(1) = δ(P1 − P3)eO(1). (A.27)

A.4.2 In the comb channel

This sections shows that

Fst
[

21
3 t

]
= δ(P2 − Ps). (A.28)

This result is a generalization of the previous for cases where Pt 6= 1. We discuss the
two cases separately because they are controlled by different poles pinching the contour of
integration.

When P4 = Pt and P1 = i(Q/2− ε), we have the following contributions coming from
the prefactor

Pb(Pi;Px, Pt)Pb(Pi;−Ps,−Pt) = Γb(i(P2 − Ps) + ε)
Γb(ε)

× (regular). (A.29)

If P2 6= Ps, the integral in the definition of F remains finite, and the prefactor vanishes so the
fusion kernel is zero. We consider P2 close to Ps and ε to be small. In this limit, the poles at
s = −U1 = Q/2− ε+ iP4, s = Q−V1 = Q/2− i(P2−Ps) + iP4 and s = Q−V4 = Q/2 + iPt
pinch the contour of integration. Let us deform the contour to the left to include the pole
contribution at s = Q/2− ε+ iP4,

∫
C′

ds

i

4∏
k=1

Sb(s+ Uk)
Sb(s+ Vk)

= 1
2π

(
Sb(Q− 2ε)

Sb(Q− ε)Sb(Q− ε+ i(P2 − Ps))
× (regular) + (regular)

)
.

(A.30)
The regular terms in the sum correspond to the deformed contour integral, these terms will
vanish as we take ε→ 0 and only the singular term contributes. Using the Laurent expansions
of Γb and Sb and simplifying the regular terms in front of the singular contributions, we
find that

Fst
[

21
3 t

]
= lim

ε→0

1
π

ε

(P2 − Ps)2 + ε2
= δ(P2 − P4). (A.31)

All terms cancel out and we are left with a delta function in the limit.

B Results for the modular kernel

Here, we derive the asymptotics of the modular SP1P ′ [P0] kernel for heavy operators
P1 − δ1 = P0 − δ0 = P and fixed but discrete P ′. We begin with the definition of the kernel
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due to Teschner [51]:

SPP ′ [P0] = ρ0(P )
Sb
(
Q
2 +iP0

) Γb(Q+2iP ′)Γb(Q−2iP ′)Γb
(
Q
2 +i(2P−P0)

)
Γb
(
Q
2 −i(2P+P0)

)
Γb(Q+2iP )Γb(Q−2iP )Γb

(
Q
2 +i(2P ′−P0)

)
Γb
(
Q
2 −i(2P ′+P0)

)

×
∫
C′

ds

i
e−4πP ′s

Sb
(
s+Q

4 +i
(
P+ P0

2

))
Sb
(
s+Q

4 −i
(
P− P0

2

))
Sb
(
s+ 3Q

4 +i
(
P− P0

2

))
Sb
(
s+ 3Q

4 −i
(
P+ P0

2

))
=Qb(P,P ′,P0)

∫
C′

ds

i
e−4πP ′sTb(s,P,P0).

(B.1)

Where the contour C ′ is taken to be the imaginary axis, and ρ0(P ) =
4
√

2 sinh(2πbP ) sinh
(
2πb−1P

)
. This integral representation only converges when

1
2 Re(α0) < Re(α′) < Re

(
Q− 1

2α0

)
. (B.2)

Since our convention is 0 < Re(α) < Q/2, we only need to worry about the first inequality;
the second one is always satisfied. Outside this range, the kernel is defined via an analytic
continuation using the following shift relation

2cosh(2πbP )SPP ′ [P0] =

 Γ(b(Q+2iP ′))Γ(2ibP ′)
Γ
(
b
[
Q
2 +i(2P ′−P0)

])
Γ
(
b
[
Q
2 +i(2P ′+P0)

])SP,P ′−i b2
[P0]

+ Γ(b(Q−2iP ′))Γ(−2ibP ′)
Γ
(
b
[
Q
2 −i(2P ′+P0)

])
Γ
(
b
[
Q
2 −i(2P ′−P0)

])SP,P ′+i b2
[P0]

 .
(B.3)

We start by assuming α′ > Q/4, so that the integral representation converges. The
asymptotics of the prefactor at large P read

logQb(P1, P
′, P0) =

(
−4 log 2 + 9 log 3

2

)
P 2 +

(
πQ+ 2δ1 log 27

16 + δ0 log 27
)
P

+
(

1 + 7Q2

6 − 4h′
)

logP +O(1). (B.4)

Note that α′ does not appear in the prefactor. The estimation of the integrand follows as
usual. Doing the change of variables s = σP we find the following relevant asymptotics

loge−4πP ′sTb(s,P1,P0)∼



2πσP 2+iπ(4α′−Q)σP Imσ > 3
2

−π
(
iσ2+σ

)
P 2−iπ

(
3
2Q−4α′

)
σP− 3

4πQP
1
2 < Imσ < 3

2

−2πi(Q−2α′)σP−πQP −1
2 < Imσ < 1

2

−π
(
iσ2−σ

)
P 2−iπ

(
5
2Q−4α′

)
σP− 3

4πQP −3
2 < Imσ <−1

2

−2πσP 2−iπ(3Q−4α′)σP Imσ <−3
2

.

(B.5)
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This integral is exponentially suppressed above and below | Im σ| > 3/2. This time, we
have saddle points at σ = ±i/2. The two saddles are related via α′ → Q − α′, since our
convention is Re(α′) < Q/2, the dominant saddle point is at σ = i/2 where the integrand is
of order exp{−2πα′P}. As with the fusion kernel, we follow the contour of constant phase
and steepest descent that passes through the two saddle points. The result is that the
integral is dominated by its value at σ = i/2. There are no poles crossing or pinching the
contour of integration.

Putting these results together we find that the modular kernel, in this limit, is given by

log SP1P ′ [P0] =
(
−4 log 2 + 9 log 3

2

)
P 2 +

(
π(Q− 2α′) + 2δ1 log 27

16 + δ0 log 27
)
P

+
(

1 + 7Q2

6 − 4h′
)

logP +O(1). (B.6)

This result holds for α′ > Q/4. To extend this result for all α′ we must use the shift relation.
For α′ > Q/4, the relationship reads:

SP1α′ [P0] ∼ e−bπP
(
e(1+bQ−4bα′) logPSP1α′+ b

2
[P0] + e(1−3bQ+4bα′) logPSP1α′− b2

[P0]
)
. (B.7)

Here we have neglected the multiplicative order-one coefficients. We have seen that for
α′ > Q/4, the kernel is exponentially suppressed in α′, so we can neglect the contribution
from the SPα′+ b

2
[P0] kernel. The shift relationship now reads

log SP1α′− b2
[P0] ∼ bπP − (1− 3bQ+ 4bα′) logP + log SP1α′ [P0]. (B.8)

It is a nontrivial check on the asymptotics of the heavy kernel to verify that this formula
works for α′ above Q/4. The shift relationship also implies that equation (B.6) is valid for
all values of α′.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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