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SUMMARY
There are few things as irrefutable as the evidence that our limbs belong to us. However, persons with body
integrity dysphoria (BID) [1] deny the ownership of one of their fully functional limbs and seek its amputation
[2]. We tapped into the brain mechanisms of BID, examining sixteen men desiring the removal of the left
healthy leg. The primary sensorimotor area of the to-be-removed leg and the core area of the conscious rep-
resentation of body size and shape (the right superior parietal lobule [rSPL]) [3, 4] were less functionally con-
nected to the rest of the brain. Furthermore, the left premotor cortex, reportedly involved in the multisensory
integration of limb information [5–7], and the rSPLwere atrophic. Themore atrophic the rSPL, the stronger the
desire for amputation, and the more an individual pretended to be an amputee by using wheelchairs or
crutches to solve the mismatch between the desired and actual body. Our findings illustrate the pivotal
role of the connectivity of the primary sensorimotor limb area in the mediation of the feeling of body owner-
ship. They also delineate themorphometric and functional alterations in areas of higher-order body represen-
tation possibly responsible for the dissatisfaction with a standard body configuration. The neural correlates
of BID may foster the understanding of other neuropsychiatric disorders involving the bodily self. Ultimately,
theymay help us understandwhatmost of us take for granted, i.e., the experience of body and self as a seam-
less unity.
RESULTS AND DISCUSSION

Human beings commonly experience their bodily self as lying

within clearly circumscribed borders defined by biological and

societal norms. Paradoxically, in persons with body integrity

dysphoria (BID), the desired amputation would make those con-

cerned with the condition ‘‘feel more complete’’ and those hav-

ing reached an amputated state only regret not having realized it

earlier [8]. Two behavioral features are almost invariably associ-

ated with the condition, albeit to varying degrees: (1) an erotic

attraction to (lower limb) amputees and (2) the habitual simula-

tion of the desired body state by using crutches or wheelchairs

(‘‘pretending behavior’’) [9]. Despite the rarity of this condition,

we succeeded in recruiting sixteen men who all desired an

amputation of specifically and exclusively the left leg. None

had any history of major psychiatric or neurologic disorders.

BID participants were compared to sixteen healthy control

men matched for age and formal education. Pinpointing the
Curre
differences in the functional and structural architecture between

BID individuals and control persons’ brains provided the unique

opportunity to reveal the neural networks involved in the sense of

ownership of a limb as an integral part of the body. Moreover, it

allowed us to identify the candidate brain areas underlying the

satisfaction of possessing a determined body configuration. In

particular, in BID individuals, we explored (1) alterations in

intrinsic functional connectivity in cortical hubs (i.e., small multi-

modal areas reached bymany functional connections dispropor-

tionate to their spatial extension) [10–12] and (2) structural atro-

phies or hypertrophies in the functionally altered regions as well

as in other specific candidate regions [5, 13]. Alterations in func-

tional connectivity and the concentration of gray matter were

related to the self-reported characteristics of an individual’s

amputation desire, as carefully assessed in a clinical interview.

Cortical hubs with reduced intrinsic functional connectivity in

BID compared with controls were the right paracentral lobule

(rPCL), the right superior parietal lobule (rSPL), the pars orbitalis
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Figure 1. Reduced Intrinsic Connectivity of

Cortical Hubs in BID

Results are extracted at p < 0.001 voxel-wise and

p < 0.05 cluster level (not corrected). lIFGOrb, pars

orbitalis of the left inferior frontal gyrus; rPCL, right

paracentral lobule; rSPL, right superior parietal

lobule; lITG, left inferior temporal gyrus.

Table 1. Reduced Intrinsic Connectivity of the Cortical Hubs,

Atrophies, and Hypertrophy in BID

Brain Regions (BA)

MNI Coordinates

Left Hemisphere Right Hemisphere

x y z Z Score x y z Z Score

Reduced Intrinsic Connectivity of the Cortical Hubs in BID

Inferior orbitofrontal

gyrus

�32 36 �12 4.23

Paracentral lobule 10 �38 78 4.04

Superior parietal lobule 22 �52 60 3.79

Inferior temporal gyrus �60 �44 16 4.16

Atrophies in BID

Inferior orbitofrontal

gyrus

�36 36 �9 6.05

Precentral gyrus �38 2 34 5.63

Precentral gyrus �50 2 27 4.82

Superior parietal lobule 39 �56 57 6.5

Hypertrophy in BID

Middle temporal gyrus �60 4 �21 6.3

MNI, Montreal Neurological Institute

ll
Report
of the left inferior frontal gyrus (lIFGOrb), and the left inferior tem-

poral gyrus (lITG). Results are shown in Figure 1 and Table 1. The

areas with a reduced concentration of gray matter in BID

compared with controls were the rSPL, the left premotor cortex

(lPMv), and the lIFGOrb. Results are shown in Figure 2 and Table

1. The concentration of gray matter in the rSPL negatively corre-

lated with the strength of the desire for amputation (Pearson’s

correlation coefficient; r(14) = 0.51; p = 0.01) and the pretending

behavior (Pearson’s correlation coefficient; r(14) = 0.62;

p = 0.01; see also Figure 2), as assessed by the respective sub-

scores at the Zurich Xenomelia Scale [14].

The rPCL, which houses the primary somatosensory represen-

tation of the affected left leg, showed a reduced intrinsic functional

connectivity to other cortical regions. Remarkably, no structural

alterations were evident in the rPCL, which is in line with a normal

neurological status examination, specifically showing unimpaired

tactile and motor functioning of BID individuals’ left leg. The rSPL

showed both reduced intrinsic functional connectivity and con-

centration of graymatter. The absence of any neurological deficits

or BID-related symptoms for the right leg and both the upper limbs

suggests a specificity of these alterations for the desired removal

of the left leg. Our results support the view that the distressing

feeling of non-acceptance of one’s limb in BID might ensue

fromadiscrepancy betweenpreservedprojections of somatosen-

sory inputs from the limb to the respective primary cortical areas

and an impaired representation of the body at the highest level

of integration, the so-called body image [3]. That is the represen-

tation of the size, shape, and physical composition of the body,

i.e., ‘‘the conscious body image’’ [15–17]. The rSPL was previ-

ously identified as a critical hub for the body image [3, 4]. Specif-

ically, a magnetoencephalography study showed that, in BID indi-

viduals, the tactile stimulation of the to-be-removed limb was

accompanied by reduced activation of the rSPL [3]. Likewise, a

surface-based morphometry investigation reported a reduced

thickness of rSPL in association with BID [13]. Body image arises

from the integration of multiple sensory inputs (i.e., visual, tactile,

proprioceptive, vestibular, and re-afferent motor signals). It is

thought to be scaffolded by the activity of distributed neural
2192 Current Biology 30, 2191–2195, June 8, 2020
networks whose integrity is responsible,

on a phenomenal level, for an individual’s

perception of his or her own body as

coherent and unitary [17]. A central region

for multisensory integration, the lPMv [6],

was found atrophic in the BID individuals

examined here. The lPMv binds together

visuomotor and tactile information about

a limb through its anatomical connections

to frontoparietal areas [18]. A specific role

of the lPMv inmultisensory integration and

limb ownership was already suggested in
previous studies on BID [5, 7]. Blood-oxygen-level-dependent

(BOLD) activity in the lPMv was decreased in 5 individuals with

BID during the touch of the desired-to-be-removed compared

to the accepted limb [7]. Atrophies in the lPMv have been

described in a subsequent study [5].

Previous studies, cited above, were preliminary in that a small

number of BID individuals with an amputation desire targeting

different limbs had been recruited.Moreover, these studies inves-

tigated either functional characteristics [3, 7], connectivity [19], or

morphometry [5, 13] ofBID individuals’ brainsseparately. The nov-

elty of the present approach consists in the combination of

morphometric (graymatterdensity) and functional connectivityan-

alyses within one relatively large and homogeneous sample. The

results produced by previous studies also did not survive



Figure 2. Atrophies and Hypertrophy in BID

(A) Atrophic and hypertrophic areas in BID. Results

are extracted at p < 0.01 FWE voxel-wise cor-

rected and k > 25.

(B) Scatterplot of the correlation between the con-

centration of gray matter in the rSPL at [X = 39, Y =

�56, Z = 57] and the pretending behavior in BID

individuals. On the y axis, the contrast values

(reduced concentration of gray matter in BID in-

dividuals compared to controls) are reported. lPMv,

left ventral premotor cortex; lMTG, left middle

temporal gyrus; IFGOrb, inferior frontal gyrus; pars

orbitalis; rSPL, right superior parietal lobule.
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conservative statistical thresholding. Here, results were extracted

at p < 0.001 uncorrected at the voxel-wise level and p < 0.05 at the

cluster level to identify the cortical hubs presenting altered func-

tional connectivity in BID (listed in Table 1 and displayed in Fig-

ure 1). Regional gray matter reductions in BID were explored by

applying the most conservative thresholding method available in

SPM (p < 0.05 FWE voxel-wise corrected) coupled with a clus-

ter-extent threshold of k > 25 to further exclude spurious findings.

The results are listed in Table 1 and displayed in Figure 2. Our find-

ings, combined with the integration of results from previous

studies, allow the formulation of an evidence-based, comprehen-

sive model of the neural networks implicated in BID. According to

thismodel,BIDmight becharacterizedataneural level by (1) insuf-

ficient anchoring of limb representations as suggested by the lack

of intrinsic functional connectivity in the rPCL; (2) a deficit in multi-

modal integration, as indicatedbystructural anomalies of the lPMv

and rSPL; and (3) alteredbody image in the rSPL, reflectedbyboth

functional and structural abnormalities of this region.

Body image in the rSPL has been proposed to be genetically

determined [20]. A proof of concept might be the observation

of phantom limb sensations in amelia, i.e., the phenomenal exis-

tence of a limb despite its physical absence in humans born

without the respective limb [21]. It was previously shown that

an amelic individual imagining or executing phantom limb move-

ments activated no primary sensory and motor areas but the

rSPL [21]. BID and amelia might share a common altered devel-

opmental mechanism responsible for the discrepancy between

physical and phenomenal body states [22]. This perspective be-

comes more compelling when taking into account our finding of

an association between rSPL architecture and the strength of the

amputation desire on the one hand and inclination to pretending

behavior on the other hand. Specifically, the more atrophic rSPL,

the stronger the desire for amputation, and the more a BID indi-

vidual would mimic the status of an amputee. Alteration of the

rSPL might be the neural substrate of a BID individual’s unusual

body image. The pretending behavior could represent the

attempt to solve the mismatch between the experienced and

the desired body. The transient alleviation of the desire for ampu-

tation obtained by binding up the leg or sitting in a wheelchair

might stem from the alignment of the actual visual information

about a temporary amputated body state and the individual’s
Current
body image that lacks a limb. Accord-

ingly, Stone et al. [23] induced in BID indi-

viduals the illusory experience of the

affected limb to fade off from visual
awareness. This gave them instant relief from their symptoms,

if only transiently. Other evidence that body image is built up at

a very early stage of development is that the experience of BID

typically lasts as long as an individual can remember. The char-

acteristics of the desire for amputation (i.e., the affected limb, the

exact demarcation line, etc.) usually remain stable across a BID

individual’s lifespan. Pretending behavior might thus correspond

to acting out a possibly innate, individually shaped body image.

Oddo et al. [24] recently presented BID individuals and controls

with morphs depicting either the observer’s actual or amputated

body. In that study, multivariate statistics using machine learning

wereable todiscriminatebetweenaBIDgroupandacontrol group

based on the BOLDsignal in the rSPL. In linewith previous reports

[25], BID individuals rated pictures of amputated bodies as more

pleasant and sexually arousing than those of intact bodies. Taken

as a whole, these findings might suggest an interdependence be-

tween a person’s bodily self and her sexual orientation along the

spectrumof bodily appearance. Froma neural point of view, Ram-

achandran et al. [4] proposed the possible existence of a geneti-

cally determined cortical template of body image hard-wired into

the rSPL. Such a template would shape the connections within

the limbicsystem,promotingan individual tobeattractederotically

toward body shapes that match those contained in this template.

Therefore, donkeys prefer other donkeys as sexual partners, and

humans prefer other humans. BID individuals, whose body image

lacks a limb, prefer amputees. Indeed, the majority of BID individ-

uals with a desire for lower limb amputations are also attracted to

lower limb amputees [4]. In line with Ramachandran’s intuition, we

found that, in persons with BID, the lIFGOrb, which belongs to the

limbic system, showed both reduced intrinsic functional connec-

tivity and concentration of gray matter. Future studies should tap

into the cerebral networks for body image and erotic attraction

to bodily appearance, examining in more detail the possible rela-

tionship between the rSPL, the lIFGOrb, and the limbic system.

The empirical approach taken in the present study illustrates

that the bodily self critically depends on the functional connectiv-

ity of the limb primary sensorimotor area rather than its structural

properties. However, at higher levels of bodily representation,

both functional connectivity and gray matter characteristics of

multimodal integration hubs seem to be necessary for a healthy

binding of body and self. Only a smooth interplay between low-
Biology 30, 2191–2195, June 8, 2020 2193



Table 2. Characteristics of the Participants with BID

Participant

Age

(Years)

Education

(Years)

Scanner

(Place)

Mean Scores on Zurich Xenomelia Scale (SD)

Subscale ‘‘Amputation

Desire’’

Subscale ‘‘Erotic

Attraction’’

Subscale ‘‘Pretending

Behavior’’ Total Scale Score

1 36 13 Milan 4.5 (2.4) 4.3 (2.4) 5.0 (2.0) 4.6 (2.1)

2a 36 13 Milan 5.3 (1.5) 3.3 (1.5) 3.0 (0.8) 3.8 (1.6)

3 48 18 Milan 6.0 (0.0) 3.5 (1.7) 4.0 (2.3) 4.5 (1.9)

4 34 18 Milan 5.3 (0.5) 2.8 (1.3) 3.3 (2.1) 3.8 (1.7)

5 37 18 Milan 6.0 (0.0) 6.0 (0.0) 4.8 (1.9) 5.6 (1.2)

6 41 13 Milan 6.0 (0.0) 4.3 (2.4) 5.5 (1.0) 5.3 (1.5)

7 39 18 Milan 5.8 (0.5) 4.5 (1.0) 5.0 (2.0) 5.1 (1.3)

8 64 13 Milan 6.0 (0.0) 5.5 (1.0) 4.5 (2.4) 5.3 (1.5)

9 41 18 Zurich 5.8 (0.5) 4.3 (2.4) 3.8 (2.6) 4.6 (1.7)

10a 46 18 Zurich 4.0 (1.8) 5.3 (1.5) 4.3 (1.5) 4.5 (0.2)

11 63 16 Zurich 5.5 (1.0) 2.5 (1.0) 4.0 (2.5) 4.0 (0.8)

12 57 18 Zurich 5.5 (1.0) 3.8 (1.5) 3.8 (2.2) 4.3 (0.6)

13 29 18 Zurich 5.0 (1.4) 6.0 (0.0) 4.3 (2.2) 5.1 (1.1)

14 28 18 Zurich 5.5 (1.0) 6.0 (0.0) 4.8 (2.5) 5.4 (1.3)

15 44 13 Zurich 5.8 (0.5) 3.3 (1.0) 4.0 (2.2) 4.3 (0.9)

16 67 18 Zurich 5.5 (0.6) 5.8 (0.5) 3.8 (2.6) 5.0 (1.2)
aProceeded to amputation �1 year after study completion
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level and high-level bodily processing makes us feel that single

limbs belong to our body as much as to our self. And only such

integrity between body and self will guarantee satisfaction in

both personal and social life. In this respect, an old but almost

forgotten wisdom about the bodily self regains appreciation:

‘‘body image is a social phenomenon’’ [26, p. 217, 27].

Our findings suggest that the desire for amputation in BID in-

dividuals might be accounted for specific anomalies in brain ar-

chitecture. Such a view complements previous conceptualiza-

tions of BID as a paraphilia or an Internet-induced madness

[2]. The upcoming release of ICD-11 proposes to define BID as

a ‘‘disorder of bodily distress or bodily experience’’ [1]. We

have outlined here the neural correlates of this ‘‘new’’ condition.

The empirical approach taken in this study is correlational. The

neuroimaging methods used here do not allow any inferences on

causality. However, facing the graphical depictions of a relation-

ship between cortical structure and behavior, the vector of causal-

ity is reportedly biased in a brain-to-mind direction [28]. This holds

for laypeople and academics alike and underlines the necessity of

considering nonlinear interactions of biological, psychological,

and social factors underlying BID. An integrative, cross-disci-

plinary view might have promising implications for the under-

standing of neuropsychiatric disorders, such as BID, and will ulti-

mately allow refined definitions of diagnostic criteria.
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Integrity Dysphoria
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16 Human Males without

Body Integrity Dysphoria

This paper N/A

Deposited Data

Raw and analyzed data This paper N/A

Software and Algorithms

MATLAB https://www.mathworks.

com

MATLAB

CONN connectivity Toolbox

version 18b

[29] CONN

Unified segmentation

algorithm

[30] N/A

Artifact Detection Tools http://www.nitrc.org/

projects/artifact_detect

ART

Statistical Parametric

Mapping version 12

https://www.fil.ion.ucl.ac.

uk/spm/

SPM
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Peter Brugger (peter.

brugger@kliniken-valens.ch).

Materials Availability
There are restrictions to the availability of the raw scans of the participants of the current study due to the guidelines of the ethical

committee, as participants might be identifiable.

Data and Code Availability
The preprocessed data supporting the current study have not been deposited in a public repository because of the lack of authori-

zation from the ethical committee. Still, they are available from the corresponding authors on request.

Subjects Details
Sixteen men who all desired an amputation of the left leg were recruited from an advertisement posted on the following website http://

www.biid-dach.org/. Eight BID individuals were scanned at the Department of Neuroradiology of the University Hospital of Zurich [13].

The other eight BIDwere scanned at the NeuroradiologyDepartment of the ‘‘ASSTGrandeOspedaleMetropolitano Niguarda’’ ofMilan.

Their ages ranged from 28-67 years with a mean of 44.38 years and a standard deviation (SD) of 12.32 years. Their years of education

ranged from 13-18 years (mean = 16.06 years, SD = 2.28 years). Table 2 offers an overview of participants’ demographic variables and

the characteristics of their amputation desire according to an established scale, the Zurich Xenomelia Scale [14] (see below).

The control group consisted of sixteen healthy men. They were pairwise matched to the BID individuals by sex, age (range = 31-62

years, mean = 44.81 years, SD = 8.82 years, paired t-test: t(15) =�0.11, p = 0.915), years of education (range = 8-18 years, mean = 15

years, SD = 3.38 years, paired t-test: t(15) = 1.10, p = 0.28). All participants providedwritten informed consent to take part in the study.

The study was approved by the Ethics Committee of the University Hospital of Zurich, and by the Ethical Committee Milano Area C.

The study was run in compliance with the guidance provided in the Declaration of Helsinki (1964).

METHOD DETAILS

Clinical assessments and questionnaires
All participants were screened for physical and mental health in standard neurological and neuropsychological examinations and a

psychiatric assessment, which included a series of validated instruments and, for the participants with BID, a 2-h structured clinical
e1 Current Biology 30, 2191–2195.e1–e3, June 8, 2020
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interview [31]. The protocol was the same as described in our previous study [13]. A brief follow-up, approximately 1 year after study

completion, revealed that two participants had proceeded to amputation in the meantime. Neurological, neuropsychological, and

psychiatric examinations proved normal in all participants, including those with BID.

Table 2 lists the scores on the Zurich Xenomelia Scale and its three subscales [14]. The subscore ‘‘amputation desire’’ is the mean

score of 4 items enquiring the identity restoration as the primarymotivation for the desire for amputation. The subscore ‘‘erotic attrac-

tion’’ is the mean score of 4 items asking for the erotic attraction toward amputated bodies. The subscore ‘‘pretending behavior’’ is

the mean score of 4 items asking for the inclination to mimic an amputee (e.g., by using wheelchairs or crutches). The ‘‘total scale

score’’ is the mean of all the 12 items and quantifies the strength of the desire for amputation. Each item has a Likert-type format,

and answers can range from 1 to 6. Two of the 4 items of each subscale are formulated, such that 1 represents the least strong

expression of the critical thought or behavior and 6 the strongest expression. For the other 2 items, this assignment is reversed.

Magnetic resonance imaging data acquisition in Zurich
A 3.0 Tesla Philips Achieva whole-body scanner (Philips Medical Systems, Best, the Netherlands) was used to scan participants in

Zurich. This scanner was equipped with a transmit-receive body coil and a commercial eight-element sensitivity encoding (SENSE)

head coil array. For each participant, two high-resolution T1-weighted scans were acquired, applying a volumetric three-dimensional

T1-weighted fast field echo sequence with a spatial resolution of 0.94 3 0.94 3 1.0 mm3 (acquisition matrix: 256 3 256 pixels, 160

slices) and lasted 468 s. Further imaging parameters were field of view, FOV = 240 3 240 mm2; echo time, TE = 3.7 ms; repetition

time, TR = 8.06 ms; flip angle = 8�, and sensitivity encoding (SENSE) factor = 2.1. The two scans were co-registered and averaged,

thus increasing the signal-to-noise ratio.

For each participant, we also collected resting-state functional MRI (rs-fMRI) spin-echo echo-planar imaging (EPI) scans. Partic-

ipants were instructed to close their eyes and to let their minds wander. The rs-fMRI scans were obtained in the transversal plane with

a spatial resolution of 2.53 2.53 4.0 mm3 (reconstructed 1.723 1.723 4.0 mm3). Imaging parameters were: TR = 4 s; TE = 35 ms;

FOV = 2203 220mm2; slice thickness = 4mm; number of slices = 40; SENSE factor = 1.8. The duration of the rs-fMRI sequence was

10 min, and 150 brain volumes were obtained for each participant.

Magnetic resonance imaging data acquisition in Milan
For the sample acquired inMilan, we used a 1.5 T General Electric (GE) Signa HD-XT scanner. This scanner was equippedwith an Echo

Planar Imaging (EPI) gradient-echo sequence (flip angle = 90�; TE = 60 ms, repetition time (TR) = 3,000 ms, field of view (FOV) = 2403

240 mm2 and matrix size = 643 64 pixels). For each participant, we collected a high-resolution T1-weighted image using a 3D-SPGR

sequence (flip angle = 20�, TE = 2.92 ms, TR = 9.16 ms, acquisition matrix: 256 X 256 pixels; slice thickness = 1mm, interslice gap =

0mm, and voxel size = 1 3 1 x 1 mm3). The volumetric MRI scans consisted of 150 slices acquired on oblique sections parallel to

the AC-PC line covering the entire brain volume. Rs-fMRI scans were acquired using the following parameters: Flip angle 90�, TE =

60 msec, TR = 3,000 msec, FOV = 280 3 210 mm2; matrix = 96 3 64 pixels). Each volume was composed of 35 contiguous oblique

slices acquired along the AC-PCplane (thickness= 4mm, gap = 0mm). The duration of the rs-fMRI sequencewas 10min, and 200brain

volumes were obtained for each participant. The instruction given to participants scanned inMilan was the same as that used in Zurich.

QUANTIFICATION AND STATISTICAL ANALYSIS

Rs-fMRI Data preprocessing
Data preprocessing was performed, implementing the default preprocessing pipeline offered by the CONN connectivity Toolbox [29]

version 18b implemented inMATLAB (version 2016b,MathWorks, Natick, MA, USA). Rs-fMRI scanswere preliminarily slice-time cor-

rected. The realignment of all the rs-fMRI scans to the first one of the series was then performed. T1-weighed images underwent the

unified segmentation algorithm [30]. With this procedure, an estimation of the linear and nonlinear normalization of the T1-weighted

MRI image was obtained. Estimated transformations were then applied to the functional images. Rs-fMRI scans were then spatially

normalized to the Montreal Neurological Institute (MNI) template (voxel resampling to 23 2 x 2mm3). Consistent with the parameters

used in our previous studies [13, 19] smoothing was performed using a Gaussian kernel of 6 mm full width at half maximum. Outliers

scans in global signal and movement were identified with the Artifact Detection Tools (ART http://www.nitrc.org/projects/

artifact_detect) and were defined as i) those whose scan-to-scan global signal differences was > 2 SD from the mean and ii) those

whose compounded measure of movement parameters was > 2 mm scan-to-scan movement. After taking these steps, rs-fMRI

scans were band-pass filtered within the range of 0.008 Hz to 0.09 Hz (i.e., the frequency range of physiological importance for

measuring spontaneous neuronal activity [32]). The variance related to translations and rotations using the six motion parameters

(considered as first-level covariates) was regressed out, thus improving the signal-to-noise ratio. With the use of the CompCor strat-

egy [33], the BOLD signal from the individual white matter and cerebrospinal fluid were also taken as confounds. No mean global

signal regression was performed as the interpretation of the negative correlations observed after performing the mean global signal

is still a matter of debate [34–36]

Intrinsic functional connectivity of the cortical hubs
At the single-subject level, to map the intrinsic functional connectivity of the cortical hubs, we computed the intrinsic connectivity of indi-

vidual voxel (ICC) applying the method described in Martuzzi et al. [37] and implemented in the CONN toolbox. Based on network theory
Current Biology 30, 2191–2195.e1–e3, June 8, 2020 e2
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measures, ICC is a correlation-based connectivity approach that is sensitive to detect the presence and quantify the strength of the func-

tional connections of a given voxel to the rest of the gray matter voxels in the brain. As such, ICC is a whole-brain measure that does not

requireaprioridefinitionofany regionof interest (ROIs).Another reason forpreferring this indexoverothernetworkdegree-centrality indices

(e.g., the degree-centrality index [10, 11]) is that ICCdoesnot require to set an arbitrary threshold after correlating the temporal fluctuations

of BOLD signals extracted from every brain voxel. ICC represents, therefore, a powerful and wholly automatized data-driven approach.

Individual ICCmaps were z-transformed with the Fisher’s r-to-z transform function to obtain normally distributed data that allowed

group analyses.

To define the altered intrinsic functional connectivity in BID compared with the control groups, the z-transformed ICC maps of two

groups were entered into a second-level random-effects analysis. Our design matrix consisted of 3 columns: i) BID individuals z-

transformed ICC maps, ii) Controls z-transformed ICC maps, iii) the covariate ‘‘Scanner.’’ This covariate was introduced to account

for the different scanners with which data have been collected. Note that the number of BID and control individuals tested in Zurich (8

versus 8) and those tested in Milan (8 versus 8) was the same.

Decreased ICC in BID compared with controls, computed with the T-contrast BID < Controls [-1 1 0], indicated a breakdown of the

intrinsic functional connectivity in the cortical hubs in the BID individuals. That is, the resulting cortical hubs were less connected to

the rest of the brain in BID individuals compared with the controls. The opposite T-contrast, Controls > BID [1�1 0], did not yield any

significant results. The effects were extracted at p < 0.001 uncorrected at voxel-wise level and p < 0.05 at the cluster-level. The results

are shown in Figure 1 and Table 1 of the manuscript.

The BID Mask
The four regions of the AAL atlas corresponding to the lIFGOrb, the rPCL, the rSPL, and the lITGwere included in a brainmask that we

called ‘‘BID mask.’’ It was created with the Anatomy Toolbox implemented in SPM12 for the subsequent structure analyses,

described below, aimed at detecting the cortical regions with an altered concentration of gray matter in BID compared with controls

(see the Voxel-Based Morphometry analysis).

This mask also included three regions of the AAL3 atlas whose alteration was predicted from previous studies investigating

morphological abnormalities in BID individuals compared with the controls. One was the AAL3 region labeled as ‘‘right insula’’ cor-

responding to the coordinates of the two clusters of the anterior insular cortex (upper cluster: y = 32 x = 25 z = 9, lower cluster:

x = 32 y = 20 z =�4) found altered in BID [13]. The other AAL3 regions were the one labeled as ‘‘left precentral gyrus’’ and ‘‘left inferior

frontal gyrus, opercular’’ corresponding to the cluster of the ventral premotor cortex (PMv, y =�50 x = 5 z = 22) and the region labeled

as ‘‘left superior frontal gyrus’’ corresponding to the cluster of the dorsal premotor cortex (PMd, x = �20 y = �4 z = 58) [5].

Voxel-based Morphometry analysis
The Voxel-Based Morphometry approach was adopted to identify patterns of altered concentration of gray matter in BID individuals

compared with controls. The regions lying in the BID mask were considered in these analyses. Data preprocessing and analyses

were performedwithMATLABR2016b (MathWorks, Natick,MA, USA), and Statistical ParametricMapping (SPM12,WellcomeDepart-

ment of Imaging Neuroscience, London, UK). To comply with a standardized procedure, we ran the classic preprocessing batch ‘‘pre-

proc_vbm.m’’ provided by the SPM12 toolbox under the folder ‘‘batches.’’ The preprocessing stepswere the following: i) Segmentation

of the images to identify white and gray matter; ii) Creation of DARTEL templates and estimation of the deformations that produced the

best alignment of all the images, performing iterative registrations of all the images to their average; iii) Warping of the graymatter to the

MNI space iii) Application of a Jacobian modulation to preserve an absolute regional amount of gray matter from the distortion intro-

duced by the stereotactic normalization; iv) Normalization of Jacobian scaled gray matter images, using the deformations that were

previously estimated v) smoothing using a Kernel Gaussian Filter of 8 3 8 x 8 mm, vi) Averaging of smoothed images; v) Thresholding

of the tissue average to get an explicit mask; vi) Normalization of the bias-corrected images to the MNI space; vii) Averaging of the

normalized bias-corrected maps; viii) Checking of the average images and the explicit masks in the ‘‘Check Reg’’ provided by SPM

12; ix) Computation of the tissue volumes for each subject. The preprocessed subject-specific maps of gray matter were used to

examine the anatomical differences between BID individuals and controls in the predicted key regions. We performed a two-sample

t-test for each of the voxels lying within the BID mask. Regional values were corrected using the local correlation (ANCOVA) approach

that allowed us to establish the group differences for each voxel that cannot be explained by the linear relationship between the amount

of gray matter of that voxel and the total amount of gray matter for each participant. Such an approach, supposed to be more flexible

than the global proportional scaling [38], was preferred because participants acquiredwith different scans belonged to the same group.

Consistent with the ICC maps and seed-based FC analyses, the design matrix comprised 3 columns: i) BID preprocessed gray

matter maps, ii) Controls preprocessed gray matter maps, iii) the covariate ‘‘Scanner.’’

Atrophies in BID compared with controls are reflected in the T-contrast BID < Controls [-1 1 0] while hypertrophies are reflected in

the T-contrast BID > Controls [1 �1 0].

We used the most conservative thresholding method available in SPM (p < 0.05 FWE voxel-wise) coupled with a cluster extent

threshold of k > 25 to further exclude spurious findings. Indeed, false-positive results do not cluster in space [39, 40].
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Neural Correlates of Body Integrity Dysphoria
Gianluca Saetta,* Jürgen H€anggi, Martina Gandola, Laura Zapparoli, Gerardo Salvato, Manuela Berlingeri,
Maurizio Sberna, Eraldo Paulesu, Gabriella Bottini, and Peter Brugger*
*Correspondence: gianluca.saetta@gmail.com (G.S.), peter.brugger@kliniken-valens.ch (P.B.)

https://doi.org/10.1016/j.cub.2021.07.037

(Current Biology 30, 2191–2195.e1–e3; June 8, 2020)

We noticed a typo concerning a finding that we had considered to be too peripheral to be discussed in the original manuscript. In

Figure 1, the acronym ‘‘lITG’’ (left inferior temporal gyrus) should be ‘‘lSTG’’ (left superior temporal gyrus). While the MNI coordinates

for this region are correctly provided in Table 1 [x =�60, y =�44, z = 16], this region corresponds to the superior temporal gyrus. Also,

on page 2 of the manuscript (left column, first line), ‘‘inferior temporal gyrus’’ should be referred to as ‘‘superior temporal gyrus.’’ This

error has no effect on the main conclusions of the paper. The authors apologize for any confusion this may have caused.
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