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Abstract. This paper examines a kind of explainable AI, centered around
what we term pro-hoc explanations, that is a form of support that con-
sists of offering alternative explanations (one for each possible outcome)
instead of a specific post-hoc explanation following specific advice. Specif-
ically, our support mechanism utilizes explanations by examples, featuring
analogous cases for each category in a binary setting. Pro-hoc explana-
tions are an instance of what we called frictional AI, a general class of
decision support aimed at achieving a useful compromise between the
increase of decision effectiveness and the mitigation of cognitive risks,
such as over-reliance, automation bias and deskilling. To illustrate an
instance of frictional AI, we conducted an empirical user study to investi-
gate its impact on the task of radiological detection of vertebral fractures
in x-rays. Our study engaged 16 orthopedists in a ‘human-first, second-
opinion’ interaction protocol. In this protocol, clinicians first made initial
assessments of the x-rays without AI assistance and then provided their
final diagnosis after considering the pro-hoc explanations. Our findings in-
dicate that physicians, particularly those with less experience, perceived
pro-hoc XAI support as significantly beneficial, even though it did not
notably enhance their diagnostic accuracy. However, their increased con-
fidence in final diagnoses suggests a positive overall impact. Given the
promisingly high effect size observed, our results advocate for further re-
search into pro-hoc explanations specifically, and into the broader concept
of frictional AI.
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1 Introduction

One of the earliest and most influential works promoting the human-centered
approach to the design of interactive computer systems is Norman’s book ‘The
Design of Everyday Things’ [56]. Based on various studies conducted in the early
years of personal computing, Norman promoted the basic principles of a design
philosophy that would consider the needs, preferences, and requirements of users
to make their use experiences not only more effective but also enjoyable, and
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consequently to ensure better efficacy of action through pleasantness and tool
usability. From this idea, a very broad consensus emerged that the interfaces of
digital tools should be developed to make the use of the systems as natural as
possible, intuitive, easy, without barriers and difficulties: “Don’t make me think”
by Krug [46] soon became a bestseller in the community of user interface designers
and Human-Computer Interaction (HCI) scholars.

Yet, at the same time, Norman also warned that systems should not become
too easy to use, because this could make users complacent and unthinking in
their interactions. “The task”, Norman wrote, must be “at just the proper level of
difficulty: difficult enough to provide a challenge and require continued attention,
but not so difficult that it invokes frustration and anxiety”. A few years later
(1999), Allan Cooper [22] introduced and discussed at length the concept of
cognitive friction, defined as “the resistance encountered by a human intellect
when it engages with a complex system of rules” and constraints imposed, for
instance, by the technology they employ. Although Cooper primarily associated
this concept with artifacts that are ill-designed and need to be improved to make
them more usable, and thus as frictionless as possible, some measure of friction
can be considered advantageous in light of Norman’s insight: certain tasks should
not be made too immediate because there is a risk of fostering attitudes of over-
dependence, excessive complacency [58] and insufficient vigilance, as well as the
risk of drifting users towards some form of deskilling [7].

In light of these insights, our paper presents an empirical comparative study
that evaluates decision effectiveness and user experience in a system that inten-
tionally introduces decision-making friction, as a way to foster more thoughtful
and responsible human decision-making. We will delve deeper into this study and
its background in the following section.

2 Motivations and background

The title of this work hints at a well-known scene from Star Wars (Episode V:
The Empire Strikes Back) where Han Solo replies “Never tell me the odds!” to
the anthropomorphous robot C-3PO telling him the (very low) odds of success-
fully navigating an asteroid field. Although this line can be considered a typical
response to those who tell one what their chances of doing something are, we take
it as a cue for an approach to AI development that requires these systems not to
give odds, i.e., probabilities (or confidence scores), nor ready answers, clear-cut
classifications, or predictions; but rather aimed at designing systems meeting the
main requirements to help users think better [9].

Thus, the main motivation for this research grounds on the following con-
jecture: Decision support systems that provide full-fledged answers, such as the
classification advice or quantitative or probabilistic estimates that the latest gen-
eration of AI systems can yield, might induce some form of over-dependence in
users and, in the long run, a significant loss of skills (i.e., deskilling [64]) to their
judgmental capacities.

While we are aware that this conjecture is still in need of strong empirical
confirmation, we note that it has circulated in many environments where the
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computer support of knowledge work, judgment, and case interpretation is most
promising and effective (e.g., [15]), and a risk-based approach, such as that advo-
cated by the EU regulation and other similarly prudent approaches, require that
such a conjecture should be taken as true until proven otherwise.

Moreover, in contexts such as medicine, traditional systems can also encour-
age opportunistic behavior such as defensive medicine [34], i.e. deferring to the
machine’s answer to avoid accusations of negligence and malpractice. Paradoxi-
cally, this latter effect and the more general one of technology over-reliance [8] is
all the more likely to happen the more accurate and reliable the systems are.

A possible preventive solution to this class of problems sometimes referred to
as the unintended consequences of AI [7], less radical than abandoning decision
support and foregoing its undoubted benefits, is to design supports that do not
completely relieve the user of interpretative work, but rather promote it, by
adding some cognitive friction to the decision-making process.

In this paper, we focus on a possible instance of frictional AI, which we will
further characterize in Section 5: a solution that is based on the concept of a
pro-hoc explanation. The name of this technique comes from its main feature to
distinguish it from the more common post-hoc explanations: instead of providing
the user with an explanation of the machine’s answer after this has been given
for a given case, like in case of post-hoc explanations, the system instead receives
the user’s tentative judgment (what in [11] is called human-first protocol and
in [5, 33] update cognitive forcing function) and returns one (or more) possible
explanations associated with that judgment (or counterfactual explanations for
alternative outcomes). Therefore, instead of giving an explanation after a machine
advice (post-hoc explanation), this solution entails the provision of a pro-hoc
explanation (pro-hoc, from Latin, ‘instead of that’), which substitutes the machine
advice.

In this relatively unexplored domain, our focus is on explanations by exam-
ples [48], wherein the system presents cases akin to the current one. The concept
of employing similar cases is not novel in AI research [68], and has been ap-
plied, for instance, in machine learning for similar image retrieval in medical
contexts [21]: A prominent example is the SMILY system [37, 16]. However, our
study diverges in both its objectives and scope from these precedents. Previous
studies primarily concentrated on augmenting the image retrieval process itself
[37], or on enhancing pathologist engagement to refine search outcomes based
on visual similarity [16]. In contrast, our research ventures into decision sup-
port via pro-hoc explanations. We are not seeking to develop new algorithms
for similar image retrieval or to explore how presenting comparable cases might
bolster conventional predictive systems. Instead, our focus is on investigating the
impact of presenting clinicians with analogous cases as the sole form of explana-
tion (termed pro-hoc explanations above) for each potential outcome in a binary
decision-making process.

Our unique contribution thus lies in examining the impact of these example-
based pro-hoc explanations on the decision-making process in clinical settings,
particularly in terms of cognitive effects and decision accuracy.
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Specifically, in this paper, we will report the results of an exploratory user
study in which (see Figure 1) we provided the users with similar cases depend-
ing on their prior judgment, both pro-hoc explanations that support the user’s
hypothesis, as well as counterfactual explanations responding to the objection
“what if you were wrong? this would be the most similar case with the opposite
label”. In the latter case, we aim to see whether such “cognitively non-invasive”
and “non-substitutive” support is effective (i.e. allows users to improve their
baseline performance) and also perceived as such, i.e. useful, or not.

The case study above is designed in the context of radiological interpretation
and diagnosis, for the task of identifying vertebral fractures from x-rays. In what
follows, we will thoroughly describe the methods adopted to conduct the exper-
iment (Section 3) and report the results therein collected (Section 4). Section
5 elaborates on the concept of frictional AI, and Section 6 discusses the study
results and their implications. Finally, Section 7 concludes the work.

3 Methods

In what follows, we describe the methods applied to conduct the study to demon-
strate whether giving physicians similar cases retrieved by the training set was
decision-effective, i.e. it increased the users’ diagnostic accuracy and was per-
ceived as useful by them, even if this kind of support substituted traditional
diagnostic support and abstained from classifying the new case.

In this experiment, we involved 16 physicians with varying degrees of experi-
ence in reading spine x-rays in their daily work, that is board-certified orthopaedic
spine subspecialists (N=10) and orthopaedic residents (N=6). Their task was to
annotate 18 x-rays cases, which had been selected in a previous study [9] for
their representativeness of varied and complex cases, in terms of positive images
(presenting some vertebral fracture) and negative images (with no vertebral frac-
ture). The human-AI interaction protocol of this study, described in Figure 1,
was kept as simple as possible: each orthopedist was presented one case at a time,
through an online questionnaire, which had been implemented on the LimeSur-
vey platform [47]. For each case, each medical doctor was asked to provide a
diagnostic opinion in terms of the presence (positive) or absence (negative) of
lesions and fractures in an x-ray of 800x800 pixels (HD1 in Figure 1) and to indi-
cate the perceived degree of difficulty (or complexity) of the case and his or her
confidence in the proposed diagnosis, on a 6-value ordinal scale. Based on this
first opinion (positive/negative), recorded by the system as HD1, the AI system
retrieved, from the repository of available cases, the two most similar cases that
presented (or did not present, respectively) fractures, as well as the most similar
cases that did not have (or had, respectively) some fracture (see the middle step
in Figure 1). The similar cases were retrieved according to their Cosine similarity,
which was the similarity metric found to be more correlated with human ratings
in a previous user study [13]. Conceptually, the experiment was the implementa-
tion of a human-first [11] (or second-opinion), partially critiquing [35] human-AI
collaboration protocol. After considering these three similar cases, each physician
had to indicate his or her final diagnosis, recorded by the system as FHD, also



Investigating pro-hoc explanations 5

indicating confidence in his or her final choice (see the last step in Figure 1).
The physician’s baseline accuracy, or pre-support accuracy, is then the observed
success rate at the HD1 level; the post-support accuracy is FHD; the AI sup-
port regards the retrieval and visualization of similar cases, associated with their
ground truth diagnosis, without proposing any categorical advice or probabil-
ity scores, that is by abstaining from interpreting the case at hand: that is, we
proposed the doctors to consider alternative pro-hoc explanations that support
either their initial judgment or its opposite.

Fig. 1: BPMN diagram depicting the experimental design of the study. The x-rays
are real cases, the examples regard two positive cases and one negative case.

We collected their 288 diagnoses and analyzed them by adopting a confidence
level of 95% and applying non-parametric hypothesis testing. We also computed
the so-called Number of Decisions Needed (NDN) to get a significant effect on
the decision-making. This indicator was computed by Eq. (1), which is based on
the Number Needed to Treat (NNT) used in epidemiology:

NDN =
1

(2× pnorm
(

d√
2

)
− 1)

, (1)

where pnorm is the integral from −∞ to q of the probability density function
of the normal distribution and q is a Z-score, such as the effect size at hand.
Intuitively, the NDN represents the average number of decisions users must make
with the provided support (i.e., pro-hoc explanations) for one decision to be
correct, as opposed to the likelihood of making incorrect decisions without such
aid: in other words, the NDN is the number of decisions users must make with
the given support to prevent an incorrect decision they would have otherwise
made without the aid.



6 F. Cabitza et al.

4 Results and main interpretations

In what follows, we report the results of the user study described above and
outline some conjectures on the main factors that these results help to highlight.

What was the impact of showing similar cases instead of regular classifications
(the pro-hoc approach) upon decision performance? As shown in Figures 2 and 3
it was small but positive: the pre-support accuracy of the participants was 78.8%,
while their post-support accuracy was 80.9% (two proportion test p-value= .53,
Z= -0.62, effect size .05). Although this results is not statistically significant,
this small increase is better interpreted in the light of the Number of Decisions
Needed. In fact, the observed NDN is 50, suggesting that using this system for
approximately 50 decisions would suffice to avoid a mistake that would have been
made without its adoption. Moreover, small effect sizes are typical in studies that
evaluate the impact of XAI on diagnostic accuracy, when this impact is decoupled
from the AI’s effect (which is usually substantial) [8, 11]. For instance, in a similar
setting considering 1548 diagnoses and 12 physicians, the effect size of providing
explanations in the form of visual pixel-attribution maps associated with an 80%
accurate support was 0.08 [10].

Fig. 2: Pre- and post-support average performances in the ROC space. Pre-
support performance means sensitivity and specificity observed before showing
similar cases, that is the pro-hoc explanations; post-support means performance
exhibited by decision-makers after being exposed to the pro-hoc explanations.
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Fig. 3: Detail of a Benefit diagram illustrating the difference between pre and post-
support average performances (generated with the online tool https://mudilab.
github.io/dss-quality-assessment/). The blue region signifies performance
enhancements attributed to the AI system, whereas the red region denotes per-
formance decline resulting from its application. Blue dots represent specialist
doctors, while orange dots correspond to resident doctors.

The small effect of showing similar cases on accuracy can be traced back
to a very small number of decision changes (16 over a total of 288 decisions,
see Table 1 which reports the reliance pattern [11] frequencies observed in the
study). Notably, however, most decision changes were for the good: the number
of decision changes from an initially wrong to a correct diagnosis (11) was more
than double the number of decision changes in the reverse direction (5): this is
why the observed effect of the pro-hoc explanations was found to be positive, as
it accounted for a 10% reduction of diagnostic errors (see caption of Table 1).

Table 1: Reliance patterns’ table for the user study. The Decision Support
System (DSS) is the provision of Pro-Hoc explanations by similar cases. Ze-
ros stand for wrong answers, while 1s for right ones. Mistakes passed from
61 (pre-DSS) to 55 (post-DSS): thus 6 mistakes were prevented by the tool,
i.e., a 10% reduction. This table was generated by the online tool https:

//mudilab.github.io/dss-quality-assessment/.
Pre-DSS (HD1) Post-DSS (FHD) Count

0 0 50
0 1 11
1 0 5
1 1 222

The number of positive cases correctly identified, as well as the sensitivity
and specificity, differed between the pre-support and post-support settings, but
not significantly so (respectively, 177 vs 173, p-value=.73, Z=0.34, es=.03; .903
vs .910, p-value=.84, z=-0.20; es=.02, NDN=89; .674 vs .708, p-value=.52, Z=-
0.64; es=.08, NDN=22). As a matter of fact, this latter not-so-slight increase in
specificity could suggestively back up the finding, emerging also in other studies
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(e.g.[29]), that explanations (as similar cases are) can make decision-makers less
risk-averted (under the interpretation that the call for a ‘negative test’, which is
more conservative for the patient, is more risky for the physician, in case they
are wrong, in light of potential malpractice claims).

In regard to accuracy, we observed some interesting differences between resi-
dents (N=6) and specialists (N=10) (see Figure 3). When unaided, the residents
performed better than the specialists, with an average accuracy of .83 (SD: .06)
vs .76 (SD: .08) and with a large effect size (1.03, NDN = 2), albeit not signifi-
cantly so (p-value= .5, T=2.1). This could be due to a greater commitment to the
task of the residents (as compared with specialists), who took the opportunity
to test their skills and (informally) compete with each other: indeed, on average,
residents took 4 minutes more (15%) to complete the task than specialists.

However, this performance gap almost completely disappeared after the par-
ticipants were shown similar cases. Indeed, although showing similar cases has
improved the physicians’ average accuracy in a not significant way (the p-value
equalling .41, the test statistic T equalling -0.84, with a mean accuracy across
the physicians that changed from .79 [.74,.82], .81 [.77, .84]), the observed effect
size for the specialists was small-to-moderate (.3, NDN = 6). In particular, while
60% of them improved their accuracy, no resident improved their (see the Bene-
fit diagram in Figure 3). This could be due to fixation by the residents. Indeed,
when aided by the system, specialists changed their minds twice as frequently
as residents (4% vs 7%): in two-thirds of these changes, the decisions regarded
the diagnosis of cases that were deemed to be complex (that is the cases whose
perceived complexity was evaluated higher than 2). More notably, two-thirds of
these decision changes were for the better, whereas one-third induced some form
of automation bias: nevertheless, automation bias was two and a half times larger
in residents than in specialists (0.028 vs. 011). Most notably the rate with which
specialists changed their minds for the better was 6 times greater than the rate
for residents (5.6% vs 9%).

Although the positive effect on accuracy was found not to be significant (for
the small sample of decisions considered), as we already commented on above,
the observed effect sizes, especially for the specialists, were not negligible, nor the
NDN: the system helped to avoid a potential mistake every 6 aided diagnoses.
This makes us conclude that showing similar cases had a positive effect on the
radiological task considered, and could therefore be considered useful: this finding
is also confirmed by noting the Technology Impact, TI (see Figure 4). This is a
measure of the usefulness of AI support, which was introduced in [8] and is defined
as the ratio of the probability of making a correct decision when supported to
the probability of making a correct decision when unsupported. For this study,
the TI was slightly positive and significantly so: as shown in Figure 4, the 95%
confidence interval for the odds ratio does not contain the line of ‘no impact’
(TI=1).

To confirm this statistical finding from a more qualitative perspective, we
also asked directly to the participants in the case study if they found the support
useful. Not surprisingly then, the perceived usefulness (evaluated for every single
decision on a 4-value ordinal scale) was high (average: 2.7, 95% confidence interval
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Fig. 4: Technology Impact odds ratio, for the decision support study. Horizontal
lines denote 95% C.I. computed according to the standard formula for odds ratios.
The red region denotes an overall negative effect of the AI support, while the blue
region denotes an overall positive effect (moreover, since the confidence interval
does not cross the boundary, the effect is significant). Diagram generated with
the online tool https://mudilab.github.io/dss-quality-assessment/.

[2.62, 2.87]) and the vast majority of respondents chose a value in the upper half
of the scale (.62 vs .38, significant majority with p-value from the binomial test
.0002). The difference in perceived usefulness between residents and specialists
is significant (p-value= .010, Mann Whitney Z= 2.57, standardized effect size=
.16, common language effect size= .59). As it can be seen in Figure 5, residents
considered the aid more useful than the specialists, although its impact on their
accuracy, and hence the augmentation effect, was much smaller, as also confirmed
by the Benefit Diagram depicted in Figure 3.

Considering similar cases made respondents slightly more confident (but not
significantly so) with respect to not having any support. The p-value equals
.176, the test statistic Z equals -1.353. The observed standardized effect size is
small (0.056, NDN = 32), but the observed common language effect size was
moderate (0.47). For specialists, the difference was stronger, although still not
significant (P= .07724) with a standardized effect size almost twofold bigger
(.093, NDN = 19). More generally, confidence changed in slightly more than
55% of the cases for which physicians changed their decision, and within these
cases, confidence improved in two-thirds of the decision changes. Indeed, after
seeing similar cases, the number of times the physicians’ confidence increased
is significantly higher than the number of decreases (.66 vs .34, p-value=.0014;
test statistic X = 64) and effect size is .34 (NDN = 5). Thus, although in half
of the cases reported confidence did not change, in almost one-quarter of the
cases presenting similar cases improved the confidence of decision-makers in their
decisions. On the one hand, this does not surprise, as similar cases are additional
information that, ideally, can make physicians more certain of their diagnosis; on
the other hand, this result suggests that similar cases are considered useful in
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Fig. 5: Boxplots of the perceived usefulness of showing similar cases for each
diagnostic decision (N=288), reported by residents (on the left) and specialists
(on the right) on a 4-point ordinal scale. Box notches represent 95% confidence
intervals of the median; crosses represent means, in their 95% CIs as well. The
horizontal red line represents the mid-scale: estimated averages that do not cross
this line indicate statistically significant trends in the collected responses.

corroborating confidence about the correctness of one’s diagnosis, and this effect
could not be given for granted.

Finally, we also observed some interesting correlations between the observed
accuracy of the physicians and their perceptions (see Figure 6) as well as be-
tween these perceptions and the perceived complexity of cases (see Figure 7).
More in particular, we notice that the psychometric variables reported by the
participants, that is their confidence and the perceived complexity of the cases,
were a reliable proxy of their actual accuracy. As expected, the more confident
the physicians were about their diagnosis (HD1) in regard to a case, the higher
the actual accuracy (see Figure 6, on the left), that is the match between FHD
and the ground truth. Likewise, the higher the perceived complexity, the lower
the actual accuracy (see Figure 6, on the right). In both cases, correlation scores
were high and significant (resp, confidence: +.48; complexity: -.39). We observed
also two other significant and strong correlations: between the perceived com-
plexity of cases and confidence in the final decision (see Figure 7 on the left),
and between perceived complexity and perceived usefulness of pro-hoc explana-
tions (see Figure 7 on the right). As understandable, the higher the perceived
complexity, the lower the confidence (correlation: -.78) and, most notably, the
higher the perceived usefulness of the AI support (+.32). These results confirm
the ecological validity of our study and the importance of involving real subject
matter experts in Human-Centered Artificial Intelligence and Medical AI studies.
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Fig. 6: Scatterplots of the relationship between self-reported confidence in the
decision, on the left, and reported perceived case complexity, on the right, with
actual accuracy (vertical axis). Points correspond to single decisions, jittered to
avoid clutter and overlapping. Pearson correlation coefficients are indicated in
red, close to the regression trend.

Fig. 7: Scatterplots showing the correlations between case (perceived) complexity
and, respectively, the physicians’ confidence on their initial diagnosis (left), the
physicians’ accuracy (middle), and the perceived usefulness of the ’similar case’
support. Spearman correlation coefficients (reported in red) are all statistically
significant.
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5 Frictional AI

Before delving into the implications of our findings, it is crucial to elaborate on
the concept of frictional AI, briefly introduced in Section 1: this discussion will
provide a framework for better appreciating the scope and impact of our results.

As mentioned earlier, the term ’cognitive friction,’ as initially presented by
Cooper in 1999 [22], has predominantly been viewed as an inadvertent conse-
quence of poor design in interactive systems, rather than as a potential tool to
encourage more mindful user engagement in the spirit of Norman [56].

The promotion of a more mindful approach to technology echoes Kahne-
man’s seminal work “Thinking, Fast and Slow” [41], which distinguishes two
main modalities of human thinking: System 1 and System 2. System 1 represents
our fast, intuitive, and “automatic” decision-making, while System 2 concerns
slower, analytic, rational thinking. Despite being a simplistic interpretation of
human thinking [44], the two-system framework can help us think of over-reliance
not as an intrinsic, unavoidable phenomenon due to cognitive biases, but rather
as a specifically designed mode of human-AI interaction in which a Decision Sup-
port System (DSS) leverages System 1 more than System 2, usually for the sake
of efficiency. Conversely, to create the best conditions facilitating commitment,
oversight, and responsible caution, we investigate AI systems that elicit System 2
thinking through careful interaction designs that disrupt or discourage automatic
user behavior. [19, 24, 51, 54].

One such example regards systems that embed micro boundaries [24]: these
are defined as small obstacles or moments of reflection that “create just enough
friction to switch someone from having their behavior driven by System 1 to
System 2” [24] by slowing down the decision-making process. In this sense, mi-
cro boundaries are in stark contrast with so-called dark patterns, namely design
choices aimed at “sludging” users into undesired behaviors by exploiting their
inattentiveness and eliciting quick, instinctual responses [32, 24]. Dark patterns
produce an intentionally seamless and smooth experience of use, to conceal com-
plexity and secondary motives. A completely different approach, called seamful
design, intentionally reveals system shortcomings and the “mismatches and cracks
between assumptions made in designing and developing the AI system and the
reality of the deployment context” [28], to promote a balanced level of user re-
liance [38], and make users more aware of existing uncertainty and inconsistency
[40].

Thus, in the wake of the seminal work by Norman [56], some researchers began
to consider the appropriateness of including elements that intentionally cause
friction, under the names of critical design [27], reflective design [66], adversarial
design [25] and the concept of ‘intentional - beneficial - friction’ [74]. The cognitive
friction that these approaches envision can be rendered in multiple ways: for
instance, by disabling functionalities that might otherwise be expected or desired;
by making them more difficult to run; or by purposedly introducing slow-downs,
pauses, and inefficiencies.

Frischmann and Selinger [30] convincingly argued that “some friction, some
inefficiency, even some transaction costs may be necessary to sustain an underde-
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termined environment conducive to human flourishing.” (p. 141). From the same
authors, this idea was then concretely translated in terms of programmed ineffi-
ciencies, which are “deliberately engineered” “sources of friction” (p. 286) [30],
that is, design features that implement what Ohm and Frankle [57] called one year
earlier “desirable inefficiency” (i.e., a design pattern that connects apparently in-
efficient code and human values), and a little earlier the authors of [70] called
“inspired inefficiency” (i.e., the result of balancing algorithms and intuition), and
the authors of [31], probably predating all the others, called “meaningful ineffi-
ciencies” (p. 254) in the context of civic life. We also conducted some empirical
studies on the concept of programmed inefficiency [7, 12] in medical decision-
making and second-opinion settings. Known precursors of similar approaches are
slow technology [36] and reflective design [66], which focus on how technology can
encourage and aid a thoughtful and considerate demeanor in users throughout
the interaction. Conceptually preliminary proposals in that direction are “uncom-
fortable interactions” [3] and “critical design” promoting reflection and critique
through making technology “unfriendly” to users [26] or subverting assumptions
and expectations, like the strong one that decision support systems should only
give recommendations and pieces of advice.

Pierce introduced the idea of integrating “digital limitations” when designing
“counterfunctional things” (that is “a thing that figuratively counters some of its
own functionality”), partly under the influence of the tenets of nudging theory
and the research on choice overload. More recently, Pierce presented a framework
for “frictional design”, which grounds on his pioneering research on undesign
[60] and alternative designs, which include five tendencies: “diverging, opposing,
accelerating, counterfactualizing, and analogizing” [61].

Acknowledging Pierce’s contribution [60], we introduce Frictional AI as the
umbrella term for a set of various approaches whose aim is to design AI sys-
tems that promote reflection and critique rather than complacency or mindless
reliance. This approach carefully inserts design frictions [24] or programmed in-
efficiencies [7] instead of recklessly removing them to make interaction faster and
more efficient. This is done following the idea that it is designers, rather than
users, who are to be held responsible for creating the best conditions facilitating
commitment, oversight, and responsible judgment.

In the domain of DSS and AI design, reflection machines [23] are systems
that prompt users to critically reflect on their own decision-making strategies;
evaluative AI [53], on the other hand, denote systems that do not offer direct
recommendations but rather provide evidence for and against a specific decision.
Both these approaches can be considered as instances of what we call frictional
AI. Also in the case of pro-hoc explanations, the friction is intended to mitigate
the risk that users might over-rely on the support and develop heuristics or
opportunistic behaviors in which they exert low vigilance or overtrust in the
system advice, even when this is wrong: automation bias and complacency are
the terms usually associated with these behaviors when they regard individual
decisions and choices [58, 73], but also the risk of deskilling has been reported in
the long run [64].
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Thus, we call frictional AI the composite field of design research aimed at
applying the above tenets and insights to the development of AI systems and
data-driven decision support systems, in order to create some cognitive friction
in the human process of situation assessment or decision-making. In what follows
we provide a typology of frictional AI applications, expanding on the work by
[55], without any ambition of exhaustiveness and completeness.

1. Cautious protocols, where the system presents multiple options or none.
In the former case, the system presents a set of candidate answers, which are
associated with either an individual confidence score each, or with a defined
level of probability of encompassing the right answer, like in conformal pre-
diction. The latter case is what is also called abstention, that is the deliberate
rejection to provide support, or a a degenerate case of conformal prediction
in which all possible options are mentioned. In all those cases, the system
recognizes the case as being too complex or too different to the cases seen
in the training set [17], and applied this kind of protocol not to mislead the
decision-maker.

2. Judicial or antagonist protocols, where the system hosts arguments and
explanations backing up multiple and opposite decisions or interpretations. A
particular case envisioned in [53] is that of perorative explanations produced
by opposing conversational agents, which try to convince the human decision-
maker that their interpretation and classification is the right one, while the
other is wrong. Another instance is that of agonistic machine learning mod-
els (two or more) that provide opposite answers and related explanations.
These models could belong to different model families or apply different hy-
perparameters, or be trained on different ground truths and representations
[39] or be optimized for different targets such as utility, specificity, sensitiv-
ity or discriminative performance [49]. The introduction of such “conflict-
ing rules/knowledge” is what Kliegr [45] identified as a debiasing technique
against overconfidence and underconfidence and has been previously studied
by Wang et al. [72], Bhatt et al. [4], Bussone [6], and Wolfe [75].

3. Decentralized AI or adjunct protocols. These protocols, first introduced
in [14] with the term adjunct AI, employ process friction to make decision-
making less dependent on AI or to make AI-supported processes less effective
than unaided ones. This can be accomplished, for instance, by embedding
cognitive forcing functions [5] such as timeout periods, longer waiting times,
and purposefully slowed-down algorithms, which have been found to improve
user evaluation of algorithmic accuracy [59]. Another case of process friction
entails assigning the AI to the role of a second-opinion giver [69], after that
the human decision-maker has recorded their first opinion. This solution has
been applied in [11] and denoted as human-first protocol. Both solutions are
aimed at mitigating biases, such as algorithmic deference, selective adherence,
priming effects, framing, and anchoring bias [1, 62, 63], as the user is required
to come up with their own interpretation on the case at hand before being
influenced by the AI output. Thus, adjunct AI protocols give value to human
intuition and aim to complement it, rather than substitute it. In our user
study, we applied this kind of protocol, combined with the following one;
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4. Comparative or analogical protocols, where the system provides users
with access to the most similar cases (to the case at hand) that are associated
with their ground truth; or the most similar cases (to the case at hand) that
are associated with each of all the available classes. Users are then invited
to reflect on the elements that differentiate or liken the present case and
past ones, orienting their final decision according to the labels associated
with the previous cases [2]. In these cases, the system can be considered
as a case-mining tool or transactive memory, rather than an oracular [52]
support, which fosters analogical thinking [42]. This is exactly the case of
pro-hoc explanations, which replace, rather than complement, the AI decision
support.

6 Design implications and further considerations

This study aims to see whether showing similar cases is an effective alternative for
giving explicit categorical advice, that is testing the effectiveness (and usability)
of pro-hoc explanations. The main findings are summarized in Table 2: they sug-
gest that pro-hoc explanations by examples are considered useful (see Figure 5)
and they might also increase accuracy, although minimally so, since the observed
effect was very low (see Figures 2 and 3). However, a relatively low number of
decisions are necessary before avoiding some mistakes that would be committed
without the support, as shown by the NDN indicator. This finding, as well as the
fact that showing multiple similar cases (with known and verified diagnoses) is
tantamount to not giving physicians any ready-made answer, suggest that pro-
hoc explanations can be considered one of the Frictional AI solutions associated
with the smallest risk of deskilling and over-reliance: indeed, this kind of solution
still require physicians to exert their interpretative skills and judge the images
by themselves.

All things considered, from the findings above (see also Table 2), we can draw
some guidelines and recommendations. We outline them in what follows, with
no particular ambition of generalization, but with the aim to inform the design
of frictional AI systems aimed at improving diagnostic accuracy in radiological
settings, as well as to stimulate further research in this domain:

– In image annotation and ground truthing, information about case/decision
complexity and diagnostic confidence should be collected: indeed, as we have
shown in our experiments (see Figure 6), these data correlate with actual
accuracy. Moreover, this information could be useful to modulate the level of
friction of the system, as seen in [18].

– Showing cases similar to the one under examination, including both negative
and positive instances of a specific condition (e.g., vertebral fractures), may
assist readers in their diagnostics. This potential improvement appears to be
more perceptible among less experienced readers than expert ones.

– The presentation of similar cases may enhance the confidence of image readers
in their final decisions. This effect could be more pronounced among expert
readers, though it is not exclusive to them. It’s important to note that this
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Table 2: Summative table of the main findings and the related implications for
either the development of the XAI feature at hand or the design of future empir-
ical studies evaluating its effectiveness. The Number of Decisions Needed (NDN)
is computed according to Eq. 1. The Recommended Sample Size (RSS), in terms
of the minimum number of decisions to observe to get statistically significant
results, has been produced with the procedure presented in [67], and by adopting
a Power of .8 and α of .05.

Finding Effect Size Number of
Decisions Needed

(NDN)

Recommended
Sample Size

(RSS)

Pro-Hoc
Explanations
improve user

diagnostic accuracy

.05 50 6000

Pro-Hoc
Explanations
improve expert

diagnostic accuracy

.30 6 320

Pro-Hoc
Explanations make
users more confident

.06 32 3500

Pro-Hoc
Explanations make

experts more
confident

.09 19 2800

increased confidence may occur even if there is no change in their final decision
(i.e., when HD1 = FHD). While not definitive, this trend towards greater
confidence after using the DSS might be interpreted as a form of satisfaction
or an indicator of a positive user experience. Consequently, this suggests
that pro-hoc explanations could potentially enhance the usability of the DSS,
although this effect may vary among users.

Since the last point concerns one of the most important elements for those
involved in the HCI field, we investigated this point in greater detail, by involv-
ing the two authors who are expert clinicians and who were originally involved
in the design of the pro-hoc functionality. They both found the adoption of this
functionality intriguing to use and of high potential in terms of usability: indeed,
they noticed that learning from analogous cases reported and described in scien-
tific articles, as well as in textbooks or congress presentations, is a common and
essential aspect of medical education [20, 65]. As a consequence, clinicians are
very familiar with this kind of unobtrusive aid: this could be a factor in regard to
the rise in confidence that we observed in this study, even in those cases where
the physicians did not change their initial diagnostic interpretation.

To better illustrate how a clinician could leverage the above functionality and
trigger effective analogical reasoning, or at least a line of reasoning that increases
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their confidence and hence satisfaction, we discussed with the above clinicians
some cases used in our study in greater detail.

Fig. 8: Cases from the experimental set where the AI aid was proved to be useful
in either confidence or accuracy improvements, in virtue of the similarity between
the case at hand and those retrieved.

For instance, case 100 (see Figure 8) was associated with highly correlated
similarity scores with those retrieved by the AI. One of these retrieved cases (see
case 100POS2 in Figure 8) exhibited the same type of fracture as the former case
index, which nevertheless is extremely rare (A2, in the AOSpine classification), as
it is observed in only 3% of fractures [71]. For its rarity and appearance, case 100
(and similar cases) are relatively easy to diagnose (for expert readers) and hence
the perceived utility of the AI aid was relatively low, although it was effective in
retrieving a conceptually similar case.

In other cases, where diagnosing a fracture was less straightforward, similar
cases were perceived as more useful. For instance, in regard to cases 122 and
13 (both depicted in Figure 8), which are actually hard to diagnose, the AI
retrieved two similar cases (respectively, case 122POS2 and 13POS1 in Figure 8)
that presented the same specific fracture pattern and anatomical lesion (i.e.,
anterosuperior corner fracture) and had been associated with a verified diagnosis
of fracture presence, thus suggesting that also the former case (122POS2) was
positive. Consequently, not only the AI aid did improve the physician’s confidence
in the final diagnosis, but it also provided a differential benefit in regard to
accuracy, and the more so especially for those cases whose difficulty level was
higher (i.e., MIO grading 3 and 4).

However, not all decisions were so straightforward and some cases posed in-
terpretative challenges. For instance, case 65 (see Figure 9) exhibited a fracture
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Fig. 9: Cases from the experimental set where the AI aid was controversial or
potentially misleading, in virtue of the similarity between the case at hand and
those retrieved.

with a lesion pattern that is hard to detect and recognize on plain X-rays, usu-
ally resulting in lower detection rates and higher error rates. In a real-world and
naturalistic setting, any fracture diagnosis for a case like that would have to be
confirmed using second-level imaging, such as a (much more expensive and inva-
sive) CT or a much more stressful and expensive exam such as MRI. For the above
case, the more similar cases retrieved by the AI had been labeled as negatives
(e.g., see case 65NEG1 in Figure 9), thus potentially confusing and potentially
misleading the clinician. Similarly, case 81 presented a comparable scenario with
a different initial diagnosis. In this case, the case was actually negative for frac-
ture (according to the ground truth), but the most similar case retrieved by the
AI had been labeled as positive for fracture (see case 81POS1 in Figure 9). This
could also mislead the physician, who might have been led to believe that they
were missing a fracture diagnosis and that a second (unnecessary) imaging was
to be prescribed. Nevertheless, it is worth noting that from a clinical perspective,
the impact of a missed fracture is much more serious than that of an incorrect
diagnosis of a fracture. In the former scenario, the patient could go untreated,
resulting in potentially serious consequences [43], whereas in the latter scenario,
second-level imaging, or further physical inspection, would lead to the correct
diagnosis. Therefore, in orthopedic settings, an AI aid should be designed to op-
timize sensitivity (over specificity), that is to make false negatives more rare to
result in a more useful support [18]. The above comments choose to adopt a pro-
hoc support a design choice that can have different effects based on contextual
elements, such as the complexity, difficulty or rarity of the case: this an addi-
tional reason to collect the physicians’ perception at use time, to classify cases
also along these subjective dimensions.

7 Conclusions

While friction is typically seen as a drawback in HCI, increasing research indicates
its potential to foster more deliberate, mindful, and critical interactions with
digital systems. In this paper, we contribute to the research that explores the
deliberate incorporation of friction in decision support systems. This approach
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aims to encourage more conscientious decisions and counterbalance the risks of
excessive reliance on technology and its dominance, in the short term [8], and to
address concerns about skill deterioration and learning degradation, in the long
term [7].

The design and evaluation of human-AI interaction protocols are inherently
human-centered because they are built grounding on users’ perceptions and in-
volve direct user participation. Therefore, our research aligns with both the
Human-Centered Artificial Intelligence and the One Health approaches for two
main reasons: firstly, our user study aims to improve the efficacy of clinical DSSs
and, by extension, medical decision-making, although the insights gained may
also be applicable to other decision-making contexts. Secondly, we embrace the
core principle of the One Health initiative, which posits that technologies in-
tended to ensure the health of individuals and their environment should be de-
signed holistically, taking into account long-term effects and distant externalities
associated with any improvement in human decision performance. In this con-
text, we consider the innate variability of human beings and their propensity for
minimal effort, shortcuts, and ’cognitive economy’ strategies [50], as motivations
to introduce controlled friction in decision-making processes and assess their po-
tential in reducing over-reliance on technology, technology dominance [8] and the
tendency to perceive AI systems as agents that are equally or more capable than
humans, rather than as mere tools that enhance our cognitive abilities [12].

To this aim, we conducted an empirical user study in a controlled environ-
ment for the diagnostic task of detecting vertebral fractures in spine x-rays. The
interaction protocol, as illustrated in Figure 1, prioritized human judgment: clin-
icians first made an initial assessment of the x-ray without AI assistance and
then provided a final diagnosis with AI support. This support involved display-
ing three similar cases identified by the AI: two matching the physician’s initial
classification and one from the opposite class. While the application of this kind
of support only marginally improved accuracy (approximately by an additional
2%), its utility was greatly appreciated by the medical practitioners involved,
particularly those with less experience, despite more experienced clinicians show-
ing greater improvement. Participants also reported increased confidence in their
final decisions.

A key limitation of this study is the small scale, both in case numbers and
participant count. While this restricts the generalizability of our findings, the
identified effects are substantial enough to inform future research design: specif-
ically, the identified effect sizes are of critical importance to support the power
analysis and estimation of the sample size of future studies (see Table 2). This
makes our study capable of informing the design of future, more-powered, studies
involving potentially larger, and more diverse, samples of clinicians.

Our future work will also go in this above direction: more specifically, we
plan to further explore how frictional AI protocols, like pro-hoc explanations, can
support human users, particularly in preventing errors. As discussed in Section 6,
pro-hoc explanations help users by allowing them to compare their preliminary
assessments against actual diagnoses of closely similar cases, thereby prompting
a reassessment of their initial reasoning and conclusions. The promising results
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reported in this study suggest that further research should focus on evaluating
other methods by which less immediately exploitable AI outputs can still augment
human decision-making, according to the typology outlined in Section 5.
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