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a b s t r a c t 

Post-harvest diseases of apple can cause considerable economic losses. Thus, we developed DSSApple , an interac- 

tive web-based decision support system, that helps users to diagnose post-harvest diseases of domesticated apple 

based on observed macroscopic symptoms on fruit. Specifically, DSSApple is designed as a two-stream hybrid 

diagnostic tool, that can be effectively used by both expert and non-expert users to diagnose diseased instances 

of apple. The image-based stream allows the user to interact simply by selecting pictures, representing the variety 

of symptoms of diseases at different stages of the infection and on different cultivars. Instead, the expert-based 

stream of the system incrementally collects user feedback about the target disease by asking questions related to 

the macroscopic characteristics of the observed symptoms on a target apple. The expert-based reasoning mecha- 

nism of DSSApple is developed by leveraging the framework of Bayesian Networks (BNs). We detail the process of 

building this knowledge base with the support of a domain expert. We further exploit the BN to process incom- 

plete or conflicting user feedback within the inference mechanism as well as to provide human-understandable 

explanations on the suggested diagnoses. The proposed hybrid approach has been thoroughly evaluated in two 

studies, involving simulated (by photos) as well as real infected apples. Thus, the proposed hybrid version of 

DSSApple is able to outperform both the single streams and the user intuition in terms of diagnostic accuracy. 
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. Introduction 

The apple ( Malus x domestica ) is cultivated on a global scale in tem-

erate regions, reaching a world gross production value of 37.8 billion

ollars in 2016 [29] . Apple fruits are a valuable contribution to human

utrition and are available throughout the year, as modern apple culti-

ars can be stored for a period of up to twelve months under controlled

tmosphere conditions [40] . In the course of storage, however, apple

ruit may deteriorate, due to physiological disorders or infectious post-

arvest diseases. The most important post-harvest diseases of apple are

aused by pathogenic fungi that can affect both the quantity and qual-

ty of the produce, not only during storage but also at the time of pack-

ng and shipment. For instance, in the USA, the annual losses caused by

ost-harvest diseases of apple were estimated at 4.4 million dollars [30] ,

hile in Northern Europe, storage losses due to pathogenic microorgan-

sms were estimated to reach up to 10% in integrated production and up

o 30% in organic production [25] . As fungal post-harvest pathogens dif-

er in their biological characteristics, effective disease determination is

rucial for containing damages, setting sales and marketing priorities as

ell as to implement a sanitation program, or to define pre-harvest plant
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rotection measures for the following season. The most accurate diag-

ostic methods are based on microscopic, microbiological or molecular

enetic examinations, which require dedicated laboratories and trained

taff [3] . A method for disease determination that requires the lowest

echnical effort and can be directly applied in packing-houses and fields

s based on the observation of decayed fruit for the presence of macro-

copic symptoms or fungal signs. The former include the appearance,

olour, texture and consistency of the rot induced on the peal and/or

he pulp tissue, whereas the latter comprise mycelium, fruiting bodies

r spore tufts. However, symptom-based disease diagnosis requires a

ood knowledge of the diseases involved and a trained eye of the user.

urthermore, symptoms can vary according to the cultivar, the stage of

nfection, as well as the cultivation and storage conditions. Therefore, a

omputer-guided decision support system able to support on-site practi-

ioners to distinguish pathogens producing apparently similar symptoms

s of crucial importance in such an agricultural sector [36,44] . 

To the best of our knowledge, few works in the literature addresses

he problem of building a decision support system to diagnose post-

arvest diseases of apple. One of these few was the seminal work by

oach et al. [35] , introducing POMME , a knowledge-based diagnostic
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1 Accessible at http://dssapple.unibz.it . 
odule for apple scab being part of a system supporting apple grow-

rs in managing their orchards. In the domain of agriculture, expert

ystems have been widely adopted to cope with the diagnosis and pre-

ention of diseases and disorders that may appear at different develop-

ental stages or parts of the crop plant, and largely affect the yield [2] .

nowledge-based expert systems for supporting diagnosis, founded on

f-then or logical rules [5,24,42] have inspired our work, specifically in

he context of knowledge elicitation and management. However, these

orks lack important features, which we consider fundamental for our

ecision support system. Specifically, we designed the system to be used

y a different variety of practitioners, researchers, or interested users,

ith different expertise levels in the domain of apple diseases – from

uality managers in packing-houses, to the farmers, from researchers

n phytopathology, to the students of horticultural science. Thus, the

pplication of strict expert-defined rules is shortcoming, given that it

equires a good amount of domain knowledge by the final user to effec-

ively use the diagnostic application. Namely, in order to correctly rec-

gnize some subtle symptoms on fruits associated to specific diseases,

ears of training and experience in the field are required. Therefore, we

xploit multiple sources of information to facilitate the interaction with

non-expert) users. For instance, Kolhe et al. [18] reported a web-based

ntelligent diagnostic system for oilseed-crops. The system was designed

o incorporate a dynamic knowledge base and to provide reasoning by

eans of a fuzzy logic approach. The interaction with the system was

upported by means of an audio–visual–graphical user interface using

ext-to-speech conversion tools. Gonzalez-Andujar [12] , Gonzalez-Diaz

t al. [13] , instead, built an expert system for the identification of weeds,

nsects, and diseases of olive trees and pepper plants. Knowledge was

athered by literature review and interviews with experts, and the sys-

em adopted a conventional if-then knowledge representation, but also

mployed digital images to assist users in the identification process. Fi-

ally, the Identificator [32] diagnosis system for strawberries inspired

ur contribution. Similarly, the framework lets users select macroscopic

eatures (symptoms) associated to predefined images in order to diag-

ose the correct diagnosis. 

However, a property missing in the applications referenced so far

oncerns the capability of dealing with uncertainty in the knowledge as

ell as in the user feedback, i.e., the presumed relations between symp-

oms and diseases are mediated by some degree of uncertainty as well as

he feedback acquired from users might be wrong or misleading. Thus,

or the development of the expert-defined stream of our model we relied

n the Bayesian Network (BN) [19,31] framework, a probabilistic graph-

cal model which allows reasoning under uncertainty about symptoms,

igns, and diseases. The application of the BN technique for diagnosis

asks has its roots in the late 1980s and early 1990s with the first de-

ision support systems for medical diagnosis, such as MammoNet , pre-

ented by Kahn et al. [15] , for the diagnosis of breast cancer. In partic-

lar, we took inspiration from the methodology employed by Spiegel-

alter et al. [39] on the construction of a probabilistic expert system

iagnosing the “blue baby ” disease. In contrast to the application of BN

odels in agriculture [7,33] that were fully bootstrapped from data, we

pplied the guidelines for the elicitation of expert knowledge for setting

odel parameters provided by Kuhnert et al. [20] . 

The objective of this study is to develop DSSApple , an interactive

eb-based decision support system, that helps users to diagnose post-

arvest diseases of apple, based on observed macroscopic symptoms, in

rder to suggest possible counter-measures for future prevention. The

ystem is designed to provide a practical interface to elicit information

bout an unknown disease on a target apple from both, expert and non-

xpert users. Specifically, our application allows for a two-stream hybrid

nteraction based on the similarity of images, depicting symptoms vari-

ty ( image-based stream), as well as on multiple-choice questions related

o the macroscopic characteristics of symptoms, that are exploited by

he BN reasoning mechanism ( expert-based stream). In order to compute

he diagnosis (i.e., a ranked list of suggested diseases), both, the image-

ased and the expert-based stream are combined to boost the accuracy.
2 
he system has been thoroughly tested by means of two real-world eval-

ation studies involving semi-expert users. The users were challenged to

se the DSSApple application in order to correctly diagnose two sets of

nfected apple, i.e., simulated through photos, and real infected apple

rovided by storage houses. In both cases, the ground-truth disease for

ach apple was assessed in laboratory through microbiological analy-

is of the pathogen. This real-user evaluation proved the effectiveness

f the hybrid DSSApple system in the diagnostic task, which generally

utperformed both the image-based and the expert-based approaches, as

ell as the users’ intuition based on their self-report. 

Thus, the methodological contribution of this paper is manifold,

amely: 

a) We describe a novel application based on a hybrid expert system

for the challenging task of diagnosing post-harvest diseases of apple

( Section 2.1 ) and we discuss the design choices made for building

our system ( Section 2.1 ). 

b) We illustrate the knowledge elicitation process for the construction

of an ad-hoc knowledge base, responsible of the reasoning mecha-

nism of the BN model ( Section 2.4 ). 

c) We formally define a practical and adaptive inference mechanism,

based on the BN framework and able to deal with soft evidence

( Section 2.5 ), as well as an hybridization technique to increase the

diagnostic effectiveness of the system ( Section 2.6 ). 

d) We present a practical algorithm for explaining the suggested di-

agnosis, based on the BN processed evidence provided by the user

( Section 2.7 ). 

The rest of the paper is organized as follows. In Section 2 , we re-

ort the methodological contributions of this work. Firstly, we present

he DSSApple application, illustrating its features and design choices.

econdly, after introducing background theory on BN, we describe the

rocess of expert knowledge elicitation for BN construction, and the

echanism of expert-based inference with BN. Then, the algorithm for

he computation of hybrid diagnoses, as well as the technique for diag-

osis explanation are detailed. In Section 3 , we outline the experimental

ser studies conducted in order to test the effectiveness of DSSApple and

omment on the results. Finally, in Section 4 we draw conclusions and

epict future extensions of the presented research. 

. Materials and methods 

.1. Application overview 

DSSApple 1 is designed to be an interactive easy-to-use web applica-

ion allowing expert and non-expert users in the area of apple production

nd storage (e.g., scholars, researchers, and storage workers) to perform

iagnosis of post-harvest diseases of apple fruit, based solely on the ob-

erved macroscopic symptoms on the fruit. We leave full flexibility to

sers to select either or both of the two streams of the system harnessing

he image-based and expert-based sources of information. Of course, this

hoice depends on the degree of expertise of the user and the difficulty

f the diagnosis under investigation. While the image-based stream of-

ers a more intuitive interface, solely based on pictures, the expert-based

tream requires a deeper knowledge and understanding of disease symp-

oms. After the user’s feedback collection, the system proposes a ranked

ist of diagnoses along with explanations. The interaction process with

he DSSApple application is represented in Fig. 1 . 

In more detail, in the image-based stream, the user interaction with

he system is conducted simply by clicking on pictures, representing the

ariety of symptoms of different diseases at different stages of infec-

ion and on different cultivars. We divided the interactive session into

wo rounds for both the outer part and the inner part of the apple. At

ach round of interaction, the user is requested immediate feedback on

http://dssapple.unibz.it
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Fig. 1. A diagram representing the interaction of the user 

with the DSSApple hybrid system. 

Fig. 2. The interface for a round of interaction with 

the image-based stream of DSSApple , namely referred 

to the outer symptoms of the apple fruit. 
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 small set of images, depicting reliably determined disease symptoms

n apple fruit, based on the perceived similarity with the diseased tar-

et apple. A round of interaction with the image-based part of the sys-

em is represented in Fig. 2 . The user can navigate back and forth the

our rounds of interaction and revise her choices. At the current stage,

he system included ten high-quality photos for each disease, which are

andomly sampled at each round with stratification over the disease.

iven the unavailability of a large dataset of reliable high-quality ap-

le diseases images, we produced our own set of images. In particular,

nfected apples were collected from orchards and storage-houses in the

olzano region and the ground-truth disease was reliably determined

n laboratory by microbiological analysis of the spores. Hence, different

hotographs of the manifested inner and outer symptoms were taken

or each sampled apple, to be included into the system. An extensive

nalysis on this part of the system is provided in our previous works

37,38] . 

In the expert-based stream, the system collects user’s observations

bout the target disease by asking a set of dynamic multiple-choice ques-

ions related to the macroscopic features of the observed symptoms (e.g.,

he shape of the rot, the origin of the infection, etc.). Each question is

llustrated with exemplary pictures, facilitating also non-expert users in

heir understanding. Each symptom-related question is mapped to a spe-

ific variable in the BN model as described in Section 2.4 . This part of

he system is dynamic, since the system incrementally adapts the ques-

ions based on the previous answers given by the user. For instance,

hen the system gets the information that fungal structures are visible

n the infected apple, it will inquire the user about further features of

hose structures (i.e., their distribution, colour, or origin). Furthermore,

he system again provides full flexibility to the user, i.e., it allows to

avigate back and forth the questions path, to revise previous answers,
3 
nd to skip those questions for which the user does not have enough

onfidence to answer. Fig. 3 reports a section of the expert-based part

f DSSApple . 

After the system finishes the data collection phase (i.e., the user

ompleted the expert-based , or the image-based , or both paths), the user

an access the diagnosis page. Here the application displays a ranked

ist of suggested diagnoses, based on the information provided by the

ser. Each suggested diagnosis is supplied with a score, representing

he confidence of the system towards that diagnosis, and an explana-

ion motivating that suggestion in the light of the collected user feed-

ack. The score is computed based on the path followed by the user.

amely, if just the expert-based stream is followed, the score of each di-

gnosis is computed based on the reasoning on the underlying expert

odel; if just the image-based stream is followed, the score of each diag-

osis is based on the frequency of the coherent symptoms selected for

ach candidate disease; if both streams are completed, DSSApple com-

utes a hybrid score for each disease, which is a linear combination of

he two scores. More details about the hybrid diagnosis are provided

n Section 2.6 . 

Moreover, the explanation component is crucial for such a decision

upport system in order to increase the transparency of the suggested

iagnosis and thus the trust by the user. For DSSApple , we designed it

s a pop-up box for each suggested disease. Based on the path followed

y the user for the diagnosis, the explanation box will show fingerprints

f the clicked images which belong to that disease (for the image-based

tream), or the most representative answers provided by the user de-

cribing that disease (for the expert-based stream). Furthermore, a brief

escription of the disease is provided, followed by a link to a wiki page

here the user can find additional information about the disease (e.g.,

ausal pathogen, disease cycle, recommendation for disease manage-
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Fig. 3. A section of the expert-based stream of DSSAp- 

ple , in which the user is queried about the origin of fun- 

gal growth. 
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ent, etc.). Fig. 4 shows an example of an explanation box, which in-

ludes both the expert-based and the image-based explanation. 

The reasoning system for the DSSApple expert-based stream is devel-

ped on the framework of Bayesian Network (BN) [19,31] . The choice of

N allows to define and reason about relationships between causes (e.g.,

he disease) and effects (i.e., the symptoms) under uncertainty, namely

hen these relations are not deterministic but should be mediated by

robability. The procedure of eliciting these relations (i.e., the BN con-

itional probabilities) from a domain expert is described in Section 2.4 .

urthermore, other tools, naturally derived from the BN framework, are

erfectly suited for the task of DSSApple . For instance, the capability

f including incomplete and stochastic information (i.e., soft evidence)

n the inference mechanism is described in Section 2.5 , while the pos-

ibility to explain the suggested diagnosis in the light of the collected

vidence, is described in Section 2.7 . 

.2. Design choice 

We are aware of the fact that automated image analysis and classifi-

ation have achieved important results for the task of disease identifica-

ion in agriculture, in particular in recent years thanks to the deep learn-

ng paradigm [9] . Nevertheless, we considered such a fully-automated

pproach inadequate for our scope for both methodological and practi-

al reasons. 

First of all, the majority of the proposed approaches presented so far

n the literature [9,10,23] was tested solely on an “offline ” batch evalua-

ion. Namely, the reported results were optimized for the prediction on a

reviously collected dataset, disregarding the non-trivial effort of trans-

osing such an approach in a real-world environment. Specifically, this

ould have required a user to produce some high-quality photographs

n the field or to equip storage facilities with proper cameras. Secondly,

eep learning is a black-box tool by construction: the automated clas-

ification is non-transparent and can hardly be explained to the user

41] . This might lead, in case of poor diagnostic performance, to a dis-

rust towards the system. These shortcomings are both counteracted by

ur design choice of adopting a “human-in-the-loop ” paradigm [43] in

hich the user is directly involved (with a minimum technical effort)
4 
nto the diagnostic process, having the effect of increasing the usability,

ransparency, and trustability of the system. 

Furthermore, the adoption of deep learning generally requires a large

mount of images to cope with the high variance embedded in the clas-

ification problem, while our manually curated dataset of high-quality

nd trustable images counted just few hundreds of photographs, derived

rom around one hundred distinct instances of apple. Indeed, the task

f classifying post-harvest diseases of apple shows a particularly high

ntra-disease variance. The same pathogen induces different symptoms

n different species, also based on the progression of the diseases (i.e.,

ays after an infection). At the same time, for a non-expert evaluation,

nd even for experts without a microscopic or microbiological analy-

is, it is very difficult to understand the subtle differences of symptom

ppearances just by observing images of macroscopic symptoms, partic-

larly at early stages of an infection. 

To corroborate this intuition with an illustrative example, in Fig. 5 ,

e show three photos of external symptoms. When comparing these

mages the difficulty of the classification task clearly emerges. The two

ymptoms looking most similar, given also that they appear on the same

pple cultivar, are in fact manifestations of the two different diseases

 Neofabrea and Alternaria ). On the other hand, two examples of Al-

ernaria symptoms appear to be largely different, since they manifest

hemselves on different cultivars and at different stages of the infection.

.3. Background on bayesian network 

A Bayesian Network (BN) [16,19] is defined by its two main com-

onents: the qualitative part represented by its graphical structure and

he quantitative part consisting of the conditional probabilities. More

ormally, a BN is graphically represented as a directed acyclic graph

DAG)  = ( 𝑁, 𝐸) , where 𝑁 = { 𝑛 1 , 𝑛 2 , … , 𝑛 𝑙 } denotes the set of 𝑙 nodes

nd 𝐸 ⊆ 𝑁 ×𝑁 the set of directed edges between pairs of nodes. Each

ode 𝑛 𝑖 ∈ 𝑁 in the DAG  is mapped one-to-one with a random vari-

ble 𝑋 𝑖 ∈  , where  denotes the set of random variables involved

n the model. A random variable 𝑋 𝑖 ∈  is represented by a set of

xclusive values (or states) in which the variable might be observed

 𝑎𝑙( 𝑋 𝑖 ) = { 𝑥 1 , 𝑥 2 , … , 𝑥 𝑚 } , where 𝑥 
𝑗 ∈ 𝑉 𝑎𝑙( 𝑋 𝑖 ) denotes the 𝑗th value of
𝑖 𝑖 𝑖 𝑖 
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Fig. 4. Example of an explanation box interface for the Blue mold 

rot. (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 

Fig. 5. An example of how difficult could be to automatically 

classify apple diseases based on photos - The left-most apple 

is infected by Neofabrea , while the others are infected by Al- 

ternaria . 
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ariable 𝑋 𝑖 . We use the notation 𝑋 𝑖 = 𝑥 
𝑗 

𝑖 
for an observed event, to

xpress that variable 𝑋 𝑖 ∈  is observed (or instantiated) in the state

 

𝑗 

𝑖 
∈ 𝑉 𝑎𝑙( 𝑋 𝑖 ) . Quantitatively, a conditional probability table (CPT) is as-

ociated to each random variable 𝑋 𝑖 ∈  . The CPT specifies the con-

itional probability distribution 𝑃 ( 𝑋 𝑖 |𝑝𝑎 ( 𝑋 𝑖 )) ∈  over the states of 𝑋 𝑖 .

here,  represents the set of conditional probabilities in the model,

nd 𝑝𝑎 ( 𝑋 𝑖 ) ⊂  denotes the set of the so-called parents of the variable

 𝑖 associated to the node 𝑛 𝑖 in the DAG  . Specifically, the parent set

f 𝑋 𝑖 is composed by every variable 𝑋 𝑗 ∈  associated to the node 𝑛 𝑗 
n the DAG  , connected with a directed edge to 𝑛 𝑖 (the so-called child

ode). More formally, 𝑝𝑎 ( 𝑋 𝑖 ) = { 𝑋 𝑗 ∈  ∶ ( 𝑛 𝑗 , 𝑛 𝑖 ) ∈ 𝐸} . We can further

efine an ancestor variable 𝑎𝑛 ( 𝑋 𝑖 ) of the variable 𝑋 𝑖 , and a descendant

ariable 𝑑𝑒 ( 𝑋 𝑖 ) of variable 𝑋 𝑖 , if exists a directed path (i.e., a set of di-

ected edges) connecting node 𝑛 𝑎 (associated with variable 𝑎𝑛 ( 𝑋 𝑖 ) ) to
 𝑖 (associated with variable 𝑋 𝑖 ), and 𝑛 𝑖 to 𝑛 𝑑 (associated with variable

𝑒 ( 𝑋 𝑖 ) ); namely {( 𝑛 𝑎 , 𝑛 𝑗 ) , ( 𝑛 𝑗 , 𝑛 𝑖 ) , ( 𝑛 𝑖 , 𝑛 ℎ ) , … , ( 𝑛 𝑔 , 𝑛 𝑑 )} ⊂ 𝐸. It is important

o mention that the DAG  of the BN typically specifies a set of prob-

bilistic or causal relationships among variables in the model. Namely,

f an edge ( 𝑛 𝑗 , 𝑛 𝑖 ) ∈ 𝐸 exists in the graph, this usually implies that a

ausal relation holds between the variables 𝑋 𝑗 and 𝑋 𝑖 , associated to

odes 𝑛 𝑗 and 𝑛 𝑖 . Specifically, the parent 𝑋 𝑗 represents the cause and
5 
hild 𝑋 𝑖 represents the effect in the modeled domain. Thus, a fundamen-

al assumption of conditional (in)dependence between variables could

e derived. Specifically, this assumption is referred as Local Markov As-

umption (or Local Independence Assumption ), and it states that: given its

arents 𝑝𝑎 ( 𝑋 𝑖 ) ⊂  , defined in the DAG  , a variable 𝑋 𝑖 is conditionally

ndependent of all its non-descendent variables. More formally, for each

ariable 𝑋 𝑖 : ( 𝑋 𝑖 ⟂ 𝑋 𝑗 |𝑝𝑎 ( 𝑋 𝑖 )) , where 𝑋 𝑗 ∉ 𝑑𝑒 ( 𝑋 𝑖 ) , set of descendants of

 𝑖 . This property allows to specify the joint distribution over the space

f the variables  in the BN model through the following probability

actorization: 

 ( ) = 

𝑙 ∏
𝑖 =1 

𝑃 ( 𝑋 𝑖 |𝑝𝑎 ( 𝑋 𝑖 )) (1)

The equation is usually referred to as the chain rule for Bayesian

etworks . This joint distribution implicitly allows the BN to compute

ther probabilities of interest. For instance, one may be interested in

easoning about the impact of any set of observations (or evidence ) 𝐄
n any assignment 𝐗 𝑞 = 𝐱 𝑔 𝑞 , where 𝐗 𝑞 ⊂  . We define an evidence 𝐄
s an observation of any proper subset of variables in the BN model

 = { 𝑋 1 = 𝑥 𝑖 1 , 𝑋 2 = 𝑥 
𝑗 

2 , … , 𝑋 𝑑 = 𝑥 𝑡 
𝑑 
} , where 𝑑 < 𝑙. The probability dis-

ribution we want to compute, hence, becomes the posterior probability
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Fig. 6. Flow chart of the knowledge elicitation process 

followed for the BN construction. 
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 ( 𝑋 𝑞 = 𝑥 
𝑔 
𝑞 |𝐄 ) , of the query (unobserved) event 𝑥 

𝑔 
𝑞 given the evidence 𝐄 .

his posterior probability can be computed directly from the joint dis-

ribution 𝑃 ( ) , by conditioning it on the observation 𝐄 eliminating the

ntries in the joint inconsistent with the observation and re-normalizing

he results such that they sum up to 1; we compute the probability of

he event 𝑋 𝑞 = 𝑥 
𝑔 
𝑞 by summing the probabilities of the entries in the

esulting posterior distribution which are consistent with 𝑥 
𝑔 
𝑞 . 

.4. Expert knowledge elicitation for Bayesian network construction 

The elicitation of expert knowledge for constructing the Bayesian

etwork (i.e., both the network structure and the CPTs) is a crucial

ask. To accomplish this challenging operation two options are avail-

ble: learn it from data or elicit knowledge from domain experts. At

he best of our knowledge, no datasets are publicly available allowing

o learn significant relationships among apple diseases and macroscopic

ymptoms. Thus, we focused on interviewing a domain expert for the

onstruction of the BN knowledge base. Following the common scheme

resented in the literature [8,11,34] , we divided the task into two dis-

inct phases: during the first phase, we identified the random variables

i.e., the macroscopic symptoms) relevant for the diagnostic process;

uring the second phase, we determined the probability values (i.e.,

he CPTs) quantitatively linking the diseases to the symptoms, and re-

ised the conditional dependencies among random variables in the BN

odel. In Fig. 6 , we schematize the whole knowledge elicitation process

hrough a flow chart. 

With the help of a domain expert we limited a general apple ontol-

gy [27] to the relevant parts for relating diseases with visible macro-

copic symptoms. Thus, we ended up with a stable configuration of

round 30 observed random variables, grouped into 8 categories, to-

ether with two hidden random variables, namely Disease and Stage .

ne basic assumption underlying our model is that there are no mul-

iple infections with two or more diseases and that the list of diseases

s complete, namely, a target apple is always infected by one and only

ne disease. In addition, we also assumed that all the symptom vari-

bles are conditionally independent given the Disease variable, as com-

only done for Naive Bayes [16] . Thus, the Disease variable encodes

he whole set of fungal diseases of our study, namely Val(Disease) = {al-
6 
ernaria_rot, alternaria_spot, black_rot, blue_mold, bitter_rot, bulls_eye, fusar-

um_rot, grey_mold, mucor_rot, side_rot} . The Stage variable was intro-

uced to facilitate the probability elicitation task. It represents three

iscrete and symbolic stages of advancement of the post-harvest infec-

ion, namely Val(Stage) = {early, medium, late} . This workaround allows

xperts to visualize a specific condition of the disease and thus specify

 more reliable likelihood of the symptoms. At the end of this phase,

e removed variables for which it was too hard to assess differences

mong different manifestations of the symptom, and thus to define an

xhaustive set of mutually exclusive states. We mention for this issue the

ariables Lesion_colour and Rot_colour . In Tables 1 and 2 , we report all

he variables and respective states included in the final model, defined

fter this first phase. 

In the second phase, we interviewed the domain expert in order

o define the quantitative probabilistic dependencies (i.e., the CPTs)

mong variables. For simplicity, we decided to start from a situation

here all the symptom variables are conditionally independent upon

ne another and also conditionally dependent upon the two hidden

ariables (i.e., Disease and Stage ). We indicate the Disease variable as

 ∈  , where  defines the set of hidden variables for the model.

 𝑎𝑙( 𝐷) = { 𝑑 1 , 𝑑 2 , … , 𝑑 𝑛 } represents the set of states of the variable 𝐷,

here 𝑑 𝑖 is the 𝑖 th state of the Disease variable (i.e., the 𝑖 th disease in our

ool). The Stage variable is referred as 𝑇 ∈  and 𝑉 𝑎𝑙( 𝑇 ) = { 𝑡 1 , 𝑡 2 , … , 𝑡 𝑚 }
epresents the set of states of variable 𝑇 , where 𝑡 𝑖 is the 𝑖 th state of

he Stage variable. All other (observed) variables in the model are gen-

rally referred to as symptom variables and they belong to the set .

 generic symptom variable 𝑆 𝑖 ∈  is represented by a set of states

 𝑎𝑙( 𝑆 𝑖 ) = { 𝑠 1 
𝑖 
, 𝑠 2 

𝑖 
, … , 𝑠 

𝑞 

𝑖 
} , where 𝑠 

𝑗 

𝑖 
is the 𝑗th state of the symptom vari-

ble 𝑆 𝑖 . Moreover, we adopted a mixed-questionnaire approach in-

pired by Gaag et al. [11] , for facilitating the expert knowledge elic-

tation process and thus to define the model CPTs. In more details,

wo techniques were applied depending on the support of the vari-

ble. For Boolean variables (for each symptom variable 𝑆 𝑖 ∈  such

hat 𝑉 𝑎𝑙( 𝑆 𝑖 ) = { 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 } ), the expert was requested to answer the

uestion: “How frequently do you observe symptom 𝑆 𝑖 = 𝑡𝑟𝑢𝑒 , given that

ou have an apple infected by disease 𝐷 = 𝑑 𝑖 at stage 𝑇 = 𝑡 𝑗 ? ”. We pro-

ided her the choice among a pre-defined 6-point scale, including Al-

ays (A) , Very often (V) , Often (O) , Sometimes (S) , Rarely (R) , and Never
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Table 1 

Summary of all the variables and states involved in the model, grouped by categories 

(first part). 

Category Variable States 

Diagnosis Disease {alternaria_rot, alternaria_spot, black_rot, 

blue_mold, bitter_rot, bulls_eye, fusarium_rot, 

grey_mold, mucor_rot, side_rot} 

Diagnosis Stage {early, medium, late} 

Lesion type Rot {true, false} 

Lesion type Spot {true, false} 

Lesion type Scab {true, false} 

Other traits Halo {true, false} 

Other traits Mycelium_spores {true, false} 

Other traits Sclerotia {true, false} 

Other traits Odour {true, false} 

Lesion origin Lenticel {true, false} 

Lesion origin Wound {true, false} 

Lesion origin Calyx {true, false} 

Lesion origin Stalk {true, false} 

Lesion origin Core {true, false} 

Lesion properties Number_lesions {single, few, multiple} 

Lesion properties Lesion_form {circular, irregular} 

Lesion properties Lesion_margin {sharp, indistinct} 

Lesion properties Lesion_area {plane, flat, sunken, collapsed} 

Lesion properties Lesion_appearance {dry, watery, baked} 

Lesion properties Lesion_surface {unwrinkled, slightly_wrinkled, wrinkled, corky} 

Lesion properties Lesion_intactness {uncracked, cracked, parchment} 

Lesion properties Lesion_size {xs, s, m, l, xl} 

Table 2 

Summary of all the variables and states involved in the model, grouped by categories (second part). 

Category Variable States 

Odour properties Odour_type {sweet_cider, earthy_musty, bandage} 

Halo properties Halo_colour {brown, red, yellow, light_green} 

Fungal properties Fungal_colour {white, grey, dark_grey, pink, yellow, brown, green_blue, peppered} 

Fungal properties Fungal_distribution {random, concentric} 

Fungal properties Fungal_origin {wound, lenticels, cracks} 

Rot properties Rot_shape {conical, rounded, irregular} 

Rot properties Rot_margin {sharp, indistinct} 

Rot properties Rot_moisture {dry, moist, juicy} 

Rot properties Rot_transparency {opaque, glassy} 

Rot properties Rot_consistency {firm, spongy, soft} 

Table 3 

Scale to convert expert knowledge into probability distributions. 

Question Answer 𝑃 ( 𝑆 𝑖 = 𝑡𝑟𝑢𝑒 |𝑑, 𝑡 ) 
How frequently do you observe 

symptom 𝑆 𝑖 = 𝑡𝑟𝑢𝑒 , given that 

you have apples infected by 

disease 𝑑 at stage 𝑡 ? 

Always (A) 0.999 

Very often (V) 0.8 

Often (O) 0.6 

Sometimes (S) 0.3 

Rarely (R) 0.01 

Never (N) 0.001 
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N) . The expert had to fill a form, answering for each combination of

 𝑖 ∈ 𝐷𝑥𝑡 𝑗 ∈ 𝑇 . The symbolic scale was converted into an actual proba-

ility value 𝑃 ( 𝑆 𝑖 = 𝑡𝑟𝑢𝑒 |𝐷 = 𝑑 𝑖 , 𝑇 = 𝑡 𝑗 ) according to the scheme reported

n Table 3 . The complementary probability was consequentially defined

s 𝑃 ( 𝑆 𝑖 = 𝑓𝑎𝑙𝑠𝑒 |𝐷 = 𝑑 𝑖 , 𝑇 = 𝑡 𝑗 ) = 1 − 𝑃 ( 𝑆 𝑖 = 𝑡𝑟𝑢𝑒 |𝐷 = 𝑑 𝑖 , 𝑇 = 𝑡 𝑗 ) . 
For categorical variables (for each symptom variable 𝑆 𝑙 ∈  such

hat 𝑉 𝑎𝑙( 𝑆 𝑙 ) = { 𝑠 1 
𝑙 
, 𝑠 2 

𝑙 
, … , 𝑠 𝑚 

𝑙 
} , where 𝑚 ≥ 2 ), we adopted a lighter, yet ef-

ective, approach. For each categorical symptom variable 𝑆 𝑙 ∈ , given

 specific disease 𝐷 = 𝑑 𝑖 at stage 𝑇 = 𝑡 𝑗 , the expert was invited to simply

ndicate which values of 𝑉 𝑎𝑙( 𝑆 𝑙 ) are likely to be observed. Furthermore,

e agreed on a 3-point symbolic annotation to denote the likelihood of

ach reported state, namely, common (no parenthesis), less common (one

arenthesis), and rare (two parentheses). The assumption underneath

his choice was that many symptom states are never observed under

pecific conditions (i.e., resulting CPTs are sparse) and could be ignored
7 
o speed up the elicitation process. In order to convert likelihood anno-

ations into actual probability distributions, we designed the following

euristic. Consider a random variable 𝑅 with 𝑉 𝑎𝑙( 𝑅 ) = { 𝑎, 𝑏, 𝑐, 𝑑} , which

s annotated as follows by the expert: a: common , b: less common , c: rare ,

nd d is ignored; then 𝑃 ( 𝑎 ) = 2 𝑃 ( 𝑏 ) = 4 𝑃 ( 𝑐) = 1 . 0 and 𝑃 ( 𝑑) = 0 . 0 . Fur-

hermore, a small value 𝜖 = 0 . 001 is added to each probability value in

rder to avoid null probabilities, then values are normalized such that

𝑟 ∈𝑉 𝑎𝑙( 𝑅 ) 𝑃 ( 𝑟 ) = 1 . 0 . This process completely defines a probability dis-

ribution for the categorical random variable 𝑅 . 

After the complete definition of the quantitative components of the

odel (i.e., the CPTs), we further refined the model to converge to the fi-

al specification of the BN model for DSSApple . We leveraged the expert-

efined CPTs to identify conditional independence in the model and thus

rune the graph from superfluous edges. Consider a set of three random

ariables 𝑋, 𝑌 , and 𝑍. 𝑋 and 𝑌 are defined as conditionally indepen-

ent given 𝑍 if and only if 𝑃 ( 𝑋|𝑌 , 𝑍) = 𝑃 ( 𝑋|𝑍) , and this is written

 𝑋 ⟂ 𝑌 |𝑍) . In our context, we decided to start from a graphical repre-

entation where all the symptom variables are dependent upon both the

isease variable 𝐷 and the stage variable 𝑇 . After probability elicitation,

e were able to identify conditional independence between a symptom

ariable 𝑆 and stage variable 𝑇 , given disease variable 𝐷, namely when

 ( 𝑆|𝐷, 𝑇 ) = 𝑃 ( 𝑆|𝐷) . We exploit this property to identify conditional in-

ependence for all the variables belonging to the lesion origin category

nd for the variables Number_lesions , Odour_type , and Fungal_distribution ,

ith respect to Stage . Finally, we identified some “second-order ” vari-

bles to be further connected to other symptom nodes. This is the case of
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Fig. 7. The graph of the Bayesian network for 

DSSApple . 
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he variables in the category rot properties connected with node Rot , halo

roperties connected with node Halo , fungal properties connected with

ode Mycelium_spores , and odour properties connected with node Odour .

hese edges will increase the expressiveness of the model by condition-

ng the property of the symptom with the actual symptom. For instance,

n a situation where our system will receive the evidence 𝑅𝑜𝑡 = 𝑓𝑎𝑙𝑠𝑒 ,

t will immediately set the values of the variables in the rot properties

ategory to 𝑛𝑎 (not applicable), or more formally 𝑃 ( 𝑅 𝑝 = 𝑛𝑎 ) = 1 . 0 for

very variable 𝑅 𝑝 ∈  , rot properties category. 

The final BN graph used as a reasoning mechanism for DSSApple is

eported in Fig. 7 . The central nodes in the network, bolded and empty,

epresent the two unobserved diagnosis variables, namely Disease and

tage . On the top part of the network, coloured in grey, are the nodes re-

ated to the lesion properties . On the right-most part, coloured in yellow,

re the rot properties , while on the left-most part, coloured in green, are

he lesion origin nodes. Finally, in the central-bottom part, coloured in or-

nge, are the nodes related to the lesion type and other traits represented,

nder those, coloured in cyan, the nodes representing the properties of

he other traits. 

.5. Bayesian network inference mechanism 

The reasoning system of the constructed BN allows to perform the

nference, namely, to estimate the posterior probability distribution on

 target unobserved variable (i.e., the Disease variable 𝐷), given any set

 ∈  of observed variables as provided by the user (i.e., the evidence

 ). The evidence set E is constructed incrementally by the DSSApple ap-

lication. At each step, the application requests the user to answer a

ultiple-choice question, related to a symptom variable 𝑆 𝑖 ∈ . When

he user submits the observed state 𝑠 
𝑗 

𝑖 
∈ 𝑉 𝑎𝑙( 𝑆 𝑖 ) , DSSApple includes the

ew information into the evidence set, E ∪ 𝑆 𝑖 = 𝑠 
𝑗 

𝑖 
. At the end, of this

eedback collection process, the application will have access to the com-

lete information provided by the user on the target disease, she want to

iagnose. It is important to mention that the BN inference mechanism is

obust to missing values, hence, the user is not forced to provide an ob-

ervation for every symptom variable 𝑆 𝑖 ∈  in the model. Thus, if the

ser skips the question related to variable 𝑆 𝑚 ∈ , the evidence set E

ill not include an observation for that variable, 𝑆 𝑚 ∉ E , and the infer-

nce will be computed anyway. Thus, the goal of the reasoning system
8 
s to provide a probability over the candidate diseases (i.e., the diagno-

is). We estimate the posterior probability distribution 𝑃 ( 𝐷|E ) through

n algorithm called loopy belief propagation [14] . The loopy belief propa-

ation is an approximate message-passing method to perform inference

n graphical models. In few words, the algorithm iteratively updates the

arginal distribution 𝑃 ( 𝑁) of a node 𝑁 ∈  , by updating the outgoing

essage, at the current iteration, from the node 𝑁 to each of its neigh-

ors V ∈  in terms of the previous iteration’s incoming messages from

 . 

Furthermore, we decided to provide additional flexibility to the ap-

lication, by allowing the user to submit multiple answers to the same

ategorical symptom variable. This may be useful in situation where

he observed symptom state on target apple is ambiguous (e.g., it is dif-

cult to distinguish whether the shape of the internal rot is rounded or

onical), or the target apple presents different states of the same symp-

om (e.g., the spore originate both from a mechanical wound and from

enticels). Thus, a categorical variable 𝑆 𝑑 ∈  which is instantiated to

ore than one value 𝑆 𝑑 = { 𝑠 1 
𝑑 
, 𝑠 2 

𝑑 
, … , 𝑠 𝑙 

𝑑 
} , such that 𝑙 ≤ |𝑉 𝑎𝑙( 𝑆 𝑑 ) |, it is

onverted by the system into a uniform distribution 𝑃 ( 𝑆 𝑑 ) on the set of

bserved values. In more details, 𝑃 ( 𝑆 𝑑 = 𝑠 𝑖 
𝑑 
) = 1∕ 𝑙, where 𝑠 𝑖 

𝑑 
∈ 𝑆 𝑑 is an

bserved value for the variable 𝑆 𝑑 . Obviously, if a value 𝑠 
𝑗 

𝑑 
∈ 𝑉 𝑎𝑙( 𝑆 𝑑 )

s not observed, i.e., 𝑠 
𝑗 

𝑑 
∉ 𝑆 𝑑 , its probability is set to 𝑃 ( 𝑆 𝑑 = 𝑠 

𝑗 

𝑑 
) = 0 .

his type of evidence is referred in the literature as soft evidence and it

llows to define and reason about uncertain evidence [26] . The soft evi-

ence can be included into the evidence set, E ∪ 𝑃 ( 𝑆 𝑑 ) , and the inference

echanism works as usual. 

.6. Hybrid diagnosis computation 

In this section, we clarify how a ranked list of suggested diseases

i.e., a diagnosis) is computed when user completed just the image-based

tream, just the expert-based stream, or completed both streams of DSS-

pple . 

For the image-based path alone, at the end of the image selection

ounds, an image-based score 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) 𝑖𝑚𝑔 for each disease 𝑑 𝑖 ∈ 𝐷 is com-

uted. The score should be proportional to the number of coherent

ymptoms for disease 𝑑 𝑖 depicted in the pictures clicked by the user.

ore formally, given the set of 𝑚 clicked images 𝐶 = 𝑐 1 , 𝑐 2 , … , 𝑐 𝑚 , dur-

ng the image-based selection rounds, the image-based score for disease
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 𝑖 ∈ 𝐷 is computed as: 

𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) 𝑖𝑚𝑔 = 

∑
𝑐 𝑗 ∈𝐶 

𝟙 𝐼 𝑑 𝑖 ( 𝑐 𝑗 )∕ 𝑚 (2)

here 𝟙 𝐼 𝑑 𝑖 ( 𝑐 𝑗 ) ∶ 𝐼 → {0 , 1} is an indicator function, equals to 1 when

licked image 𝑐 𝑗 belongs to the set 𝐼 𝑑 𝑖 , of the images depicting symp-

oms of disease 𝑑 𝑖 , 0 otherwise. The score is normalized by the total

umber of clicks 𝑚 such to constraint the score in the interval [0 , 1] .
hus, the ranked list of 𝑘 suggested diseases 𝑅 

𝑘 
𝑖𝑚𝑔 

= { 𝑑 1 , 𝑑 2 , … , 𝑑 𝑘 } for

he image-based path is then based on the score for each disease, such

hat 𝑠𝑐 𝑜𝑟𝑒 ( 𝑑 𝑖 ) 𝑖𝑚𝑔 ≥ 𝑠𝑐 𝑜𝑟𝑒 ( 𝑑 𝑖 +1 ) 𝑖𝑚𝑔 . 

For the expert-based path alone, after completing the evidence col-

ection phase, the system computes an expert-based score 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) exp 

or each disease 𝑑 𝑖 ∈ 𝐷 as the posterior probability for the BN, as de-

cribed in Section 2.5 . More formally, given the provided evidence set

 = 𝑆 1 = 𝑠 𝑜 1 , 𝑆 2 = 𝑠 
𝑝 

2 , …𝑆 𝑙 = 𝑠 
𝑞 

𝑙 
, defined as the set of instantiated state

 

𝑗 

𝑖 
∈ 𝑉 𝑎𝑙( 𝑆 𝑖 ) for each random variable 𝑆 𝑖 ∈ , the expert-based score

or disease 𝑑 𝑖 ∈ 𝐷 is computed as: 

𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) exp = 𝑃 ( 𝐷 = 𝑑 𝑖 |E ) (3)

Again, the ranked list of the 𝑘 suggested diseases 𝑅 

𝑘 
exp =

 𝑑 1 , 𝑑 2 , … , 𝑑 𝑘 } for the expert-based path is then based on the score for

ach disease, such that 𝑠𝑐 𝑜𝑟𝑒 ( 𝑑 𝑖 ) exp ≥ 𝑠𝑐 𝑜𝑟𝑒 ( 𝑑 𝑖 +1 ) exp . 
When the user completes the path on both DSSApple components, the

ystem computed an aggregated hybrid score 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) ℎ𝑦𝑏 for each disease

 𝑖 ∈ 𝐷, which is a linear combination of 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) 𝑖𝑚𝑔 and 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) exp .
pecifically: 

𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) ℎ𝑦𝑏 = (1 − 𝛼) ⋅ 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) 𝑖𝑚𝑔 + 𝛼 ⋅ 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 ) 𝑒𝑥𝑝 (4)

here 𝛼 ∈ [0 , 1] is an hyperparameter of the system which allows to

ontrol the contribution of the expert-based stream with respect to the

mage-based stream of DSSApple . The 𝛼 hyperparameter can be adapted

o leverage the target user group characteristics (i.e., degree of exper-

ise) for the deployed application, in order to optimize the diagnos-

ic performance. A standard technique in machine learning is the one

f using a limited set of controlled interactions with the system as a

ne-tuning set from which to learn the 𝛼 maximizing the diagnostic ac-

uracy. Of course, 𝛼 could be also manually set by the experimenter.

or instance, with 𝛼 = 0 . 5 , we impose an equal contribution of the two

omponents in the computation of the aggregated score. Finally, the

anked list of the 𝑘 suggested diseases 𝑅 

𝑘 
ℎ𝑦𝑏 

= { 𝑑 1 , 𝑑 2 , … , 𝑑 𝑘 } for the hy-

rid path is then based on the hybrid score for each disease, such that

𝑐 𝑜𝑟𝑒 ( 𝑑 𝑖 ) ℎ𝑦𝑏 ≥ 𝑠𝑐 𝑜𝑟𝑒 ( 𝑑 𝑖 +1 ) ℎ𝑦𝑏 . 

.7. Explanation of diagnosis 

Explanation is a key component in modern machine learning ap-

roach. It allows to increase trustability towards the model by letting

ts decision to be understood by human being in real-world application

4] . Even more so, in a costly domain, such as the one of decision sup-

ort system for diagnosis, where decisions can have huge economical

mpact, if not on human well-being (e.g., in medical area). Some previ-

us work has been presented in the field of Bayesian Network explana-

ion, which is reviewed by Lacave and Díez [21] . The authors classified

he explanation methods into three categories: explanation of reasoning ,

xplanation of the model , and explanation of evidence , according on the

N component interested by the explanation. 

Based on the proposed classification, we present a novel BN

easoning -related explanation technique, which is inspired by the for-

ard feature selection [17] in supervised classification. The goal is to

dentify, among all the pieces of evidence provided by the user, which

ubset of it better justifies a given diagnosis. More formally, given the

omplete set of evidence E provided by a user performing the diagnosis

ask, we want to find the subset B 

𝑑 
𝑛 
⊆ E , with cardinality 𝑛 , which rep-

esent the best explanation (i.e., the most representative evidence set)

owards the diagnosed disease 𝐷 = 𝑑. The approach we propose receives
9 
s input the evidence provided by the user E = { 𝑒 1 , 𝑒 2 , … , 𝑒 𝑘 } , a target

iagnosis 𝐷 = 𝑑, and an integer number 𝑛 ≤ 𝑘 , namely, the cardinality

f the subset of evidence that should explain the diagnosis 𝑑. Please

otice, that a piece of evidence 𝑒 𝑖 ∈ E corresponds to the observation

f a symptom random variable 𝑆 𝑖 = 𝑠 𝑗 , as provided by the user to the

ystem. The algorithm starts from an empty set B 

𝑑 
0 = ∅ and computes

 likelihood metric 𝐿 ( B 

𝑑 
0 ∪ 𝑒 𝑖 , 𝑑) for each piece of evidence 𝑒 𝑖 ∈ E with

espect to the target diagnosis 𝑑. The evidence 𝑒 ∗ 
𝑖 
∈ E with the highest

ikelihood 𝐿 

∗ ( B 

𝑑 
0 ∪ 𝑒 𝑖 , 𝑑) is added to B 

𝑑 
0 and removed from E . Thus, we

onstruct the best set of evidence B 

𝑑 
1 = B 

𝑑 
0 ∪ 𝑒 ∗ 

𝑖 
of cardinality 1, with re-

pect to target disease 𝑑. Then, all the remaining pieces of evidence in

 ⧵ 𝑒 ∗ 
𝑖 

are tested in conjunction with the best evidence set constructed

o far. For each piece of evidence 𝑒 𝑗 ∈ E ⧵ 𝑒 ∗ 
𝑖 
, we compute the likelihood

etric 𝐿 ( B 

𝑑 
1 ∪ 𝑒 𝑗 , 𝑑) on the set B 

𝑑 
1 ∪ 𝑒 𝑗 with respect to 𝑑, and select the

 

∗ 
𝑗 
∈ E ⧵ 𝑒 ∗ 

𝑖 
that achieves the highest score 𝐿 

∗ ( B 

𝑑 
1 ∪ 𝑒 𝑗 , 𝑑) , which is added

o B 

𝑑 
1 and removed from E . Thus, we obtain a best subset of evidence

xplaining 𝑑, B 

𝑑 
2 = { 𝑒 ∗ 

𝑖 
, 𝑒 ∗ 

𝑗 
} , of cardinality 2. This process iterates until

he best subset of evidence B 

𝑑 
𝑛 

of cardinality 𝑛 is built, or until step 𝑡 , if

 

∗ ( B 

𝑑 
𝑡 
, 𝑑) > 𝐿 

∗ ( B 

𝑑 
𝑡 +1 , 𝑑) for 0 ≤ 𝑡 < 𝑛 . 

We define the likelihood metric 𝐿 ( . ) for a subset of evidence E 

′ ⊆

 with respect to a target disease 𝐷 = 𝑑, according to the measure of

ormalized likelihood (NL) described by Kjaerulff and Madsen [16] . Thus,

e formulate 𝑁𝐿 ( E 

′, 𝑑) as following: 

𝐿 ( E 

′, 𝑑) = 

𝑃 ( E 

′|𝑑) 
𝑃 ( E 

′) 
= 

𝑃 ( E 

′, 𝑑)∕ 𝑃 ( 𝑑) 
𝑃 ( E 

′) 
= 

𝑃 ( 𝑑|E 

′) 𝑃 ( E 

′)∕ 𝑃 ( 𝑑) 
𝑃 ( E 

′) 
= 

𝑃 ( 𝑑 |E 

′) 
𝑃 ( 𝑑 ) 

(5) 

𝑁𝐿 ( E 

′, 𝑑) is a measure of the impact of a subset of evidence E 

′ ⊆ E

n the target disease 𝑑. By comparing the normalized likelihoods of dif-

erent subsets of the evidence, we compare the impacts of the subsets of

vidence on the target variable 𝐷. Investigating the impact of different

ubsets E 

′ of the evidence on states 𝑑 ∈ 𝐷 helps to determine subsets of

he evidence acting in favor of or against each possible hypothesis state.

he higher the measure of 𝑁𝐿 ( E 

′, 𝑑) , the more the subset of evidence

 

′ acts in favour (and hence explain) the target disease 𝐷 = 𝑑. 

. Experiments and results 

.1. User study evaluation 

In order to evaluate the performance of the DSSApple application,

e analyzed data on the usage of the system derived from a large user

tudy. Specifically, we involved students from the 2021 Phytopathology

lass of the Bachelor in Agricultural, Food and Mountain Environmental

ciences at the Free University of Bozen-Bolzano. The students, at the

nd of the Phytopathology course, were instructed on how to use DSS-

pple application and were asked to interact with the system to diagnose

he actual disease of a set of infected target apples. The user study was

ivided into two distinct phases. In the first phase, called simulated

hallenge , when the participant started a new diagnosis, the applica-

ion sampled a random target apple (i.e., an apple infected by a ground

ruth disease, the user had to diagnose) and showed to her two photos

f the target apple, namely, one view of the external part of the apple,

nd one internal view of the apple. The task of the user was to carefully

nalyze the target apple and interact with the application (as described

n Section 2.1 ) in order to get a suitable diagnosis. The number of avail-

ble target apples within the system was 50 (i.e., five apples for each

andidate disease), thus, each user had the possibility to interact with

he simulated part of the challenge up to 50 times. In the second phase,

alled real-world challenge , we distributed to each participant a set

f four real apples, infected by a ground truth disease, inferred by lab-

ratory analysis. Again, the task of the user was to carefully analyze

he macroscopic symptoms on the apple and interact with the system

n order to get to the correct diagnosis. In both phases, a single ses-

ion of diagnosis is considered completed, once the user interacted with
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Table 4 

Results achieved by each diagnostic model (i.e., 

image , expert , hybrid , and user -made diagnosis) 

during the simulated challenge. 

image expert hybrid user 

Recall 0.678 0.527 0.699 0.555 

Precision 0.339 0.264 0.349 0.371 

F2-score 0.565 0.439 0.582 0.504 

Table 5 

Results achieved by each diagnostic model (i.e., 

image , expert , hybrid , and user -made diagnosis) 

during the real-world challenge. 

image expert hybrid user 

Recall 0.441 0.397 0.544 0.308 

Precision 0.221 0.199 0.272 0.263 

F2-score 0.368 0.331 0.453 0.298 
oth the expert-based and the image-based stream of DSSApple , and she

rovided her blind guess on the responsible disease(s) of target apple

nfection. Namely, after the user provided all the evidence on a target

pple to the system but before knowing the system’s suggestions, she

as asked to provide her guess on the actual diagnosis. In this case,

he user could select up to three diseases, among the ten candidates,

he considers responsible for the target apple decay. This information is

sed to compare the “a-priori ” diagnostic capability of the user with the

ne of our decision support system. 

The number of users participating in the simulated challenge is 21

10 females and 11 males), performing a total number of 146 diagnoses.

he average age of the participants is 24.2. The average number of di-

gnoses performed by each user is around 7, with a maximum of 46, a

inimum of 1, and a median value of 2. The users provided an average

umber of 1.5 diagnostic guesses for each target apple. The number of

articipants involved in the real-world challenge is 16 (9 females and

 males, of which 12 overlap with the ones involved in the simulated

hallenge). The average age of the participants is 24.8. The total num-

er of performed diagnoses is 68. Each user received a balanced set of 4

nfected apples, but in 4 cases the users tried to diagnose the same apple

wice. These repeated trials were considered as two distinct diagnoses.

he users provided an average number of 1.2 diagnostic guesses for each

arget apple. In both challenges, the original set of participants (i.e., the

tudents of the Phytopathology class) were integrated with few exter-

al users to enrich the set of experiments with more data and variabil-

ty. It is important to highlight that the guest participants were selected

ased on a similar or higher degree of knowledge in Pythopathology

i.e., PhD students, former graduate students, or colleagues). We stress

he fact that all the participants of the challenge had a moderate level

f expertise in the domain of post-harvest diseases of apple, in order

o effectively use the full version of the hybrid DSSApple application.

his ensured that the performed user study was a simulated yet realistic

est of the system in the wild, namely, employed by storage workers,

esearchers, or practitioners in the field of Pythopathology. 

.2. Evaluation metrics 

The way in which to evaluate the performance of DSSApple is not

traightforward, hence, in this section, we illustrate and justify the

valuation metrics used in the results. The output of the system at

ach diagnosis on target apple 𝑎 is a ranked list of suggested diseases

 

𝑘 
𝑎 
= { 𝑑 1 

𝑎 
, 𝑑 2 

𝑎 
, … , 𝑑 𝑘 

𝑎 
} of length 𝑘 . The 𝑖 th disease 𝑑 𝑖 

𝑎 
is ranked based

n the score 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 
𝑎 
) computed by the diagnostic model based on

he information provided by the user on apple 𝑎 , such to ensure that

𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 
𝑎 
) ≥ 𝑠𝑐𝑜𝑟𝑒 ( 𝑑 𝑖 +1 

𝑎 
) . The desired property of the ranked list 𝑅 

𝑘 
𝑎 

is that

t includes the ground truth target disease 𝑡 𝑎 for target apple 𝑎 , within

he smallest possible 𝑘 . Specifically, we would like our diagnostic model

o assign the highest score 𝑠 ∗ ( 𝑑 𝑖 
𝑎 
) to the ground truth disease, namely

 

𝑖 == 𝑡 𝑎 . In order to evaluate this property, we borrow two metrics from

he information retrieval domain, namely recall and precision [1] . In our

omain, recall measures the share of diagnosis where the ground truth

isease 𝑡 𝑎 is correctly retrieved within the ranked list 𝑅 

𝑘 
𝑎 
, for apple 𝑎

iagnosis. Precision measures the share of guesses (or suggested dis-

ases in 𝑅 

𝑘 
𝑎 
) that correctly identify the ground truth disease 𝑡 𝑎 , on the

otal number of guesses in every diagnosis. To better formalize these two

etrics, consider a situation in which a set 𝑁 of 𝑛 diagnosis is performed

y DSSApple . The set 𝑁 is composed by 𝑛 lists of suggested diagnosis,

amely 𝑁 = { 𝑅 

𝑘 
𝑎 1 
, 𝑅 

𝑘 
𝑎 2 
, …𝑅 

𝑘 
𝑎 𝑛 
} , where 𝑎 𝑖 represents the 𝑖 th apple pro-

essed by the system. Also consider that, in the presented scenario, the

ength 𝑘 is static and fixed for all 𝑅 

𝑘 
𝑎 𝑖 

, but it could be easily extended to

he case in which it is dynamically adapted to each diagnosis. Thus, we

ormally define recall and precision as: 

𝑒𝑐𝑎𝑙 𝑙 ( 𝑁, 𝑘 ) = 

∑
𝑅 𝑘 𝑎 𝑖 

∈𝑁 

𝟙 
𝑅 𝑘 𝑎 𝑖 

( 𝑡 𝑎 ) 
(6)
𝑛 

10 
 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ( 𝑁, 𝑘 ) = 

∑
𝑅 𝑘 𝑎 𝑖 

∈𝑁 

𝟙 
𝑅 𝑘 𝑎 𝑖 

( 𝑡 𝑎 ) 

𝑛 ∗ 𝑘 
(7)

The function 𝟙 
𝑅 𝑘 𝑎 𝑖 

( 𝑡 𝑎 ) ∶ 𝐷 → {0 , 1} is an indicator function equal to

 if 𝑡 𝑎 ∈ 𝑅 

𝑘 
𝑎 𝑖 

and 0 otherwise. It is easy to understand how these two

etrics are strongly influenced by the choice of 𝑘 . Specifically, recall is

irectly correlated with 𝑘 (i.e., it monotonically increases as 𝑘 increases),

hile precision is inversely correlated with 𝑘 (i.e., it monotonically de-

reases as 𝑘 increases). Thus, we define a metric which is more robust

n different 𝑘 and it achieves a trade-off between recall and precision.

his is the F 𝛽-score , formally computed as: 

 𝛽( 𝑁, 𝑘 ) = (1 + 𝛽2 ) 𝑅𝑒𝑐𝑎𝑙 𝑙 ( 𝑁, 𝑘 ) ⋅ 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ( 𝑁, 𝑘 ) 
𝛽2 ⋅ 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ( 𝑁, 𝑘 ) + 𝑅𝑒𝑐𝑎𝑙 𝑙 ( 𝑁, 𝑘 ) 

(8)

For the diagnostic application presented in this work, we value recall

o be a more relevant metric than precision, since a type I error (i.e.,

dentifying a wrong disease as diagnosis) is less harmful than a type II

rror (i.e., failing to identify the correct disease as diagnosis). Hence, in

he presented results, we set 𝛽 = 2 and use the F2-score , which weights

ecall twice as precision. 

Based on a qualitative pre-study on usability and on application in-

erface constraints, as well as on performance optimization, we decided

o set 𝑘 = 2 , i.e., the length of the list of suggested disease for every di-

gnosis is 2. Thus, the results presented in next sections are intended

o be evaluated on the top-2 ranked diseases for each diagnosed target

pple 𝑎 𝑖 . For the benchmark method, namely the user-made diagnosis,

e could not force a fixed length 𝑘 , hence, in this case, the results are

omputed on the full list of (up to 3) diseases selected by each user for

he target apple 𝑎 𝑖 . 

.3. Overall results 

Tables 4 and 5 summarizes the overall results of recall, precision

nd F2-score achieved by the two diagnostic components of DSSApple

lone (namely, image and expert ), the full hybrid method ( hybrid ), and

he user-made diagnosis ( user ), for the simulated and real-world chal-

enge respectively. We would like to stress that we always considered

he top-2 diseases, namely, the two highest scoring diseases for each

SS-related method as a diagnosis. Vice versa, for the user-made diag-

osis, we evaluated all the disease selections made by the user at the end

f the diagnosis, which is on average 1.5 (std. 0.75) for the simulated

hallenge and 1.2 (std. 0.62) for the real-world challenge. For all these

xperiments, we fixed the hyperparameter for the hybrid diagnosis score

omputation to 𝛼 = 0 . 5 . 
In Table 4 , we notice that the hybrid system appears to be the best

erforming method in the diagnostic task. Specifically, hybrid outscores
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Table 6 

F2-score achieved by the four diagnostic methods, i.e., image , 

expert , hybrid , and user diagnosis, conditioned on the target 

ground truth disease, for the simulated challenge. The number 

of diagnoses taken for each disease ( #diag ) is also reported. 

#diag image expert hybrid user 

alternaria_rot 14 0.833 0.357 0.417 0.667 

alternaria_spot 15 0.833 0.278 0.833 0.933 

black_rot 15 0.333 0.556 0.556 0.366 

blue_mold 15 0.389 0.111 0.389 0.341 

bitter_rot 14 0.655 0.655 0.655 0.608 

bulls_eye 16 0.313 0.313 0.417 0.506 

fusarium_rot 13 0.192 0.385 0.321 0.201 

grey_mold 15 0.722 0.778 0.833 0.536 

mucor_rot 15 0.611 0.556 0.667 0.542 

side_rot 14 0.774 0.417 0.714 0.389 

Table 7 

F2-score achieved by the four diagnostic methods, i.e., im- 

age , expert , hybrid , and user diagnosis, conditioned on the tar- 

get ground truth disease, for the real-world challenge. The 

number of diagnoses taken for each disease ( #diag ) is also 

reported. 

#diag image expert hybrid user 

black_rot 7 0.357 0.595 0.595 0.286 

blue_mold 16 0.729 0.156 0.677 0.366 

bitter_rot 9 0.093 0.093 0.093 0.392 

bulls_eye 5 0.333 0.333 0.333 0.741 

fusarium_rot 3 0.0 0.278 0.278 0.357 

grey_mold 18 0.417 0.463 0.463 0.217 

side_rot 10 0.083 0.417 0.417 0.0 
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he user-made selection for +14% in recall (70% against 56% of cor-

ectly retrieved diseases) and +8% in F2-score. Nevertheless, user-made

iagnosis is slightly more precise (+2%, 37% against 35%) than the one

ade by the hybrid system. This fact might be attributed to the more

onservative decisions taken by the user, which, in most circumstances,

ere motivated to select a single disease for which they were very confi-

ent being the correct one. Note, how the image-based method appears

o be the second best performing method for both recall and F2-score

etrics, separated from the hybrid method of around 2%. The expert-

ased method, instead, despite being the worst-performing method, it

s fundamental in regularizing the image-based selection, as testified

y the improved performances achieved by the hybrid. It is important

o mention how the poor performances of the expert-based system are

nfluenced by the prior expertise of the users involved in the study.

pecifically, even a group of semi-expert users might find difficulties

n correctly identifying the requested symptom characteristics. Such a

imitation, namely, how to bridge the gap between expert and users

nowledge and perception is currently under investigation by means of

 transfer learning approach [22] . 

Other considerations can be drawn from the results of the real-world

hallenge, as reported in Table 5 . Firstly, it is evident how difficult it was

or the user to switch from a simulated environment, where the pro-

osed target diseases are controlled and somehow paradigmatic of the

isease, to an in-field environment, where the real apple could present

uch more variability inducing an increased challenge for the user in

erceiving the correct macroscopic symptoms. Thus, the results are gen-

rally worse than the one registered during the simulated challenge.

evertheless, hybrid appears once more as the most effective method

n all the measured metrics. Specifically, it achieves the largest increase

n recall with respect to the user-made diagnosis (+23%, 54% against

1%), and it appears to be also slightly more precise (27% against 26%),

espite having a larger average 𝑘 (2 against 1.2), number of suggested

iseases. Finally, we could notice how both components ( image and ex-

ert ) outscore the user diagnosis in terms of recall and F2-score. In par-

icular, the expert model is the one which gets more benefits from the

eal-world environment, getting closer results to the ones of the image-

ased method (around 4% difference in recall and F2-score). This is

robably due to the fact that a user is facilitated in using the expert-

ased stream of the system by having a real apple in her hands. In fact,

he can fulfill a more careful inspection of the macroscopic symptoms on

he fruit and, hence, improve her capability of distinguish the subtlety

f the symptom characteristics requested by the system. 

This is, at the best of our knowledge, the first quantitative evalua-

ion, in the form of a user study, assessing the effectiveness of a decision

upport system in the field of post-harvest disease of apple diagnosis.

 similar procedure was followed by Kolhe et al. [18] for the evalua-

ion of an expert system for crops disease identification. A group of 20

griculture under-graduate students were involved, to diagnose 8 test

ases each, and producing a recall of 65%, which is in line with our

ndings. Other relevant applications of expert systems in agriculture

omain [12,13,24,32] , presented an evaluation based on user-reported

ffectiveness, usefulness, and usability, assessed by means of question-

aires, such as the well-known System Usability Scale (SUS) [6] . This

ind of qualitative evaluation is outside the scope of this work, since it

as already been investigated in previous publications [28,37] . 

Tables 6 and 7 show how the four diagnostic methods perform in

erms of F2-score with respect to each ground truth target disease, in

he simulated and real-world challenge respectively. In the simulated

hallenge evaluation, reported in Table 6 , it is easy to notice how the

ybrid method emerges as the best performing approach for half of the

iseases (5 out of 10), whereas image-based method outscores all other

ethods in two situations (for alternaria_rot and side_rot ), and expert

n a single case (for fusarium_rot ). For 3 diseases the hybrid method is

ied with one of the two simpler components (once with image, once

ith expert, and once with both). In two situations, for alternaria_spot

nd bulls_eye user-made diagnosis is better than the one performed by
11 
ur DSS for a +10% F2-score. Important to mention that in the simu-

ated challenge, the number of diagnosis provided for each target dis-

ase ( #diag ) is controlled by the system and thus it is balanced across

he 10 different candidate diseases. We noticed that, when users are al-

eady quite confident about the diagnosed disease (like in the cases of

he two Alternaria diseases or bitter_rot ), the image-based version of the

ystem achieves better results. A peculiar situation can be observed in

he alternaria_spot case, where users made an effective diagnosis (93%

f F2-score), with similarly high results for image-based diagnosis (83%

f F2-score), while the expert method is scoring one of the lowest result,

ith just 28% F2-score. Vice versa, among the diseases which are the

ardest to be identified by the user, the expert-based method shines.

his happens, for instance, in the case of fusarium_rot , where the user

cores 20% F2-score and the expert 38%, or in the case of black_rot ,

here the user scores 36% F2-score and the expert 56%. 

Different insights can be derived from the F2-score results for the

eal-world challenge, presented in Table 7 . As a limitation, just seven

ut of the ten candidate diseases were considered for the real-world

hallenge. In the time period of the challenge no apples infected by Al-

ernaria spp. or Mucor spp. could be obtained from storage houses in the

olzano province. It is important to note that for this study, the num-

er of instances ( #diag ) for each disease is not balanced, but it is again

ubjected to natural constraints (i.e., the number of apples with each

isease, available in our lab). In fact, two of the cases in which DSSAp-

le performed worse than the user selection, the number of diagnoses

aken by users is low (three for fusarium_rot and five for bulls_eye ). 

Hence, the results may be conditioned by the bias of such a lim-

ted test set. Indeed, blue_mold shows a very high performance of the

mage-based module (73% F2-score), while the expert suffers of poor

esults, below 20% (similarly as in the simulated challenge). grey_mold

nd black_rot report performances which are close to their behaviour in

he simulated challenge, whereas bitter_rot registers a significant drop in

he performances of all the DSS components, getting just a 9% F2-score.

inally, for side_rot the image-based component, as well as the user se-
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Fig. 8. F2-score achieved by the four diagnostic methods, i.e., im- 

age , expert , hybrid , and user diagnosis, conditioned on every user 

(anonymized on the x-axis) participating in the simulated chal- 

lenge. In bold, we highlight users who made more than two di- 

agnoses (median value). 

Fig. 9. F2-score achieved by the four diagnostic methods, i.e., im- 

age , expert , hybrid , and user diagnosis, conditioned on every user 

(anonymized on the x-axis) participating in the real-world chal- 

lenge. 
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ection, got a very low F2-score, while the expert-based method kept the

ame performance of the simulated challenge. 

To conclude, from this analysis conditioned on the target ground

ruth disease we could identify different kind of behaviour of DSSAp-

le and user selection. For instance, alternaria_spot and bulls_eye seem to

e easier to be diagnosed by the user than by our system. Vice versa,

lue_mold and alternaria_rot can be effectively identified by the image-

ased method, while black_rot , fusarium_rot , and grey_mold required the

ediation of an expert model. For some other diseases, like bitter_rot

nd side_rot we had conflicting evidence from the two evaluation sce-

arios. Nevertheless, we can generally conclude that hybridizing the two

treams of information elicitation (i.e., image and expert) is an effective

ay to achieve a good trade-off for every target disease. 

.4. User-related results 

In this section, we report the results related to the performance of

ach user in the diagnostic task. In particular, we aim at comparing

he hybrid version of DSSApple with respect to the performances of its

omponents (i.e., the image-based and the expert-based model) and the

ser capability of diagnosing apple diseases. 

In Fig. 8 , we depict the performances for each user involved in the

imulated challenge. Specifically, the graph reports each user F2-score

or the image -based, the expert -based, and the hybrid models, as well as

he score for the user -made diagnosis. Important to mention that, among

he 21 users just seven performed more than 2 diagnoses, namely U2,

6, U9, U11, U14, U20, and U21 (in bold in the graph). Hence, we

hould consider that the other 14 users might exhibit a larger variance in

heir results due to the limited number of interactions. Generally speak-

ng, in 12 out of 21 cases at least one of the DSS methods significantly

utperformed the user selection. Of these, in a single case (for U1) the

est performing method was the expert one, in two cases (for U4 and
12 
12) the best method was the image-based, while for the remaining nine

articipants the hybrid model achieved the best score, in most cases tied

ith one of the two simpler methods. For the users which outperformed

SSApple , just in five cases the score is significantly higher (greater than

.1) with just one user with more than two interactions (U9). For the

emaining users, the hybrid model was tied or close to the user-made

iagnosis performance, including two degenerative cases in which the

ser was not able to get to any correct diagnosis (U8 and U16). 

Similar considerations could be derived for the real-world challenge,

s shown in Fig. 9 . In this second challenge, we ensured that each user

ad at least four interactions (i.e., target apple diagnosis) with the sys-

em. Also notice that the user ids (e.g., U1, U2, etc.) do not correspond

o the ones in the simulated challenge. From this real-world test, we can

ee how the hybrid model emerges to be the best performing diagnostic

ethod for 10 out of 16 users. In three cases hybrid was tied with expert

ethod, in four cases with image method and in three cases without any

ie with simpler methods. For the remaining six users, five of them out-

erformed our DSS with their decision, while in a single scenario (U11)

ybrid was tied with user decision, but image-based diagnosis alone per-

ormed better. Finally, we can conclude that for more than half of the

ested users (more than two third in the real-world scenario) the DSSAp-

le application is able to boost their capability in identifying the correct

ost-harvest apple disease. 

This thesis is further supported by the pie charts represented in

ig. 10 . These show the percentage of interactions where the user or

he DSS were able to correctly identify the target post-harvest disease,

n the simulated ( Fig. 10 a) and the real-world ( Fig. 10 b) challenge. For

hese graphs, we restricted the DSS diagnosis to the top-2 diseases se-

ected by the hybrid model only. In the simulated challenge, the user

lone was able to correctly identify the ground truth disease in more

han 55% of the cases, while, with the help of DSSApple this percent-

ge increased to around the 70%, with more than 27% of the tested
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Fig. 10. Percentage of correct diagnoses made by the DSS or 

the user, for the simulated (a) and the real-world challenge 

(b). 
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pples recovered from a wrong diagnosis. A proportion of 17% of the

pples failed to be identified anyhow, while the user is losing 13% of

orrect diagnoses by trusting the DSS instead of her intuition. The same

ercentage of correct diagnoses made by the user only is shown in the

eal-world scenario. Nevertheless, in this case the user alone was able

o correctly identify just a bit more than 30% of the diseases, while the

ystem was able to boost this percentage up to 54%, with more than

6% of refined diagnoses. The increased difficulty of a real-world in-

eld diagnosis is testified by the fact that around one third of the apples

ere wrongly diagnosed with both decision models. 

. Conclusions 

DSSApple is an interactive decision support system diagnosing post-

arvest diseases of apple based on the observed macroscopic symptoms.

he application is designed with a practical web-based interface to elicit

nformation about the unknown disease on a target apple from both ex-

ert and non-expert users. Specifically, our application allows for a two-

tream hybrid interaction, based on both expert-defined questions and

isual stimuli referring to observable symptoms. The system has been

horoughly tested by means of two real-world experiments involving

emi-expert users. They were challenged to use the DSSApple applica-

ion in order to correctly diagnose two sets of infected apples, one set of

pples simulated by photos, and the second set of real infected apples

rovided by storage houses. This evaluation proved the diagnostic ef-

ectiveness of the hybrid system, which generally performed better than

ts two single components (i.e., expert-based and image-based ), as well

s the user-made diagnosis as another baseline. In particular, we regis-

ered an increment of +14% in terms of recall and +8% in terms of

2-score for the simulation with apple images, and +23% recall and

15% F2-score for the physical apples, compared to the self-reported

iagnosis of the users. In the real-world environment, hybrid DSSApple

as able to correct the wrongly assigned diagnoses by the user in more

han 36% of the test cases. Thus, we demonstrated that DSSApple is a

alid tool to support both expert and non-expert users in the diagnosis of

n apple infected by an unknown post-harvest disease. Furthermore, the

resented methodology progressed the current state-of-the-art by (i) in-

roducing an adaptive hybrid interface which leverages both images and

xpert-based questions to support both expert and non-expert users and

o boost diagnostic accuracy, and (ii) presenting a BN-based reasoning

ystem which is able to deal with uncertainty in knowledge elicitation

nd diagnosis computation. Finally, (iii) a practical algorithm able to

xplain the suggested diagnosis in the light of the feedback provided,

as also introduced for the first time in such a context. 

.1. Future directions 

Future directions of the presented work are manifold. For instance, a

ajor limitation of the current approach is represented by the fact that

he model has been built with the support of a single domain expert.

 natural extension would be to involve more experts in a further re-

nement of the knowledge base. Hence, BN parameters will be derived
13 
rom a panel of experts and will thus be more robust due to consensus

mong multiple experts [11] . More live experiments are also needed

o further validate the developed model in more realistic environments

e.g., in packing-houses or in quality control). Another relevant issue of

uch a knowledge-based system is the one of transferability [22] , namely

ow to effectively transfer the developed expert model to different envi-

onments (e.g., users with different expertise levels in the field of phy-

opathology). We are currently investigating an approach founded on

he concept of likelihood evidence [26] , to bridge the gap between the

xpert model and the users’ perception in order to further improve the

iagnostic performance. Finally, another development under considera-

ion is to increase the reliability of the diagnosis by including additional

ources of information such as automated classification of microscopic

mages of fungal growth. 
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