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Abstract: Wedefine thedouble ramificationhierarchy associated to anF-cohomological
field theory and use this construction to prove that the principal hierarchy of any semisim-
ple (homogeneous) flat F-manifold possesses a (homogeneous) integrable dispersive
deformation at all orders in the dispersion parameter. The proof is based on the recon-
struction of an F-CohFT starting from a semisimple flat F-manifold and additional data
in genus 1, obtained in our previous work. Our construction of these dispersive defor-
mations is quite explicit and we compute several examples. In particular, we provide a
complete classification of rank 1 hierarchies of DR type at the order 9 approximation
in the dispersion parameter and of homogeneous DR hierarchies associated with all
2-dimensional homogeneous flat F-manifolds at genus 1 approximation.
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Introduction

SinceWitten’s conjecture [Wit91] and its proof by Kontsevich [Kon92], there have been
growing and fruitful interactions between the area of integrable hierarchies of PDEs
and algebraic geometry of the moduli spaces of algebraic curves. In this context, and
in connection with topological field theory, Dubrovin introduced in the 90s the notion
of Frobenius manifold [Dub96], a differential-geometric structure that encodes genus-
zero information of a cohomological field theory (CohFT) on the moduli space of stable
curves, besides having far reaching connections with other areas of mathematics.

From the point of view of integrable systems, given a Dubrovin–Frobenius manifold,
there exists an associated integrable hierarchy of Hamiltonian quasilinear PDEs called
Dubrovin’s principal hierarchy, or simply principal hierarchy. An important problem
in the theory of integrable systems consists in constructing a full dispersive hierarchy
starting from its dispersionless limit.

In the framework of moduli spaces, the principal hierarchy associated to a Dubrovin–
Frobenius manifold and its dispersive deformation should satisfy additional constraints
coming from the intersection theory of theCohFT. In the semisimple case, there exist two
different (but conjecturally Miura-equivalent [Bur15,BDGR18,BGR19]) constructions
defining such dispersive deformations:

(1) The Dubrovin–Zhang construction [DZ01] is based on the idea that the partition
function of the corresponding CohFT in all genera is the logarithm of the tau-function
of a special solution (called the topological solution) to a full dispersive hierarchy (the
DZ hierarchy). One can construct the hierarchy itself starting from this tau-function,
and it turns out that the principal hierarchy is the dispersionless limit of DZ hierarchy.
Moreover the full DZ hierarchy and the principal hierarchy are related by a special
change of dependent variables, called a quasi-Miura transformation, which can be
uniquely determined in the semisimple case from genus zero information.

(2) The double ramification construction, introduced by one of the authors in [Bur15], is
based on the definition of an infinite set of commutingHamiltonian densities [BR16a]
in terms of intersection numbers of the CohFT, the double ramification cycles and
other natural tautological classes on the moduli space of curves.

For both constructions and in the (homogeneous) semisimple case, the reconstruction
of the full dispersive hierarchy from its dispersionless limit (the principal hierarchy of
the Dubrovin–Frobenius manifold encoding the genus 0 part of the CohFT) is possible
thanks to the Givental–Teleman reconstruction theorem for the CohFT itself from its
genus 0 part [Tel12,Giv01].

Notice that, by construction, the dispersionless limits of both the DZ and DR hi-
erarchies coincide with the principal hierarchy of the Dubrovin–Frobenius manifold
underlying the CohFT.
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In the last 20years, it has been observed that many constructions related to
Dubrovin–Frobeniusmanifolds can be extended to amore general setting [Sab98,Get04,
Man05,LPR09,SZ11,AL13a,Lor14,KMS15,AL17,DH17,BR18,KMS18,AL19,BB19,
ABLR20]. For instance, it was observed in [LPR09] that the notion of principal hierarchy
does not require the existence of an invariant flat metric. This leads naturally to the con-
sideration of the generalization of Dubrovin–Frobenius manifolds, called F-manifolds
with compatible flat structure [Man05] or simply flat F-manifolds [LPR09], obtained by
replacing a flat metric with a flat torsionless connection and keeping all the axioms of
Dubrovin–Frobenius manifolds apart from those involving explicitly the metric and not
just the associated Levi–Civita connection. In flat coordinates for the flat connection,
the flows of the principal hierarchy are systems of conservation laws. In the case of
Dubrovin–Frobenius manifolds, the presence of an invariant flat metric has to deal with
the presence of a local Hamiltonian structure. In this paper we construct (homogeneous)
double ramification hierarchies starting from a (homogeneous) CohFT. In particular, in
the semisimple case, leveraging on the results of [ABLR20], this provides dispersive
deformations of the principal hierarchy associated to a semisimple (homogeneous) flat
F-manifold. The existence of these dispersive integrable deformations relies on:

(1) a generalization of the notion of cohomological field theory, called F-cohomological
field theory (or F-CohFT for short) introduced in [BR18,ABLR20];

(2) a reconstruction theorem for a semisimple (homogeneous) F-CohFT starting from a
flat F-manifold and additional data in genus 1 [ABLR20];

(3) the definition of an infinite set of commuting flows (the DR hierarchy) in terms of
intersection numbers of the F-CohFT, the double ramification cycles, the top Hodge
class, and psi classes on the moduli space of stable curves.

The paper is organized as follows.
Section 1 is devoted to the construction of the DR hierarchy of an F-CohFT (see also

[BR18]). The main properties of this hierarchy are given in terms of densities of local
vector fields on the formal loop space and a special basis for their integrals of motion.
We also consider the additional properties of the hierarchy in the case of a homogeneous
F-CohFT.

In Sect. 2, after recalling the definition of a flat F-manifold and the construction of its
associated principal hierarchy, we present our main result: given an arbitrary semisimple
flat F-manifold and an associated principal hierarchy, we construct a family of dispersive
integrable deformations of the principal hierarchy. These deformations, called the de-
scendant DR hierarchies, come from the family of DR hierarchies associated to a family
of F-CohFTs parameterized by a semisimple point of our flat F-manifold. The descen-
dant DR hierarchy depends on a choice of a certain vector field on the flat F-manifold,
which we call a framing. We prove that the descendant DR hierarchies corresponding to
different framings are not related to each other by a Miura transformation that is close
to identity.

In Sect. 3, we discuss the role of (descendant) DR hierarchies in the problem of classi-
fication of integrable deformations of integrable dispersionless systems of conservation
laws. One can impose various constraints for such integrable deformations, and we dis-
cuss the corresponding results (mostly at the approximation up to some finite power of ε)
for flat F-manifolds of dimension 1 and 2 in Sects. 3.2 and 3.1.1. In Sect. 3.3, we briefly
mention the problem of computing general integrable deformations of principal hierar-
chies of flat F-manifolds. It was conjectured in [AL18] that the equivalence classes of
such deformations are labeled by certain functional parameters called Miura invariants.
In the case of Dubrovin–Frobenius manifolds and bihamiltonian deformations, these
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invariants are equivalent to central invariants, which are known to classify deformations
of semisimple local bihamiltonian structures of hydrodynamic type [DLZ06,CPS18].

1. Double Ramification Hierarchy of an F-CohFT

In this section, we associate to any F-CohFT with a vector space V an infinite sequence
of commuting vector fields on the formal loop space of V , i.e., an infinite sequence of
compatible systems of evolutionary PDEs of rank N := dim V (in particular, in the form
of conservation laws). This construction is a generalization of the double ramification
hierarchy of [Bur15,BR16a] to the context of F-CohFTs and enjoysmost of its properties
(for instance, recursion formulas for the higher symmetries), but loses in general the
Hamiltonian nature.

1.1. F-cohomological field theories. We recall from [BR18,ABLR20] the definition of
an F-cohomological field theory on the moduli space Mg,n of stable curves of genus g
with n marked points. We will denote by H∗(X) the cohomology ring with coefficients
inC of a topological space X . When considering the moduli space of stable curves, X =
Mg,n , the even part H even(Mg,n) in the cohomology ring H∗(Mg,n) can optionally be
replaced by the Chow ring A∗(Mg,n). Here and in what follows we perform summation
over repeated Greek indices.

Definition 1. An F-cohomological field theory (or F-CohFT) is a system of linear maps

cg,n+1 : V ∗ ⊗ V ⊗n → H even(Mg,n+1), 2g − 1 + n > 0,

where V is an arbitrary finite dimensional vector space, together with a special element
e ∈ V , called the unit, such that, chosen any basis e1, . . . , edim V of V and the dual basis
e1, . . . , edim V of V ∗, the following axioms are satisfied:

(i) Themaps cg,n+1 are equivariant with respect to the Sn-action permuting the n copies
of V in V ∗ ⊗ V ⊗n and the last n marked points inMg,n+1, respectively.

(ii) π∗cg,n+1(eα0 ⊗ ⊗n
i=1eαi ) = cg,n+2(eα0 ⊗ ⊗n

i=1eαi ⊗ e) for 1 ≤ α0, α1, . . . , αn ≤
dim V , where π : Mg,n+2 → Mg,n+1 is the map that forgets the last marked point.
Moreover, c0,3(eα ⊗ eβ ⊗ e) = δα

β for 1 ≤ α, β ≤ dim V .

(iii) gl∗cg1+g2,n1+n2+1(e
α0 ⊗⊗n1+n2

i=1 eαi ) = cg1,n1+2(e
α0 ⊗⊗i∈I eαi ⊗eμ)⊗cg2,n2+1(e

μ⊗
⊗ j∈J eα j ) for 1 ≤ α0, α1, . . . , αn1+n2 ≤ dim V , where I � J = {2, . . . , n1 +n2 +1},
|I | = n1, |J | = n2, and gl : Mg1,n1+2 × Mg2,n2+1 → Mg1+g2,n1+n2+1 is the
corresponding gluing map.

An F-CohFT taking value in H0(Mg,n+1) = C only is called an F-topological field
theory (or F-TFT). Moreover, there is an obvious generalization of the notion of an
F-CohFT where the maps cg,n+1 take value in H even(Mg,n+1) ⊗ K , where K is a C-
algebra. We will call such objects F-cohomological field theories with coefficients in K .

Definition 2. AnF-CohFT cg,n+1 : V ∗⊗V ⊗n → H even(Mg,n+1) is calledhomogeneous
if there exists an operator Q ∈ End(V ), a vector r ∈ V , and a complex constant γ such
that Qe = 0 and the following condition is satisfied:

Deg ◦ cg,n+1 + π∗ ◦ cg,n+2 ◦ (⊗r)
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= cg,n+1 ◦
⎛
⎝−Qt ⊗ Id⊗n +

∑
i+ j=n−1

Id ⊗ Id⊗i ⊗ Q ⊗ Id⊗ j

⎞
⎠ + γ gcg,n+1, (1.1)

where Deg ∈ End(H∗(Mg,n)) is the operator acting on Hi (Mg,n) by themultiplication
by i

2 , π : Mg,n+2 → Mg,n+1 is the map that forgets the last marked point, ⊗r : V ∗ ⊗
V ⊗n → V ∗ ⊗ V ⊗(n+1) is the operator of tensor multiplication from the right by r ,
and Qt ∈ End(V ∗) is the transposed operator. The constant γ is called the conformal
dimension of our F-CohFT.

Remark 1. Our definition of a homogeneous F-CohFT is slightly more general, than the
one from the paper [ABLR20] where the operator Q was required to be diagonaliz-
able. However, it is easy to see that all the results from [ABLR20] about homogeneous
F-CohFTs are true with the new definition (see also Sect. 2.1 with a new definition
of a homogeneous flat F-manifold). An example of a homogeneous F-CohFT with a
nondiagonalizable operator Q will appear in Sect. 3.

1.2. Vector fields on the formal loop space. Let Â and �̂ be the spaces of differential
polynomials and local functionals in formal (even) variables uα

k , 1 ≤ α ≤ N , k ≥ 0,
and ε, with the differential grading deg∂x

uα
k = k, deg∂x

ε = −1, where the definitions
and the notations are taken from [Ros17, Section 2.1].

The space of densities of local multivector fields (on the formal loop space of V ) is
the supercommutative associative algebra

Â•:=C[[u∗, θ∗]][u∗
>0, θ∗,>0][[ε]],

where the new formal variables θα,k , 1 ≤ α ≤ N , k ≥ 0, are odd (anti-commuting among
themselves and commuting with ε and uα

k ) with deg∂x
θα,k :=k, uα:=uα

0 , and θα:=θα,0,
and the symbol ∗, as an index, denotes any of the allowed values for that index. The
algebra Â• is endowed with the super grading, denoted by degθ , which is defined by
degθ θα,k :=1 and degθ uα

k = degθ ε:=0. The sub-vector space of Â• homogeneous of
super degree i ≥ 0 is denoted by Âi and called the space of densities of local i-vector
fields. We have Â = Â0, while Â1 is called the space of densities of local vector fields.
The homogeneous component of the space Âi of differential degree k will be denoted
by (Âi )[k].

The operator ∂x is extended from Â to Â• as the super-derivation

∂x :=
∑
k≥0

(
uα

k+1
∂

∂uα
k
+ θα,k+1

∂

∂θα,k

)
.

The space of local multivector fields is defined as

�̂•:=Â•/(Im ∂x ⊕ C[[ε]])
and, for i ≥ 0, the space of local i-vector fields �̂i is the image of Âi in the quotient.
If f ∈ Â•, its image in �̂• is denoted by f = ∫

f dx . As before, �̂ = �̂0, and �̂1 is
called the space of local vector fields. Naturally, the spaces �̂i inherit the differential
grading deg∂x

.
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For any 1 ≤ α ≤ N , we define the (super) variational derivatives

δ

δuα
:=

∑
k≥0

(−∂x )
k ∂

∂uα
k
,

δ

δθα

:=
∑
k≥0

(−∂x )
k ∂

∂θα,k
,

which are well defined on �̂• since they vanish on Im ∂x ⊕ C[[ε]].
The Schouten–Nijenhuis bracket [·, ·] : �̂i × Â j → Âi+ j−1 is defined by

[ f , g]:=
∑
k≥0

(
∂k

x

(
δ f

δθα

)
∂g

∂uα
k
+ (−1)i∂k

x

(
δ f

δuα

)
∂g

∂θα,k

)
. (1.2)

This Schouten–Nijenhuis bracket is a lift of the Schouten–Nijenhuis bracket [·, ·] : �̂i ×
�̂ j → �̂i+ j−1 defined by

[ f , g]:=
∫ (

δ f

δθα

δg

δuα
+ (−1)i δ f

δuα

δg

δθα

)
dx . (1.3)

A further lift of the Schouten–Nijenhuis bracket to Âi × Â j can be defined employing
formal Dirac delta functions, similarly to what was done in [BR16b] for the quantum
commutator of two differential polynomials,

[ f (x), g(y)]:=
∑

k,l≥0

(
∂ f

∂θα,k
(x)

∂g

∂uα
l

(y) ∂k
x ∂ l

yδ(x − y) + (−1)i ∂ f

∂uα
k
(x)

∂g

∂θα,l
(y) ∂k

x ∂ l
yδ(x − y)

)
.

(1.4)

Taking the integral with respect to x of formula (1.4), using that
∫

δ(x − y)g(y)dx =
g(y), reproduces indeed formula (1.2), and further integration with respect to y gives
(1.3).

As usual, for i = j = 1, the above Schouten–Nijenhuis brackets are called the Lie
brackets. For i = 1 and j = 0, the Schouten–Nijenhuis brackets reduce simply to the
differentiation of (a density of) a local functional along (a density of) a vector field, from
which we see that the symbol θα,k can be interpreted as the operator ∂k

x ◦ δ
δuα : �̂ → Â.

Given a local vector field X ∈ �̂1, there is a unique representative X ∈ Â1 of X such

that X = Xαθα with Xα ∈ Â. This representative is given by X = δX
δθα

θα . The system

of evolutionary PDEs associated to X is

∂uα

∂t
= δX

δθα

(u∗∗; ε), α = 1, . . . , N . (1.5)

Two systems of evolutionary PDEs

∂uα

∂t
= δX

δθα

(u∗∗; ε), α = 1, . . . , N ,

∂uα

∂s
= δY

δθα

(u∗∗; ε), α = 1, . . . , N ,

are compatible, in the sense that, for any 1 ≤ α ≤ N , ∂
∂t

∂uα

∂s = ∂
∂s

∂uα

∂t , if and only if the
associated local vector fields X , Y ∈ �̂1 satisfy [X , Y ] = 0.
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Under a Miura transformation (see [Ros17, Section 2.1] for more details) of the form

ũα = ũα(u∗∗; ε) ∈ Â[0] = (Â0)[0], 1 ≤ α ≤ N , (1.6)

ũ∗|u∗∗=0 = 0, det

(
∂ ũ∗

∂u∗

)∣∣∣∣
u∗∗=0

�= 0, (1.7)

the generators u∗∗ and θ∗,∗ of Â• transform according to the formulae

uα
k = ∂k

x uα(̃u∗∗; ε), θα,k = ∂k
x

⎛
⎝∑

s≥0

(−∂x )
s

(
∂ ũμ

∂uα
s

∣∣∣∣
u∗∗=u∗∗ (̃u∗∗;ε)

θ̃μ

)⎞
⎠ ,

1 ≤ α ≤ N , k ≥ 0,

where uα(̃u∗∗; ε) is obtained by inverting ũα = ũα(u∗∗; ε) order by order in ε. For a local
vector field, these formulae give

X =
∫

(Xαθα)dx =
∫

⎛
⎜⎝
⎛
⎝∑

s≥0

∂ ũα

∂uμ
s

∂s
x Xμ

⎞
⎠
∣∣∣∣∣∣
u∗∗=u∗∗ (̃u∗∗;ε)

θ̃α

⎞
⎟⎠ dx,

from which we obtain that a system of evolutionary PDEs (1.5) transforms into

∂ ũα

∂t
= X̃α(̃u∗∗; ε) =

⎛
⎝∑

s≥0

∂ ũα

∂uμ
s

∂s
x Xμ

⎞
⎠
∣∣∣∣∣∣
u∗∗=u∗∗ (̃u∗∗;ε)

, α = 1, . . . , N .

Performing the change of formal variables

uα
k = ∂k

x

(∑
a∈Z

pα
a eiax

)
, θα,k = ∂k

x

(∑
a∈Z

qα,aeiax

)
, 1 ≤ α ≤ N , k ≥ 0,

(1.8)

one can rewrite a density of a local multivector field f (u∗∗, θ∗,∗; ε) ∈ (Âm)[d] as a formal
Fourier series

f =
∑

n,s≥0
a1,...,an∈Z
b1,...,bm∈Z

f a1,...,an ,b1,...,bm
α1,...,αn ,β1,...,βm ;s εs pα1

a1 . . . pαn
an

qβ1,b1 . . . qβm ,bm e
i
(∑n

j=1 a j+
∑m

j=1 b j

)
x
,

where the coefficient f a1,...,an ,b1,...,bm
α1,...,αn ,β1,...,βm ;s , as a function of the indices a1, . . . , an, b1, . . . ,

bm , is a homogeneous polynomial of degree s+d. Formal Fourier series of this type forma
supercommutative associative algebrawhere the formal variablesq∗,∗ are odd.Moreover,
the local multivector field f corresponds to the constant term of the Fourier series.
Similarly to the variables θ∗,∗, one should interpret the variable qα,a to represent the
vector ∂

∂pα−a
. This is coherent with the following formulae for the variational derivatives

in the variables p∗∗ and q∗,∗:

δ

δuα
=

∑
a∈Z

eiax ∂

∂pα−a
,

δ

δθα

=
∑
a∈Z

eiax ∂

∂qα,−a
,
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acting on local multivector fields to give densities of local multivector fields. Accord-
ingly, using the formal Fourier expansion δ(x) = ∑

a∈Z eiax for the formal Dirac delta
function, it is easy to obtain the formula for the Schouten–Nijenhuis bracket (1.4) on
Âi × Â j in the new variables:

[ f (x), g(y)] =
∑
a∈Z

(
∂ f

∂qα,a
(x)

∂g

∂pα−a
(y) + (−1)i ∂ f

∂pα−a
(x)

∂g

∂qα,a
(y)

)
, (1.9)

from which analogues of (1.2) and (1.3) are easily obtained by integration in x and then
y.

1.3. Densities of local vector fields for the DR hierarchy. Denote by ψi ∈ H2(Mg,n)

the i-th psi class, which is the first Chern class of the line bundle overMg,n formed by
the cotangent lines at the i-th marked point. Denote byE the rank g Hodge vector bundle
overMg,n whose fibers are the spaces of holomorphic one-forms on stable curves. Let
λ j :=c j (E) ∈ H2 j (Mg,n), these classes are called the Hodge classes.

For any a1, . . . , an ∈ Z,
∑n

i=1 ai = 0, denote by DRg(a1, . . . , an) ∈ H2g(Mg,n)

the double ramification (DR) cycle. We refer the reader, for example, to [BSSZ15] for
the definition of the DR cycle onMg,n , which is based on the notion of a stable map to
CP

1 relative to 0 and ∞. If not all the multiplicities ai are equal to zero, then one can
think of the class DRg(a1, . . . , an) as the Poincaré dual to a compactification inMg,n of
the locus of pointed smooth curves (C; p1, . . . , pn) satisfying OC

(∑n
i=1 ai pi

) ∼= OC .
Consider the Poincaré dual to the double ramification cycleDRg(a1, . . . , an) in the space
Mg,n . It is an element of H2(2g−3+n)(Mg,n), and abusing notation it is also denoted by
DRg(a1, . . . , an).

The restriction DRg(a1, . . . , an)
∣∣Mct

g,n
, where Mct

g,n is the moduli space of stable

curves of compact type, is a homogeneous polynomial in a1, . . . , an of degree 2g with
the coefficients in H2g(Mct

g,n). This follows fromHain’s formula [Hai13] for the version
of theDRcycle defined using the universal Jacobian overMct

g,n and the result of the paper
[MW13], where it is proved that the two versions of the DR cycle coincide onMct

g,n (the

polynomiality of the DR cycle on Mg,n is proved in [JPPZ17]). The polynomiality of
the DR cycle onMct

g,n together with the fact that λg vanishes onMg,n\Mct
g,n (see, e.g.,

[FP00, Section 0.4]) imply that the cohomology classλgDRg(−∑n
j=1 a j , a1, . . . , an) ∈

H4g(Mg,n+1) is a degree 2g homogeneous polynomial in the coefficients a1, . . . , an .
Given a vector space V with dim V = N and a basis e1, . . . , eN ∈ V , let cg,n+1 : V ∗⊗

V ⊗n → H even(Mg,n+1) be anF-CohFTwith unit e = Aμeμ. For 1 ≤ β ≤ N and d ≥ 0,
we define the following system of formal Fourier series:
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Yβ,d := −
∑

g,n≥0, 2g+n>0
a,a1,...,an∈Z

ia(−ε2)g

n!

(∫
DRg (a,−a−∑n

j=1 a j ,a1,...,an )

λgψd
2 cg,n+2(e

α ⊗ eβ ⊗ ⊗n
j=1eα j )

)
qα,a

⎛
⎝

n∏
j=1

p
α j
a j

⎞
⎠

e
i
(

a+
∑n

j=1 a j

)
x
, (1.10)

where the integral above is intended to vanish whenever the dimension of the DR cycle
does not match the degree of the integrand. Thanks to the polynomiality property of
the DR cycle, (1.10) can be rewritten as a system of densities of local vector fields
Yβ,d ∈ (Â1)[1] as

Yβ,d = −
∑

g,n≥0, 2g+n>0
k,k1,...,kn≥0

k+
∑n

j=1 k j =2g

ε2g

n! Coefak(a1)k1 ...(an)kn

(∫
DRg(a,−a−∑n

j=1 a j ,a1,...,an)

λgψ
d
2 cg,n+2(e

α ⊗ eβ ⊗ ⊗n
j=1eα j )

)
θα,k+1

n∏
j=1

u
α j
k j

.

(1.11)

To this definition, we add the extra densities Yβ,−1:= − θβ,1, 1 ≤ β ≤ N .
The double ramification hierarchy associated to the given F-CohFT is the infinite

system of local vector fields Y β,d , 1 ≤ β ≤ N , d ≥ −1, associated with the above
densities or, in terms of evolutionary PDEs, the system

∂uα

∂tβd
= ∂x Pα

β,d , 1 ≤ α, β ≤ N , d ≥ 0, (1.12)

where

Pα
β,d :=

∑
g,n≥0, 2g+n>0

k1,...,kn≥0∑n
j=1 k j =2g

ε2g

n! Coef
(a1)

k1 ...(an )kn

(∫
DRg(−∑n

j=1 a j ,0,a1,...,an )
λgψd

2 cg,n+2(e
α ⊗ eβ ⊗ ⊗n

j=1eα j )

) n∏
j=1

u
α j
k j

.

(1.13)

Let us adopt the convention Pα
β,−1:=δα

β . Notice that the system of evolutionary PDEs
(1.12) carries strictly less information than the corresponding densities (1.11). We have
the following result.

Theorem 1 ([BR18]). All the equations of the DR hierarchy (1.12) are compatible with
each other, namely,

∂

∂tβ2d2

(
∂uα

∂tβ1d1

)
= ∂

∂tβ1d1

(
∂uα

∂tβ2d2

)
, 1 ≤ α, β1, β2 ≤ N , d1, d2 ≥ 0.
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This theorem is proved in [BR18], but we give another proof in Theorem 2 (see
part (ii)). For 1 ≤ β1, β2 ≤ N and d1, d2 ≥ 0, let us define the generating series

Yβ1,d1;β2,d2 (x, y):= −
∑

g,n≥0
a,b1,b2,a1,...,an∈Z

ia(−ε2)g

n!

(∫
DRg (a,b1,b2,a1,...,an )

λgψ
d1
2 ψ

d2
3 cg,n+3(e

α ⊗ eβ1 ⊗ eβ2 ⊗ ⊗n
j=1eα j )

)

· qα,a

⎛
⎝

n∏
j=1

p
α j
a j

⎞
⎠ e−ib1x e−ib2 y ,

(1.14)

where we adopt the convention that DRg(a, b1, b2, a1, . . . , an):=0 when a + b1 + b2 +∑n
j=1 a j �= 0. To this definition, for future convenience, we add Yβ1,−1;β2,d(x, y) =

Yβ1,d;β2,−1(x, y):=0, 1 ≤ β1, β2 ≤ N , d ≥ 0.

We will use the symbol 11, as an index, to denote the sum over the values 1 ≤ α ≤ N
for that index with the coefficients Aα . For example, Y11,d :=AμYμ,d , θ11,k :=Aμθμ,k , and
∂

∂t11d
:=Aμ ∂

∂tμd
.

Theorem 2. For all 1 ≤ β1, β2 ≤ N and d1, d2 ≥ −1 such that d1 + d2 ≥ −1, we have

(i) [Yβ2,d2(y), Yβ1,d1(x)] = ∂x Yβ1,d1+1;β2,d2(x, y) − ∂yYβ1,d1;β2,d2+1(x, y);
(ii) [Y β2,d2 , Y β1,d1 ] = 0;

(iii) [Y 11,1, Yβ1,d1 ] = ∂x (D −1)Yβ1,d1+1, where D:=
∑
k≥0

(
uα

k
∂

∂uα
k
+ θα,k

∂

∂θα,k

)
+ ε

∂

∂ε
;

(iv) [Y β2,0, Yβ1,d1 ] = ∂x
∂

∂uβ2
Yβ1,d1+1;

(v) Y11,0 = −uαθα,1 + ∂2x S, S ∈ (Â1)[−1], which implies
∂uα

∂t110
= ∂x uα for 1 ≤ α ≤ N;

(vi)
∂

∂u11 Yβ1,d1+1 = Yβ1,d1 ,
∂

∂u11 Pβ2
β1,d1+1

= Pβ2
β1,d1

.

(vii)
∂

∂uβ2
Pβ1
11,1 = D Pβ1

β2,0
.

Proof. For n ≥ 0, let us use the notation [n] for the set {1, . . . , n}.
Let us prove part (i). If d1 = −1 or d2 = −1, then the statement easily follows from

the definitions. For d1, d2 ≥ 0, the statement is analogous to [BR16b, Lemma 3.3], and
weuse [BSSZ15,Corollary 2.2], describing the intersection of the psi classeswith theDR
cycle, togetherwith the fact that thatλg vanishes onMg,n\Mct

g,n . Let n ≥ 0 and consider
integers a1, . . . , an+3 with the vanishing sum. For a subset I = {i1, . . . , i|I |} ⊂ [n + 3],
i1 < i2 < . . . < i|I |, denote by AI the string ai1 , ai2 , . . . , i|I |. For I, J ⊂ [n + 3]\{2, 3}
with I � J = [n + 3]\{2, 3}, and for g1, g2 > 0 with 2g1 + |I | > 0, 2g2 + |J | > 0, let
us denote by DRg1(a2, AI ,−k) � DRg2(a3, AJ , k) the cycle in Mg1+g2,n+3 obtained
by gluing the two DR cycles at the marked points labeled by the integers −k and k,
respectively. Here, the coefficient a j , 1 ≤ j ≤ n + 3, is attached to the marked point j .
Then we have
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(a2ψ2 − a3ψ3)λgDRg(A[n+3]) =
∑

I�J=[n+3]\{2,3}
k∈Z, g1≥0, g2≥0

g1+g2=g
2g1+|I |, 2g2+|J |>0

λg · k · DRg1 (a2, AI , −k) � DRg2 (a3, AJ , k).

(1.15)

One then needs to intersect this relation with the class−a1e−ia2x e−ia3yψ
d1
2 ψ

d2
3 cg,n+3

(eα1 ⊗ ⊗n+3
i=2eαi ), where, as usual, the covector eα1 is attached to the marked point 1 and

each vector eαi is attached to the marked point i . Thanks to the gluing axiom of the
F-CohFT, by the definitions (1.10) and (1.14), and after setting α2 = β1 and α3 = β2,
the left-hand side of Eq. (1.15) produces the right-hand side of the equation in part (i)
and depending on whether, in the above sum, the marked point 1 belongs to the subset
I or J , we obtain either of the two terms in the Lie bracket on the left-hand side of the
equation in part (i).

Part (ii) is immediately obtained from (i) upon integration in both x and y.
Part (iii) is obtained from (i) after setting β2 = 11, d2 = 1 and integrating in y.

The generating series
∫

Yβ1,d1+1;11,1(x, y)dy reduces to (D − 1)Yβ1,d1+1 thanks to the
following simple equality:

∫
DRg(a,b1,0,a1,...,an )

λgψ
d1+1
2 ψ3cg,n+3(e

α ⊗ eβ1 ⊗ e ⊗ ⊗n
j=1eα j ) = (2g + n)

∫
DRg(a,b1,a1,...,an )

λgψ
d1+1
2 cg,n+2(e

α ⊗ eβ1 ⊗ ⊗n
j=1eα j ),

which is in turn a consequence of the following behavior of the involved cohomology
classes with respect to the morphism π : Mg,n+3 → Mg,n+2 forgetting the third marked
point:

DRg(a, b1, 0, a1, . . . , an) = π∗DRg(a, b1, a1, . . . , an), (1.16)

cg,n+3(e
α ⊗ eβ1 ⊗ e ⊗ ⊗n

j=1eα j ) = π∗cg,n+2(e
α ⊗ eβ1 ⊗ ⊗n

j=1eα j ), (1.17)

λg = π∗λg, π∗(ψd1+1
2 ψ3) = (2g + n)ψ

d1+1
2 . (1.18)

Indeed, the operator D multiplies each term of Yβ1,d1+1 by the number of variables ε, u∗∗,
and θ∗,∗ appearing in that term, i.e., by 2g + n + 1.

Part (iv) is similarly obtained from (i) by setting d2 = 0 and integrating in y, as∫
Yβ1,d1+1;β2,0(x, y)dy reduces by definition to ∂

∂uβ2
Yβ1,d1+1.

To deduce (v), we consider formula (1.10) and notice that, for (g, n) �= (0, 1),
∫
DRg(a,−a−∑n

j=1 a j ,a1,...,an)

λgcg,n+2(e
α ⊗ e ⊗ ⊗n

j=1eα j ) =
∫

π∗(λgDRg(a,−a−∑n
j=1 a j ,a1,...,an))

cg,n+1(e
α ⊗ ⊗n

j=1eα j ),

and π∗(λgDRg(a,−a −∑n
j=1 a j , a1, . . . , an)) is divisible by (a+

∑n
j=1 a j )

2 as proved

in [BDGR18, Lemma 5.1], where π : Mg,n+2 → Mg,n+1 is the map forgetting the
secondmarked point.When g = 0 and n = 1,we have insteadDR0(a,−a−a1, a1) = 1,
λ0 = 1, and c0,3(eα ⊗ e ⊗ eα1) = δα

α1
, which gives the desired result.

Part (vi) immediately follows from parts (iv), (v), the properties Ker
(
∂x |Â1

) = 0,

Ker
(
∂x |Â

) = C[[ε]], and the fact ∂x Pβ2
β1,d1

= δ
δθβ2

Y β1,d1 .
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For part (vii), we compute ∂x
∂ P

β1
11,1

∂uβ2
= δ

δθβ1

∫
Y11,1;β2,0 dx dy = δ

δθβ1
(D − 1)Y β2,0 =

D δ
δθβ1

Y β2,0 = D∂x Pβ1
β2,0

= ∂x D Pβ1
β2,0

. ��

1.4. Densities of integrals of motion for the DR hierarchy. TheDRhierarchy of aCohFT
is a Hamiltonian integrable system [Bur15,BR16a], so the Hamiltonians both generate
the commuting vector fields and provide integrals of motion for the hierarchy. In the
non-Hamiltonian F-CohFT case, integrals ofmotion have a separate geometric definition
in terms of intersection numbers on the moduli space of curves. For 1 ≤ β ≤ N and
d ≥ 0, we define the following system of formal Fourier series:

gβ,d :=
∑

g,n≥0
2g+n−1>0
a1,...,an∈Z

(−ε2)g

n!

(∫
DRg(−∑n

j=1 a j ,a1,...,an)

λgψ
d
1 cg,n+1(e

β ⊗ ⊗n
j=1eα j )

)⎛
⎝

n∏
j=1

p
α j
a j

⎞
⎠ e

i
(∑n

j=1 a j

)
x
,

(1.19)

which, thanks to the polynomiality property of the DR cycle, can be rewritten as differ-
ential polynomials gβ,d ∈ Â[0] as

gβ,d =
∑

g,n≥0, 2g+n−1>0
k1,...,kn≥0∑n

j=1 k j =2g

ε2g

n! Coef
(a1)

k1 ...(an )kn

(∫
DRg(−∑n

j=1 a j ,a1,...,an )
λgψd

1 cg,n+2(e
β ⊗ ⊗n

j=1eα j )

) n∏
j=1

u
α j
k j

.

(1.20)

To this definition, we add the extra densities of conserved quantities gβ,−1 := uβ ,
1 ≤ β ≤ N , and the “primary” local vector field Y :=−∫

gβ,0θβ,1 dx or, in other words,

∂x gβ,0 = δY
δθβ

, 1 ≤ β ≤ N .

Finally, for 1 ≤ β1, β2 ≤ N and d1, d2 ≥ 0, let us define the generating series

g
β1,d1
β2,d2

(x, y):=
∑

g,n≥0, 2g+n>0
b1,b2,a1,...,an∈Z

(−ε2)g

n!

(∫
DRg(b1,b2,a1,...,an )

λgψ
d1
1 ψ

d2
2 cg,n+2(e

β1 ⊗ eβ2 ⊗ ⊗n
j=1eα j )

)

⎛
⎝

n∏
j=1

p
α j
a j

⎞
⎠ e−ib1x e−ib2 y . (1.21)

To this definition, for future convenience, we add gβ1,−1
β2,d

(x, y) = gβ1,d
β2,−1(x, y):=0,

1 ≤ β1, β2 ≤ N , d ≥ 0.

Theorem 3. For all 1 ≤ β1, β2 ≤ N and d1, d2 ≥ −1 such that d1 + d2 ≥ −1, we have

(i) [Yβ1,d1(y), gβ2,d2(x)] = ∂x gβ2,d2+1
β1,d1

(x, y) − ∂y gβ2,d2
β1,d1+1

(x, y);

(ii) [Y β1,d1 , gβ2,d2 ] = 0;
(iii) [Y 11,1, gβ2,d2 ] = ∂x (D − 1)gβ2,d2+1;

(iv) [Y β1,0, gβ2,d2 ] = ∂x
∂

∂uβ1
gβ2,d2+1;

(v)
∂

∂u11 gβ1,d1+1 = gβ1,d1 ;
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(vi) Y 11,1 = (D − 2)Y ;

(vii) Y β,0 = ∂

∂uβ
Y .

Proof. The proof of (i) is completely analogous to the proof of (i) in Theorem 2. For
d1 = −1 or d2 = −1, the statement easily follows from the definitions. Suppose
d1, d2 ≥ 0. Let n ≥ 0 and consider integers a1, . . . , an+2 with the vanishing sum. Let us
write the same relation as (1.15), but with the psi classes taken at other marked points:

(a1ψ1 − a2ψ2)λgDRg(A[n+2]) =
∑

I�J=[n+2]\{1,2}
k∈Z, g1≥0, g2≥0

g1+g2=g
2g1+|I |, 2g2+|J |>0

λg · k · DRg1 (a1, AI , −k) � DRg2 (a2, AJ , k).

Intersecting this relation with the class (−i)e−a1i x e−a2iyψ
d2
1 ψ

d1
2 cg,n+2(eα1 ⊗ ⊗n+2

j=2eα j )

and forming the corresponding generating series, we obtain part (i) (after settingα2 = β1
and α1 = β2).

The proof of (ii) to (iv) follows strictly the arguments in the proof of the corresponding
parts in Theorem 2.

The proof of part (v) is the same as the proof of part (vi) in Theorem 2.
For the proof of (vi), consider the equation of part (iii) with d2 = −1. Multiplying it

by θβ2 , summing over β2, and integrating over x we obtain, on the left-hand side,

∫
[Y 11,1, uβ2 ]θβ2dx =

∫
δY 11,1

δθβ2

θβ2dx = Y 11,1

and, on the right-hand side,
∫

∂x

(
(D − 1)gβ2,0

)
θβ2dx = −(D − 2)

∫
gβ2,0θβ2,1dx = (D − 2)Y .

Part (vii) is proved in an analogous fashion starting from (iv). ��

1.5. Homogeneous DR hierarchies. Let Yβ,q ∈ (Â1)[1] and gα,p ∈ Â[0], 1 ≤ β, α ≤ N ,
q, p ≥ −1, be the densities of local vector fields and of integrals of motion of the DR
hierarchy associated to a homogeneous rank N F-CohFT. Let

cα
βγ :=c0,3(e

α ⊗ eβ ⊗ eγ ) ∈ C

for 1 ≤ α, β, γ ≤ N .
Consider the following vector field on the space of densities of local multivector

fields on the formal loop space:

Êγ :=
∑
k≥0

((
(δα

β − qα
β )uβ

k + δk,0rα
) ∂

∂uα
k

− (δα
β − qα

β )θα,k
∂

∂θβ,k

)
+
1 − γ

2
ε

∂

∂ε
,

where qβ
α eβ :=Qeα and rαeα:=r . For convenience, let us define Yα,−2 = Pβ

α,−2:=0 and
gα,−2:=Aα for all 1 ≤ α, β ≤ N .

Proposition 1. For all 1 ≤ α ≤ N and d ≥ −1, we have

(i) Êγ (Yα,d) = dYα,d + qβ
α Yβ,d + rγ cμ

γαYμ,d−1;
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(ii) Êγ (Pα
β,d) = (d + 1)Pα

β,d + qγ
β Pα

γ,d − qα
γ Pγ

β,d + rγ cμ
γβ Pα

μ,d−1;

(iii) Êγ (gα,d) = (d + 2)gα,d − qα
β gβ,d + rγ cα

γμgμ,d−1;

(iv) Êγ (Y ) = Y − rγ cβ
γμ

∫
uμθβ,1dx.

Proof. The proof is a simple consequence of Eq. (1.1) together with dimension counting
for the intersection numbers involved in the definitions of gα,d , Yα,d , and Y and the fact
that π∗ψd

i = ψd
i − δ0i,n+1π

∗ψd−1
i , 1 ≤ i ≤ n, d ≥ 1, where π : Mg,n+1 → Mg,n

forgets the last marked point and δ0i,n+1 is the closure in Mg,n+1 of the locus of stable
curves whose dual graph is a tree with two vertices, one of which has genus 0 and exactly
two legs marked by i and n + 1. ��

In [BRS20], the authors presented an explicit conjectural formula for a bihamiltonian
structure of the DR hierarchy corresponding to a homogeneous CohFT. This in particular
gives a recursion of certain type, called a bihamiltonian recursion, expressing the flows

∂
∂tαd+1

, 1 ≤ α ≤ N , of the hierarchy in terms of the flows ∂
∂tαd

, 1 ≤ α ≤ N . For a general

homogeneous F-CohFT, we don’t expect the corresponding DR hierarchy to have a
Hamiltonian structure. However, we will now present a conjectural generalization of the
bihamiltonian recursion in this setting.

Following [BRS20], we associate with a differential polynomial f ∈ Â a sequence
of differential operators indexed by α = 1, . . . , N and k ≥ 0:

Lk
α( f ):=

∑
i≥k

(
i

k

)
∂ f

∂uα
i
∂ i−k

x .

Consider an arbitrary homogeneous F-CohFT and the corresponding DR hierarchy.
Define an operator R = (Rα

β ) by

Rα
β :=Êγ

(
L0

β(gα,0)
)

◦ ∂x +

(
1 − γ

2
δ
μ
β + qμ

β

)
L0

μ(gα,0)x + ∂x ◦ L1
β(gα,0) ◦ ∂x ,

where the notation Êγ

(
L0

β(gα,0)
)
(respectively, L0

β(gα,0)x ) means that we apply the

operator Êγ (respectively, ∂x ) to the coefficients of the operator L0
β(gα,0).

Conjecture 1. The following recursion relation is satisfied:

Rα
μ Pμ

β,d =
((

d +
3 − γ

2

)
δ
μ
β + qμ

β

)
∂x Pα

μ,d+1 + (∂x Pα
μ,d )cμ

βνrν , 1 ≤ α, β ≤ N , d ≥ −1.

(1.22)

Proposition 2. (1) If our homogeneous F-CohFT comes from a homogeneous CohFT,
then the recursion (1.22) coincides with the bihamiltonian recursion from part (2) of
[BRS20, Conjecture 1.13].

(2) Conjecture 1 is true in genus 0, i.e., if we set ε = 0.

Proof. For part (1), using the notations from paper [BRS20] let us note that Pα
β,d =

ηαμ δgβ,d
δuμ . Therefore, we have to check that ηβμK αμ

2 = Rα
β . This follows from the

properties ηβμ�k(g)αμ = Lk
β(gα,0) and qμ

α ημβ + ηαμqμ
β = γ ηαβ .

The proof of part (2) follows closely the proof of [BRS20, Proposition 2.1]. ��
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2. Principal Hierarchy of a Flat F-Manifold and Dispersive Deformations

In this section, using the results from the previous section, we construct a family of
dispersive integrable deformations of a principal hierarchy associated to an arbitrary
semisimple flat F-manifold. Moreover, we prove that different hierarchies from this
family are not equivalent to each other by aMiura transformation that is close to identity.

2.1. Flat F-manifolds. Here we recall the notion of a flat F-manifold ([Get04,Man05],
see also [AL18,LPR09]) and its main properties.

Definition 3. A flat F-manifold (M,∇, ◦, e) is the datum of an analytic manifold M , an
analytic connection ∇ in the tangent bundle T M , an algebra structure (Tp M, ◦) with
unit e on each tangent space, analytically depending on the point p ∈ M , such that the
one-parameter family of connections ∇z = ∇ + z◦ is flat and torsionless for any z ∈ C,
and ∇e = 0.

The algebras (Tp M, ◦) are commutative and associative. Let tα , 1 ≤ α ≤ N , N =
dim M , be flat coordinates for the connection ∇. Locally, there exist analytic functions
Fα(t1, . . . , t N ), 1 ≤ α ≤ N , such that the second derivatives

Cα
βγ := ∂2Fα

∂tβ∂tγ
(2.1)

are the structure constants of the algebras (Tp M, ◦), ∂
∂tβ

◦ ∂
∂tγ = Cα

βγ
∂

∂tα . Also, in the

coordinates tα the unit e has the form e = Aα ∂
∂tα for some constants Aα ∈ C. Moreover,

the following equations are satisfied:

Aμ ∂2Fα

∂tμ∂tβ
= δα

β , 1 ≤ α, β ≤ N , (2.2)

∂2Fα

∂tβ∂tμ
∂2Fμ

∂tγ ∂tδ
= ∂2Fα

∂tγ ∂tμ
∂2Fμ

∂tβ∂tδ
, 1 ≤ α, β, γ, δ ≤ N , (2.3)

which are often called the oriented WDVV equations. The N -tuple of functions F =
(F1, . . . , F N ) is called a vector potential of the flat F-manifold.

Conversely, given an open subset M ofCN and analytic functions F1, . . . , F N on M
satisfying Eqs. (2.2) and (2.3), these functions define a flat F-manifold (M,∇, ◦, Aα ∂

∂tα )

with the connection ∇ given by ∇ ∂
∂tα

∂
∂tβ

= 0, and the multiplication ◦ given by the

structure constants (2.1).
A point p ∈ M of an N -dimensional flat F-manifold (M,∇, ◦, e) is called semisimple

if Tp M has a basis π1, . . . , πN satisfying πα ◦ πβ = δα,βπα . Moreover, locally around
such a point one can choose coordinates ui such that ∂

∂uα ◦ ∂
∂uβ = δα,β

∂
∂uα . These

coordinates are called canonical coordinates. In particular, this means that the set of
semisimple points is open in M . In the canonical coordinates, we have e = ∑

α
∂

∂uα .
Following [Dub96, page 196], we call a flat F-manifold (M,∇, ◦, e) semisimple if the
set of semisimple points is dense in M .

A flat F-manifold given by a vector potential F is called homogeneous if there exists
a vector field E of the form

E = ((δα
β − qα

β )tβ + rα

︸ ︷︷ ︸
=:Eα

)
∂

∂tα
, qα

β , rα ∈ C, (2.4)
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satisfying [e, E] = e and such that

Eμ ∂ Fα

∂tμ
= (2δα

β − qα
β )Fβ + Aα

β tβ + Bα

for some Aα
β, Bα ∈ C. Note that this equation can be written more invariantly as

LieE (◦) = ◦, where LieE denotes the Lie derivative. The vector field E is called the
Euler vector field. Around a semisimple point, the Euler vector field has the following
form in canonical coordinates: E = ∑N

i=1(u
i + ai ) ∂

∂ui for some ai ∈ C.

Remark 2. As we already mentioned in Remark 1, our definition of a homogeneous flat
F-manifold is slightly more general than the one from [ABLR20], but all the results from
that paper remain valid.

Remark 3. In [AL13a], the authors introduced the closely related notion of a bi-flat
F-manifold that is the datum of two different flat F-manifold structures (∇, ◦, e) and
(∇∗, ∗, E) on the samemanifold M intertwined by the following conditions: (1) [e, E] =
e, LieE (◦) = ◦; (2) X ∗Y :=(E◦)−1 X ◦Y (or X ◦Y = (e∗)−1X ∗Y ) for all local vector
fields X, Y on M , where (E◦)−1 is the inverse of the endomorphism of the tangent
bundle given by E◦; (3) (d∇ − d∇∗)(X ◦) = 0 for all local vector fields X on M , where
d∇ is the exterior covariant derivative. For a bi-flat F-manifold, the flat structure given
by (∇∗, ∗, E) is called the dual structure. In the semisimple case, the flatness of the dual
structure is equivalent to the condition ∇∇E = 0 [AL17] (see [KMS18] for the regular
case). Thus, the structure of a semisimple homogeneous flat F-manifold is equivalent to
the structure of a semisimple bi-flat F-manifold.

Given an F-CohFT cg,n+1 : V ∗ ⊗ V ⊗n → H even(Mg,n+1), dim V = N , and a basis
e1, . . . , eN ∈ V , with e = Aαeα , an N -tuple of functions (F1, . . . , F N ) satisfying
Eqs. (2.2) and (2.3) can be constructed as the following generating functions:

Fα(t1, . . . , t N ):=
∑
n≥2

1

n!
∑

1≤α1,...,αn≤N

(∫
M0,n+1

c0,n+1(e
α ⊗ ⊗n

i=1eαi )

)
n∏

i=1

tαi ,

thus yielding an associated flat F-manifold structure on a formal neighbourhood of 0
in V (see, e.g., [ABLR20, Proposition 3.2]). The flat F-manifold associated to a homo-
geneous F-CohFT is homogeneous with the Euler vector field (2.4) where qα

β eα:=Qeβ

and rαeα:=r .

2.2. Principal hierarchy of a flat F-manifold. Given a flat F-manifold (M,∇, ◦, e),
one can construct an integrable dispersionless hierarchy called a principal hierarchy
associated to (M,∇, ◦, e) (see [LPR09]). This construction generalizes the notion of
a principal hierarchy associated to a Dubrovin–Frobenius manifold. Before presenting
the construction, let us introduce a small generalization of the space of densities of local
multivector fields.

Let U be an open subset of CN , with coordinates u1, . . . , uN . Denote by O(U ) the
space of analytic functions on U . Consider the following space:

Â•
U :=O(U )[u∗

>0, θ∗,∗][[ε]].
Clearly, the space Â• can be considered as the space Â•

U where U is a formal neighbor-
hood of 0. The space Â•

U will also be called the space of densities of local multivector
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fields. It is easy to see that all constructions from Sect. 1.2 work with the space Â•
U . The

space of local multivector fields corresponding to Â•
U will be denoted by �̂•

U .
Consider a flat F-manifold (M,∇, ◦, e). For any point of M , on its open neighbour-

hood U , one can consider a basis (over C[[z]]) Xα(z) = ∑∞
d=−1 Xα,d zd+1, 1 ≤ α ≤

N = dim M , in the space of flat sections of the deformed connection ∇−z = ∇ − z◦:

0 = (∇ − z◦)Xα(z) = (∇ − z◦)

∞∑
d=−1

Xα,d zd+1. (2.5)

It is immediate to see from (2.5) that Xα,−1, α = 1, . . . N , are flat vector fields for ∇,
while the vector fields Xα,d+1 are obtained via the recurrence relation∇ Xα,d+1 = Xα,d◦.
If U is connected, then the collection of flat sections Xα(z) is determined uniquely up
to a transformation of the form Xα(z) �→ Xβ(z)Gβ

α(z), where G(z) = (Gα
β(z)) ∈

MatN ,N (C)[[z]] is invertible. If M is simply connected, then flat sections Xα(z) can be
constructed on the whole M .

Definition 4. A calibrationof aflat F-manifold (M,∇, ◦, e) is a basis Xα = ∑∞
d=−1 Xα,d

zd+1, Xα,d ∈ T (M), 1 ≤ α ≤ dim M , in the space of flat sections of the deformed con-
nection ∇ − z◦. A flat F-manifold with a fixed calibration is called a calibrated flat
F-manifold.

Consider now a flat F-manifold structure on M ⊂ C
N given by a vector potential F ,

together with a calibration Xα(z). The principal hierarchy associated to our calibrated
flat F-manifold is the following system of PDEs:

∂uα

∂tβd
= ∂x

(
Xα

β,d

∣∣∣
tγ =uγ

)
, 1 ≤ α, β ≤ N , d ≥ 0, (2.6)

where Xα
β,d

∂
∂tα :=Xβ,d . We see that the system (2.6) has the form of a system of con-

servation laws. Moreover, this is a system of quasilinear evolutionary PDEs, which is
dispersionless and integrable, in the sense that all the flows pairwise commute (see
[LPR09]).

Suppose that M is a formal neighbourhood of 0 ∈ C
N . There exist unique flat sections

Xα(z) on M satisfying the condition Xα,−1 = ∂
∂tα and the condition that Xα,d vanish

at 0 for d ≥ 0. The corresponding principal hierarchy is called the ancestor principal
hierarchy.

Proposition 3. Consider an F-CohFT and the associated flat F-manifold and the DR
hierarchy. Then the dispersionless part of the DR hierarchy coincides with the ancestor
principal hierarchy of the flat F-manifold.

Proof. This immediately follows from the constructionof theDRhierarchy and [ABLR20,
Proposition 3.2] (see also an analogous statement in [Bur15, Section 4.2.2]). ��

We see that this proposition can be immediately used for a construction of dispersive
deformations of ancestor principal hierarchies. In order to construct dispersive deforma-
tions of arbitrary principal hierarchies, we need a generalization of the construction of
the DR hierarchy, which we will introduce in the next section.
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2.3. Dispersive deformations of a principal hierarchy: descendant DR hierarchies. In
order to construct dispersive deformations of a principal hierarchy associated to an
arbitrary semisimple flat F-manifold,wefirst need to study analytic families of F-CohFTs
depending on a semisimple point of a flat F-manifold together with a vector in the tangent
space to that point.

Consider a semisimple flat F-manifold structure on M ⊂ C
N defined by a vector

potential F . Recall that on a connected open neighborhoodU of an arbitrary semisimple
point t0 ∈ M , one has the following objects (we use the notations from [ABLR20,
Section 1.2]):

• canonical coordinates ui ;
• the matrix �̃:=(

∂ui

∂tα
)
;

• the matrices D̃ and �̃ defined by d�̃ · �̃−1 = D̃ + [�̃, dU ], where D̃ is a diagonal
matrix consisting of one-forms, �̃ is a matrix with vanishing diagonal entries, and
U :=diag(u1, . . . , uN ) (in the homogeneous case this is the operator of multiplication
by the Euler vector field);

• a diagonal nondegenerate matrix H = diag(H1, . . . , HN ) defined by d H · H−1 =
−D̃ (the entries of thismatrix can be interpreted as the Lamé coefficients of a diagonal
metric associated with the flat F-manifold);

• the matrices � and � defined by �:=H�̃ and �:=H �̃H−1;
• a sequence of matrices R0 = Id, R1, R2, . . . defined by the relations d Rk−1 +

Rk−1[�, dU ] = [Rk, dU ], k ≥ 1.

Note that the matrix H is defined uniquely up to the transformation H �→ AH , where A
is a constant nondegenerate diagonal matrix. After such a transformation, the matrices
�, �, and Rk transform as follows: � �→ A�, � �→ A�A−1, Rk �→ ARk A−1. Recall
also that if we fix H , then the matrices Rk are defined uniquely up to the transformation

Id +
∑
i≥1

Ri z
i �→

(
Id +

∑
i≥1

Di z
i
)(

Id +
∑
i≥1

Ri z
i
)

, (2.7)

where Di , i ≥ 1, are arbitrary constant diagonal matrices.
Using the notations from [ABLR20, Section 4.4], for any G0 ∈ C

N , let us define an
analytic family of F-CohFTs parameterized by a point t ∈ U by

cG0,t :=�̃−1(t)H−1(t)R−1(−z, t)H(t).ctriv,H−2(t)G0 ,

where R(z):=∑
i≥0 Ri zi , the above matrix action on F-CohFTs was introduced in

[ABLR20, Section 4.2], for anyw1 = (w1
1, . . . , w

N
1 ) ∈ (C∗)N , andw2 = (w1

2, . . . , w
N
2 )

∈ C
N ,

cw1,w2
g,n+1 (ei0 ⊗ ⊗n

j=1ei j ):=
⎧⎨
⎩

(w
i0
2 )g

(w
i0
1 )g+n−1

, if i0 = i1 = . . . = in,

0, otherwise,

and ctriv,w2 :=c(1,...,1),w2 .
Note that the family cG0,t depends, first, on the choice of H and, second, on the

choice of R(z). However, the dependance on H is simple: under the transformation
H �→ AH , where A is a nondegenerate constant diagonal matrix, R(z) transforms as
R(z) �→ AR(z)A−1 (and �̃ doesn’t change), and therefore cG0,t �→ cA−2G0,t .
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We see that the simultaneous transformation H �→ AH ,G0 �→ A2G0 doesn’t change
cG0,t . This transformation doesn’t change the matrix H−2G0, which has a geometrical

meaning: if we denote by X α the degree zero part of cG0,t
1,1 (eα) ∈ H∗(M1,1), then

X α ∂
∂tα = ∑N

i=1 H−2
i Gi

0
∂

∂ui . Let us then choose H such that Hi (t0) = 1.

Notice that if G0 = 0, then the maps cG0,t
g,n+1 are zero for g ≥ 1.

Let τ 1, . . . , τ N be formal variables. Recall from [ABLR20, Section 3.2] (note, how-
ever, that we prefer to use a different notation here) that for an F-CohFT cg,n+1 : V ∗ ⊗
V ⊗n → H even(Mg,n+1) its formal shift Shτ (c)g,n+1 : V ∗ ⊗ V ⊗n → H even(Mg,n+1)

[[τ ∗]] is defined by

Shτ (c)g,n+1:=
∑
m≥0

1

m!πm∗ ◦ cg,n+m+1 ◦ (⊗(ταeα)⊗m)
,

where τ = (τ 1, . . . , τ N ) and πm : Mg,n+m+1 → Mg,n+1 forgets the last m marked
points. The maps Shτ (c)g,n+1 form an F-CohFT with the coefficients in C[[τ ∗]].
Proposition 4. 1. A vector potential of the flat F-manifold corresponding to the F-
CohFT cG0,t0 is equal to F(t∗ − t∗0 ).

2. For t = t0 + τ ∈ U, the Taylor expansion of cG0,t at t0 coincides with the formal

shift of cG0,t0 , i.e., cG0,t0+τ
g,n+1 = Shτ (cG0,t0)g,n+1, as elements of Hom

(
V ∗ ⊗ V ⊗n,

H even(Mg,n+1)[[τ ∗]]).
Proof. 1. Since Hi (t0) = 1, we have cG0,t0 = �−1(t0)R−1(−z, t0).ctriv,G0 . The fact
that a vector potential of the associated flat F-manifold is equal to F(t∗ − t∗0 )was proved
in [ABLR20, Section 4.4] (see equation (4.3) there).

2. An elementary computation shows that cG0,t = �−1R−1(−z).cH ,H−1G0 , where
the vector H :=(H1, . . . , HN ) and the matrices �−1, R−1(−z), and H−1 are computed
at the point t . The statement of part 2 of the proposition is equivalent to the property

∂

∂tβ

(
�−1R−1(−z).cH ,H−1G0

)
g,n+1

=π1∗ ◦
(
�−1R−1(−z).cH ,H−1G0

)
g,n+2

◦ (⊗eβ),

which was proved in [ABLR20, proof of Proposition 4.11]. ��
The degree zero parts of cG0,t

1,1 (eα) ∈ H∗(M1,1) induce a vector field on U , X =
X α ∂

∂tα , andwe already noticed thatX = ∑N
i=1 H−2

i Gi
0

∂
∂ui . Thismotivates the following

definition.

Definition 5. Consider a semisimple flat F-manifold (M,∇, ◦, e). A vector field X on
M is called a framing if around each semisimple point of M , in canonical coordinates
ui , the field X has the form X = ∑N

i=1 αi H−2
i

∂
∂ui for some complex constants αi ,

1 ≤ i ≤ N .

Using this language, we can say that our family of F-CohFTs cG0,t induces a framing
X = ∑N

i=1 X i ∂
∂ui on U , with X i (t0) = Gi

0.
Suppose vice versa that all the points of our flat F-manifold M are semisimple andX

is a framing on M .We see that for any point t0 ∈ M the above construction gives a family
of F-CohFTs around t0 such that the induced framing coincideswithX . This family is not
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unique because the matrix R(z) is defined uniquely only up to the transformation (2.7).
Suppose that M is simply connected. Then it is easy to see that there is a consistent
choice of matrix R(z) in all the charts such that the local families glue in a global family
of F-CohFTs parameterized by t ∈ M . Let us denote this global family by cX ,t . This
global family is not unique: in order to fix the ambiguity, one can, for example, fix a
choice of matrix R(z) at some fixed point of M . Note that ifX = 0, then the maps cX ,t

g,n+1
are zero for g ≥ 1.

Let us now apply the construction of the DR hierarchy to the F-CohFTs cX ,t . We
obtain a family of densities Y t

β,d ∈ (Â1)[1], where the superscript t signals that the

densities Y t
β,d analytically depend on t ∈ M . It is convenient to consider the generating

series of densities Y t
β,d :

Y t
β(z):=

∑
d≥−1

Y t
β,d zd+1.

Lemma 1. We have
∂Y t

β(z)

∂tγ = ∂Y t
β(z)

∂uγ − Cμ
βγ zY t

μ(z), 1 ≤ β, γ ≤ N.

Proof. This follows from the definition of the densities Y t
β,d , the property

∂
∂tβ

(cX ,t )g,n+1

= π1∗ ◦ (cX ,t )g,n+2 ◦ (⊗eβ) (which is equivalent to part 2 of Proposition 4), and the fact
that π∗

1ψd
i = ψd

i − δ0i,n+1π
∗
1ψd−1

i , 1 ≤ i ≤ n, d ≥ 1, where the class δ0i,n+1 was defined
in the proof of Proposition 1. ��

Consider now a calibration Xα(z) of our flat F-manifold M . Define densities Ỹ t
β,d ∈

(Â1)[1], 1 ≤ β ≤ N , d ≥ −1, by
∑

d≥−1 Ỹ t
β,d zd+1:=Ỹ t

β(z) where

Ỹ t
β(z):=Y t

μ(z)Xμ
β (z).

Lemma 2. We have
∂Ỹ t

β,d
∂tγ = ∂Ỹ t

β,d
∂uγ .

Proof. This immediately follows from Lemma 1 and the property
∂ Xμ

β (z)

∂tγ = Cμ
γ νz

Xν
β(z). ��
Define densities of vector fields Y desc

β,d ∈ (Â1
M )[1], 1 ≤ β ≤ N , d ≥ −1, by

Y desc
β,d :=

(
Ỹ t

β,d

∣∣∣
u∗=0

)∣∣∣
tγ =uγ

∈ (Â1
M )[1].

The previous lemma implies that for a fixed t ∈ M the density Ỹ t
β,d is the Taylor

expansion of the density Y desc
β,d at uγ = tγ , i.e., Ỹ t

β,d = Y desc
β,d

∣∣∣
uγ �→tγ +uγ

, as elements of

(Â1)[1]. Therefore, since for any t ∈ M the densities Ỹ t
β,d produce a hierarchy of pairwise

commuting flows, the densities Y desc
β,d also produce a hierarchy of pairwise commuting

flows. This hierarchy is called the descendant DR hierarchy.
In more details, the equations of the descendant DR hierarchy are given by

∂uα

∂tβd
= ∂x Pdesc;α

β,d , 1 ≤ α, β ≤ N , d ≥ 0,
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where Pdesc;α
β,d =

(
P̃ t;α

β,d

∣∣∣
u∗=0

)∣∣∣
tγ =uγ

, P̃ t;α
β,d = ∑d+1

i=0 Pt;α
μ,d−i Xμ

i−1,β , and Pt;α
β,d are the

differential polynomials (1.13) corresponding to the F-CohFT cX ,t . Also, we adopt the

convention Pdesc;α
β,−1 :=Xα

β,−1. Note that we have
∂ P̃ t;α

β,d
∂tγ = ∂ P̃ t;α

β,d
∂uγ .

We immediately see that Pdesc;α
β,d

∣∣∣
ε=0

= Xα
β,d

∣∣∣
tγ =uγ

, and therefore the dispersionless

part of the descendant DR hierarchy coincides with the principal hierarchy. For X = 0,
the descendant DR hierarchy coincides with the principal hierarchy.

Statements analogous to the ones from Theorem 2 are true for the descendant DR
hierarchy. We present here the proof of a couple of them.

Note that if Xα
β,−1 = δα

β , then Xα
11,0 coincides with tα up to a constant. We will say

that a calibration is of standard type if Xα
β,−1 = δα

β and Xα
11,0 = tα .

Proposition 5. 1. We have ∂
∂u11

Pdesc;α
β,d+1 = Pdesc;α

β,d , 1 ≤ α, β ≤ N, d ≥ −1.

2. If our calibration is of standard type, then ∂
∂uβ Pdesc;α

11,1 = D Pdesc;α
β,0 , 1 ≤ α, β ≤ N.

Proof. To prove part 1, we compute ∂
∂u11

Pdesc;α
β,d+1

∣∣∣
uγ �→tγ +uγ

= ∂
∂u11

P̃ t;α
β,d+1 =

∂
∂u11

∑d+2
i=0 Pt;α

μ,d+1−i Xμ
i−1,β = ∑d+1

i=0 Pt;α
μ,d−i Xμ

i−1,β = P̃ t;α
β,d = Pdesc;α

β,d

∣∣∣
uγ �→tγ +uγ

.

For part 2, we compute ∂
∂uβ Pdesc;α

11,1

∣∣∣
uγ �→tγ +uγ

= ∂
∂uβ P̃ t;α

11,1 = ∂
∂uβ

(
Pt;α
11,1 + Pt;α

μ,0tμ
)

=
D Pt;α

β,0 + tμ ∂
∂uμ Pt;α

β,0= D Pdesc;α
β,0

∣∣∣
uγ �→tγ +uγ

. ��
To summarize the above constructions, given the following data:

• a flat F-manifold structure on M ⊂ C
N given by a vector potential F such that M

is simply connected and all the points of M are semisimple;
• its calibration;
• a framing on M ;

we have constructed a dispersive integrable deformation of the principal hierarchy. In the
next section, we will prove that the dispersive deformations corresponding to different
framings are not related to each other by a Miura transformation that is close to identity.

2.4. Nonequivalence of dispersive deformations. We say that a Miura transformation
(1.6)–(1.7) is close to identity if ũα|ε=0 = uα .

Definition 6. Two dispersive deformations of the principal hierarchy of a calibrated flat
F-manifold are called equivalent if they are related by a Miura transformation that is
close to identity.

Theorem 4. Let us fix a calibrated flat F-manifold structure on a simply connected open
subset M ⊂ C

N , with a vector potential F and which is semisimple at each point
of M. Then, for different framings X and X̂ on M, the corresponding descendant DR
hierarchies are not equivalent.

Proof of Theorem 4. Following [AL18], for a system of evolutionary PDEs of the form

∂uα

∂t
= Qα, Qα ∈ Â[1]

M , 1 ≤ α ≤ N ,
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let us consider the associated Miura matrix S(z) = (Sα
β (z)) ∈ MatN ,N (O(M)[[z]])

defined by

Sα
β (z):=

∑
d≥0

∂ Qα

∂uβ
d+1

∣∣∣∣∣
uγ

c =δc,0tγ
ε=z

.

For a Miura transformation (1.6)–(1.7) that is close to identity, introduce its symbol
T (z) = (T α

β (z)) ∈ MatN ,N (O(M)[[z]]) by

T α
β (z):=

∑
d≥0

∂ ũα

∂uβ
d

∣∣∣∣∣
uγ

c =δc,0tγ
ε=z

.

It is easy to see that under the Miura transformation the Miura matrix of our system of
PDEs transforms as follows:

S(z) �→ T (z)S(z)T (z)−1.

Now consider the descendant DR hierarchies corresponding to different framings X
and X̂ . Let us denote the Miura matrices of a flow ∂

∂tαd
from these two hierarchies

by S(α,d)(z) and Ŝ(α,d)(z), respectively. Clearly, S(α,d)(0) = Ŝ(α,d)(0). Suppose that the
hierarchies are related by a Miura transformation that is close to identity. Denote its
symbol by T (z). For the calibration of our flat F-manifold, without loss of generality,
we can assume that Xα

β,−1 = δα
β . Consider the expansions S(α,d)(z) = ∑

i≥0 S(α,d)
2i z2i ,

Ŝ(α,d)(z) = ∑
i≥0 Ŝ(α,d)

2i z2i , T (z) = ∑
i≥0 Ti zi . Then we have

Ŝ(α,d)(z) = T (z)S(α,d)(z)T (z)−1 ⇒
{ [T1, S(α,d)

0 ] = 0,

S(α,d)
2 + [S(α,d)

0 , T1]T1 + [T2, S(α,d)
0 ] = Ŝ(α,d)

2 ,

⇒S(α,d)
2 − Ŝ(α,d)

2 = [S(α,d)
0 , T2]. (2.8)

For the descendant DR hierarchy corresponding to the framing X , we have

P̃ t;α
11,1 = Pt;α

11,1 + Pt;α
μ,0Xμ

11,0 + Xα
11,1, P̃ t;α

μ,0 = Pt;α
μ,0 + Xα

μ,0,

which implies that the matrix S = (Sα
β ):=S(11,1)

2 − ∑N
μ=1 Xμ

11,0S(μ,0)
2 is given by

Sα
β = Coefε2

∂ Pt;α
11,0

∂uβ
2

∣∣∣∣∣
u∗=0

= Coefa2

∫
DR1(a,0,−a)

λ1ψ2cX ,t
1,3 (eα ⊗ e ⊗ eβ)

= 2Coefa2

∫
DR1(a,−a)

λ1cX ,t
1,2 (eα ⊗ eβ),

which is equal to 2Coefa2
∫
DR1(a,−a)

λ1 = 1
12 times the degree zero part of cX ,t

1,2 (eα⊗eβ).

By the construction of the cohomological field theory cX ,t , the degree zero part of

cX ,t
1,2 (eα ⊗ eβ) is equal to

∑N
i=1

∂tα

∂ ûi X i ∂ ûi

∂tβ
, where

∑N
i=1 X i ∂

∂ ûi :=X and ûi are local

canonical coordinates on M . Since X �= X̂ , we conclude that if we denote Ŝ:=Ŝ(11,1)
2 −
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∑N
μ=1 Xμ

11,0 Ŝ(μ,0)
2 , then �̃(S − Ŝ)�̃−1 is a nonzero diagonal matrix. On the other hand,

since �̃S(α,d)
0 �̃−1 is a diagonal matrix for any 1 ≤ α ≤ N and d ≥ 0, the diag-

onal part of
[
�̃

(
S(11,1)
0 − ∑N

μ=1 Xμ
11,0S(μ,0)

0

)
�̃−1, �̃T2�̃−1

]
is equal to zero, which

contradicts (2.8). ��
Note that during the proof of the theorem we have obtained the following explicit

relation between a framing and the differential polynomials defining the flows ∂

∂t111
and

∂

∂tμ0
of a corresponding descendant DR hierarchy.

Lemma 3. Consider a flat F-manifold, a calibration satisfying Xα
β,−1 = δα

β , a fram-

ing X = X α ∂
∂tα , and a corresponding descendant DR hierarchy. Then we have

X α = 12
∂

∂u11
xx

Coefε2
(

Pdesc;α
11,1 − Pdesc;α

β,0 Xβ
11,0

)∣∣∣∣
u∗=t∗

.

2.5. Homogeneous dispersive deformations. As at the beginning of Sect. 2.3, consider
a semisimple flat F-manifold structure on M ⊂ C

N defined by a vector potential F , a
semisimple point, canonical coordinates ui on an open neighborhood U of this point,
the diagonal matrix of one-forms D̃, a diagonal nondegenerate matrix H , and matrices
Rk . Suppose that our flat F-manifold is homogeneous with an Euler vector field E of
the form (2.4). By [ABLR20, Proposition 1.14], the diagonal matrix iE D̃ is constant,
iE D̃ = −diag(δ1, . . . , δN ) = −�, δi ∈ C. Moreover, we have Eα ∂

∂tα H = �H , and by
[ABLR20, Proposition 1.16] we can fix a choice of matrices Rk by the additional con-
ditions Eα ∂

∂tα Rk = −k Rk + [�, Rk] for k ≥ 1. By [ABLR20, proof of Theorem 4.10],
for an arbitrary 1 ≤ l ≤ N and an eigenvector G0 of the matrix � corresponding to the
eigenvalue δl the family of F-CohFTs cG0,t satisfies the property

Deg ◦ cG0,t
g,n+1 + Eα ∂

∂tα
cG0,t

g,n+1 = cG0,t
g,n+1 ◦

⎛
⎝−Qt ⊗ Id⊗n +

∑
i+ j=n−1

Id ⊗ Id⊗i ⊗ Q ⊗ Id⊗ j

⎞
⎠

−2δl gcG0,t
g,n+1.

This implies that for any t ∈ U the F-CohFT cG0,t is homogeneous of conformal
dimension −2δl . Note that the corresponding framing X on U satisfies the property
[E,X ] = (−2δl − 1)X .

Suppose that M is connected, then it is clear that up to permutations of the components
the vector (δ1, . . . , δN ) doesn’t depend on a semisimple point. We come to the following
natural definition.

Definition 7. The vector γ :=(−2δ1, . . . ,−2δN ) is called the vector of conformal di-
mensions corresponding to our flat F-manifold.

Suppose that all the points of M are semisimple. As in the previous section, we can
now glue the local families of F-CohFTs in a global family. Note that given a framingX
on M satisfying [E,X ] = (−2δl − 1)X we can now construct a unique global family
cX ,t , t ∈ M , of F-CohFTs fixing the choice of matrices Rk using the Euler vector field.

Summarizing the considerations of this section, we obtain the following result.
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Theorem 5. Consider a homogeneous flat F-manifold structure on a connected open
subset M ⊂ C

N defined by a vector potential F. Suppose that all the points of M are
semisimple. Let γ = (γ1, . . . , γN ) be the vector of conformal dimensions. Let 1 ≤ l ≤ N
and letX be a framing on M such that [E,X ] = (γl −1)X . Then the family of F-CohFTs
cX ,t satisfies the property

Deg ◦ cX ,t
g,n+1 + Eα ∂

∂tα
cX ,t

g,n+1 = cX ,t
g,n+1 ◦

⎛
⎝−Qt ⊗ Id⊗n +

∑
i+ j=n−1

Id ⊗ Id⊗i ⊗ Q ⊗ Id⊗ j

⎞
⎠

+γl gcX ,t
g,n+1.

In particular, for any t ∈ M the F-CohFT cX ,t is homogeneous of conformal dimension
γl .

Let us now discuss properties of the descendant DR hierarchies in the homogeneous
case. Under the assumptions of the theorem, suppose also that M is simply connected.
By [BB19, Proposition 4.4], there exists a calibration Xα(z) and complex matrices R̃i ,
i ≥ 1, such that Xα

β,−1 = δα
β , [Q, R̃i ] = i R̃i , and

Eμ ∂

∂tμ
X (z) = z

∂

∂z
X (z) + [X (z), Q] + X (z)R̃(z),

where X (z):=∑
d≥−1

(
Xα

β,d

)
zd+1 and R̃(z):=∑

i≥1 R̃i zi . Such a calibration is called

homogeneous. Consider now the associated descendant DR hierarchy.
Let us introduce a generating series Pdesc(z) by

Pdesc(z):=
∑

d≥−1

(
Pdesc;α

β,d

)
zd+1.

Proposition 6. We have

Êγl Pdesc(z) = z
∂

∂z
Pdesc(z) + [Pdesc(z), Q] + Pdesc(z)R̃(z).

Proof. Let us introduce generating series P̃ t (z) and Pt (z) by

P̃ t (z):=
∑

d≥−1

(
P̃ t;α

β,d

)
zd+1, Pt (z):=

∑
d≥−1

(
Pt;α

β,d

)
zd+1.

We have to check that

Êγl Pdesc(z)
∣∣∣
uγ �→tγ +uγ

= z
∂

∂z
P̃t (z) + [P̃ t (z), Q] + P̃ t (z)R̃(z).

For this, we compute

Êγl Pdesc(z)
∣∣∣
uγ �→tγ +uγ

=
(

Êγl + tα(δβ
α − Qβ

α)
∂

∂uβ

)
P̃ t (z) =

=
(

Êγl + tα(δβ
α − Qβ

α)
∂

∂uβ

)
Pt (z) · X (z)

by Prop. 1.7��������
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=z
∂

∂z
Pt (z) · X (z) + [Pt (z), Q]X (z) + z Pt (z)(Eγ Cγ )X (z),

(2.9)

whereCγ :=(Cα
γβ), andwe recall thatCα

βγ = ∂2Fα

∂tβ∂tγ
. Since zEγ Cγ X (z) = Eγ ∂

∂tγ X (z) =
z ∂

∂z X (z) + [X (z), Q] + X (z)R̃(z), the expression in line (2.9) is equal to

z
∂

∂z
Pt (z) · X (z) + [Pt (z), Q]X (z) + Pt (z)

(
z

∂

∂z
X (z) + [X (z), Q] + X (z)R̃(z)

)

=z
∂

∂z
P̃t (z) + [P̃ t (z), Q] + P̃ t (z)R̃(z),

as required. ��

3. Towards a Classification of Dispersive Deformations

In this section we consider the problem of classification of dispersive integrable defor-
mations of principal hierarchies for flat F-manifolds and observe the central role played
in it by the DR hierarchies.We propose two a priori different classes of deformations and
we classify them, up to some finite order in ε, for 1 and 2 dimensional flat F-manifolds,
respectively. Up to that approximation, we observe that both classes contain essentially
the DR hierarchies considered in Sect. 2.

3.1. Dispersive deformations of DR type and the rank 1 case.

3.1.1. Integrable systems of DR type Given a local vector field X ∈ (�̂1)[1], consider
the operator DX : Â1[[z]] → Â1[[z]] defined by

DX Y (z):=∂x (D − 1)Y (z) − z[X , Y (z)],
Y (z) =

∑
k≥0

Yk−1zk, Yk−1 ∈ Â1.

Suppose there exist N solutions Yα(z) ∈ (Â1)[1], 1 ≤ α ≤ N , to the equation
DX Yα(z) = 0 with the initial conditions Yα(z = 0) = −θα,1. Then a new vector of
solutions with the same initial conditions can be found by the following transformation:

Yα(z) �→ aμ
α (z)Yμ(z), (3.1)

where aμ
α (z) = δ

μ
α +

∑
i>0 aμ

α,i z
i ∈ C[[z]].

Theorem 6. Assume that X ∈ (�̂1)[1] satisfies the following properties:

(a) there exist N solutions Yα(z) = ∑
d≥0 Yα,d−1zd ∈ (Â1)[1][[z]], 1 ≤ α ≤ N, to the

equation

DX Yα(z) = 0 (3.2)

with the initial conditions Yα(z = 0) = −θα,1,
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(b) δ
δu11

X = −uαθα,1 + ∂2x R, R ∈ (Â1)[−1], where δ
δu11

= Aα δ
δuα and Aα are some

complex constants.

Then, up to a transformation of type (3.1), we have

(i) Y11,0 = −uαθα,1 + ∂2x (D − 1)−1R,
(ii) Y 11,1 = X,

(iii)
[
Y α1,d1 , Y α2,d2

] = 0, 1 ≤ α1, α2 ≤ N, d1, d2 ≥ −1,

(iv) [Y α2,0, Yα1,d ] = ∂x
∂

∂uα2
Yα1,d+1, 1 ≤ α1, α2 ≤ N, d ≥ −1,

(v)
∂

∂u11 Yα,d+1 = Yα,d , 1 ≤ α ≤ N, d ≥ −1.

Proof. The proof follows closely the proof of [BDGR20, Theorem 5.1–5.2] with Lie
brackets of densities of local vector fields replacing Poisson brackets of differential
polynomials. ��
Remark 4. When we restrict to ε = 0, a particular local vector field satisfying condi-
tion (a) of Theorem 6 is given by X = −(D − 2)

∫
Fα(u1, . . . , uN )θα,1dx where the

functions Fα(t1, . . . , t N ) are solutions to the orientedWDVVEqs. (2.2), (2.3). It is easy
to check that for such X solutions Yα(z) are given by Yα(z) = −∑

d≥−1 Xβ
α,dθβ,1zd+1

where the functions Xβ
α,d form a calibration of the flat F-manifold satisfying Xβ

α,−1 = δ
β
α

(see Sect. 2.2). Therefore, the functions Yα(z) are the generating series of densities of
local vector fields of the principal hierarchy of the flat F-manifold. Note that condition
(b) for our X is equivalent to ∂ Fα

∂t11
= tα , which can always be fulfilled by adding to Fα

appropriate linear terms.

Definition 8. Let X ∈ (�̂1)[1] satisfy the hypotheses of Theorem 6. Then we say that
X = Y 11,1 and the induced hierarchy of compatible densities of local vector fields Yα,d ,
1 ≤ α ≤ N , d ≥ −1, are of double ramification (DR) type.

Theorem 7. The double ramification hierarchy (1.11) associated to an F-CohFT is a
hierarchy of double ramification type.

Proof. Hypotheses (a) and (b) ofTheorem6 follow immediately fromclaims (iii) and (v),
respectively, of Theorem 2. ��

3.1.2. Classification of rank 1 hierarchies of DR type Thanks to Theorem 6 and Re-
mark 4, it makes sense to use Eq. (3.2) to find all possible deformations of DR type of a
principal hierarchy associated to a given flat F-manifold, at low order in the dispersion
parameter ε. These deformations will, in particular, include the ones coming from all
F-CohFTs with the given genus 0 part.

Consider the ancestor principal hierarchy associated to the genus 0 part of the trivial
CohFT, i.e., the CohFT with V = C〈e〉 and cg,n(e⊗n) = 1 ∈ H0(Mg,n) for all (g, n) in
the stable range. Let e1 = e, uk :=u1

k , θk :=θ1,k for k ≥ 0, with u:=u0, θ :=θ1 as usual,
and Yd :=Y1,d = Y11,d . A direct computation (at the approximation up to ε9) shows that
its most general deformation of DR type is either of the form

∂u

∂t1
= δY 1

δθ
= uu1 + ε2C1,1u3 + ε4

(
C2,1u5 + C2,2u2u3

)
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+ ε6

(
C3,1u2u5 + C3,2u3 (u2)

2 +

(
10

(
C2,1

) 2
7C1,1

+
9

35
C1,1C2,2

)
u7 +

(
− 8C2,1C2,2

3C1,1
+ 3C3,1

)
u3u4

)

+ ε8

(
C4,1 (u2)

2u5 + C4,2 (u2)
3u3 +

(
15

(
C2,1

) 3
7
(
C1,1

)
2 +

58

105
C2,1C2,2 +

4

35
C1,1C3,1

)
u9

+

(
− 123

(
C2,1

) 2C2,2

28
(
C1,1

)
2 +

57

100

(
C2,2

) 2 + 9

16
C1,1C3,2 +

33C2,1C3,1

7C1,1

)
u2u7

+

(
− 177

(
C2,1

) 2C2,2

4
(
C1,1

)
2 +

201

100

(
C2,2

) 2 + 333

80
C1,1C3,2 +

33C2,1C3,1

C1,1

)
u4u5

+

(
44C2,1

(
C2,2

) 2
21

(
C1,1

)
2 − 55C2,1C3,2

12C1,1
− 44C2,2C3,1

21C1,1
+ 2C4,1

)
(u3)

3

+

(
− 24

(
C2,1

) 2C2,2(
C1,1

)
2 +

249

175

(
C2,2

) 2 + 9

4
C1,1C3,2 +

132C2,1C3,1

7C1,1

)
u3u6

+

(
88C2,1

(
C2,2

) 2
21

(
C1,1

)
2 − 55C2,1C3,2

6C1,1
− 88C2,2C3,1

21C1,1
+ 6C4,1

)
u2u3u4

)

+ O(ε10),

(3.3)

with Ci, j ∈ C and C1,1 �= 0, or of the form

∂u

∂t1
= δY 1

δθ
= uu1 + εCu2, C ∈ C. (3.4)

Notice that, imposingCk,2 = 0 for all k ≥ 1 in Eq. (3.3), we recover the most general
Hamiltonian deformation of DR type, obtained in [BDGR20], which is in turn in one
to one correspondence with the most general rank 1 CohFT. This shows that the extra
parameters Ck,2, k ≥ 1 control the strictly non-Hamiltonian deformations (at least with
respect to the Hamiltonian operator ∂x ). We expect these to correspond to F-CohFTs
that are not CohFTs.

Remark 5. It is easy to check that the r.h.s of Eq. (3.3) is a total x-derivative. Comparing
with the results of [ALM15] we see that a similar result can be obtained starting from
generic scalar conservation laws of the form

∂u

∂td
= ∂x Pd , d ≥ 0,

Pd =
∑
l≥0

ε2l Pd,l , Pd,l ∈ A[2l]
M , (3.5)

choosing

• Pd,0 = ud+1

(d+1)! ,
• ∂ P1

∂ux
= 0; the reduction to this form by means of a Miura transformation is always

possible and it is unique,

and imposing the following conditions:

• Commutativity of the flows.
• String property: ∂

∂u Pd+1 = Pd for d ≥ −1, where P−1:=1.
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According to the conjecture formulated in [ALM15], it should be possible to write
all the coefficients appearing in the deformation as functions of the coefficients of the
quasilinear part. Moreover, the coefficients of the quasilinear part should be constant
(due to the string property) and arbitrary. This is consistent with the formula (3.3) since
the additional free parameters appearing at the order ε8 are related to the coefficients of
the quasilinear part by constraints obtained considering higher order conditions.

Even more intriguing is the isolated deformation (3.4), which, up to reabsorbing the
constant C into the factor ε, is the celebrated Burgers equation, which is dissipative and
hence non-Hamiltonian. The appearance of terms with odd powers of ε in a hierarchy
of DR type rules out the possibility that it is the double ramification hierarchy of an
F-CohFT. However, considering that flat F-manifolds are known to appear in genus 0
open Gromov–Witten and Saito theory [PST14,BCT18,BCT19,BB19] it is tempting to
conjecture that Burgers equation (3.4) and its higher symmetries might control some
version of F-CohFT on the space of Riemann surfaces with boundaries, where curves
can indeed possess half-integer genus accounting for odd powers of the genus parameter
ε.

The fact that Burgers equation (3.4) and its higher symmetries form a hierarchy of
DR type can be proved rigorously at all orders in ε as follows.

Theorem 8. The vector field X = ∫
(uux + εuxx )θdx of the Burgers equation defines a

hierarchy of DR type, i.e., it satisfies conditions (a) and (b) of Theorem 6.

Proof. Let us first present a reformulation of the Schouten–Nijenhuis bracket [·, ·] : �̂1×
Â1 → Â1 in terms of formal differential operators. Consider an arbitrary local vector
field X = ∫

Xθdx ∈ �̂1 and a density Y = ∑
k≥0 Ykθk ∈ Â1. The local vector field X

defines a flow on the space of differential polynomials by

∂u

∂t
= δX

δθ
= X,

and we consider also formal differential operators L̃ X and LY defined by

L̃ X :=
∑
k≥0

(−∂x )
k ◦ ∂ X

∂uk
, LY :=

∑
k≥0

Yk∂
k
x .

Directly from the definition (1.2), we obtain the following identity:

L [X ,Y ] = ∂

∂t
LY − LY ◦ L̃ X ,

where we apply the differentiation ∂
∂t to the operator LY coefficient-wise.

Let us now take X = ∫
(uux + εuxx )θdx .

Let us prove condition (a) of Theorem 6 by showing that a required solution Y (z) =∑
k≥−1 Yk zk+1 of Eq. (3.2) is given by

Y (z) = −ezε∂x ez(u−2ε∂x )θ1 ⇔ LY (z) =
∑

k≥−1

zk+1LYk = −ezε∂x ◦ ez(u−2ε∂x ) ◦ ∂x .

Since L̃ X = −u∂x + ε∂2x , Eq. (3.2) is equivalent to

∂x ◦ D̃LY (z) = z

(
∂LY (z)

∂t
− LY (z) ◦ (−u∂x + ε∂2x )

)
, (3.6)
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where D̃:=∑
n≥0 un

∂
∂un

+ ε ∂
∂ε
, and we apply D̃ to LY (z) coefficient-wise. Note that

D̃LY (z) = z ∂
∂z LY (z). Therefore, Eq. (3.6) is equivalent to

−∂x ◦ ∂

∂z

(
ezε∂x ◦ ez(u−2ε∂x ) ◦ ∂x

)
= − ∂

∂t

(
ezε∂x ◦ ez(u−2ε∂x ) ◦ ∂x

)

+ ezε∂x ◦ ez(u−2ε∂x ) ◦ ∂x ◦ (−u∂x + ε∂2x ) ⇔
⇔ ezε∂x ◦ (−∂x ◦ u + ε∂2x ) ◦ ez(u−2ε∂x ) ◦ ∂x = − ezε∂x ◦ ∂

∂t
ez(u−2ε∂x ) ◦ ∂x

+ ezε∂x ◦ ez(u−2ε∂x ) ◦ (−∂x ◦ u + ε∂2x ) ◦ ∂x ⇔
⇔ ∂

∂t
ez(u−2ε∂x ) =[ez(u−2ε∂x ), −∂x ◦ u + ε∂2x ].

Note that the last equation follows from the elementary identity ∂
∂t (u − 2ε∂x ) = [u −

2ε∂x ,−∂x ◦ u + ε∂2x ].
Condition (b) of Theorem 6 immediately follows from the equation δ

δu X = −uθ1 +
εθ2. ��

3.2. Homogeneous dispersive deformations and the rank 2 case.

3.2.1. Homogeneous deformations with string and dilaton property Let us fix a homo-
geneous flat F-manifold structure on an open subset M ⊂ C

N given by a vector potential
F , together with a homogeneous calibration of standard type. We consider systems of
evolutionary PDEs of the form

∂uα

∂tβd
= ∂x Pα

β,d , 1 ≤ α, β ≤ N , d ≥ 0,

Pα
β,d =

∑
l≥0

ε2l Pα
β,d,l , Pα

β,d,l ∈ A[2l]
M , (3.7)

such that the following properties are satisfied:

(1) Commutativity of the flows: the flows ∂

∂tβd
pairwise commute,

(2) The dispersionless limit of the system (3.7) coincides with the principal hierarchy of
the given calibrated flat F-manifold,

(3) String property: ∂
∂u11

Pα
β,d+1 = Pα

β,d for d ≥ −1, where Pα
β,−1:=δα

β ,

(4) Dilaton property:
∂ Pα

11,1

∂uβ = D Pα
β,0,

(5) Homogeneity condition: Êγ P(z) = z ∂
∂z P(z)+[P(z), Q]+P(z)R̃(z) for some γ ∈ C,

where P(z):=∑
d≥−1(Pα

β,d)zd+1.

In this section, working out the N = 2 case, we observe how descendant DR hier-
archies appear in the problem of classification of dispersive integrable deformations of
principal hierarchies of flat F-manifolds of the above form, which we refer to as a homo-
geneous deformation with string and dilaton properties. The role played by conditions
(3), (4), and (5) is central in producing finite dimensional spaces of deformations even
without having to quotient with respect to equivalence up to Miura transformations of
the dependent variables.
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Remark 6. Axioms (1), (3), and (4) above correspond closely to properties (iii), (iv), and
(v) of Theorem 6 for hierarchies of local vector fields of DR type. Homogeneity (5)
corresponds to property (iii) of Proposition 1 for homogeneous DR hierarchies. Finally,
condition (2) above is satisfied by hierarchies of DR type, see Remark 4. This means
that homogeneous dispersive deformations with string and dilaton properties contain
homogeneous descendant hierarchies of DR type whose local vector fields have only
even powers of ε. It’s not a priori clear that the converse is true and it would be interesting
to investigate this point.

3.2.2. Classification of semisimple homogeneous flat F-manifolds in dimension 2 In the
semisimple case, using canonical coordinates u1, . . . , uN , the structure of a homoge-
neous flat F-manifold can be recovered from a solution of the following system [AL19]:

∂�i
i j

∂uk
= −�i

i j�
i
ik + �i

i j�
j
jk + �i

ik�
k
k j , i �= k �= j �= i,

N∑
k=1

∂�i
i j

∂uk
= 0,

N∑
k=1

uk
∂�i

i j

∂uk
= −�i

i j , i �= j. (3.8)

For N = 2, the above system reduces to (3.8), and the general solution is

�i
i j = ε j

ui − u j
,

where ε1 and ε2 are arbitrary constants. Note that the corresponding vector of conformal
dimensions is equal to (2ε2, 2ε1). In order to compute a vector potential, we need to
introduce flat coordinates u, v (these correspond to t1, t2 in Sect. 2.1). We have to
distinguish 3 cases:

I. ε1 + ε2 �= 0, 1. In this case, flat coordinates are

u =
(

u1 − u2

4

) 1
m

, v = 2 + c

4
u1 +

2 − c

4
u2,

where c = 2 ε1−ε2
ε1+ε2

, m = 1
1−ε1−ε2

�= 0, 1, and a vector potential is

(F1, F2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
uv − 2c um+1

m+1 , v2

2 + 4−c2
2

mu2m

2m−1

)
, if m �= −1, 1

2 , 0, 1,(
uv − 2c log u, v2

2 + 4−c2
6 u−2

)
, if m = −1,(

uv − 4
3cu3/2, v2

2 + 4−c2
4 u log u

)
, if m = 1

2 .

The unit is ∂
∂v
, the Euler vector field is E = 1

m u ∂
∂u +v ∂

∂v
, and γ =

(
(2−c)(m−1)

2m ,

(2+c)(m−1)
2m

)
.

Ifm is a half-integer, these are the vector potentials of the bi-flat F-manifold structures
defined on the orbit space of the dihedral group I2(2m) [AL17]. If also c = 0,
the above vector potential comes from the Dubrovin–Frobenius manifold structure
defined on the orbit space of the dihedral group.
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II. ε1 = c, ε2 = 1 − c, c �= 0 (see the remark about the case c = 0 below). Using the
flat coordinates

u = u1 − u2 +
u2

c
, v = − ln (u1 − u2),

we obtain

F1 = c

2
u2 +

1 − c

4
e−2v, F2 = cuv + (2c − 1)e−v. (3.9)

The unit is 1
c

∂
∂u , the Euler vector field is E = u ∂

∂u − ∂
∂v
, and γ = (2 − 2c, 2c). For

c = 1
2 , the above vector potential comes from the genus 0 Gromov–Witten potential

of the complex projective line.
In the case c = 0, choosing the flat coordinates u = u2 and v = − ln (u1 − u2), we
obtain F1 = u2

2 and F2 = uv − e−v . This flat F-manifold is isomorphic to the flat
F-manifold (3.9) with c = 1 and shifted by v �→ v + π i .

III. ε1 = c, ε2 = −c. If c �= 0, then using the flat coordinates

u = u1 − u2, v = (u1 − u2) ln (u1 − u2) +
u2

c
,

we obtain

F1 =cuv + u2
(

c + 1

2
− c ln u

)
,

F2 = c

2
v2 + u2

(
−3c + 1

4
+

c + 1

2
ln u − c

2
(ln u)2

)
.

The unit is 1
c

∂
∂v
, the Euler vector field is E = u ∂

∂u + (u + v) ∂
∂v
, and γ = (−2c, 2c).

If c = 0, then choosing as flat coordinates the canonical coordinates u = u1 and
v = u2 we obtain

F1 = u2

2
, F2 = v2

2
.

The unit is ∂
∂u + ∂

∂v
, the Euler vector field is E = u ∂

∂u + v ∂
∂v
, and γ = (0, 0).

3.2.3. Integrable deformations of rank 2 homogeneous principal hierarchies We now
want to classify all homogeneous deformations with string and dilaton properties of
principal hierarchies associated to the homogeneous two-dimensional flat F-manifolds
considered above. In our computations below, we have observed the following remark-
able facts:

• If such a deformation exists and is nontrivial at the ε2 approximation, then γ must
be equal to γ1 or γ2.

• For γ = γi , at the ε2 approximation, any such deformation coincides with the
descendant DR hierarchy constructed using an appropriate framing. In particular,
any such deformation at the approximation up to ε2 can be extended to a deformation
at all orders of ε.
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Let us consider all three cases from Sect. 3.2.2 in detail.
CaseI . For simplicity, we consider the case 1

m �= Z, which guarantees that there is a
unique homogeneous calibration of standard type such that R̃i = 0 for i ≥ 1. Recall that

the vector of conformal dimensions is (γ1, γ2) =
(

(2−c)(m−1)
2m ,

(2+c)(m−1)
2m

)
. We have

three subcases.
Case I1. If γ1 �= γ2 and γ = γ1, we obtain

P1
1,0 =v − 2cum

+ Au− 1
2 c(m−1)ε2

(
m(c − 2)(cm − c − 2m + 4)um−3u2

x + m(c − 2)2um−2uxx − cu−1vxx

)
+O(ε4),

P2
1,0 = m2(4 − c2)

2m − 1
u2m−1 + Am(c2 − 4)u− 1

2 c(m−1)ε2
(

m(cm − c − 4m + 6)u2m−4u2
x

+m(c − 4)u2m−3uxx − um−2vxx

)
+O(ε4),

and

P1
2,1 =uv − 2mc

m + 1
um+1 + Au− 1

2 c(m−1)ε2
(

m(c − 2)(cm − c − 2m − 2)um−2u2
x

+
m(c − 2)(cm − c − 2m − 2)

m − 1
um−1uxx − cm − c − 4

m − 1
vxx

)
+O(ε4),

P2
2,1 = v2

2
+

m(4 − c2)

2
u2m + Am(c + 2)u− 1

2 c(m−1)ε2
(

m(cm − c − 4m)(c − 2)u2m−3u2
x

+
m(cm − c − 4m)(c − 2)

m − 1
u2m−2uxx − cm − c − 2m − 2

m − 1
um−1vxx

)
+O(ε4).

Here A is an arbitrary complex constant. This deformation is given by the descendant

DR hierarchy corresponding to the framing (X 1,X 2) = 12A
(

4
m−1u− 1

2 c(m−1),

4m(c+2)
m−1 u− 1

2 (c−2)(m−1)
)
.

Case I2. If γ1 �= γ2 and γ = γ2, we obtain

P1
1,0 =v − 2cum

+ Bu
1
2 c(m−1)

ε2
(

m(c + 2)(cm − c + 2m − 4)um−3u2x + m(c + 2)2um−2uxx − cu−1vxx

)
+O(ε4),

P2
1,0 = m2(4 − c2)

2m − 1
u2m−1 + Bm(c2 − 4)u

1
2 c(m−1)

ε2
(

m(cm − c + 4m − 6)u2m−4u2x

+m(c + 4)u2m−3uxx − um−2vxx

)
+O(ε4),

and

P1
2,1 =uv − 2mc

m + 1
um+1 + Bu

1
2 c(m−1)ε2

(
m(c + 2)(cm − c + 2m + 2)um−2u2

x

+
m(c + 2)(cm − c + 2m + 2)

m − 1
um−1uxx − cm − c + 4

m − 1
vxx

)
+O(ε4),

P2
2,1 =v2

2
+

m(4 − c2)

2
u2m + Bm(c − 2)u

1
2 c(m−1)ε2

(
m(cm − c + 4m)(c + 2)u2m−3u2

x

+
m(cm − c + 4m)(c + 2)

m − 1
u2m−2uxx − cm − c + 2m + 2

m − 1
um−1vxx

)
+O(ε4).
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Here B is an arbitrary complex constant. This deformation is given by the descendant

DR hierarchy corresponding to the framing (X 1,X 2) = 12B
(
− 4

m−1u
1
2 c(m−1),

− 4m(c−2)
m−1 u

1
2 (c+2)(m−1)

)
.

Case I3. If γ1 = γ2 (which is equivalent to c = 0) and γ coincides with them,
we get a two-parameter family of deformations formed by linear combinations of the
deformations from Cases I1 and I2.

CaseI I . There is a unique homogeneous calibration of standard type such that

Xα
β,0 = ∂ Fα

∂tβ
, R̃1 =

(
0 0

−c 0

)
, and R̃i = 0 for i ≥ 2. Recall that the vector of con-

formal dimensions is (γ1, γ2) = (2 − 2c, 2c). We have three subcases.
Case II1. If γ1 �= γ2 and γ = γ1, we obtain

P1
2,0 = c − 1

2
e−2v + A(c − 1)e2(c−1)vε2

(
uxx − 2c − 3

2c
e−vv2x +

2c − 3

c
e−vvxx

)
+O(ε4),

P2
2,0 =cu − (2c − 1)e−v + Ae2(c−1)vε2

(
− 2c − 1

2
evuxx +

(c − 1)2

c
v2x − (c − 1)2

c
vxx

)
+O(ε4),

and

P1
1,1 =c2

2
u2 +

c(c − 1)

4
(2v + 1)e−2v + Ae2(c−1)vε2

(
c((c − 1)v + 1)uxx

− c − 1

2
((2c − 3)v + 3)e−vv2x +

c − 1

2
((2c − 3)v + 2)e−vvxx

)
+O(ε4),

P2
1,1 =c2uv − c(2c − 1)(v + 1)e−v + Ae2(c−1)vε2

(
− c

2
((2c − 1)v + 2)evuxx

+
c − 1

2
((2c − 2)v + 3)v2x − (c − 1)((c − 1)v + 1)vxx

)
+O(ε4),

where A is an arbitrary complex constant. This deformation is given by the descendant
DR hierarchy corresponding to the framing (X 1,X 2) = 12A

c

(
e2(c−1)v,−e(2c−1)v

)
.

Case II2. If γ1 �= γ2 and γ = γ2, we obtain

P1
2,0 =c − 1

2
e−2v + B(c − 1)e−2cvε2

(
−uxx +

2c + 1

2c
e−vv2x − 2c + 1

2c
e−vvxx

)
+O(ε4),

P2
2,0 =cu − e−v(2c − 1) + Be−2cvε2

(
2c − 1

2
evuxx − cv2x + cvxx

)
+O(ε4),

and

P1
1,1 = c2

2
u2 +

c(c − 1)

4
(2v + 1)e−2v + B(c − 1)e−2cvε2

(
−(cv − 1)uxx +

1

2
((2c + 1)v − 3)e−vv2x

− 1

2
((2c + 1)v − 2)e−vvxx

)
+O(ε4),

P2
1,1 =c2uv − c(2c − 1)(v + 1)e−v

+ Bce−2cvε2
(
1

2
((2c − 1)v − 2)evuxx − 1

2
(2cv − 3)v2x + (cv − 1)vxx

)
+O(ε4),
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where B is an arbitrary complex constant. This deformation is given by the descendant
DR hierarchy corresponding to the framing (X 1,X 2) = 12B

c

( c−1
c e−2cv,−e−(2c−1)v

)
.

Case II3. If γ1 = γ2 (which is equivalent to c = 1
2 ) and γ coincides with them,

we get a two-parameter family of deformations formed by linear combinations of the
deformations from Cases II1 and II2.

CaseI I I . There is a unique homogeneous calibration of standard type such that
R̃i = 0 for i ≥ 1.Recall that the vector of conformal dimensions is (γ1, γ2) = (−2c, 2c).

Case III1. If γ1 �= γ2 (equivalently, c �= 0) and γ = γ1 = −2c, we obtain

P1
1,0 =u(1 − 2c ln u) + cv + Au−2c−1ε2

(
−

(
c +

1

2

)
u−1u2x + cvxx +

(
3

2
− c(1 + ln u)

)
uxx

)
+O(ε4),

P2
1,0 =u(ln u − c(1 + ln2 u)) + Au−2c−1ε2

(
−u−1

((
c +

1

2

)
ln u + c

)
u2x+

+

(
c(1 + ln u) − 1

2

)
vxx +

(
2(1 + ln u) − c(1 + ln u)2 − 1

2c

)
uxx

)
+O(ε4),

and

P1
2,1 = − c

2
u(cu(1 + 2 ln u) − 2cv − u) + Au−2c−1ε2

(
c(c − 1)uvxx + c(1 − c)u2x+

+u

(
c(1 − c) ln u −

(
c − 1

2

)
(c − 2)

)
uxx

)
+O(ε4),

P2
2,1 = − c

4
u2(2(c ln u + c − 1) + c − 1) ln u +

c2

2
v2+

+ Au−2c−1ε2
(

c

(
(1 − c) ln u +

3

2
− c

)
u2x + cu

(
(c − 1) ln u + c − 3

2

)
vxx +

+u

(
c(1 − c) ln2 u − (2c2 − 4c + 1) ln u − c2 + 3c − 3

2

)
uxx

)
+O(ε4),

where A is an arbitrary complex constant. This deformation is given by the descendant
DR hierarchy corresponding to the framing (X 1,X 2) = − 12A

c (u−2c, u−2c(1 + ln u)).
Case III2. If γ1 �= γ2 (equivalently, c �= 0) and γ = γ2 = 2c, we obtain

P1
1,0 =u(1 − 2c ln u) + cv + Bu2c−1ε2

((
c − 1

2

)
u−1u2x − cvxx +

(
c ln u + c +

1

2

)
uxx

)
+O(ε4),

P2
1,0 =u(ln u − c(1 + ln2 u)) + Bu2c−1ε2

((
1

2
− c(1 + ln u)

)
vxx+

+

(
c(ln u + 1)2 − 1

2c

)
uxx + u−1

((
c − 1

2

)
ln u + c − 1 +

1

2c

)
u2x

)
+O(ε4),

and

P1
2,1 = − c

2
u(cu(1 + 2 ln u) − 2cv − u) +

c

2
Bu2c−1ε2

(
2(c + 1)u2x − 2(c + 1)uvxx+

+u(2(c + 1) ln u + 2c + 3)uxx ) +O(ε4),

P2
2,1 = − c

4
u2(2(c ln u + c − 1) + c − 1) ln u +

c2

2
v2+

+ Bu2c−1ε2
((

c2 +
c

2
− 1 + c(c + 1) ln u

)
u2x + u

(
1 − c

2
− c2 − c(c + 1) ln u

)
vxx+

+u

(
c2 + c − 3

2
+ c(c + 1)(ln u + 2) ln u)

)
uxx

)
+O(ε4),
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Table 1. Functional parameters for the integrable deformations at the approximation up to ε2

Case Values of c Integrable first order deformations Integrable second order deformations
I c �= ±2 Miura trivial Two functional parameters
I c = ±2 One functional parameter Two functional parameters
II c �= 1 Miura trivial Two functional parameters
II c = 1 One functional parameter Two functional parameters
III arbitrary c Miura trivial Two functional parameters

where B is an arbitrary complex constant. This deformation is given by the descendant
DRhierarchy corresponding to the framing (X 1,X 2) = 12B

c

(−u2c, u2c
( 1

c − 1 − ln u
))
.

Case III3. If γ1 = γ2 (equivalently, c = 0) and γ = γi = 0, we get the two-parameter
family of deformations

P1
1,1 =u2

2
+ Aε2uxx +O(ε4),

P2
1,1 =v2

2
+ Bε2vxx +O(ε4),

which is given by the descendantDRhierarchy corresponding to the framing (X 1,X 2) =
12(A, B). This hierarchy is just the DR hierarchy of the rank 2 F-topological field theory

cg,n+1(e
α0 ⊗ ⊗n

i=1eαi ) =

⎧⎪⎨
⎪⎩

Ag, if α0 = . . . = αn = 1,
Bg, if α0 = . . . = αn = 2,
0, otherwise,

and it coincides with the system of two uncoupled KdV hierarchies.

3.3. General integrable deformations and open problems. In Sect. 3.2.1, we considered
the problem of classification of dispersive deformations, containing only even powers
of ε and satisfying properties (1)–(5), of principal hierarchies of two-dimensional ho-
mogeneous semisimple flat F-manifolds. We observed that at the approximation up to
ε2 all such deformations are given by the descendant DR hierarchies.

In this section, we consider more general dispersive deformations of the same rank 2
principal hierarchies: first, we allow odd powers of ε in the dispersive deformation (3.7),
and, second, we require that only properties (1)–(2) are satisfied. In other words, we
require only integrability, i.e., pairwise commutativity of the flows. In the table below,
we summarize the results of computations of such deformations at the approximation
up to ε2 (the results for Case I were already obtained in [AL18]). When we refer to a
functional parameter relative to an integrable deformation, we mean that at a specified
order the equivalence classes of deformations depend on an arbitrary function. Recall
(see Definition 6) that two deformations are said to be equivalent if they are related by
a Miura transformation that is close to identity.

For special values of the functional parameters, we recover the genus one approxi-
mations of the descendant DR hierarchies from Sect. 3.2.3. Unfortunately, for generic
choices of the functional parameters the existence of a full dispersive hierarchy is an
open problem. Concerning this we point out that, in [AL18], it was conjectured that, up
to equivalence, integrable deformations for systems of any rank are labelled by a simple
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set of invariants called Miura invariants. Consider a system of evolutionary PDEs of the
form

∂uα

∂t
= Aα

β(u∗)uβ
x +ε

(
Bα

β (u∗)uβ
xx + Bα

βγ (u∗)uβ
x uγ

x

)

+ε2
(

Cα
β (u∗)uβ

xxx + Cα
βγ (u∗)uβ

x uγ
xx + Cα

βγ δ(u
∗)uβ

x uγ
x uδ

x

)
+ . . . ,

α = 1, . . . , N , (3.10)

and as in the proof of Theorem 4 consider the associated Miura matrix

Mα
β (u∗, p) = Aα

β(u∗) + Bα
β (u∗)p + Cα

β (u∗)p2 + . . . .

TheMiura invariants of the system (3.10) are the eigenvalues λi (u∗, p) of theMiurama-
trix. If the eigenvalues of thematrix (Aα

β) are pairwise distinct at somepoint (u1, . . . , uN )

= (u1
orig, . . . , uN

orig) ∈ C
N , then the Miura invariants are well defined as formal power

series whose coefficients are functions on an open neighbourhood of (u1
orig, . . . , uN

orig):

λi = vi + λi
1 p + λi

2 p2 + . . . , i = 1, . . . , N . (3.11)

The functional parameters of Table 1 can be identified with a part of the coefficients
λ11, λ

2
1, λ

1
2, λ

2
2 in formula (3.11). The presence of odd powers of p in the expansion

(3.11) seems an exceptional phenomenon. In the case of special deformations satisfying
all the properties (1)–(5) from Sect. 3.2.1, there are examples related to open Gromov–
Witten theory [BR18] and we expect that this is not a coincidence. However, this point
requires further investigation.
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