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Abstract

The Cluster Weighted Robust Model (CWRM) is a recently introduced methodol-
ogy to robustly estimate mixtures of regressions with random covariates. The CWRM
allows users to flexibly perform regression clustering, safeguarding it against data con-
tamination and spurious solutions. Nonetheless, the resulting solution depends on the
chosen number of components in the mixture, the percentage of impartial trimming,
the degree of heteroscedasticity of the errors around the regression lines and of the
clusters in the explanatory variables. Therefore an appropriate model selection is cru-
cially required. Such a complex modeling task may generate several “legitimate” solu-
tions: each one derived from a distinct hyper-parameters specification. The present
paper introduces a two step-monitoring procedure to help users effectively explore
such a vast model space. The first phase uncovers the most appropriate percentages
of trimming, whilst the second phase explores the whole set of solutions, conditioning
on the outcome derived from the previous step. The final output singles out a set of
“top” solutions, whose optimality, stability and validity is assessed. Novel graphical
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and computational tools - specifically tailored for the CWRM framework - will help
the user make an educated choice among the optimal solutions. Three examples on
real datasets showcase our proposal in action. Supplementary files for this article are
available online.

Keywords: Cluster-weighted modeling; Outliers; Trimmed BIC; Eigenvalue constraint; Mon-
itoring; Model-based clustering; Robust estimation

1 Introduction

Clustering has been defined as one of the core tasks in data mining (Bezdek, 2013). In
the last decades, different philosophical points of view have generated different definitions
about what constitutes clustering. In a top-down view, clustering means partitioning a
heterogeneous population into a number of more homogeneous subgroups. Conversely, in
a bottom-up view, a criterion of similarity can be employed to find groups in a dataset.
Henceforth, a plethora of models, algorithms and criteria arose in the literature for the
purpose of grouping. In essence, as the notion of cluster cannot be uniquely defined,
clustering is an “ill-posed” problem. It has been written that “clustering is in the eye
of the beholder” (von Luxburg et al., 2012; Estivill-Castro, 2002), and as such, the most
appropriate clustering method depends on the knowledge of the field of application and
on the (subjective) aim of the task (Hennig, 2015). Finally, evidence from many examples
suggests that a given process can be fruitfully modeled in several ways.

One of the trickiest choices in cluster analysis lies in identifying the number of clusters
G. In some cases, G is known in advance, being part of the context-specific information.
Nevertheless, more often than not, G has to be inferred, assuming that the data carry
information about the process generating them. Among the many contributions to this
literature stream, we refer to Milligan and Cooper (1985); Rousseeuw (1987a); Tibshirani
et al. (2001); Cerioli et al. (2018) and references therein. In model-based clustering, it is
customary to select G based on the optimization of a penalized likelihood function. This is
an effective criterion, balancing the trade-off between the goodness of fit of the model and
the simplicity of the model itself. Maximum likelihood procedures, with their underlying
elegant theory, critically depend on the knowledge of the exact parent distributions and the
proper fulfillment of those model-based assumptions, and hence they clearly lack robustness.

2



When contamination appears in the data, adaptive procedures that use most of the sample
information are preferable, as they are not hampered by outlying units at the price of
losing some efficiency. In what follows, with contamination we identify any mechanism
that obscures the relationship between covariates, response and cluster membership.

Such considerations hold true in the general mixture modeling framework, and partic-
ularly for mixtures of regressions with random covariates, also known as Cluster Weighted
Models (CWMs), which will be the focus of the present paper. Firstly introduced by Ger-
shenfeld (1997) as a machine learning technique for prediction of non-linear time series,
their reformulation in a statistical setting is provided in Ingrassia et al. (2012), where the
authors showcase that CWMs represent a very general family of mixture models, including
finite mixtures of distributions and finite mixtures of regressions as special cases. In de-
tails, cluster weighted modeling defines a mixture approach for flexibly learning the joint
probability of a response variable and a set of explanatory variables; a thorough survey on
the topic can be found in Dang et al. (2017).

Coming back to the data contamination issue, García-Escudero et al. (2017) introduce
a methodology for robustly fitting mixtures of regression with random covariates, named
Cluster Weighted Robust Model. To reach robustness, two steps are included within the pa-
rameters estimation procedure. Firstly, the less plausible observations under the currently
estimated model are discarded, to eliminate their problematic contribution to inference.
This is achieved using impartial trimming, for which a fixed proportion of observations,
hereafter denoted with α, is left unassigned. Secondly, the estimation of the covariance
matrices for the covariates, as well as of the variances of the regression error terms, are per-
formed under two user-defined constraints to sweep aside degeneracies and uninteresting
spurious solutions. Therefore, the resulting robust estimation depends on three hyper-
parameters: the percentage of trimmed observations α and the two constraints for the
covariance matrices and the regression error variances, respectively. Even if there are sit-
uations in which the user is able to indicate how to set these hyper-parameters; in general
their specification is not straightforward and their automatic selection is still an open issue.

Inspired from previous works tackling this challenge for the case of mixtures of Gaussians
(Riani et al., 2019; Cerioli et al., 2018), the present paper introduces a set of graphical and
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computational tools to guide the final user in making an informed choice for the hyper-
parameters for the more complicated case of the Cluster Weighted Robust Model. We also
provide a fully automated procedure to yield a small and ranked list of optimal solutions,
featured by their properties of stability and validity.

The structure of the paper is as follows. In Section 2 an outline of the CWM is recalled.
Afterwards, the robust version of the model is presented and a short discussion on the role of
the hyper-parameters is given. In addition, a specific penalized criterion for model selection
is proposed. In Section 3, a two-step monitoring procedure is presented to efficiently explore
the space of solutions. In the first step, a few sensible values of the trimming level α are
suggested, monitoring some crucial metrics for the CWM. In the second step, varying the
constraints for the covariates and the regression errors, and the number of groups, an
algorithm for finding a short list of optimal solutions is introduced. Stability and validity
of each solution are also provided through a new ad-hoc graphical tool. Real applications
on three datasets are presented in Section 4, and results are discussed. Finally, Section 5
concludes the manuscript and present some directions for future research.

2 The Cluster Weighted Robust Model

Let X be a vector of covariates with values in Rd, and let Y be a dependent (or response)
variable with values in R. Assume that the regression of Y on X varies across G levels, say
groups or clusters, of a categorical latent variable Z. In other words, potential relationships
between the variables in X convey information on group membership, and this in turn may
modify the regression in Y , as represented by the directed graph in Figure 1. The aim is
thus to identify groups in the data based simultaneously on the conditional distribution of
Y |X and on the marginal distribution of X. Such situations are common, for instance, in
demography, psychology and marketing, where groups of people are identified on the basis
of core variables that are costly to obtain (e.g. test-item responses, indicating behavior
or propensity). The groups need to be simultaneously profiled with concomitant variables
that are cheaper to collect or widely available, such as demographic data. Once the groups
are identified, new subjects are classified using mainly demographic data. In details, the
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Figure 1: Directed graph showing the relationships among the latent (z) and the manifest
variables (x, y) under the Cluster Weighted Model.

CWM models the joint distribution of (X, Y ) as:

p(x, y; Θ) =
G∑
g=1

πgf(y|x;θg)p(x; ξg), (1)

where πg = P (Z = g) are the positive mixing weights summing up to 1, f(y|x;θg) is the
conditional density of Y |X, Z = g, depending on the parameter θg, p(x; ξg) is the density
of X|Z = g, depending on ξg, and Θ = (π1, . . . , πG−1,θ1, . . . ,θG, ξ1, . . . , ξG) is the resulting
parameter space. We will focus on the particular case of the linear Gaussian CWM, given
by

p(x, y; Θ) =
G∑
g=1

πgφ1(y; b′gx + b0
g, σ

2
g)φd(x;µg,Σg), (2)

where φd(·;µg,Σg) denotes the density of the d-variate Gaussian distribution with mean
vector µg and covariance matrix Σg. Y is related to X by a linear model in (2), that is,
Y = b′gx + b0

g + εg with εg ∼ N(0, σ2
g), bg ∈ Rd, b0

g ∈ R, σ2
g ∈ R+, for every g = 1, . . . , G.

Under the given framework, the parameters are denoted with:

Θ = {π1, . . . , πG−1, b1, . . . , bG, b
0
1, . . . , b

0
G, σ

2
1, . . . , σ

2
G,µ1, . . . ,µG,Σ1, . . . ,ΣG}. (3)

Based on a set of N i.i.d. samples {(xi, yi), i = 1, . . . , N} drawn from (X, Y ), maximum
likelihood parameter estimation for the linear Gaussian CWM is generally carried out by
means of the EM algorithm (Dempster et al., 1977). The observed log-likelihood function

`(Θ|X, Y ) =
N∑
i=1

log
 G∑
g=1

πgφ(yi; b′gxi + b0
g, σ

2
g)φd(xi;µg,Σg)

 , (4)

is maximized with respect to (3), and the Bayesian Information Criterion (Schwarz, 1978)
is widely used for model selection.
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Unfortunately, ML inference on models based on normal assumptions suffers from two
major drawbacks. First off, the objective function in (4) is unbounded over Θ so its opti-
mization results in an ill-posed mathematical problem. Secondly, the resulting inference is
strongly affected by outliers: see, e.g., Huber and Ronchetti (2009). To overcome both is-
sues in this specific CWM framework, García-Escudero et al. (2017) introduced the Cluster
Weighted Robust Model (CWRM). CWRM is based on the maximization of the trimmed
log-likelihood (Neykov et al., 2007):

`trimmed(Θ|X, Y ) =
N∑
i=1

z(xi, yi) log
 G∑
g=1

πgφ(yi; b′gxi + b0
g, σ

2
g)φd(xi;µg,Σg)

 , (5)

where z(·, ·) is a 0-1 trimming indicator function denoting whether observation (xi, yi) is
trimmed off (z(xi, yi) = 0), or not (z(xi, yi) = 1). A fixed fraction α of observations is
left unassigned by setting ∑N

i=1 z(xi, yi) = N − [Nα], with α denoting the trimming level.
Impartial trimming ensures that the α100% of most outlying units, according to the pos-
tulated model, is not accounted for in the optimization procedure, ultimately producing
an estimator with desirable robustness properties (Hennig, 2004). Algorithmically, trim-
ming is implemented by means of a “concentration” step (Rousseeuw and Driessen, 1999)
carried out at each iteration of the EM algorithm. The interested reader is referred to
García-Escudero et al. (2017) for a thorough description of the algorithm proposed.

To deal with the unboundedness of (4) a doubly-constrained maximization is considered
in the CWRM specification, extending the approach proposed in Hathaway (1985) to the
CWM. The first constraint is applied to the set of eigenvalues {λl(Σg)}l=1,...,d of the scatter
matrices Σg by requiring

λl1(Σg1) ≤ cXλl2(Σg2) for every 1 ≤ l1 6= l2 ≤ d and 1 ≤ g1 6= g2 ≤ G. (6)

The second bound is enforced to the variances σ2
g of the regression error terms as follows

σ2
g1 ≤ cyσ

2
g2 for every 1 ≤ g1 6= g2 ≤ G. (7)

The constants cX and cy in (6) and (7) are finite (not necessarily equal) real numbers, such
that cX , cy ≥ 1. They prevent degenerate cases with |Σg| → 0 and σ2

g → 0 from appearing,
allowing the discarding of uninteresting spurious solutions. Finally, notice that if

Θ̂cX ,cy

G = {π̂1, . . . , π̂G−1, b̂1, . . . , b̂G, b̂
0
1, . . . , b̂

0
G, σ̂

2
1, . . . , σ̂

2
G, µ̂1, . . . , µ̂G, Σ̂1, . . . , Σ̂G}
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is the optimal set of parameters found maximizing (5) for fixed G, cX and cy, and

p(x(1), y(1); Θ̂cX ,cy

G ) ≤ ... ≤ p(x(N), y(N); Θ̂cX ,cy

G )

are the sorted values when p(·, ·; Θ̂cX ,cy

G ) is defined as in (2), then the non-trimmed units
with z(xi, yi) = 1 are those with

p(xi, yi; Θ̂cX ,cy

G ) ≥ p(x([Nα]+1), y([Nα]+1); Θ̂cX ,cy

G ).

2.1 Penalized likelihood for the CWRM

We now need to specialize the general theory of model selection (refer to Claeskens and
Hjort, 2008, for a detailed review) to derive a penalized likelihood criterion for the CWRM.
Based on (5), for a specific value of α the number of components G and the hyper-
parameters cX and cy will be chosen by minimizing the following Trimmed BIC (TBIC)
criterion:

TBIC(G, cX , cy) = −2`trimmed(Θ̂cX ,cy

G |X, Y ) + ν
cX ,cy

G , (8)

where `trimmed(Θ̂cX ,cy

G |X, Y ) is the maximized trimmed log-likelihood for a model with G

components and constraints cX and cy, while the term ν
cX ,cy

G denotes a penalty factor
accounting for model complexity. In particular, the adaptability entailed by relaxing the
constrained estimation shall be taken into account in νcX ,cy

G , along the lines of Cerioli et al.
(2018). Therefore, the following penalty term is proposed:

ν
cX ,cy

G ={(G− 1) +Gd+G(d+ 1)+ (9)

1 + ((Gd− 1) +Gd(d− 1)/2) (1− 1/cX) +

1 + (G− 1) (1− 1/cy)} log (N − [Nα]) .

In the first line of (9) we count parameters required for the mixture weights, the cluster
means of the covariates, and the regression coefficients. Afterwards, we have the contribu-
tions given by modeling the Σg in X. Based on their eigenvalue decomposition, we have 1
free eigenvalue and Gd−1 constrained eigenvalues, plus the Gd(d−1)/2 rotation matrices.
Except for the first term, the remaining ones are multiplied by (1 − 1/cX) to account for
constrained estimation. Finally, there is the part relative to modeling scatters for the re-
gressions on Y |X, with one free σ2

g and G− 1 constrained by cy. Again, except for the first
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Figure 2: Toy data with the result of a bivariate linear Gaussian CWM with 4 appended
outliers (N = 100). Row indexes are used as labels in the scatter plot.

term, the other ones should be multiplied by (1−1/cy) to incorporate the constraint induced
by cy. In expression (9), differently from Cerioli et al. (2018), we opted for multiplying all
the variance parameters (rotation and eigenvalues) by the factor (1− 1/cX), to account for
the fact that rotation loses its meaning for cX → 1. Numerical experiments (not reported
here) have nevertheless demonstrated that the two criteria provide substantial agreement
when it comes to models ranking, as performed in our monitoring procedure. Additionally,
yet another information criterion based on more general decompositions of the Σg scatter
matrices, recently developed for Gaussian mixtures (García-Escudero et al., 2020, 2022),
could be extended to the CWRM framework. Notwithstanding, exploring these new types
of constraints is out of the scope of the present manuscript and the criterion defined in (8)
will then be hereafter employed. Lastly, observe that the penalized criterion in (8) reduces
to the standard Bayesian Information Criterion (Schwarz, 1978) when α goes to zero, and
both cX , cy go to infinity.
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3 Screening the space of solutions for CWRM

The selection of the most appropriate model among the set of potential solutions, as a
function of G, cX , cy and α, results in a seemingly ungovernable task whenever little or
no prior information is available in advance. This is the price to be paid for the great
flexibility and robustness achieved by the Cluster Weighted Robust Model. Nonetheless, as
we discussed in the introduction, in general a clustering process is not supposed to single
out a unique and stand-alone result. To this extent, we propose here a two-step monitoring
procedure to fully explore the space of CWRM solutions. In the first step, detailed in
Section 3.1, the focus is on gaining insights for later investigation. Specific graphical and
exploratory tools for CWRM are employed for determining one or more plausible values
for the trimming level α. In the second step, described in Section 3.2, on the base of the
values of α selected in the previous step, a further exploration is developed when G, cX
and cy are free to vary within a grid of values and a list of candidate optimal solutions is
generated. The quality of the restricted set of solutions is investigated by means of tailored
silhouette plots; in this way, we can also inspect the nature and extent of the identified
outliers. Lastly, the validity of the cluster weighted solutions is also assessed by means
of the total sum of squares decomposition introduced in Ingrassia and Punzo (2020). A
comprehensive account of this process is reported in Section 3.3.

Throughout the next subsections we will make use of a simple toy example to aid the
understanding of the proposed methodology, and to motivate and justify the monitoring
tools presented hereafter. In details, a total of 96 data points are generated from the linear
Gaussian CWM in (2) with d = 1 and G = 2. In addition, 4 outlying points are appended
to the synthetic dataset, with very distinct characteristics:

• a CWM outlier: a point non-outlying in the covariates and with a fitting regression
line for one of the G = 2 components, but with an outlying pattern according to the
joint CWM density (unit 97);

• a vertical outlier: a point non-outlying in the covariates but with a non-fitting re-
gression line (unit 98);

• a group-specific good leverage point: a point outlying in the covariates but with a
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fitting regression line for one of the G = 2 components (unit 99);

• a bad leverage point: a point outlying in the covariates and with a non-fitting regres-
sion line (unit 100).

The scatterplot of the resulting simulated dataset, encompassing N = 100 samples, is
reported in Figure 2. Clearly, in this trivial situation, the correct α = 0.04 and G = 2
can be immediately eyeballed by looking at the bivariate plot. Notice that, despite being
in principle less relevant for applications, even in this simple situation the true constraints
values cX = cy = 2 cannot be easily inferred. We provide a monitoring procedure to select
α, G, cX , cy in a semi-automatic way in the upcoming sections.

3.1 Step 1: monitoring tools to validate the trimming level

In robust procedures based on hard trimming, a very crucial role is played by α, which
determines the size of the subsets over which the likelihood is maximized.

In this phase, we leverage from previous work in Riani et al. (2019), where a plot of
the Adjusted Rand Index (ARI) between consecutive cluster allocations for a grid of α has
been proposed to visually assess the contamination rate in a given dataset. The mentioned
approach is based on a first bet on the value of G and on the single constraint needed for
Gaussian mixtures. The ARI plot shows changes in the clustering structure for different
trimming levels, remaining close to its maximum value when solutions are similar one to
another. Indeed, this is an effective tool to detect noise in the form of bridges, when the
proper underlying partition is uncovered only by adopting the correct level of trimming.
However, in case of scattered noise, we argue that the clustering structure could evolve very
smoothly from an initial solution, obtained without trimming, to a pretty different final
one. Hence, the ARI plot between consecutive allocations may display no jumps, resulting
in no meaningful indications about an appropriate choice for α. The same consideration
holds true in case of point-wise contamination, when one small group of observation is
fitted by one component of the mixture, without biasing model estimation for the main
bulk of the data.

To overcome these limitations, we introduce two modifications to the monitoring strat-
egy in Riani et al. (2019). On the one hand, instead of a-priori setting any hyper-
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parameter, we let the best model be determined by the penalized criterion introduced
in Section 2.1, suitably varying G, cX and cy, for each α. In details, we consider sequences
G∗ = {1, 2, . . . , GMAX}, where GMAX is the maximal number of sought clusters, and c∗X ,
c∗y of possible constraint values for cX and cy, respectively. Without loss of generality
and for easing the notation, in the following we will adopt the same grid of restrictions
c∗X = c∗y = c∗ = {c1, . . . , cC}, C ∈ N, for both the covariates and the regression errors. The
finite sequence of powers of 2, c1 = 20, c2 = 21, . . . , cC = 2C−1, for example, is a straight-
forward way to generate a grid of values that becomes sharper close to 1, to account for
possible different solutions that arise when the constraints are tighter, compared to when
cX and cy are large (García-Escudero et al., 2015). In this way, we aim at fully exploring
the model space for a grid of α values, avoiding any subjectivity in the selection. On the
other hand, we enrich the set of monitoring aids, extending the ARI plot with graphical
tools tailored for the CWRM framework. In details, varying the trimming level α, the
following metrics are inspected:

i) Groups proportion: estimated proportion of observations in each component are pro-
filed in a stacked barplot;

ii) Regression slopes are profiled via a G-lines plot, to monitor increase and/or decrease
in parameters magnitude;

iii) Standard deviations σ̂g, g = 1, ..., G of the residual error terms are represented in a
G-lines plot, profiling the increase and/or decrease in variability around the regression
fits;

iv) Cluster volumes are monitored via a G-lines plot, profiling the increase and/or de-
crease in

∣∣∣Σ̂g

∣∣∣1/d, g = 1, . . . , G;

v) ARI between consecutive cluster allocations is tracked via a line plot, as in Riani
et al. (2019). Notice that only the resulting data partition of adjacent solutions are
compared; while the true label set, that may not even exist, is never considered in
building such metric.
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vi) Proportion of doubtful assignments (e.g., the proportion of units whose cluster allo-
cation is uncertain) is monitored via a line plot. For each observation i we compute
the a posteriori probabilities Dg(xi, yi) to belong to cluster g (up to a normalizing
constant):

Dg(xi, yi) = π̂gφ1(yi; b̂′gxi + b̂0
g, σ̂

2
g)φd(xi; µ̂g, Σ̂g), g = 1, . . . , G. (10)

Such quantities are sorted, yielding D(1)(xi, yi) ≤ . . . ≤ D(G)(xi, yi). Recall that
the usual maximum a posteriori (MAP) rule assigns observation i to the component
g for which Dg(xi, yi) is highest, i.e., Dg(xi, yi) = D(G)(xi, yi). Then, we compute
the discriminant factor DF(i) to measure the strength of the group membership of
observation i as a function of the posterior probabilities (Van Aelst et al., 2006;
García-Escudero et al., 2011; Fritz et al., 2012). In details, in the framework of
CWRM, DF(i)’s are defined as follows:

DF(i) =


log

(
D(G−1)(xi, yi)/D(G)(xi, yi)

)
for i not trimmed

log
(
D(G)(xi, yi)/D(G)(x([Nα]+1), y([Nα]+1))

)
for i trimmed

i = 1, . . . , N.

(11)
For a non trimmed unit i, DF(i) assesses the strength of the assignment of unit
i, comparing the largest D(G)(xi, yi) to the second best possible cluster assignment
D(G−1)(xi, yi). If i clearly belongs to its assigned group, D(G)(xi, yi)� D(G−1)(xi, yi),
yielding a large negative value for DF(i). For a trimmed unit i, instead, DF(i) eval-
uates the strength of the trimming decision. It compares the unnormalized posterior
probability D(G)(xi, yi) for i to belong to its most plausible cluster (to which it is
not assigned) to the maximum posterior probability of the first not trimmed unit(
x([Nα]+1), y([Nα]+1)

)
. In this way, DF(i) ≤ 0 for every i, and large DF values (i.e.,

values close to zero) indicate doubtful assignments or trimming decisions. We will
deem unit i to be doubtfully assigned if DF(i) is greater than a given threshold.
Along the lines of Fritz et al. (2012), observation i is considered as doubtful if the
strength of the assignment to the second best cluster is larger than one tenth of the
actually made decision, say DF(i) ≥ log(1/10).

Jointly monitoring the evolution of the selected metrics is an effective approach to uncover
the most sensible trimming level/levels to be employed in the subsequent analysis. In
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Figure 3 we report the resulting graphical output for the toy dataset introduced in the
previous section. As expected, it is immediately noticed that an α ≥ 0.04 is needed to
provide reliable inference, and several patterns pointing this out can be identified. First
off, when α is smaller than 0.04 models with extra components (G = 4 and G = 3) are
preferred according to the TBIC defined in (8) because they are needed in order to fit
the standalone units that should have not entered the estimation procedure. By looking
at the stacked barplot we can nevertheless discern that these are nothing but spurious
clusters with very low mixing proportion, which disappear when a higher trimming level
is considered. The line plots related to model parameters remain fairly stable throughout
the α grid for all components but the spurious ones, further validating the conjecture that
the two extra classes are random patterns inappropriately captured by the (not robust
enough when α < 0.04) model. As anticipated previously, when outliers enter one at a
time in the search, clear evidence may not be extracted by looking at the ARI panel only,
so much so that other plotting tools are needed even in this very simple example. Lastly,
the proportion of doubtful assignments line reaches its minimum at the correct trimming
level α = 0.04, confirming once more such choice for this dataset.

To carry out the first monitoring step, the well-known label-switching problem of mix-
ture models should be tackled with extreme care. Otherwise, the component-dependent
metrics, concerning estimated model parameters, cannot be safely compared across trim-
ming levels. Notice that the only metrics that do not suffer from the label-switching
problem are the ARI between consecutive cluster allocations and the proportion of doubt-

ful assignments. The former is a general measure of similarity between two partitions
(with possibly different number of groups), while the latter simply counts the number of
units that are doubtfully assigned according to a specific CWRM solution. We construct
a relabeling strategy based on the postulated model density. In details, the relabeling pro-
cedure proceeds as follows: starting from the solution obtained with the highest amount
of trimming, the (d + 1)-dimensional quantities rg =

(
µ̂g, b̂

0
g + b̂′gµ̂g

)
are stored for each

g, g = 1, . . . , G. Notice that rg is exactly the estimated marginal d-dimensional cluster
mean, to which the conditional estimate according to the regression term is appended.
The quantities rg are the g cluster “representatives” that are employed in the relabeling
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Figure 3: Monitoring tools in Step 1 for the “Toy dataset”. From the top left corner, mov-
ing counterclockwise the following plots are displayed: groups proportion, ARI between
consecutive cluster allocations, proportion of doubtful assignments, cluster volumes, re-
gression standard deviations and regression slopes (see bulletpoints i) to vi) in Section 3.1
for details). Metrics are monitored as a function of the trimming level α.

14



process of the subsequent solutions, via the MAP rule, when the trimming level decreases.
Specifically, for the l-th value αl in the sequence of considered trimming levels, the label
associated to rc =

(
µ̂c, b̂

0
c + b̂′cµ̂c

)
, c = 1, . . . , G is computed as follows:

arg max
g

π̂g,lφ1(b̂0
c + b̂′cµ̂c; b̂′g,lµ̂c + b̂0

g,l, σ̂
2
g,l)φd(µ̂c; µ̂g,l, Σ̂g,l) (12)

where with the subscripts g, l we denote the estimated parameters of the g-th group with
trimming level αl. Whenever a solution possesses a higher number of clusters than the
previous one, a new rg is computed and stored as the representative of such new component.
Conversely, whenever a solution has a lower number of clusters than the previous one, the
rg quantity for the merged components is identified and the set of representative units is
updated accordingly. Clearly, this heuristic may fail in cases where the clustering structure
deeply changes when evolving from a solution to its adjacent one. Nonetheless, when the
α grid is quite dense, the failure of this procedure clearly indicates that some mechanism
must have spoiled the inferential process. Alternatively, a nonparametric approach based
on depth measures (Singh et al., 1999) may also be profitably employed in this context.

3.2 Step 2: monitoring tools for choosing G, cX and cy

Having identified a/some “reasonable” value/values for α, we propose to screen the space
of solutions E0 generated by varying the number of clusters G, and the pair of hyper-
parameters cX and cy over a grid, conditioned on a fixed trimming level.

We aim at collecting a reduced list O of “optimal” solutions, qualified by two features:
their stability across hyper-parameter values, and their optimality in terms of the penalized
criterion defined in (8). We elaborate on the two algorithms presented in Cerioli et al. (2018)
by unifying them in a single searching process, enabled to encompass the more complex
framework of Cluster Weighted modeling.

Given a triplet (G, cX , cy), let P (G, cX , cy) denote the partition into G clusters, ob-
tained by optimizing (5) under the constraints (6) and (7). Let ARI(A,B) denote the ARI
between partitions A and B. We consider that two partitions A and B are “similar” when
ARI(A,B) ≥ η, for a fixed threshold η. Clearly, the higher the value η the greater the
number of retained distinct solutions. While η can certainly be application-dependent, its
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selection does not dramatically affect the procedure described hereafter, and values for η
equal to 0.7 or 0.8 are generally considered in the literature (Riani et al., 2019; Cerioli
et al., 2018). We will set η = 0.8 in all applications described in Section 4. Lastly, let us
reconsider the sequences G∗, c∗X and c∗y previously employed in the first step. In this setting,
the proposed procedure for finding O, the set of T ≤ L optimal solutions is summarized
in Algorithm 1, where L denotes a pre-specified upper bound for the maximum number
of optimal solutions to be retained. The resulting strategy simplifies the set of operations
originally proposed in Cerioli et al. (2018).

Algorithm 1 Optimal solutions finder
1: Initialize the space to be explored E0 = {(G, cX , cy) ∈ G∗× c∗X × c∗y} and the empty list

of optimal solutions O
2: while Et 6= ∅ or t ≤ L do

3: Obtain (Gt, ctX , c
t
y) = arg min(G,cX ,cy)∈Et−1 TBIC(G, cX , cy) and append it to list O

4: Obtain from Et−1 the set I of triplets (G, cX , cy) that induce a “similar” partition
to P (Gt, ctX , c

t
y), that is

I =
{

(G, cX , cy) : ARI
(
P (G, cX , cy), P (Gt, ctX , c

t
y)
)
≥ η, for (G, cX , cy) ∈ Et−1

}
5: Et = Et−1 \ I

6: end while

7: return O = {(G1, c1
X , c

1
y), . . . , (GT , cTX , c

T
y )}

Once the optimal set has been identified, we further define two sets of “best” and
“stable” intervals for each optimal solution (Gt, ctX , c

t
y) in O, respectively defined as follows:

Bt =
{

(G, cX , cy) : TBIC(G, cX , cy) ≤ TBIC(Gt+1, ct+1
X , ct+1

y )

and

ARI
(
P (Gt, ctX , c

t
y), P (G, cX , cy)

)
≥ η for (G, cX , cy) ∈ E0

}
,

(13)

St =
{

(G, cX , cy) : ARI
(
P (Gt, ctX , c

t
y), P (G, cX , cy)

)
≥ η for (G, cX , cy) ∈ E0

}
. (14)

In Bt, we want to identify the set of parameter values for which an optimal solution remains
“best”. In doing so, we include in Bt all solutions in E0 ARI-similar to the optimal, and
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Figure 4: Monitoring tools in Step for the “Toy dataset”. The optimal solutions are indi-
cated by the cells with ordinal numbers 1, 2 and 3 (α = 0.04). Each solution is featured by
one color, showing the range of cases in which it is best (darker opacity cells), and stable
(lighter opacity cells), varying G, cX (horizontal axis) and cy (vertical axis) in E0.

not worse than the next optimal solution. In St, we want to identify the set of parameter
values for which an optimal solution is “stable”, including in St all solutions ARI-similar
to the optimal. Therefore, we have Bt ⊆ St and, graphically, solutions in Bt and St will
be represented by darker and lighter opacity cells, with colors depending on the optimal
solution they correspond to.

By referring again to the toy dataset of Figure 2, and after having selected α = 0.04
in the first step, the resulting output is depicted in Figure 4. The optimal solutions are
indicated by ordinal numbers, from 1 to 4. A different color is associated to each optimal
solution, with a darker nuance used to depict the range of hyper-parameters for which it
remains the best, while a lighter shading indicates the set of associated stable solutions.
This novel graphical tool is an extension of the car-bike plot (Cerioli et al., 2018) specifically
designed to monitor the space of solutions of CWRMs. Each facet incorporates models with
the same number of mixture components, while the x-axis and the y-axis display different
values for cX and cy, respectively. As expected, it is evident that the first optimal solution
is achieved setting G = 2, which remains best (i.e., with lower TBIC with respect to
the second optimal) for the whole range of cX and cy. We notice that the first optimal
solution recovers the true values of cX = cy = 2. The second optimal model possesses three
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components with homoscedastic error lines (cy = 1), while the third one has also spherical
covariance structure (cX = 1). It is apparent that for this toy dataset the only sensible
result is the first one, nevertheless it may happen that more than one solution, depending
on the field of application, could be of interest. In this regard, a thought-provoking socio-
economic analysis is reported in Hennig and Liao (2013).

3.3 Exploring optimal solutions and related outliers

Once a reduced set of optimal solutions has been identified, it remains to determine the one
that could be, in principle, better suited to solve the problem at hand and, if of interest,
to characterize further the units that have been flagged as outliers. While the thorough
treatment of these two issues is application-dependent and thus domain expertise should
never be left aside, we hereafter provide yet another graphical tool to assist the decision-
making process.

We defined in (11) the Discriminant Factor: a quantity that measures the strength of the
assignment/trimming of each unit compared to the second best alternative. Its definition
within the CWRM framework entirely agrees with the original formulation, introduced
in García-Escudero et al. (2011), developed for robust Gaussian mixtures. Nonetheless,
the CWM characterization in (2) clearly breaks down the overall mixture density in the
contribution of the g regression lines and the component-wise random covariates. Therefore,
the strength of the assignment/trimming may be driven to a greater extent by one of the
two terms comprising the CWM formulation. On this wise, and specifically for the CWRM,
we define the Y |X Discriminant Factor DFY |X(i) and the X Discriminant Factor DFX(i)
for observation i. In order to do that, let us consider two additional quantities:

DY |X
g (xi, yi) = π̂gφ1(yi; b̂′gxi + b̂0

g, σ̂
2
g) and DX

g (xi) = π̂gφd(xi; µ̂g, Σ̂g),

for g = 1, . . . , G. As done for the terms in (10), we sort the newly defined quantities

D
Y |X
(1) (xi, yi) ≤ . . . ≤ D

Y |X
(G) (xi, yi), and, analogously, DX

(1)(xi) ≤ . . . ≤ DX
(G)(xi).

Consequently, the Y |X-Discriminant Factor and the X-Discriminant Factor are respec-
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tively defined as follows:

DFY |X(i) =


log

(
D
Y |X
(G−1)(xi, yi)/D

Y |X
(G) (xi, yi)

)
for i not trimmed

log
(
D
Y |X
(G) (xi, yi)/DY |X

(G) (x([Nα]+1), y([Nα]+1))
)

for i trimmed
i = 1, . . . , N,

(15)
and

DFX(i) =


log

(
DX

(G−1)(xi)/DX
(G)(xi)

)
for i not trimmed

log
(
DX

(G)(xi)/DX
(G)(x([Nα]+1))

)
for i trimmed

i = 1, . . . , N. (16)

The rationale behind the definitions of DFY |X and DFX mirrors the one outlined in Sec-
tion 3.1 for DF, with the difference that with (15) and (16) we are separately assessing
the strength of the assignment/trimming for each unit in relation to the regression lines
and the covariates, respectively. Contrarily to DF, it thus may happen that DFX(i) and
DFY |X(i) assume a positive value for a trimmed unit i. The reason being that trimming
is enforced by looking at the overall contribution of observation i to the likelihood in the
model specification, i.e., unit i is discarded according to the CWM density, but it may not
have been the case if we were to individually look at the two terms in (2). To illustrate the
idea, let us go back to the toy example employed all over these sections: observation 98 is
a vertical outlier, meaning that the reason for it to be trimmed is due to its poor fitting to
the regression term, whilst if we were to evaluate its marginal density on X only we would
not have discarded it. The reverse argument can be made for unit 99, a group-specific good
leverage point. Silhouette plots (Rousseeuw, 1987b) can be employed for visually exploring
the defined discriminant factors. Figure 5 reports 3 panels in which DF(i), DFY |X(i) and
DFX(i) are displayed for the first optimal solution recovered for the toy dataset, alongside
the resulting scatter plot. We notice that no observation is doubtfully assigned according
to the CWM discriminant factor because DF(i) is lower than log(1/10) (dashed red line) for
all i = 1, . . . , N . On the other hand, by inspecting DFY |X and DFX for the 4 trimmed units
we can easily uncover more details on why such observations were trimmed. While unit 100
(bad leverage point) showcases very low values for both DFY |X and DFX , DFY |X(99) is very
close to 0, indicating that unit 99 does not seem to be an outlier according to the regression
line. Indeed, unit 99 is a good leverage point. Conversely, DFX(98) is positive: observation
98 is a vertical outlier and it should not have been trimmed according to the marginal
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Figure 5: Toy dataset, first optimal solution. Scatter plot of the estimated model (left
panel) and silhouette plots displaying DF(i), DFY |X(i) and DFX(i), i = 1, . . . , N (right
panel). Row indexes, ordered according to DF, are reported on the y-axis. Dashed red
line superimposed at log(1/10). Solid dots at the left-most part of the bar plots indicate a
resulting smaller value, not displayed for visualization purposes. Trimmed units are colored
in black.
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distribution of X only. Lastly, unit 97 is, as previously defined, a CWM outlier since its
outlyingness results from the CWM density, and points as such showcase positive values for
both DFY |X and DFX . The Discriminant Factors can also be employed to evaluate which
optimal solution shall be preferred. Along with it, the CWM decomposition of the total sum

of squares (Ingrassia and Punzo, 2020) provides a validation tool, specifically tailored for
CWM, in which a three-term decomposition of the total variability on Y is produced. Fig-
ure 6 displays a ternary diagram showcasing an example of such decomposition for the top
three solutions of the Toy dataset. NBSS represents the proportion of variability explained
by the weighted differences between the weighted group means and the overall mean (i.e.,
the variability of Y explained by the latent group variable G), NEWSS is the proportion
explained by the inclusion of the covariates X via the slope(s) of the local regressions while
NRWSS accounts for the proportion of unexplained variability. Such a measure provides
further insights into the set of optimal solutions retained by our monitoring procedure. A
detailed interpretation of the plot and its usage for validating the optimal solutions found
via the monitoring procedure is given in the Supplementary materials.

Some final considerations are due before focusing on applications to real multivariate
data, to show the effectiveness of our proposal, as they are the main contribution of the
present paper. A reduced version of the proposed methodology was briefly introduced in
Cappozzo et al. (2021), where neither real data applications nor the novel definitions of
Discriminant Factors for CWRM were included. Along the same research line, it is worth
noting that Torti et al. (2021) recently presented a semiautomatic monitoring procedure
for robust regression clustering, with a focus on international trade data. While the two
approaches aim at solving a similar problem, the resulting methodologies are quite different:
a discussion on the matter is reported in the last section of Cappozzo et al. (2021).

4 Application to real datasets

All the subsequent analyses are carried out by means of the R environment for statistical
computing (R Core Team, 2022): an R package implementing the monitoring procedure is
available at github.com/AndreaCappozzo/CWRMmonitor, while an R script providing a
short tutorial on how to use the package can be found in the Supplementary Materials.
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Figure 6: Toy data. Example of ternary diagram from the Total Sum of Squares Decom-
position for the top three optimal solutions identified in Figure 4.

4.1 Tourism dataset

The effectiveness of cultural attractions in enhancing tourism flows is a widely debated
issue, both in cultural economics and in tourism economics. Quite surprisingly, however,
the evidence about the relationships between attendance at cultural attractions and tourist
flows is restricted to specific, albeit interesting, case studies. In this analysis, we focus on the
correlation between tourism flows and attendance at museums and monuments. In addition,
we aim to study whether there could be a different forecast on museum attendances, based
on tourist overnights, across the different seasons of the year. We analyze Italian data
with a monthly frequency from January 1996 to December 2017 (Source: Italian Central
Statistics Office, and Ministry of Cultural Heritage and Tourism). The data comprises
N = 264 monthly bivariate observations: attendance at museums and monuments (Y ,
data in millions), and tourist overnights (X, data in millions).

Part of this dataset (subset of data from January 1996 to December 2010) has been
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Figure 7: Tourism data: Plot of tourist overnights (X, in millions) and attendance at
museums and monuments (Y , in millions) in Italy over the period from January 1996 to
December 2017 (N = 264). Month abbreviations are used as labels in the scatter plot.

analyzed in Ingrassia et al. (2014) by applying the CWM with interesting results, demon-
strating the differences in the intra-group marginal distributions and the linear models. In
the following years, some manifest outliers appeared in the data, hence a robust approach
is required. Figure 7 displays a scatterplot encompassing the entire 22-year period: few
scattered units are visible on the top of the graph.

The two-step approach described in Section 3 has been applied to the Tourism dataset.
The first monitoring phase generate the plots in Figure 8. Moving from left to right along
the horizontal grid, an additional observation is sequentially trimmed from the data until
a level of trimming equal to 0.095% is reached. Conditioning on the trimming level, the
best solution minimizing (8) is retained considering up to 8 components in the mixture.

First of all, we see a dramatic drop in the volume of the scatter matrix d

√∣∣∣Σ̂5

∣∣∣ (bottom
right plot), after trimming the four more implausible observations. Presumably, some noise
was previously fitted, increasing its variability. This conjecture is also confirmed by the
monitored values of the ARI. While the majority of the groups have stable estimations
for the regression coefficients and regression errors, it is apparent that the sixth group,
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Figure 8: Monitoring tools in Step 1 for the Tourism dataset. The considered metrics are
monitored as a function of the trimming level α. Unstable components disappear when
α ≥ 0.072.

24



depicted in yellow in Figure 8, is quite an unstable component. Its regression coefficients
and errors are very volatile across increasing values of α. In an attempt to match all
these considerations, and looking at the minimum proportion of doubtful assignments, the
information obtained by the monitoring approach suggests selecting α = 0.072. With
this choice, the 17 most scattered observations in Figure 7 are trimmed out and the tiny
sixth group is discarded from contributing to the final model. It is worth noting that
all the trimmed observations refer to the period January 2011-December 2017, which is
characterized by a sudden increase of the volumes in terms of attendance at museums and
monuments in comparison with the previous decades.

After Step 1, Step 2 focuses on the exploration of the model space when α = 0.072.
We aim to monitor the optimal solutions, considering the entire range of modeling choices,
varying the constraints and the number of groups. Figure 9 displays the result of the second
step. Solution 1 involves 5 groups, and has good properties of optimality and stability. It
is plotted in the leftmost panel in Figure 10. The local regression lines are also indicated,
providing a different forecast on museum attendances, based on tourist overnights. By
comparing with the leftmost panel in Figure 11 (referred to the same solution), we see that
such forecasts depend on the different seasons of the year.

Solution 2 comprises 4 groups in data, and is stable for all values of the hyper-
parameters cX and cy, for G = 4. The corresponding clustering representation is given
in the central panels of Figures 10 and 11. Finally, Solution 3 is again involving 5 groups,
but its range of being best and stable is quite poor. The rightmost panels of Figure 10 and
11 display Solution 3.

A final consideration applies when comparing the three optimal solutions in Figure 10:
there is a substantial agreement on the different forecast of museum attendances, based
on tourist overnights, across the different seasons of the year. In addition, notice that the
trimmed units entirely agree for the three optimal models, clearly highlighting the peculiar
behavior of those data points and the necessity of discarding them from the estimation
procedure. To interpret the role of the outlying units, the silhouette plot of the discriminant
factors DF, DFY |X and DFX for the trimmed units obtained for Solution 1 is given in
Figure 12. We see that trimmed units are mostly vertical outliers, having positive DFX
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Figure 9: Monitoring tools in Step 2 for the Tourism dataset. The optimal solutions are
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featured by one color, showing the range of cases in which it is best (darker opacity cells),
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Figure 10: Tourism data. The top three best solutions obtained in Step 2, with the linear
models estimated within the clusters.
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Figure 11: Tourism data. The top three best solutions obtained in Step 2, with respect to
month labels.
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Figure 12: Tourism data. Silhouette plots of the discriminant factors DF, DFY |X and DFX
for the trimmed units in Solution 1.

and very low values of DFY |X . Although the reasoning above suggests that observations
characterized by an unexpected volume of attendance at museums and monuments should
be trimmed, one may nonetheless be interested in modeling them. Such an outcome can
be obtained by setting a trimming level that is lower than α = 0.072: an analysis on this
regard is reported in the Supplementary Materials.

4.2 Female vole dataset

The next dataset encompasses N = 86 observations of 7 measurements from females of
two species of voles, Microtus californicus and M. ochrogaster. The original dataset is
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described in Table 5.3.7 of Flury (1997) and it is available in the Flury R package. As
previously done in the CWM literature (Subedi et al., 2013, 2015), we aim at regressing
the age variable (measured in days) on p = 6 characteristics of the voles, namely condylo

incisive length, incisive foramen length, alveolar length of upper molar tooth row, zygomatic

width, interorbital width and skull height. The species variable acts as a grouping factor,
and it is assumed unknown.

Results for the first monitoring step of Section 3.1 are displayed in Figure 13. We
immediately notice that, conditioning on each trimming level, the model selection criterion
in (8) always selects G = 2, identifying the definite existence of two clusters. Even though
no extreme outliers are known to be present in this dataset, it seems that a small proportion
of trimming induces a higher difference in the regression parameters of the two groups,
particularly in the second and third element of the b̂g vectors. On the other hand, an α

value higher than 0.10 seems to produce some abrupt changes in the line-plot patterns,
indicating that a moderate trimming level may be sufficient to account for some mild
outliers. Lastly, notice the drop in the proportion of doubtful assignments for α = 0.07 and
the stability in the ARI around such value. For all these reasons, the first monitoring step
seems to suggest α = 0.07 as a reasonable value for carrying out the subsequent analysis.

The second step of our monitoring procedure investigates the validity and stability of
solutions for a given trimming level (α = 0.07 in this case): results are graphically reported
in Figure 14. As expected, the first optimal solution is obtained when G = 2, for which
several solutions remain best when cX and cy is set higher than 16. The other optimal
solutions are attained with G = 3, with small best and stable sets. The extra group arises
as the species of M. ochrogaster voles is split in two sub-clusters: the same behavior has
been previously observed with the linear Gaussian cluster weighted factor analyzers model
(Subedi et al., 2013). On the other hand, the first optimal solution not only identifies the
correct number of groups but it also recovers the highest classification accuracy obtained
for this dataset (see Table 8 in Subedi et al. (2015)). After having a-posteriori assigned the
trimmed units via the MAP rule, only two ochrogaster observations are misclassified. The
very same results, not displayed here, were also obtained employing a smaller trimming
level (α = 0.023). Still, it was not possible to retrieve the same classification performance
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Figure 13: Monitoring tools in Step 1 for the Female vole dataset. The considered metrics
are monitored as a function of the trimming level α. The proportion of doubtful assignment
is minimized for α = 0.07, and line plots for regression slopes and standard deviations
remain stable for adjacent increasing values of α = 0.07.
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Figure 14: Monitoring tools in Step 2 for the Female vole dataset. The optimal solutions
are indicated by the cells with ordinal numbers 1, 2, 3 and 4 (α = 0.07). Each solution is
featured by one color, showing the range of cases in which it is best (darker opacity cells),
and stable (lighter opacity cells), varying G, cX (horizontal axis) and cy (vertical axis) in
E0.

if no trimming is applied.
The pairs plots for the first and second optimal solutions are respectively displayed

in Figure 15 (along with the three panels of silhouette plots) and Figure 16. From the
silhouette plots we see that no observation is doubtfully assigned according to the CWM
discriminant factor criterion: DF(i) ≤ log(1/10) for all i = 1, . . . , 86. Moreover, by in-
specting DFY |X and DFX for the 6 trimmed units we can easily observe that unit 24 has
been trimmed because it is a good leverage point, units 1 and 35 are mild vertical outliers.

4.3 AIS dataset

The third application deals with the AIS dataset included in the sn package (Azzalini,
2021), and recently analyzed in the mixture of regression literature (Soffritti and Galim-
berti, 2011; Dang et al., 2017). It contains measurements of 102 male and 100 female
athletes collected at the Australian Institute of Sport (Cook and Weisberg, 1994). We
consider a subset of five variables, namely lean body mass (LBM), body mass index (BMI),
sum of skin folds (SSF), percentage body fat (PBF) and hemoglobin concentration (y). The
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Figure 15: Female vole data. Pairs plot of the first optimal solution obtained in Step
2, different colors denote the partition induced by the CWRM, where trimmed units are
denoted by “×” (left panel) and silhouette plots displaying DF, DFY |X and DFX for all
observations in the dataset (right panel).
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Table 1: AIS data. Confusion matrix and Adjusted Rand Index for the top two optimal
solutions obtained with the partition induced by the CWRMs (trimmed units have been
a-posteriori assigned using the MAP rule).

(a) First optimal solution (ARI=0.758)

1 2

Female 100 0
Male 13 89

(b) Second optimal solution (ARI=0.646)

1 2 3

Female 1 72 27
Male 90 1 11

blood composition variable y acts as the response variable, while the remaining biometrical
measures are the covariates. We aim at uncovering the cluster-wise linear structure in the
data by exploring the space of solutions induced by the CWRM. The gender of the athlete
will be the grouping variable thereafter.

The first step of the proposed monitoring procedure is displayed in Figure 17. It can
be observed that, when no or little trimming is considered, the selection criterion in (8)
suggests that a mixture of 3 components is preferred to capture the heterogeneity in the
data. Conversely, for α ≥ 0.035 the number of clusters settles to G = 2. This behavior is
due to the presence of some extreme observations and to the skewness showcased by some
biometrical variables, as discussed in Azzalini and Capitanio (1999). After the disappear-
ance of the third component, the line-plot patterns seem to stabilize and the proportion of
doubtful assignments decreases, suggesting that a trimming level α = 0.035 is adequate to
achieve robustness in the solutions.

The second step, obtained conditioning on the selected trimming level, yields results
shown in Figure 18. The first optimal solution is a cluster weighted model with 2 compo-
nents and homoscedastic regression errors (cy = 1). It is stable in a wide range of values on
the (cX , cy) grid. The second and third optimal solutions appear when G = 3, indicating
that an extra component may be as well included when modeling the AIS dataset. With
respect to the estimated partition, the first optimal solution agrees with the true underly-
ing male/female subdivision, correctly classifying 189 athletes by their gender: see Figure
19 and the confusion matrix reported in Table 1 (a). The three silhouette plots inform
us that the outliers are all good leverage ones, say points scattered far from the clusters
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Figure 17: Monitoring tools in Step 1 for the AIS dataset. The considered metrics are
monitored as a function of the trimming level α. The proportion of doubtful assignment
is minimized for α = 0.035, the estimated parameters are stable for contiguous values of
α = 0.035 and the unstable component also disappears when α ≥ 0.035.
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Figure 19: AIS data. Pairs plot of the first optimal solution obtained in Step 2, different
colors denote the partition induced by the CWRM, trimmed units are denoted by “×”
(left panel) and silhouette plots displaying DF, DFY |X and DFX for all observations in the
dataset (right panel).
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Figure 20: AIS data. Pairs plot of the second optimal solution obtained in Step 2, different
colors denote the partition induced by the CWRM. Trimmed units are denoted by “×”.

in the covariates (DFY |X over the threshold). Alike, the clustering induced by the second
result uncovers the male/female separation, yet the latter class is further divided into two
sub-populations, as reported in Figure 20 and in Table 1 (b). By looking at the pairs plot,
we notice that the third group, smaller in size in comparison to the two main ones, cap-
tures women with a peculiar pattern in some of the biometrical variables, particularly in
the sum of skin folds (SSF) and percentage body fat (PBF). Furthermore, this difference is
also reflected in the relationship with the response variable y (hemoglobin concentration),
for which the associated regression parameters are very different in the two clusters, with
even opposite signs. While a clinical interpretation of this result is out of the scope of the
present manuscript, it is apparent that sport scientists and sport analysts could fruitfully
employ the proposed methodology.

5 Conclusions

It is now widely acknowledged in the literature that unsupervised classification problems
have to be based on robust approaches, like those featured on impartial trimming - to pro-
tect from the harmful effects of outliers, and constrained estimation - to set a well-defined
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Maximum Likelihood problem. To this extent, hyper-parameters tuning is required within
the inferential process, and the debate about how to set them needs a fresh rethinking. A
methodology for selecting the optimal level of trimming, in particular, is still missing, and
it is the object of ongoing research. This is the most critical choice for the robust inferential
procedure: masking issues can arise when adopting a lower than needed level of trimming,
while excessive trimming can bias the estimate of the number of clusters and reduces the
efficiency of the statistical method.

In this paper, we contributed to the literature by introducing graphical and computa-
tional tools to assist the practitioner in the delicate task of setting hyper-parameters in
the estimation of robust cluster weighted models. The method relies on the combination
of two exploratory steps. In the first monitoring step, the crucial assessment of the per-
centage of trimming is addressed. A wide exploration of the model space is made, and the
graphical representation of some cluster-dependent metrics, coupled with the evolution of
the estimated model parameters, allows to single out a small set of sensible options for
the trimming proportion α. Afterward, for each plausible value of α, the whole space of
solutions is explored, varying the hyper-parameters governing the heterogeneity on the co-
variates and the regression error terms, as well as the number of groups. The final output
offers a set of optimal solutions, featured by the interval of hyper-parameter values in which
their optimality, stability and validity hold.

An assessment of the role and extent of the outlying observations has been provided,
introducing three new silhouette plots. The purpose is to understand the possible effects
of the contaminated observations, referring to the clustering of the X-covariate, and the
local regression lines Y |X, following the nature of the Cluster Weighted model.

The proposed monitoring techniques perform satisfactorily well in all the considered real
data examples, providing valuable insight for the resulting model fitting. We have chosen
datasets with covariates ranging from dimension 1 up to 6, and analyzed phenomena in
the field of tourism, biology and sport analysis. On the light of the obtained results, the
researcher is advised to resort to the monitoring strategy for an effective tuning, by con-
jugating it with any domain-specific knowledge that could be available. Such information
can be very easily incorporated in the proposed procedure. To sum up, one of the main
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aspects of our methodology concerns the selection of the trimming parameter, related to
the efficiency/robustness trade-off in finite samples.

Some possible directions for research concern strategies to reduce the computational
burden of the proposed method. While our procedure greatly benefits from parallelization
(a discussion on computing times for the case studies of Section 4 is reported in the Supple-
mentary Materials), the exhaustive search for the best model among all the combinations of
α, G, cX , cy may be further reduced considering conditional search and/or ad-hoc criteria
for sensibly exploring the model space. In addition, to speed up ML estimation, initial val-
ues for the parameters can be inherited by contiguous solutions already obtained through
the search. Furthermore, there may be interest in extending the monitoring process to more
challenging scenarios, e.g., robust mixture of factor analyzers (García-Escudero et al., 2016),
that were out of the scope of the present paper. Lastly, the proposed methodology can
be further expanded to account for mixtures of cluster-weighted generalized linear models,
with univariate as well as multivariate response, along the lines of Dang et al. (2017). All
the aforementioned ideas are currently being explored and they will be the object of future
research.
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Appendix: the supplemental files include a further analysis of the tourism dataset, valida-
tion of optimal solutions via the Total Sum of Squares Decomposition and additional
details on computing times.

R code: the supplemental files include an R script providing a short tutorial on how
to use the CWRMmonitor package (github.com/AndreaCappozzo/CWRMmonitor)
implementing the monitoring procedure described in the paper.

Rds file: the supplemental files include an .Rds object containing the CWRM models
fitted on the AIS data to which apply the monitoring procedure, recovering the results
reported in Section 4.3
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