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Abstract
We release a database of cloze probability values, predictability ratings, and computational estimates for a sample of 205
English sentences (1726 words), aligned with previously released word-by-word reading time data (both self-paced reading
and eye-movement records; Frank et al., Behavior Research Methods, 45(4), 1182–1190. 2013) and EEG responses (Frank et
al., Brain and Language, 140, 1–11. 2015). Our analyses show that predictability ratings are the best predictors of the EEG
signal (N400, P600, LAN) self-paced reading times, and eyemovement patterns, when spillover effects are taken into account.
The computational estimates are particularly effective at explaining variance in the eye-tracking data without spillover. Cloze
probability estimates have decent overall psychometric accuracy and are the best predictors of early fixation patterns (first
fixation duration). Our results indicate that the choice of the best measurement of word predictability in context critically
depends on the processing index being considered.

Keywords Cloze probability · Predictability ratings · Surprisal estimates · Prediction

Introduction

In recent years, the role of context-dependent probabilistic
information in language processing has garnered significant
attention from researchers in psycholinguistics and neurolin-
guistics. The general picture that is emerging from this
research effort is that predictable words are processed faster
(as shown by shorter gaze fixations, Ehrlich & Rayner, 1981;
Staub, 2015; and self-paced reading times, Fernandez Mon-
salve et al., 2012; Frank & Hoeks, 2019) and elicit reduced
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neural signals associated with processing difficulty (N400
ERP component, DeLong et al., 2005; Kwon et al., 2017;
Van Berkum et al., 2005; frontotemporal fMRI activation,
Baumgaertner et al., 2002; Dien et al., 2008; and MEG
responses, Takahashi et al., 2021). However, while now
it is generally acknowledged that context-dependent prob-
abilistic information plays a prominent role in language
processing, there are still some major open questions regard-
ing how the language processor makes use of these statistical
data. It has been proposed that contextual word probabilities
are employed to generate predictions about the upcom-
ing lexical material (see for instance de Varda & Marelli,
2022; McDonald & Shillcock, 2003; Urbach et al., 2020),
emphasizing the role of implicit expectations in language
processing, in line with a “top-down” model of language
comprehension (Lupyan & Clark, 2015). Nonetheless, there
is still no consensus on the linking function that relates con-
textual word probabilities and cognitive effort, with various
accounts proposing either a linear (Brothers & Kuperberg,
2020; Reichle et al., 2003), a logarithmic (Levy, 2008;
Luke & Christianson, 2016; Smith & Levy, 2013; Shain
et al., 2022), or a super-logarithmic relationship (Hoover
et al., 2022; Meister et al., 2021). Furthermore, different
accounts have proposed theoretically distinct reasons why
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predictive processing should take place in the first place, with
some researchers proposing a main role in language learn-
ing (Chang et al., 2006) or facilitating mutual understanding
(Pickering & Garrod, 2007), and others characterizing pre-
diction in language understanding as a consequence of the
general neural and functional organization of the humanmind
(Clark, 2013; see Huettig, 2015 for an overview). Crucially,
these alternatives entail fundamentally different conclusions
about the processes underlying the language system (Broth-
ers & Kuperberg, 2020; Smith & Levy, 2013). A proper
evaluation of these different perspectives is thus a central
issue in confronting cognitive theories. The existence of
linguistic stimuli with normed properties is of paramount
importance to experiments aimed at contrasting theoretical
accounts on the influence of context-dependent probabilistic
information in language processing. Even when an exper-
iment is not specifically aimed at investigating the effects
of contextual predictability, the rigor of the conclusions that
can be drawn from a sentence-level psycholinguistic study
depends on accurately estimating stimulus predictability to
include it as a statistical control.

The traditional approach to assess the contextual probabil-
ity of a word wi consists in presenting participants with that
word’s context (typically the previous words in the sentence,
w1, w2 . . . wi−1) and ask them to generate an appropriate
continuation (Taylor, 1953). The proportion of people that
picked the target word wi as the continuation of the sen-
tence is referred to as the cloze probability of the word wi ,
which is taken as an estimate of the subjective probability
computed by a skilled reader during online comprehension1.
Cloze probability has proven itself successful in predicting
behavioral (Duffy et al., 1989; Luke & Christianson, 2016;
Schuberth et al., 1981) and neural responses (DeLong et al.,
2005; Kutas & Hillyard, 1984; Szewczyk & Federmeier,
2022).However, probabilistic data derived from the cloze test
are expensive to collect, and they tend to provide unreliable
estimates for low-probability words under realistic sample
sizes (Shain et al., 2022). Note that this aspect is problem-
atic not only from a methodological point of view but also
from a theoretical one, since differences in processing cost
associatedwith low-probabilitywords are crucial in disentan-
gling between the linear and the logarithmic accounts of the
relationship between predictability and processing cost. As a
way to offset this complication, researchers have sometimes
employed predictability ratings from a normative group of
participants, where the extent to which aword could be antic-
ipated from the previous context is evaluated on aLikert scale
(Brothers et al., 2020; DeLong et al., 2014; Rayner et al.,

1 Indeed, if participants generate their continuations by unbiasedly
sampling from their subjective probability distribution and we ignore
inter-participant variability, then cloze probabilities would correspond
to subjective probabilities (Smith & Levy, 2011).

2001; Szewczyk&Federmeier, 2022)2. Predictability ratings
have the advantage of providing predictability estimates for
low-probability words, which would be rarely generated in a
cloze task, if at all. However, both predictability ratings and
cloze responses are collected as non-speeded, off-line mea-
surements, which can be affected by conscious reflection and
thus distorted by strategic effects (Kutas&Federmeier, 2011;
Smith&Levy, 2011; Szewczyk&Federmeier, 2022).A third
alternative to measuring contextual predictability relies on
computational estimates obtained from large corpora of nat-
uralistic text. These estimates are generally obtained from
statistical language models developed in the field of natural
language engineering. Statistical language models are usu-
ally trained to predict the next word in a sequence of natural
text (a task that is referred to as causal or auto-regressive
language modeling) and thus define a conditional probabil-
ity distribution over the lexicon that can be employed as an
estimate of word predictability in context. Computational
estimates of word predictability have the undeniable advan-
tage of generating probability distributions over the whole
vocabulary, and thus are particularly suited to model the low-
probability tail of the distribution. Computational estimates
are an interesting option also from amethodological perspec-
tive, since they can account for human performance without
requiring human annotation; indeed, it has been argued that
it is preferable to devise non-self-referential explanations
of human behavior starting from the objective properties of
the stimuli (see for instance Günther et al., 2020; Günther
et al., 2021; Westbury, 2016). However, it is still not clear
whether computational estimates achieve the same psycho-
metric predictive power that can be obtained by employing
human annotation, since these data-driven probabilistic mea-
surements have been shown to performworse (Smith&Levy,
2011), on par (Shain et al., 2022) or even better (Hofmann
et al., 2022; Michaelov et al., 2022) than cloze probability
estimates obtained with human intervention. Furthermore,
predictability estimates from causal language models fail to
accurately account for the human processing difficulty of
some specific linguistic constructions, such as garden path
sentences (Arehalli et al., 2022; Van Schijndel & Linzen,
2021), nested hierarchical structures (Hahn et al., 2022), and
grammatical violations (Wilcox et al., 2021).

In light of the considerations reported above, it is clear that
each of the three methodological options for the measure-
ment of predictability has its own strengths and weaknesses.
Each alternative might be more suited to certain research set-
tings, depending on the focus and the theoretical motivation

2 The exact description of the construct that participants are asked to
evaluate in such rating tasks can vary across studies, as raters may be
asked to evaluate how well a word fits into a sentence (e.g., Rayner et
al., 2001) or how expected is each sentence ending (Szewczyk & Feder-
meier, 2022). In the present study, we opted for this second formulation,
since it stresses the focus on predictability rather than phrasal fit.
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of the study. For instance, studies focusing on the influ-
ence of objective text-based statistical information in reading
might be more prone to consider computational estimates.
In contrast, studies that emphasize the role of subjective
probabilistic knowledge might consider cloze probability or
predictability ratings as better psychometric candidates. To
promote a multifaceted approach to context-dependent sen-
tence processing, we release a database of aligned cloze
probability estimates, predictability ratings, and computa-
tional estimates for a sample of 205 sentences (1726 words)
released by Frank et al. (2013).

Research in incremental language processing crucially
relies on appropriate measurements of word predictability
in context, i.e., on a proper operationalization of the inde-
pendent variable that is assumed to influence anticipatory
processing. However, in typical psycholinguistic studies,
these variables are not considered by themselves, but need
to be related to dependent variables reflecting the processing
cost associated with word probability. For this reason, psy-
cholinguistic resources aimed to foster research in sentence
processing should ideally comprise both predictability esti-
mates and empirical measurements of processing demands.
In line with this rationale, the contextual predictability esti-
mates that we release are aligned with previously released
word-by-word reading time data (both self-paced reading
and eye-movement records, Frank et al. (2013)) and EEG
responses (Frank et al., 2015).

Materials andmethods

Data

Cloze probability

Stimuli were extracted from the datasets by Frank et al.
(2013) and Frank et al. (2015), for a total of 205 English
sentences, ranging from 5 to 15 words. This initial sentence
samplewas used to obtain items for the cloze probability task:
each sentence was progressively split at each word starting
from the first one, so that for every sentence n − 1 frag-
ments were generated (where n is the length of the sentence
in words). Table 1 reports an example of the items obtained
from the sentence The bored looking soldier just pointed.
Note that while in the table the sentence fragments are shown
incrementally, during data collection they were presented in
randomized order to the participants.

Following this procedure, a total of 1726 items were
obtained. These were presented in a typical cloze-probability
task: participants were asked to continue the sentence by
writing what they expect to be the next word. The instruc-
tions stressed that, even if participants came up with several
options, their task was always to produce one single word –

Table 1 Fragments and associated upcoming words obtained from the
sentence “The bored looking soldier just pointed”, used as stimuli in
the cloze probability and the predictability rating tasks

Sentence fragment Upcoming word

The Bored

The bored Looking

The bored looking Soldier

The bored looking soldier Just

The bored looking soldier just Pointed

Note that the associated upcoming word was only accessible to the
participants in the second task

the one that, in their immediate intuition, should follow what
was presented. Moreover, it was emphasized that the to-be-
producedword could belong to any part-of-speech, including
articles and prepositions.

Data were collected in a series of crowdsourcing stud-
ies through Prolifc Academics (https://www.prolific.co/).
The total item sample was randomly divided into 8 dif-
ferent lists, each including about 216 items. Each list was
administered via a separate study, released via the crowd-
sourcing platform. A total of 80 participants were involved
in each study, with a compensation of 5.63 pounds. All
participants were self-declared English first-language speak-
ers. As a further control, before the actual cloze probability
task, participants were asked to complete a simple word
knowledge test comprising ten items from Nation’s Vocab-
ulary Size Test (Nation & Beglar, 2007). Participants that
made more than two mistakes in the test were excluded.
With this criterion, 13 participants were not considered in
the following analyses. The median completion time was
27 min. The produced cloze responses were automatically
spell-checked with the Python package pyspellchecker
(version 0.7.1), a simple toolkit that combines frequency
and Levenshtein orthographic distance to correct misspelled
words. The records of all the corrections (3.95% of the pro-
duced words) are reported in the Supplementary Materials.
Punctuation signs were not considered in the calculation of
cloze probability estimates.

One common problem with cloze probability norms is
that they often produce zero probability estimates for some
items. In other words, there are some cases where the tar-
get word wi is not produced by any participant as a possible
continuation of w1, w2 . . . wi−1. This aspect is problem-
atic both from a theoretical and a methodological point of
view. First, it is unlikely that all the words that have not been
produced in a cloze task correspond to impossible sentence
continuations according to the participants’ subjective prob-
ability distribution; under realistic sample sizes, words with
p(wi |w1, w2 . . . wi−1) < .001 will be virtually absent from
the participants’ responses. Intuitively, this problem high-
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Table 2 Summary description of the computational models considered in this study

Model Description

n-grams n-grams are simply sequences of n words; an n-gram model estimates the probability of a word wi by only
considering the previous n − 1 words - in other words, they approximate P(wi | w1, w2, . . . wi−1) as P(wi |
wi−n+1 . . . wi−1). This probability value is obtained by counting and normalizing the number of occurrences
of word sequences of length n.

Phrase Structure Grammars PSGs are models that take into account the hierarchical syntactic structures of the sentences (Chomsky, 1957).
They are composed of a finite set of rules that governs the way some constituents (e.g., a Noun Phrase) may be
composed by other constituents (an Adjective and a Noun), which in turn correspond to lexical items (wooden,
chair). The PSG considered in this study is stochastic, and assigns a probability to each rule (Roark, 2001).

Recurrent Neural Networks RNNs are neural networks that are trained to predict the next word given the previous sentence context. They are
endowed with feedback connections that allow information to persist over time (Elman, 1990). Through these
feedback loops they maintain an internal representation of the context that gets updated incrementally after
each word. A detailed description of the RNN architecture employed in this study is presented by Fernandez
Monsalve et al. (2012) and Frank (2013).

Transformers Unlike RNNs, which process data sequentially, transformers process all the input data in parallel by using a
mechanism called “self-attention” to weigh the importance of different parts of the input (Vaswani et al., 2017).
This allows transformers to better capture long-distance dependencies.

lights the need to divide the probability mass over more
words than the ones that have been actually seen. Second,
zero-probability events are problematic for the accounts that
propose a logarithmic functional form of the effect of pre-
dictability on processing times since the logarithm of zero is
undefined. As a way to offset these problems, we smoothed
the probability distribution derived from cloze responses via
Laplace smoothing (Eq. 1).

Psmoothed(wi ) = |wi | + α
∑K

j=1(|w j |) + α · K (1)

Where α = 1 is an additive constant, |wi | is the number of
participants that produced wi in response to the cloze item,
and K the size of the set of words produced in the cloze item.

As mentioned in the Introduction, the functional form of
the effect of word predictability on processing cost is still
a matter of debate. While there is ample consensus that
probabilistic estimates extracted from statistical language
models provide better fit indexes to behavioral data if log-
transformed (see for instance Berzak & Levy, 2022; Shain
et al., 2022; Smith & Levy, 2013; Wilcox et al., 2020), it
has been argued that cloze probability values better predict
human behavior if entered linearly in a statistical model
(Brothers et al., 2020, but see Shain et al., 2022). In the
following analyses, we chose not to commit a priori to a
specific alternative, and considered both cloze probability
(clozep) and its negative log transformation (clozes = − log
clozep).3

3 In the context of information-theoretic approaches to language pro-
cessing, this value is often referred to as the surprisal of a word
(surprisal(wi ) = − log p(wi |w1, w2 . . . wi−1); Levy, 2008).

Predictability ratings

The same items employed in the cloze-probability task
(aggregated in the very same eight lists) were also admin-
istered in a rating experiment. In this case, participants were
presented with both the sentence fragment and the associ-
ated upcoming word (see Table 1) and asked to rate, on a
scale from 1 to 5, howmuch they would expect the presented
word to follow the presented sentence fragment. Instructions
emphasized that we were not asking to evaluate how plausi-
ble or sensible that word was, but rather how they expect to
find it while reading the preceding sentence context.

Also in this case, data were collected in a series of eight
crowdsourcing studies through Prolific Academics (https://
www.prolific.co/). The same procedure described for the
cloze probability task was followed. A total of 60 partici-
pants, who did not take part in the cloze data collection, were
involved in each study, with a compensation of 3.13 pounds.
Data from participants that made more than two mistakes
in Nation’s Vocabulary Size Test were discarded. With this
criterion, 14 participants were excluded. The median com-
pletion time was 22 min.

Computational estimates

Statistical language models vary by an ample margin in
their architecture and computational complexity. Frank et al.
(2013) have released, in conjunction with their ERP data,
probabilistic estimates derived from several models (N-
grams, Recurrent Neural Networks, and Phrase Structure
Grammars, trained to predict both lexical items and Parts
of Speech; see Table 2 for a brief description of the mod-
els). However, research in natural language engineering has
made significant progress since 2015, mainly driven by the
widespread adoption of transformer-based neural networks
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(Vaswani et al., 2017). Transformers are deep learning mod-
els that rely on the mechanism of self-attention, weighing the
significance of each token in the input data in order to gen-
erate a prediction. They are designed to process sequential
data in parallel and create probability distributions over the
whole lexicon. Research in psycholinguistics has largely fol-
lowed the progressive switch to the transformer architecture,
with transformer-based predictability estimates being evalu-
ated as indexes of processing difficulty (Wilcox et al., 2020;
Hao et al., 2020; Merkx & Frank, 2021). In our dataset, we
release probabilistic estimates derived fromsevenpre-trained
transformer-based neural network models, with sizes rang-
ing from 124 million to 2.7 billion parameters. Four models
(GPT-2124M , GPT-2355M , GPT-2774M , GPT-21.5B) belong to
the GPT-2 family (Radford et al., 2019), an array of auto-
regressive language models; three models (GPT-Neo125M ,
GPT-Neo1.3B , GPT-Neo2.7B) are instances of the GPT-Neo
class, an open-source alternative toGPT-2 andGPT-3models
trained on amore diverse sample of texts (Black et al., 2021).
In light of the ample evidence that computational predictabil-
ity estimates have a logarithmic effect on processing times
(e.g., Shain et al., 2022; Smith & Levy, 2013), we convert
theword probability estimates extracted from the transformer
models to surprisal values. In the case of multi-token words,
we summed the log probabilities assigned to the sub-word
tokens, following the chain rule.

Employed variables

In this study, we considered a series of word predictability
measurements (henceforth wpms) and neural and behavioral
measures of processing demands (nbms).

We employed as wpms our measurements obtained via
human annotation (rating, clozep, clozes) and our com-
putational log-probability estimates (GPT-Neo[125M,2.7B],
GPT-2[124M,1.5B]). Besides our human-annotated measures
and the outputs of the transformer models, we also consid-
ered the computational estimates released by Frank et al.
(2015), namely the output of three N-gram models (bigram,
trigram, tetragram), a Phrase Structure Grammar (PSG), and
a Recurrent Neural Network (RNN). A summarywith a short
description of each model is reported in Table 2. Note that
Frank et al. (2015) released several versions of the PSG and
RNN, each trained on an increasingly large subsample of
the available textual data. For simplicity, we only report the
results of themodels trained on all the available data.We also
disregarded the surprisal estimates relative to parts of speech
instead of lexical items.

The nbms that we considered are the self-paced read-
ing times (SPR) and eye movement patterns (first fixation
duration: FFix; first pass duration: FPass; go-past duration:
GoPast; right-bounded time: RightBound) released by Frank
et al. (2013); the ERP components we analyzed are the N400,

(Early) Post-N400 Positivity (EPNP and PNP), (Early) Left
Anterior Negativity (ELANandLAN) and P600 components
as released by Frank et al. (2015). The various nbms and the
processing stages they are assumed to reflect are summarized
in Table 3; for more details on the ERP time windows and
electrode siteswe redirect the reader toFrank et al. (2015); for
detailed information on the eye-tracking records see Frank
et al. (2013).

Analyses

Following Frank et al. (2015), we discarded from our anal-
yses words attached to a comma, clitics, and sentence-final
words; after this exclusion, our analyses were carried out on
N = 1487 words.

We first run descriptive analyses aimed at capturing the
relationships between the measures we collected; following
these, we report a series of inferential analyses to compare
the predictive power of our measures in relation to several
neural and behavioral indexes of processing difficulty.

We started by inspecting the Pearson correlations between
all the available measures (i.e., both measures of predictabil-
ity and processing), and complemented this analysis with
a hierarchical clustering based on the correlation patterns.
The clustering analysis was based on a dissimilarity matrix
constructed as the negative absolute correlation matrix, and
Ward’s method was employed as an agglomerative cluster-
ing criterion. The Ward’s method (Ward, 1963) finds at each
step the pair of clusters that increases by the least amount the
within-cluster variance after the merging is performed.

In a second step, we compared the predictive power of
our predictability measurements and the ones released by
Frank et al. (2015) in estimating word-by-word processing
times (both during self-paced and natural reading) and ERP
amplitudes. To perform such a comparison, we fit a series of
linear4 regression models with each wpm × nbm combina-
tion as the independent and dependent variable, respectively.
All themodels included as covariates the position of theword
wi in the sentence, subtitle-based log-frequency estimates
(Brysbaert et al., 2012), length (in characters), and all the
two-way interactions between these covariates.

4 Our choice of employing linear regression as our main analytical
method is motivated by the general consensus on the view that the func-
tional form of the effects of log-probability on behavioral observables is
linear (at least when computed from text-based models, as motivated in
the Introduction). However, the shape of predictability effects on EEG
responses has not garnered a comparable attention (but see Szewczyk
& Federmeier, 2022), and the possibility of different linking functions
between predictability and ERP responses must be considered. For the
sake of comparability, we present here the analyses performed with lin-
ear regression models, but we also analyzed the EEG responses with
non-linear spline-based regression through Generalized Additive Mod-
els (GAMs; Wood, 2011). The results of the non-linear analyses are
reported in Appendix C.
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Table 3 Summary description of the neural and behavioral measurements considered in the study

Measure Description

First fixation duration The time spent on the first single fixation on wi . It has been characterized as a measure of low-level orthographic and
pre-lexical processes (Radach & Kennedy, 2013), early lexical access, and predictive processing (Demberg & Keller,
2008; Staub, 2015).

Gaze duration The sum of the duration of fixations landing on wi before the gaze leaves it (i.e., the time spent looking at wi during
the first pass of the gaze). This measure has been proposed as an index of the processing costs associated with lexical
access, and possibly of early syntactic and semantic integration (Inhoff & Radach, 1998; Rayner, 1998).

Right-bounded time Summed duration of all fixations on wi before the first fixation on a word further to the right; it thus includes gaze
duration plus further fixations on wi after regressive eye movements.

Go-past time Sum of the duration of all fixations from the time the gazes lands on wi up to the first fixation on a word further to
the right. Note that this often includes not only fixations on wi , but also fixations on words to its left. It is considered
a high-level integrative measure, although it has been noted that the fact that it incorporates both the occurrence of a
regression and re-reading of previous segments makes it a complex or even ambiguous eye-tracking measure (Radach
& Kennedy, 2013).

Self-paced
reading time

Participants press a key on a keyboard to control the pace at which they read; every time they press the button,
they advance to the next word or phrase, and reading times are recorded. Self-paced reading times are influenced by
semantic, syntactic (De Vincenzi et al., 2003), and pragmatic factors (Ditman et al., 2007).

N400 The N400 is a relative negativity with a centro-parietal distribution peaking around 400 ms after the presentation of
wi . Its amplitude is modulated by both low-level factors, such as frequency and orthographic and phonological factors,
and high-level features that impact meaning processing (Kutas & Federmeier, 2011).

Early Post-N400
Positivity

An early ERP component with positive polarity arising around 500 ms after the presentation ofwi , particularly evident
in prefrontal sites. It is thought to be modulated by purely lexical expectations, independently of the conceptual
relationships between wi and the anticipated completion (Thornhill & Van Petten, 2012).

Post-N400 Positivity The PNP is a positivity arising between 600 and 900 ms after the onset of wi
a . It has been functionally characterized

in an analogous way as the EPNP (Thornhill & Van Petten, 2012).

Early Left Anterior
Negativity

The ELAN component is a left anterior negativity peaking around 150 ms after the presentation of the word; it is
considered to be indicative of fast and automatic first-pass parsing processes (Gunter et al., 1999).

Left Anterior
Negativity

The LAN component is a left frontal relative negativity observed around 350 ms after the onset of wi (Kaan & Swaab,
2003). It has been proposed as an index of phrase structure building processes (Friederici, 1995), although there have
been proposals that link it to non-syntax-specific working memory processes (Kluender & Kutas, 1993).

P600 Late positive wave peaking about 600 ms after the onset of wi mainly in centro-parietal sites. This ERP component
is thought to be indicative of syntactic reanalysis (Friederici et al., 1996), late responses to semantic anomalies (Van
Herten et al., 2005), and compositional integration (Aurnhammer et al., 2021).

aIn the dataset released by Frank et al. (2015), however, the time window of interest for the PNP was reduced to 600–700 ms to minimize the effects
of the upcoming word wi+1 on the response to wi

Note that self-paced reading times and, to a lesser extent,
eye-movement patterns, are known to be sensitive to spillover
effects (Frank et al., 2013; Just et al., 1982). In the context
of information-theoretic approaches to psycholinguistics, a
common procedure to capture these effects involves the
inclusion of the values of the independent variables (fre-
quency, length, surprisal) relative to wi−1 and sometimes
wi−2 as covariates in the regression models (see for instance
Berzak & Levy, 2022; Goodkind & Bicknell, 2018; Hao et
al., 2020) or to consider as the interest area a region compris-
ing the target and the following word (Smith & Levy, 2011).
However, these analytical choices are problematic in the case
of our study for three main reasons.

First, they limit the comparability of the results across
measures, as eye-movement patterns are known to respond
to properties of wi−1, while self-paced reading times are
considered as susceptible even to features of wi−2 (see for
instance Meister et al., 2022) and EEG data are not generally

considered to be sensitive to spillover effects. Thus, control-
ling for spillover effects would imply analyzing the different
nbms with different model specifications, limiting the extent
of the comparisons that can be legitimately drawn.

Second, considering spillover effects produces a signif-
icant data loss, since the first N words (with N being
proportional to the width of the assumed spillover effect) of
each sentence have to be discarded as there are no previous
words available for computing the relevant word properties.
This problem is exacerbated by the fact that the discarded
words always occur in the same sentence positions (i.e.,
the first words in each sentence), potentially altering in a
systematic way the distribution of processing times and pre-
dictability estimates in the sample.

Third, with spillover effects it is more difficult to draw
conclusions on the fine-grained temporal dynamics of lan-
guage processing; indeed, if the processing cost on wi is
explained on the basis of the properties of wi−1 and wi−2,
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all the processing indexes become closer to late measures,
as they are modeled as a function of linguistic features that
have been accessible to the language processor since it was
processing the two preceding words.

On the other hand, spillover effects are documented in the
literature, and by excluding them we do not account for a
systematic source of variation in human responses.5 Further-
more, the spillover effects of surprisal differ in their extent
across the different measurements considered; most of the
slowdown associated with surprisal is localized on wi in the
case of eye-tracking (Wilcox et al., 2023; Smith & Levy,
2013), and on wi+1 in the case of self-paced reading (Smith
& Levy, 2013). This asymmetry entails that, by excluding
spillover effects, the effect of surprisal on self-paced read-
ing times might be specifically underestimated. Hence, we
report here both the results obtained without considering
the spillover, and the results obtained when accounting for
spillover effects.

To evaluate the increase in the explained variance due to
the inclusion of thewpm as a fixed effect, we compared each
experimental model with a corresponding baseline model,
whichwas identical except for the absence of the fixed effects
of the wpm. The increase in explained variance was opera-
tionalized as the difference in the log-likelihood (�LogLik)
between the baseline and the experimental model, as com-
mon practice in computational psycholinguistics (Goodkind
& Bicknell, 2018; Hao et al., 2020; Oh & Schuler, 2022;
Kuribayashi et al., 2021). In assessing the best predictors
of each nbm, we employed the Akaike information criterion
(AIC;Akaike, 1998).We considered as best predictors (a) the
ones associated with the highest log-likelihood (or, equiva-
lently, the lowest AIC), and (b) with �AICi < 2, where
�AICi is the difference between the AIC of the considered
model (AICi ) and the lowest AIC among the alternative
regression models (AICmin ; see Symonds & Moussalli,
2011; Richards, 2005).

In order to assess the robustness of the results of our infer-
ential analyses, we further tested their generalizability with
5-fold cross-validation. Each of the folds was iteratively left
out from the training data, and the regression coefficients
were estimated on the remaining four folds; the left-out fold
was then employed as a disjoint test set to assess the fit quality
on unseen data. As in the previous analyses, fit quality was
measured as the �LogLik in the left-out fold with respect
to the baseline; p values were calculated with the likelihood-
ratio test, and aggregated across foldswith Fisher’s combined
probability test.

5 We thank Stefan Frank and one anonymous reviewer for raising this
concern.

The data and materials for all experiments are available at
https://github.com/Andrea-de-Varda/prediction-resource.

Results

Descriptive analyses

The correlation matrix including the human-derived wpms
and all the nbms is reported in Fig. 1; the exact correlation
coefficients are reported in detail in the online supplementary
materials. The matrix shows that the lexical-predictability
estimates (clozep, clozes , and ratings) are correlated; the
sign of the correlations between clozep and rating on the
one hand and clozes on the other hand is negative because
of the conversion to surprisal. The eye movement patterns
(FFix, FPass, GoPast, RightBound) are strongly related to
each other, andmoderately correlatedwith all the predictabil-
ity measurements. Self-paced reading times do not display
any notable preferential correlation with any predictability
measurement; on the other hand, the amplitudes of the LAN,
N400, and P600 ERP components show a positive relation-
ship with predictability.

The results of our hierarchical clustering analysis are
depicted as a dendrogram in Fig. 2. As can be seen in the
figure, all the measurements we release display consistent
correlational patterns, with our estimates based on human
annotation (rating, clozep , clozes) and our transformer-based
measures estimates (GPT-Neo[125M,2.7B], GPT-2[124M,1.5B])
forming two clusters. Not surprisingly, our transformer-
based predictability values are most strongly correlated with
the text-based estimates released by Frank et al. (2015),
i.e., N-grams, RNN, and PSG; then, the closest cluster is
the one composed by our human-based estimates. The fact
that human- and text-based estimates of lexical predictability
are closer to each other than to the other variables corrob-
orates the internal validity of our measures as indexes of
context-dependent word predictability. On the above merg-
ing level, the predictability estimates are grouped with the
eye-movement measures; this result shows that the indexes
of processing difficulty that aremore strongly correlatedwith
word predictability in context are derived from gaze pat-
terns. However, these correlational results should be taken
with caution, since they do not partial out the effects of fre-
quency, which is well known to correlate with both fixation
durations (e.g., Carpenter & Just, 1983; White et al., 2018)
and contextual probability6 (Ong & Kliegl, 2008; Moers
et al., 2017), resulting in possibly spurious correlations. The

6 Frequency is in fact a form of unigram probability, i.e., an N-gram
model with context size equal to zero.
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Fig. 1 Correlation matrix including our measurements derived from
human subjects (rating, clozep , clozes ) and the various behavioral and
neural indexes available for our dataset. To increase readability, the com-

putational estimates have been excluded from the correlationmatrix; the
complete results are plotted in Appendix A and reported in detail in the
online supplementary materials

regression analyses described in the following subsection
take into account this possible confound by including fre-
quency as a covariate.

Inferential analyses

Figure 3 summarizes the results of 165 linear regressionmod-
els (15wpms× 11nbms);more precisely, it plots the increase

in model fit (�LogLik) obtained by independently adding
each measure of predictability as a fixed effect to the base-
line model. The complete results are reported in Appendix B
(Table 5). Our predictability measurements exert a reliable
impact on various neural and behavioral processing indexes.

Mostwpms are generally predictive of eye movement pat-
terns. The earliest fixation measurement considered (FFix) is
significantly associated with all the wpms; the most robust

Fig. 2 Hierarchical clustering of the computational, behavioral, and neural indexes available for our dataset
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Fig. 3 Increase in model fit (�LogLik) in the linear regression models that could be ascribed to the inclusion of thewpms measuring predictability,
with several neural and behavioral indexes of processing cost as dependent variables. The �LogLik values presented were obtained on the training
data

predictors are PSG (B̂ = 1.8669, t = 3.9510, p = 0.0001,
�LogLik = 6.1975), clozes (B̂ = 2.3591, t = 3.8709, p =
0.0001, �LogLik = 7.4946) and GPT-2124M (B̂ = 1.3433, t
= 3.8335, p = 0.0001, �LogLik = 7.3513).

In the case of first pass duration (Fpass), the best predictor
isGPT-2124M (B̂ =3.0184, t =6.4610,p< 0.0001,�LogLik

= 20.6923); from graphical inspection, Fpass results show
a clear advantage of the transformer-based surprisal values
over the computational predictability estimates released by
Frank et al. (2015).

Then, the most robust predictor of RightBound is once
again GPT-2124M (B̂ = 3.6020, t = 6.6772, p < 0.0001,

123



Behavior Research Methods

�LogLik = 22.0787); like in the case of Fpass, the
transformer-based estimates outperform simpler N-gram,
PSG, and RNN models.

As for GoPast, several predictors satisfy the condition of
being the best regressors in the analyses (�AICi < 2); in
particular, bigram (B̂ = 5.0016, t = 4.4580, p < 0.0001,
�LogLik = 9.9239), tetragram (B̂ = 3.9031, t = 4.4178, p<

0.0001,�LogLik = 9.7471), PSG (B̂ = 5.3099, t = 4.4360, p
< 0.0001,�LogLik = 9.8268), GPT-2124M (B̂ = 3.7861, t =
4.2642, p< 0.0001,�LogLik = 9.0851), andGPT-Neo125M
(B̂ =3.8111, t =4.4487, p< 0.0001,�LogLik =9.883) have
a comparable performance in accounting for GoPast read-
ing times. Taken together, the results on eye-movement data
show that fixation patterns are generally best accounted for
by text-based measurements (and in particular transformer-
based surprisal values) rather than human-derived estimates.
One notable exception is FFix, which counts clozes as one
of its best predictors.

SPR times are best predicted by the ratings (B̂ = -4.1687,
t = -4.4909, p < 0.0001, �LogLik = 10.07); the sim-
pler measurements released by Frank et al. (2015) and the
transformer-based computational estimates obtain compara-
ble results; for instance, GPT-Neo125M and tetragram are
virtually indistinguishable from a model selection perspec-
tive (�AIC = 0.1659).

In describing the results obtained with the ERP data, we
will focus on the LAN, N400, EPNP, and P600 components.
Indeed, no significant effect was found in PNP, and only one
wpm reached statistical significance with ELAN amplitudes
as dependent variables, without surviving to cross-validation
(see the following section).

The strongest predictor of LAN amplitudes are the ratings
(B̂ = 0.2018, t = 4.5639, p < .0001, �LogLik = 10.3975);
the other significant regressors are the cloze-based measure-
ments and all the transformer-based estimates.

The N400 component is then the nbm for which our pre-
dictability estimates provide the starker increase in model fit.
Its amplitude is best predicted by the ratings (B̂ = 0.3084, t
= 8.4921, p < .0001, �LogLik = 35.3873).

Nonetheless, all the wpm we consider produce a consid-
erable increase in explained variance. As for the EPNP ERP
component, our results show that its amplitude is better pre-
dicted by the GPT-Neo family, and in particular the two
largest models (GPT-Neo1.3B : B̂ = -0.0243, t = -3.0294, p
= 0.0025, �LogLik = 4.5995; GPT-Neo2.7B : B̂ = -0.0251,
t = -2.9765, p = 0.003, �LogLik = 4.4407). EPNP is the
only ERP measure that is not better accounted for by the
ratings; the other regressors that are significantly associated
with its amplitude are all the transformer-based models but
GPT-2355M .

The last component we consider is the P600; the regres-
sors associated with the most considerable increase in model
fit are the ratings (B̂ = 0.1847, t = 5.6200, p < 0.0001,

�LogLik = 15.7095), GPT-Neo2.7B (B̂ = -0.0513, t = -
5.7444,p< 0.0001,�LogLik =16.4045), andGPT-Neo1.3B
(B̂ = -0.0478, t = -5.5979, p< 0.0001,�LogLik = 15.5871).
All the transformer-based models are predictive of the P600
amplitude, with relatively high �LogLik values; the mod-
els with more parameters (e.g., GPT-Neo2.7B , GPT-Neo1.3B)
tend to outperform their under-parametrized counterparts.
Note that this trend, whichwe also found in the case of EPNP,
is in contrast withwhatwe reportedwith eye-movement data,
where smaller transformermodels consistently outperformed
the largest GPT-2 and GPT-Neo variants. Overall, a notable
pattern that characterizes the ERP data is that, with the excep-
tion of the N400, EEG measurements are not significantly
associated with the predictability estimates obtained by the
simpler statistical models released by Frank et al. (2015);
indeed, predictability effects in LAN, EPNP, and P600 only
emerge when employing predictability ratings, transformer-
based surprisal values, and, in the case of P600 and LAN,
clozes .

To summarize our results, we report in Table 4 an outline
of the nbms that are best fitted by the regressors of interest.
The table clearly shows that the ratings are particularly effec-
tive in the prediction of self-paced reading times and EEG
responses, while GPT-2124M is particularly suited at cap-
turing eye movement patterns. Overall, transformer-based
measurements tend to outperform all the N-gram models,
PSG, and RNN.

Cross-validation

The robustness of the results we obtained in the previous sec-
tion was assessed by means of 5-fold cross-validation. The

Table 4 The last column of the table reports the nbms that are best
fitted by the wpms considered in this study

Measure Best predictor of

Bigram GoPast

Trigram None

Tetragram GoPast

PSG FFix, GoPast

RNN None

GPT-2124M FFix, Fpass, RightBound, GoPast

GPT-2355M None

GPT-2774M None

GPT-21.5B None

GPT-Neo125M GoPast

GPT-Neo1.3B EPNP, P600

GPT-Neo2.7B EPNP, P600

Clozep None

Clozes FFix

Rating SPR, LAN, N400, P600
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Fig. 4 Results of the cross-validation analyses. The increase in model fit (�LogLik) obtained in the linear regression models is averaged over the
fivefold cross-validation. The error bars indicate the standard error of the mean

results of the analyses are depicted in Fig. 4, and reported in
detail in the online supplementary materials. Overall, cross-
validation confirmed the results of our previous analyses.
While the �LogLik are consistently lower (as expected,
since the models are trained and tested on different folds
of the data, with a more conservative approach), the patterns

of results are very similar with respect to what we reported
in the previous section; indeed, the average rank correlation
between the results obtained in the previous section and the
results of the cross-validation analyses is ρ = 0.8568.

In the case of FFix, Fpass, and RightBound, the best pre-
dictors are the same that have been previously identified. In
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the case of GoPast, bigram, tetragram, and PSG still achieve
the best predictive power (bigram: �LogLik = 1.7007, SE
= 0.4018, p = 0.0026; tetragram: �LogLik = 1.6998, SE =
0.6167, p = 0.0034; PSG: �LogLik = 1.7447, SE = 0.5334,
p = 0.0027), while GPT-2124M (�LogLik = 1.1544, SE =
0.9373, p = 0.0089) and GPT-Neo125M (�LogLik = 1.2034,
SE = 1.0754, p = 0.0023) perform generally worse in the
cross-validation setting. SPR times are once again best pre-
dicted by the ratings (�LogLik = 1.7591, SE = 0.6037, p
= 0.0029); however, GPT-Neo125M (�LogLik = 0.6128, SE
= 1.2656, p = 0.0057) underperforms in the cross-validation
settings.

The most notable differences with the results described
in the previous section are found in the ERP data. Effects on
EPNP amplitudes, whichwere previously found to be associ-
ated with several nbms, did not survive the cross-validation
analyses. Similarly, none of the previously significant pre-
dictors of LAN responses were sufficiently robust to hold in
a cross-validation setting, with the exception of the ratings
(�LogLik = 1.8395, SE = 0.6936, p = 0.0013).7 The pattern
of results when considering N400 and P600 amplitudes was
virtually unchanged after cross-validation, as the correlation
with the previous results is (near-)perfect (N400: ρ = 1;
P600: ρ = 0.975).

Spillover effects

Self-paced reading times and fixation patterns are known
to be sensitive to properties of the previous words. In the
main results section, we decided to model reading times as
a function of the properties of wi , in order to (i) increase
the comparability of our results across measures, (ii) limit
the data loss, and (iii) compare wpms across early and
late processing measurements (see the Analyses section).
Nonetheless, for the sake of completeness and to better cap-
ture the specificity of each measurement, we report in this
section the results of our spillover analyses.

In this section, we analyzed fixation times onwi as a func-
tion of the properties of wi and wi−1, and self-paced reading
times as a function of the properties of wi , wi−1 and wi−2;
our testing procedure was identical to the cross-validation
analyses with respect to model configuration and consid-
ered variables. Note that the spillover analyses were carried
out on N = 1090 words (as opposed to 1487 words without
spillover), hence these results are not directly comparable to
those of previous analyses.

The results of the spillover analyses are depicted in Fig. 5,
and reported in the online supplementary materials. The fig-
ure shows that, numerically, predictability ratings display an

7 Note, however, that LAN effects emerge more clearly in a cross-
validation setting if the predictability estimates are included non-
linearly as predictors in the models (see Appendix C).

advantage over the other wpms in explaining both fixation
patterns and self-paced reading times. The other wpms that
satisfy the criteria of being the best predictors for each mea-
surement are clozes (�LogLik = 4.9528, SE = 0.4316, p <

0.0001), tetragram (�LogLik = 6.2884, SE = 1.4978, p <

0.0001), and trigram (�LogLik = 5.1188, SE = 1.0968, p <

0.0001) in the case of FFix; tetragram in the case of Fpass
(�LogLik = 8.3601, SE = 1.9676, p < 0.0001) and Right-
Bound (�LogLik = 10.0153, SE = 2.2233, p < 0.0001);
and GPT-Neo1.3B (�LogLik = 4.1723, SE = 0.8479, p <

0.0001), GPT-2774M (�LogLik = 4.0821, SE = 0.5914, p <

0.0001) and GPT-21.5B (�LogLik = 4.0850, SE = 0.6649, p
< 0.0001) for self-paced reading times.

As we argued in the Methods section, if the processing
cost on wi is explained on the basis of properties relative
to the previous words, even early processing measures such
as FFix and Fpass become closer to late measures, since
they are characterized as a cognitive response to information
that was available to the language processing system when
it was processing wi−1. We propose that the edge that pre-
dictability ratings show over the other measurements could
be interpreted under this account; when reading patterns are
accounted for by the properties of the previous words, non-
speeded responses based on conscious reflection provide the
best wpms. We further note that accounting for spillover
effects increased the relative predictivity of the N -grammod-
els.

Note that, when accounting for spillover effects, all the
eye movement processing indexes display similar patterns
of results, as all the predictors achieve similar psychometric
predictive power across measurements (average rank corre-
lation ρ = 0.8268, as opposed to ρ = 0.3012 in the linear
analyses and ρ = 0.2482 with cross-validation). This obser-
vation corroborates our choice to separately analyze spillover
effects and the effects localized on wi to better exploit the
information provided by the different eye movement mea-
surements.

Discussion

Our results show that, overall, predictability ratings obtain
very high psychometric accuracy, outperforming the other
predictors in explaining self-paced reading, eye-tracking
(with spillover), and EEG data. Predictability ratings are
far less considered than cloze probability and computational
estimates in the literature on prediction in incremental sen-
tence processing (see for instance Hofmann et al., 2022;
Merkx & Frank, 2021; Michaelov et al., 2022); our find-
ings however suggest that the speakers’ explicit judgments
on the predictability of a word given the previous context
are highly predictive proxies of the processing cost associ-
ated with that word. On the other hand, cloze probability
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Fig. 5 Effects of predictability on eye movement and self-paced reading data, with spillover

lags behind both ratings and modern transformer-based sur-
prisal estimates. This finding corroborates the proposal that
some data-driven probabilistic measurements can perform
better than cloze probability estimates obtained with human
annotation (Hofmann et al., 2022; Michaelov et al., 2022).
However,we also show that,with appropriate sample size and
some design choices such as a suitable smoothing technique,
log-transformed cloze probability estimates are highly accu-
rate predictors of early eye-movement patterns. In particular,
we show that clozes is one of the best estimates in explaining
the variance of FFix, both with and without spillover.

Notably, cloze probability is consistently associated with
higher �LogLik values if entered logarithmically as a
regressor; indeed, clozes is a better predictor than clozep
in all the significant regression models (except in the case of
SPR without spillover). This difference provides empirical
support to the inferential theories of language comprehen-
sion, which advocate that the functional form of the effect of
word predictability on cognitive effort should be indeed log-
arithmic (Levy, 2008; Luke & Christianson, 2016; Smith &
Levy, 2013; Shain et al., 2022). Brothers&Kuperberg (2020)
suggested that a logarithmic linking function between pre-
dictability and processing cost might be a spurious finding

resulting from the employment of computational estimates
of word probability in context instead of subjective measure-
ments; our results, however, show that the result holds when
employing a measure of subjective probability as the inde-
pendent variable (see also Shain et al., 2022).

Another clear pattern that emerges from our results is
that, among the text-based estimates and the sizes tested
– which are not balanced across models –, transformers
have an edge over N-grams, PSG, and RNN. Among the
transformer-based models, however, the strongest predictive
performance is obtained byGPT-2124M , which is the smallest
model of the GPT-2 family and is among the best predictors
of four different eye-tracking measurements (FFix, Fpass,
RightBound, GoPast without spillover). Within each model
family, smaller models tend to show a slight advantage over
their over-parametrized counterparts, at least when consid-
ering eye-movement data.

This result supports the recent finding that larger pre-
trained transformers, which generally obtain better results
in next-word prediction and various downstream tasks, pro-
videworse psychometric estimates than their smaller analogs
(Oh et al., 2022; Shain et al., 2022; de Varda & Marelli,
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2023).8 It has been proposed that this “inverse scaling” trend
is due to the tendency of larger models to memorize word
sequences during training, which causes their expectations
to diverge from the ones that humans deploy during online
sentence processing (Oh & Schuler, 2022). This pattern is
consistent when considering eye-movement-based measure-
ments of processing difficulty; with the ERP data, however,
the comparison between the different transformer architec-
tures is less straightforward, and in the case of the P600 and
EPNP components bigger models have actually higher psy-
chometric predictive power.

The trendswe described above highlight the fact that some
models are generally better at explaining variance in neu-
ral and behavioral indexes of processing cost. However, a
critical aspect of our results is that not all processing mea-
surements are best modeled by the same regressors. For
instance, in the case of FFix,9 which is the earliest fixa-
tion measurement considered, simpler text-based estimates
such as the PSG perform on par or even better than the deep
transformer-based surprisal values. Similarly, also GoPast
reading times are well described by both relatively simple
models such as the N-grams and deep transformers with
hundreds of millions of parameters (although the N-gram
models are more robust to cross-validation). On the other
hand, there is a stark difference in the predictive power of the
transformer-based estimates and the statistical predictability
measures released by Frank et al. (2015) when considering
Fpass and RightBound, where the former measurements dis-
play a clear advantage. We propose that this asymmetry in
the explanatory power of the computational predictability
estimates might arise from the computational complexity of
the cognitive processes being modeled. FFix is a very early
eye-tracking measurement that is assumed to be indicative of
low-level oculomotor processes, early lexical access, andpre-
dictive processing (Demberg & Keller, 2008; Staub, 2015);
Fpass is thought to reflect lexical access and early semantic
and syntactic integration (Inhoff & Radach, 1998; Rayner,
1998), and while we are not aware of an accepted functional
characterization of RightBound, the measure subsumes both
FFix andFpasswhile including later fixations onwi , arguably
incorporating informative data on subsequent processing
stages (seeTable 3).GoPast has been described as an ambigu-
ous measurement (Clifton et al., 2007), as it incorporates the
occurrence of a regression, indicating an arguably early dif-
ficulty in integrating a word, and also the cost of overcoming

8 Note that this trend is reported only for relatively large transformer
models; under a certain threshold – which is yet to be empirically estab-
lished – larger models have an advantage over the smaller ones. For
instance, Merkx & Frank (2021) report that a two-layer transformer
outperforms a single-layer one in accounting for human reading data.
9 In this paragraph we always refer to the results obtained on eye move-
ment data without spillover, as they allow to better discriminate among
the different eye-tracking measures.

this difficulty through re-reading, which may reflect a late
processing effect.10 Thus, relatively simpler computational
models excel at explaining early processing while deep neu-
ral architectures are better at accounting for variance in
intermediate-to-late integrative operations; hybrid measure-
ments such as GoPast are then well modeled by both kinds
of predictability estimates. When spillover effects are taken
into account, even earlymeasurements such as FFix aremod-
eled as responses to the surprisal of the previous word, thus
partially losing their status of early measurements. Thus, it
is not surprising to find predictability ratings (non-speeded
responses based on deliberate reflection) among the best pre-
dictors of all eye movement measurements.

SPR data are best fitted by predictability ratings, both
with and without spillover; simple (e.g., tetragram) and
deep transformer-based computational estimates (e.g., GPT-
Neo125M ) obtain comparable results (although also in this
case theN-grammodels aremore solid in the cross-validation
analyses), and cloze probability reaches statistical signifi-
cance only if entered linearly in the regression model. The
fact that ratings show themost substantial effect onSPR times
is consistent with the observation that SPR is a consciously
controlled method of progressing through a sentence, which
puts within the reader’s intentional influence the criteria to
employ for pressing the spacebar (Clifton & Staub, 2011).
Analogously, predictability ratings are an explicit measure
produced after conscious reflection; hence, the fact that they
are the best predictors of SPR might be motivated by the
fact that both kinds of behavior are the product of deliberate
processes, possibly subjected to strategic effects. However,
as for all the late processing measurements, SPR times also
inevitably incorporate earlier components of the reading
behavior, which may explain why also the simpler statis-
tical estimates achieve a decent psychometric power. That
said, we stress that these results should be interpreted with
caution, as SPR can yield noisy data (Boyce et al., 2020).

The idea that different operationalizations of the pre-
dictability construct better capturedifferent processing indexes
is well exemplified by the EEG data considered in this
study.11 The LAN component is associated with our human-
derived estimates and the transformer-based computational
measures; the fact that the most complex predictability

10 Note also that GoPast is a more noisy eye-tracking measure, as
demonstrated by the fact that our baseline explains less variance in
comparison with the other models (LogLikbaseline = -8430.3154; FFix:
LogLikbaseline = -7065.6134; Fpass: LogLikbaseline = -7500.5393;
RightBound: LogLikbaseline = -7712.8367).
11 Note that Frank et al. (2015) found a significant effect of pre-
dictability only on the N400 component; however, they only considered
surprisal estimates derived from N-gram models, RNN, and PSG as
independent variables. Figure 3 clearly shows that predictability effects
on LAN, EPNP, and P600 only emerge if considering transformer- or
human-based estimates.
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estimates explain such an early measurement might seem
anomalous, but Frank et al. (2015) computed the LAN ampli-
tude on a timewindow that was partially overlappingwith the
N400 (LAN: 300–400 ms; N400: 300–500 ms), and on adja-
cent electrode sites. This observation, in conjunctionwith the
relatively high correlation between the recorded amplitudes
of the two components (r = 0.4967, p< .0001), suggests that
the results obtained with the former might be spurious corre-
lations. We additionally note that LAN effects were robust to
cross-validation only if entered non-linearly as predictors in
the regression (see Appendix C). In the context of this article,
we refrain from interpreting the results we obtained with the
EPNP component, as nowpm is predictive of its amplitude in
the cross-validation setting, even if modeled as a non-linear
spline.

The N400 ERP component, in contrast, is significantly
associated with all the predictability measurements consid-
ered; its stronger regressors are the predictability ratings, but
all the other wpms are robust after cross-validation. The fact
that the N400 component is well predicted by both shallow
and deep statistical information as well as human-derived
estimates is not surprising, given the vast array of informa-
tion that the N400 has been shown to respond to. Indeed,
it has been demonstrated that its amplitude is modulated
by expectations driven by text-based distributional informa-
tion (Frank et al., 2015), orthographic (Laszlo & Federmeier,
2009), semantic (Kutas & Federmeier, 2000), and pragmatic
factors (Van Berkum et al., 2009), and it is also suscepti-
ble to violations related to broad world knowledge (Hagoort
et al., 2004). Given the wide range of information sources
that inform the predictions the N400 is susceptible to, it is
not surprising that all the operationalizations of predictability
that we consider concur in explaining its amplitude.

The P600 component, on the other hand, is associated
only with clozes , ratings, and the transformer-based esti-
mates, while the more shallow predictions generated by the
simpler computational models do not achieve statistical sig-
nificance. Its best regressors are the ratings GPT-Neo2.7B ,
and GPT-Neo1.3B , which are the biggest models considered
in this study. These outcomes are in line with the functional
role that has been proposed for the P600. This ERP compo-
nent is an EEG signature that peaks 200 ms after the N400,
and thus, from a purely temporal perspective, it is a later
processing measurement with respect to the N400. The P600
amplitude has been shown to be modulated by late, con-
trolled syntactic reanalysis or repair (Friederici et al., 1996),
late meaning-related responses to a sentence elicited after
some semantic anomalies are detected (Van Herten et al.,
2005), and compositional integration in general (Aurnham-
mer et al., 2021; see Table 3). Given that the P600 occurs
in a later processing stage than the N400 and is assumed
to be indicative of complex integrative operations, the fact
that its amplitude is predicted by large context-aware net-

works and non-speeded human responses but not by simpler
computational models does not come as a surprise. This pat-
tern, along with the eye-tracking results described above,
is in line with the observation that it is not appropriate to
adopt a “one-size-fits-all” approach when studying the role
of linguistic statistical information across different cognitive
processes (Wingfield & Connell, 2022), and speaks in favor
of a flexible approach in choosing the appropriate computa-
tional estimate in cognitive modeling and psycholinguistics,
which should take into account the complexity of the process
being studied.

Conclusion

In this study, we presented a set of data-driven and human-
derived variables operationalizing the predictability of a
word in context, and compared their psychometric predic-
tive power in explaining the variance of several indexes
of processing demands. Our results showed that, overall,
predictability ratings are among the best predictors of cog-
nitive cost during online sentence comprehension, showing
a particularly marked advantage over the other measures in
predicting SPR times, ERP responses, and eye-tracking data
when spillover effects are accounted for.

Transformer-based surprisal estimates, on the other hand,
excel in accounting for eye movement data without spillover
effects. Lastly, log-transformed cloze probability estimates
have decent average psychometric accuracy and are the best
regressors of early eye-movement data (FFix); nonetheless,
they lag behind the other two alternatives in all the othermea-
sures of processing cost. Taken together, our results highlight
the importance of choosing the appropriate predictability
measurement in cognitive research, which crucially depends
on the processing index being considered.

We believe that the measurements we release can fos-
ter cognitive research in different ways. For instance, our
measurements of predictability can serve as independent
variables to aid the study of the interplay between sentence-
level and word-specific properties in language comprehen-
sion (see for instance Amenta et al., 2022; Dambacher et
al., 2006). Furthermore, we consider that our human-derived
measurements constitute a rich and interesting behavioral
phenomenon per se: in accordance with the dominant
approach in the literature, we considered predictability rat-
ings and cloze responses as independent variables to account
for implicit indexes of processing cost; however, from a dif-
ferent standpoint, one might examine them as dependent
variables that need to be explained on the basis of their objec-
tive properties. Within such an approach, one may take into
account the whole distribution of responses for each item – a
kind of information that is inevitably lost when considering
word predictability as a single, word-level scalar as we did
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in this study. For instance, when calculating the cloze proba-
bility of wi , one only considers the ratio of participants that
producedwi , ignoring other potentially relevant properties of
the response distribution. Indeed, recent studies are starting to
focus on the variability in the individual responses in several
domains such as object naming (Gualdoni et al., 2022), inter-
pretation of compound words (Guenther & Marelli, 2022),
and cloze distributions (Eisape et al., 2020). We believe that
predictability ratings and cloze responses could constitute
a valuable tool to investigate the processes underlying both
evaluative and productive components in sentence process-
ing.

Our release of ratings and cloze responses contributes to a
growing database of psychometric data collected on the same
set of sentence stimuli, which for now covers two behav-
ioral paradigms (eye-tracking and self-paced reading), EEG
data, and several predictability norms. Future norming stud-
ies might expand the dataset with other behavioral measures
of incremental language comprehension difficulty, including
for instance Maze data.

Appendix A: Correlation between the vari-
ables considered in the study

Fig. 6 Correlation matrix including human-derived predictability measurements, transformer-based computational estimates (GPT-Neo[125M,2.7B],
GPT-2[124M,1.5B]), and the various behavioral and neural indexes of cognitive cost
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Appendix B: Detailed results of the regres-
sion analyses

Table 5 Detailed results of the regression analyses

IV DV B̂ t p LogLikmodel LogLikbaseline �LogLik �AIC

bigram FFIx 1.5601 3.5185 0.0004 −7059.4158 −7065.6134 6.1975 −10.3951

trigram FFIx 1.1939 3.2132 0.0013 −7060.4409 −7065.6134 5.1725 −8.3450

tetragram FFIx 1.1731 3.3591 0.0008 −7059.9626 −7065.6134 5.6508 −9.3016

PSG FFIx 1.8669 3.9510 0.0001 −7057.8069 −7065.6134 7.8065 −13.6129

RNN FFIx 1.5795 3.1949 0.0014 −7060.4995 −7065.6134 5.1139 −8.2278

GPT-2124M FFIx 1.3433 3.8335 0.0001 −7058.2621 −7065.6134 7.3513 −12.7026

GPT-2355M FFIx 1.0583 3.3161 0.0009 −7060.1057 −7065.6134 5.5077 −9.0154

GPT-2774M FFIx 1.0820 3.1539 0.0016 −7060.6294 −7065.6134 4.9840 −7.9680

GPT-21.5B FFIx 1.1130 3.2304 0.0013 −7060.3857 −7065.6134 5.2277 −8.4553

GPT-Neo125M FFIx 1.1728 3.4638 0.0005 −7059.6063 −7065.6134 6.0071 −10.0141

GPT-Neo1.3B FFIx 1.0506 3.3282 0.0009 −7060.0657 −7065.6134 5.5476 −9.0953

GPT-Neo2.7B FFIx 1.0218 3.0885 0.0020 −7060.8334 −7065.6134 4.7800 −7.5601

clozep FFIx −10.7293 −2.6066 0.0092 −7062.2056 −7065.6134 3.4078 −4.8156

clozes FFIx 2.3591 3.8709 0.0001 −7058.1188 −7065.6134 7.4946 −12.9893

rating FFIx −3.8257 −3.1443 0.0017 −7060.6597 −7065.6134 4.9537 −7.9074

bigram Fpass 1.8462 3.0919 0.0020 −7495.7488 −7500.5393 4.7905 −7.5810

trigram Fpass 1.5903 3.1810 0.0015 −7495.4696 −7500.5393 5.0697 −8.1394

tetragram Fpass 1.6175 3.4433 0.0006 −7494.6028 −7500.5393 5.9365 −9.8731

PSG Fpass 2.4846 3.9080 0.0001 −7492.9011 −7500.5393 7.6383 −13.2766

RNN Fpass 1.9731 2.9651 0.0031 −7496.1325 −7500.5393 4.4069 −6.8138

GPT-2124M Fpass 3.0184 6.4610 < .0001 −7479.8471 −7500.5393 20.6923 −39.3845

GPT-2355M Fpass 2.4999 5.8687 < .0001 −7483.4256 −7500.5393 17.1138 −32.2276

GPT-2774M Fpass 2.5080 5.4708 < .0001 −7485.6446 −7500.5393 14.8947 −27.7894

GPT-21.5B Fpass 2.5679 5.5787 < .0001 −7485.0577 −7500.5393 15.4817 −28.9633

GPT-Neo125M Fpass 2.7545 6.0984 < .0001 −7482.0768 −7500.5393 18.4625 −34.9250

GPT-Neo1.3B Fpass 2.3512 5.5737 < .0001 −7485.0851 −7500.5393 15.4542 −28.9085

GPT-Neo2.7B Fpass 2.4358 5.5110 < .0001 −7485.4271 −7500.5393 15.1122 −28.2245

clozep Fpass −19.9252 −3.6055 0.0003 −7494.0327 −7500.5393 6.5067 −11.0134

clozes Fpass 4.3486 5.3278 < .0001 −7486.4060 −7500.5393 14.1334 −26.2668

rating Fpass −6.9527 −4.2593 < .0001 −7491.4751 −7500.5393 9.0643 −16.1286

bigram RightBound 2.9715 4.3190 < .0001 −7703.5183 −7712.8367 9.3184 −16.6369

trigram RightBound 2.5088 4.3548 < .0001 −7703.3638 −7712.8367 9.4729 −16.9457

tetragram RightBound 2.4869 4.5947 < .0001 −7702.2993 −7712.8367 10.5373 −19.0747

PSG RightBound 3.4518 4.7083 < .0001 −7701.7758 −7712.8367 11.0609 −20.1218

RNN RightBound 2.8296 3.6850 0.0002 −7706.0416 −7712.8367 6.7951 −11.5902

GPT-2124M RightBound 3.6020 6.6772 < .0001 −7690.7580 −7712.8367 22.0787 −42.1575

GPT-2355M RightBound 2.9778 6.0527 < .0001 −7694.6462 −7712.8367 18.1905 −34.3810

GPT-2774M RightBound 3.0687 5.7988 < .0001 −7696.1235 −7712.8367 16.7132 −31.4264

GPT-21.5B RightBound 3.1045 5.8412 < .0001 −7695.8811 −7712.8367 16.9556 −31.9112

GPT-Neo125M RightBound 3.3894 6.5035 < .0001 −7691.8758 −7712.8367 20.9609 −39.9218

GPT-Neo1.3B RightBound 2.8038 5.7545 < .0001 −7696.3747 −7712.8367 16.4620 −30.9240
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Table 5 continued

IV DV B̂ t p LogLikmodel LogLikbaseline �LogLik �AIC

GPT-Neo2.7B RightBound 2.8913 5.6629 < .0001 −7696.8891 −7712.8367 15.9475 −29.8951

clozep RightBound −22.5333 −3.5271 0.0004 −7706.6088 −7712.8367 6.2279 −10.4558

clozes RightBound 4.9069 5.1989 < .0001 −7699.3726 −7712.8367 13.4641 −24.9282

rating RightBound −8.7481 −4.6420 < .0001 −7702.0826 −7712.8367 10.7541 −19.5081

bigram GoPast 5.0016 4.4580 < .0001 −8420.3914 −8430.3154 9.9239 −17.8479

trigram GoPast 3.9280 4.1774 < .0001 −8421.5941 −8430.3154 8.7213 −15.4425

tetragram GoPast 3.9031 4.4178 < .0001 −8420.5682 −8430.3154 9.7471 −17.4943

PSG GoPast 5.3099 4.4360 < .0001 −8420.4885 −8430.3154 9.8268 −17.6537

RNN GoPast 5.1277 4.0978 < .0001 −8421.9216 −8430.3154 8.3938 −14.7876

GPT-2124M GoPast 3.7861 4.2642 < .0001 −8421.2303 −8430.3154 9.0851 −16.1702

GPT-2355M GoPast 2.9394 3.6336 0.0003 −8423.7077 −8430.3154 6.6077 −11.2154

GPT-2774M GoPast 3.1251 3.5946 0.0003 −8423.8478 −8430.3154 6.4676 −10.9351

GPT-21.5B GoPast 3.2206 3.6888 0.0002 −8423.5062 −8430.3154 6.8092 −11.6184

GPT-Neo125M GoPast 3.8111 4.4487 < .0001 −8420.4323 −8430.3154 9.8830 −17.7661

GPT-Neo1.3B GoPast 2.9638 3.7045 0.0002 −8423.4484 −8430.3154 6.8670 −11.7340

GPT-Neo2.7B GoPast 2.9579 3.5278 0.0004 −8424.0850 −8430.3154 6.2304 −10.4608

clozep GoPast −11.4677 −1.0961 0.2732 −8429.7116 −8430.3154 0.6038 0.7924

clozes GoPast 4.4228 2.8541 0.0044 −8426.2314 −8430.3154 4.0840 −6.1680

rating GoPast −11.4683 −3.7206 0.0002 −8423.3889 −8430.3154 6.9265 −11.8529

bigram SPR 1.1713 3.4501 0.0006 −6668.0520 −6674.0118 5.9599 −9.9197

trigram SPR 0.9809 3.4502 0.0006 −6668.0514 −6674.0118 5.9604 −9.9208

tetragram SPR 0.9269 3.4678 0.0005 −6667.991 −6674.0118 6.0208 −10.0417

PSG SPR 0.9586 2.6421 0.0083 −6670.5107 −6674.0118 3.5011 −5.0023

RNN SPR 1.2262 3.2402 0.0012 −6668.7524 −6674.0118 5.2594 −8.5188

GPT-2124M SPR 0.6284 2.3350 0.0197 −6671.2758 −6674.0118 2.7360 −3.4719

GPT-2355M SPR 0.7977 3.2646 0.0011 −6668.6733 −6674.0118 5.3385 −8.6770

GPT-2774M SPR 0.7477 2.8451 0.0045 −6669.9534 −6674.0118 4.0584 −6.1168

GPT-21.5B SPR 0.8626 3.2705 0.0011 −6668.6539 −6674.0118 5.3579 −8.7158

GPT-Neo125M SPR 0.9050 3.4917 0.0005 −6667.9080 −6674.0118 6.1038 −10.2076

GPT-Neo1.3B SPR 0.6255 2.5845 0.0098 −6670.6614 −6674.0118 3.3504 −4.7008

GPT-Neo2.7B SPR 0.7990 3.1550 0.0016 −6669.0245 −6674.0118 4.9873 −7.9746

clozep SPR −7.2889 −2.3118 0.0209 −6671.3298 −6674.0118 2.6820 −3.3640

clozes SPR 0.8142 1.7380 0.0824 −6672.4948 −6674.0118 1.5170 −1.0341

rating SPR −4.1687 −4.4909 < .0001 −6663.9418 −6674.0118 10.0700 −18.1401

bigram ELAN 0.0084 0.5214 0.6021 −2191.0887 −2191.2254 0.1367 1.7266

trigram ELAN −0.0006 −0.0432 0.9656 −2191.2245 −2191.2254 0.0009 1.9981

tetragram ELAN −0.0012 −0.0977 0.9222 −2191.2206 −2191.2254 0.0048 1.9904

PSG ELAN −0.0179 −1.0454 0.2960 −2190.6762 −2191.2254 0.5492 0.9016

RNN ELAN −0.0052 −0.2907 0.7713 −2191.183 −2191.2254 0.0425 1.9151

GPT-2124M ELAN −0.0287 −2.2719 0.0232 −2188.635 −2191.2254 2.5904 −3.1808

GPT-2355M ELAN −0.0076 −0.6577 0.5108 −2191.008 −2191.2254 0.2174 1.5652

GPT-2774M ELAN −0.0070 −0.5670 0.5708 −2191.0638 −2191.2254 0.1616 1.6768

GPT-21.5B ELAN −0.0068 −0.5502 0.5823 −2191.0733 −2191.2254 0.1522 1.6957

GPT-Neo125M ELAN −0.0202 −1.6541 0.0983 −2189.8511 −2191.2254 1.3743 −0.7486

GPT-Neo1.3B ELAN −0.0088 −0.7689 0.4421 −2190.9282 −2191.2254 0.2972 1.4056
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Table 5 continued

IV DV B̂ t p LogLikmodel LogLikbaseline �LogLik �AIC

GPT-Neo2.7B ELAN −0.0094 −0.7884 0.4306 −2190.9130 −2191.2254 0.3124 1.3751

clozep ELAN 0.0356 0.2402 0.8102 −2191.1964 −2191.2254 0.0290 1.9420

clozes ELAN 0.0115 0.5224 0.6015 −2191.0882 −2191.2254 0.1372 1.7256

rating ELAN −0.0790 −1.8009 0.0719 −2189.5966 −2191.2254 1.6288 −1.2576

bigram LAN −0.0165 −1.0156 0.3100 −2210.6890 −2211.2074 0.5184 0.9632

trigram LAN −0.01500 −1.1019 0.2707 −2210.5972 −2211.2074 0.6102 0.7797

tetragram LAN −0.0149 −1.1694 0.2424 −2210.5202 −2211.2074 0.6872 0.6256

PSG LAN −0.0261 −1.5066 0.1321 −2210.0671 −2211.2074 1.1402 −0.2805

RNN LAN −0.0122 −0.6765 0.4988 −2210.9774 −2211.2074 0.2300 1.5399

GPT-2124M LAN −0.0343 −2.6802 0.0074 −2207.6047 −2211.2074 3.6027 −5.2054

GPT-2355M LAN −0.0283 −2.4233 0.0155 −2208.2611 −2211.2074 2.9463 −3.8925

GPT-2774M LAN −0.0383 −3.0588 0.0023 −2206.5185 −2211.2074 4.6889 −7.3778

GPT-21.5B LAN −0.0398 −3.1646 0.0016 −2206.1898 −2211.2074 5.0176 −8.0352

GPT-Neo125M LAN −0.0361 −2.9180 0.0036 −2206.9390 −2211.2074 4.2684 −6.5368

GPT-Neo1.3B LAN −0.0334 −2.8969 0.0038 −2207.0004 −2211.2074 4.2069 −6.4139

GPT-Neo2.7B LAN −0.0351 −2.9098 0.0037 −2206.9630 −2211.2074 4.2443 −6.4887

clozep LAN 0.3206 2.1344 0.0330 −2208.9206 −2211.2074 2.2868 −2.5735

clozes LAN −0.0685 −3.0771 0.0021 −2206.4624 −2211.2074 4.7450 −7.4899

rating LAN 0.2018 4.5639 < .0001 −2200.8099 −2211.2074 10.3975 −18.7951

bigram N400 −0.0592 −4.3930 < .0001 −1938.4048 −1948.0434 9.6386 −17.2773

trigram N400 −0.0584 −5.1880 < .0001 −1934.6354 −1948.0434 13.4081 −24.8161

tetragram N400 −0.0576 −5.4504 < .0001 −1933.2586 −1948.0434 14.7848 −27.5696

PSG N400 −0.0710 −4.9432 < .0001 −1935.8604 −1948.0434 12.1831 −22.3661

RNN N400 −0.0762 −5.0852 < .0001 −1935.1568 −1948.0434 12.8866 −23.7732

GPT-2124M N400 −0.0740 −7.0080 < .0001 −1923.7595 −1948.0434 24.2839 −46.5678

GPT-2355M N400 −0.0635 −6.6035 < .0001 −1926.4421 −1948.0434 21.6013 −41.2027

GPT-2774M N400 −0.0733 −7.1091 < .0001 −1923.0656 −1948.0434 24.9778 −47.9557

GPT-21.5B N400 −0.0750 −7.2397 < .0001 −1922.1559 −1948.0434 25.8876 −49.7751

GPT-Neo125M N400 −0.0720 −7.0694 < .0001 −1923.3390 −1948.0434 24.7045 −47.4089

GPT-Neo1.3B N400 −0.0683 −7.1955 < .0001 −1922.4653 −1948.0434 25.5781 −49.1562

GPT-Neo2.7B N400 −0.0679 −6.8182 < .0001 −1925.0369 −1948.0434 23.0065 −44.0130

clozep N400 0.7627 6.1438 < .0001 −1929.3080 −1948.0434 18.7354 −35.4708

clozes N400 −0.1194 −6.4856 < .0001 −1927.1955 −1948.0434 20.8479 −39.6958

rating N400 0.3084 8.4921 < .0001 −1912.6561 −1948.0434 35.3873 −68.7747

bigram EPNP 0.0091 0.8064 0.4201 −1683.1571 −1683.4839 0.3269 1.3463

trigram EPNP 0.0066 0.6919 0.4891 −1683.2433 −1683.4839 0.2406 1.5187

tetragram EPNP 0.0062 0.6944 0.4875 −1683.2415 −1683.4839 0.2424 1.5152

PSG EPNP 0.0058 0.4780 0.6327 −1683.3690 −1683.4839 0.1149 1.7702

RNN EPNP 0.0120 0.9540 0.3403 −1683.0265 −1683.4839 0.4574 1.0852

GPT-2124M EPNP −0.0197 −2.1986 0.0281 −1681.0578 −1683.4839 2.4261 −2.8522

GPT-2355M EPNP −0.0140 −1.7157 0.0864 −1682.0054 −1683.4839 1.4785 −0.9570

GPT-2774M EPNP −0.0203 −2.3258 0.0202 −1680.7694 −1683.4839 2.7146 −3.4291

GPT-21.5B EPNP −0.0222 −2.5287 0.0116 −1680.2762 −1683.4839 3.2077 −4.4154

GPT-Neo125M EPNP −0.0230 −2.6602 0.0079 −1679.9348 −1683.4839 3.5491 −5.0983
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Table 5 continued

IV DV B̂ t p LogLikmodel LogLikbaseline �LogLik �AIC

GPT-Neo1.3B EPNP −0.0243 −3.0294 0.0025 −1678.8844 −1683.4839 4.5995 −7.1990

GPT-Neo2.7B EPNP −0.0251 −2.9765 0.0030 −1679.0432 −1683.4839 4.4407 −6.8814

clozep EPNP −0.0608 −0.5792 0.5626 −1683.3153 −1683.4839 0.1686 1.6628

clozes EPNP −0.0153 −0.9805 0.3270 −1683.0008 −1683.4839 0.4831 1.0337

rating EPNP 0.0753 2.4283 0.0153 −1680.5254 −1683.4839 2.9586 −3.9171

bigram P600 −0.0177 −1.4627 0.1438 −1781.1356 −1782.2104 1.0748 −0.1496

trigram P600 −0.0157 −1.5486 0.1217 −1781.0056 −1782.2104 1.2047 −0.4095

tetragram P600 −0.0177 −1.8554 0.0637 −1780.4817 −1782.2104 1.7287 −1.4574

PSG P600 −0.0209 −1.6142 0.1067 −1780.9015 −1782.2104 1.3089 −0.6177

RNN P600 −0.0226 −1.6769 0.0938 −1780.7980 −1782.2104 1.4123 −0.8247

GPT-2124M P600 −0.0447 −4.6967 < .0001 −1771.2032 −1782.2104 11.0072 −20.0143

GPT-2355M P600 −0.0459 −5.3105 < .0001 −1768.1675 −1782.2104 14.0428 −26.0856

GPT-2774M P600 −0.0497 −5.3610 < .0001 −1767.9017 −1782.2104 14.3086 −26.6173

GPT-21.5B P600 −0.0478 −5.1295 < .0001 −1769.1002 −1782.2104 13.1102 −24.2203

GPT-Neo125M P600 −0.0459 −5.0055 < .0001 −1769.7213 −1782.2104 12.4891 −22.9781

GPT-Neo1.3B P600 −0.0478 −5.5979 < .0001 −1766.6233 −1782.2104 15.5871 −29.1742

GPT-Neo2.7B P600 −0.0513 −5.7444 < .0001 −1765.8058 −1782.2104 16.4045 −30.8091

clozep P600 0.1757 1.5657 0.1176 −1780.9789 −1782.2104 1.2314 −0.4628

clozes P600 −0.0636 −3.8312 0.0001 −1774.8679 −1782.2104 7.3425 −12.685

rating P600 0.1847 5.6200 < .0001 −1766.5009 −1782.2104 15.7095 −29.419

bigram PNP 0.0082 0.6475 0.5174 −1841.2269 −1841.4376 0.2107 1.5786

trigram PNP 0.0063 0.5962 0.5512 −1841.2590 −1841.4376 0.1787 1.6427

tetragram PNP 0.0059 0.5923 0.5537 −1841.2613 −1841.4376 0.1764 1.6473

PSG PNP 0.0030 0.2232 0.8234 −1841.4126 −1841.4376 0.0251 1.9499

RNN PNP 0.0066 0.4700 0.6384 −1841.3266 −1841.4376 0.1110 1.7779

GPT-2124M PNP −0.0070 −0.6998 0.4842 −1841.1915 −1841.4376 0.2462 1.5077

GPT-2355M PNP −0.0039 −0.4300 0.6673 −1841.3447 −1841.4376 0.0929 1.8141

GPT-2774M PNP −0.0081 −0.8301 0.4066 −1841.0913 −1841.4376 0.3463 1.3074

GPT-21.5B PNP −0.0077 −0.7878 0.4309 −1841.1256 −1841.4376 0.3120 1.3760

GPT-Neo125M PNP −0.0100 −1.0397 0.2987 −1840.8944 −1841.4376 0.5432 0.9135

GPT-Neo1.3B PNP −0.0120 −1.3392 0.1807 −1840.5365 −1841.4376 0.9012 0.1977

GPT-Neo2.7B PNP −0.0136 −1.4416 0.1496 −1840.3935 −1841.4376 1.0441 −0.0883

clozep PNP −0.1769 −1.5139 0.1303 −1840.2862 −1841.4376 1.1514 −0.3028

clozes PNP 0.0055 0.3157 0.7523 −1841.3875 −1841.4376 0.0501 1.8998

rating PNP 0.0487 1.4089 0.1591 −1840.4403 −1841.4376 0.9973 0.0054

The first two columns of the table report the independent and the dependent variable of interest, respectively; the following columns indicate the
regression coefficient (B̂), t value and associated p value, LogLik of the complete model, LogLik of the baseline, their difference (� LogLik),
and the AIC difference (� AIC)

Appendix C: Non-linear effects of predictabil-
ity on ERP responses

In the body of the article, we analyzed the impact of several
wpms on EEG and behavioral data through linear regres-
sion. Our choice was supported by the observation that
log-probabilities are linearly related to both fixation and

self-paced reading times, as discussed in the Introduction.
However, it is still not clearwhether the linearity assumptions
hold for EEG responses. In the present section, we analyze
the ERP measures considered in this study with non-linear
spline-based regression by employing generalized additive
models (GAMs;Wood, 2011). The motivation of this section
is not to fully characterize the functional form of the effects
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Fig. 7 Non-linear effects of predictability on EEG data. The increase in model fit (� LogLik) obtained by adding a spline term for the wpms to the
GAMs is averaged over the fivefold cross-validation. The error bars indicate the standard error of the mean

of predictability on EEG data, but rather to test whether
the results of the comparison between models that we per-
formed in our inferential analyses hold when we allow for
predictability estimates to be non-linearly related with EEG
responses.

The GAM models were fitted with the Python package
pyGam; all the predictorswere entered linearly except for the
predictability estimates, which were modeled as spline terms
with a penalty on their second derivative, which encourages
the functions to be smoother. Theλparameter,which controls
the strength of the regularization penalty for the spline terms,
was set with a grid search. The analyses were performedwith
5-fold cross-validation, where (a) grid-search and training
and (b) testing were performed on disjoint subsets of the
data.

Our results are summarized in Fig. 7, and reported in detail
in the online supplementary materials. Notably, the pattern
of results when considering LAN, N400, and P600 are vir-
tually identical with respect to what we reported with linear

regression, as the rank correlations with our previous results
are almost perfect (LAN: ρ = 1; N400: ρ = 0.9929; P600:
ρ = 0.9964). As in the case of the linear analyses performed
with cross-validation, EPNP amplitudes were not accounted
for by anywpm. These results thus show that the assumption
of linearity did not have any impact on the results that we
described in the article.
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