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Background & Aims: Little is known about the metabolic correlated with expression of mitochondrial complex II and of

regulation of cancer stem cells (CSCs) in cholangiocarcinoma
(CCA). We analyzed whether mitochondrial-dependent meta-
bolism and related signaling pathways contribute to stemness in
CCA.
Methods: The stem-like subset was enriched by sphere culture
(SPH) in human intrahepatic CCA cells (HUCCT1 and CCLP1) and
compared to cells cultured in monolayer. Extracellular flux
analysis was examined by Seahorse technology and high-
resolution respirometry. In patients with CCA, expression of
factors related to mitochondrial metabolism was analyzed for
possible correlation with clinical parameters.
Results: Metabolic analyses revealed a more efficient respiratory
phenotype in CCA-SPH than in monolayers, due to mitochondrial
oxidative phosphorylation. CCA-SPH showed high mitochondrial
membrane potential and elevated mitochondrial mass, and over-
expressed peroxisome proliferator-activated receptor gamma
coactivator (PGC)-1a, a master regulator of mitochondrial
biogenesis. Targeting mitochondrial complex I in CCA-SPH using
metformin, or PGC-1a silencing or pharmacologic inhibition (SR-
18292), impaired spherogenicity and expression of markers
related to the CSC phenotype, pluripotency, and epithelial-
mesenchymal transition. In mice with tumor xenografts gener-
ated by injection of CCA-SPH, administration of metformin or SR-
18292 significantly reduced tumor growth and determined a
phenotype more similar to tumors originated from cells grown in
monolayer. In patients with CCA, expression of PGC-1a
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stem-like genes. Patients with higher PGC-1a expression by
immunostaining had lower overall and progression-free survival,
increased angioinvasion and faster recurrence. In GSEA analysis,
patients with CCA and high levels of mitochondrial complex II
had shorter overall survival and time to recurrence.
Conclusions: The CCA stem-subset has a more efficient respi-
ratory phenotype and depends on mitochondrial oxidative
metabolism and PGC-1a to maintain CSC features.
Lay summary: The growth of many cancers is sustained by a
specific type of cells with more embryonic characteristics,
termed ‘cancer stem cells’. These cells have been described in
cholangiocarcinoma, a type of liver cancer with poor prognosis
and limited therapeutic approaches. We demonstrate that cancer
stem cells in cholangiocarcinoma have different metabolic fea-
tures, and use mitochondria, an organelle located within the
cells, as the major source of energy. We also identify PGC-1a, a
molecule which regulates the biology of mitochondria, as a
possible new target to be explored for developing new treat-
ments for cholangiocarcinoma.
© 2021 European Association for the Study of the Liver. Published by
Elsevier B.V. All rights reserved.

Introduction
Cholangiocarcinoma (CCA) represents the second most common
form of primary liver cancer,1–3 with limited therapeutic ap-
proaches.4,5 As a result, the prognosis is still dismal with a 5-year
survival lower than 20%.4,5 These features make CCA a top pri-
ority in the field of cancer research.4,5 The hypothesis of the
existence of a cancer stem cell (CSC) population was recently
validated by the identification of a subpopulation of self-
renewing cells that gives rise to maturational lineages with a
hierarchical organization, which divide symmetrically and
asymmetrically to generate the tumor mass.6–14 CSCs, also
referred to as tumor-initiating cells or tumor-propagating cells,
21 vol. 74 j 1373–1385
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are tumorigenic, metastatic, resistant to chemo-and radiation
therapy and are responsible for tumor recurrence.8–14 In the past
years, alongside others, we have highlighted the biology of CSCs
in CCA,15–17 identifying them as a major therapeutic target.8–14

Recent studies have identified oxidative phosphorylation
(OXPHOS) in cancer cell mitochondria as a novel approach to
decrease tumor growth and chemotherapy-resistance in CCA.18,19

Although mitochondrial metabolism may provide new thera-
peutic targets, metabolic reprogramming in CCA is under-
estimated. In addition, the metabolic profiles of CSCs may be an
important factor for stemness maintenance, contributing to
failure of anticancer treatments,20,21 but little is known regarding
this topic in human CCA. Herein, we show that mitochondrial
oxidative metabolism contributes to maintain stemness features
in CCA, conferring in vivo tumorigenic capacity and drug
resistance.

Materials and methods
For details regarding the materials and methods used, please
refer to the CTAT table and supplementary information.

Results
The CCA stem-like subset is characterized by mitochondrial
oxidative metabolism
We recently identified a functional CSC-subset in human CCA
using a 3D sphere culture model.13 We first characterized if
stemness features were associated with differences in energy
metabolism, comparing sphere cultures (SPH) generated from
HUCCT1 or CCLP1 cells with the same cells grown in monolayer
cultures (MON). Bioenergetics parameters were analyzed by
Seahorse technology, which enables the simultaneous mea-
surement of oxygen consumption rate (OCR) and extracellular
acidification rate (ECAR), key indicators of mitochondrial respi-
ration and glycolysis, respectively, in live cells. Seahorse mito-
stress, which provides respiratory parameters, showed that SPH
have higher OCR than MON both in basal and in FCCP (carbonyl
cyanide-4-(trifluoromethoxy) phenylhydrazone)-uncoupled
conditions (Fig. 1A; Fig. S1A-B). In addition, the response to oli-
gomycin A, which accounts for non-phosphorylating respiration,
indicated that OCR, even enhanced, in SPH cells is coupled to ATP
production similarly, or only weakly less, to that of MON cells
(see values of the coupling efficiency of oxidative phosphoryla-
tion). These data indicate that SPH show increased mitochondrial
respiration coupled to ATP production, likely related to a
potentiated respiratory machinery, in both HUCCT1 and CCLP1
cells. Seahorse analysis requires forced adhesion of SPH to
perform the assay. Although no significant differences in respi-
ratory capacity of SPH cells forced to adhere on XF plates for as
long as 20 hours were observed (data not shown), we aimed to
confirm the Seahorse findings with an alternative method, which
may be applied to cells in suspension. To do this, we analyzed
OCR of SPH maintained in suspension, using a “Clark-type” ox-
ygen electrode. Oxygraph analysis (Fig. 1B) fully confirmed Sea-
horse data, suggesting that the enhanced mitochondrial
respiration of SPH is a property acquired during the adaptation to
3D cell growth, and not an artifact dependent on the analytical
methods used.

We next used the Seahorse glycostress protocol to measure
glycolytic parameters of MON and SPH of both cell lines. This test
(Fig. 1C, Fig. S1) showed that basal and oligomycin-accelerated
ECAR are similar in SPH and MON, indicating limited, if any,
1374 Journal of Hepatology 20
differences in glycolytic capacity and reserve. Because SPH and
MON are grown in media of different composition, we aimed to
rule out that these differences could modify metabolic parame-
ters independently of the "stemness" status of the cells. When
MON cells were grown in SPH culture medium for 5 days, no
variations in OCR parameters or in the expression of stemness-
related genes were observed, indicating that metabolic differ-
ences only depend on 3D culture as a representation of a stem-
like state (Fig. S2). Taken together, these results indicate that
when HUCCT1 or CCLP1 are grown as spheres, a profound
change in energy metabolic profile, with enhanced mitochon-
drial respiration, is observed (Fig. 1D).

The CCA stem-like subset is more sensitive to interference
with mitochondrial function
Since CCA-SPH preferentially rely on OXPHOS, we further eval-
uated the role of mitochondria in the stem-like compartment. In
CCA-SPH a significantly higher mitochondrial membrane po-
tential was measured with MitoTracker Red staining, together
with increased mitochondrial mass (MitoTracker Green, Fig. 2A).
The peroxisome proliferator-activated receptor gamma coac-
tivator (PGC) family, in particular PGC-1a,22,23 acts as a master
regulator of mitochondrial de novo synthesis, and regulates
different energy-producing metabolic processes in the liver,
including OXPHOS. In CCA-SPH, over-expression of PGC-1a at the
protein and mRNA levels (Fig. 2B-C) was observed, providing
additional support for a role of mitochondria in cells of the CCA
stem-like subset. In contrast, CCA-SPH cells showed reduced
glucose uptake (Fig. 2D), together with lower production of
lactate, a metabolic product of glycolysis (Fig. 2E). Down-
regulation of the glycolytic pathway is also indicated by
repressed gene expression of the Glut1 transporter (Fig. 2F) as
well as of hexokinase II (HKII) and pyruvate kinase M2 (Fig. 2G).
Remarkably, gene set-enrichment analysis (GSEA) of RNA-
sequencing data confirmed the downregulation of the glyco-
lytic component in CCA-SPH when compared to MON (Fig. 2H).
In contrast, no differences in mitochondrial reactive oxygen
species levels were observed between MON and SPH, indicating
that differences in glycolytic flux are not due to an impairment in
mitochondrial functionality (Fig. S3A).

It is well-known that activated AMPK regulates PGC-1a
expression.24 In accordance with high levels of PGC-1a in SPH
cells (Fig. 2B-C), the AMP/ATP ratio was higher in SPH than in
MON (Fig. S3B), together with increased activation of AMPK
signaling, as demonstrated by higher levels of AMPK phosphor-
ylation (Fig. S3C). In other tumors, AMPK activation correlates
with epithelial-mesenchymal transition (EMT).25–27 To establish
whether AMPK regulates these processes in CCA-SPH, SPH were
treated with compound C, a well-established inhibitor of AMPK
phosphorylation28 (Fig. S3D). Treatment with compound C
markedly reduced the expression level of genes implicated in
EMT, indicating a contribution of the AMPK pathway in this
relevant process associated with malignancy (Fig. S3B).

To provide functional evidence for a role of mitochondria in
maintaining the CCA stem-like subset, cell survival was evalu-
ated after treatment with metformin or phenformin, both in-
hibitors of mitochondrial complex I. SPH were consistently more
sensitive to inhibitors of mitochondrial complex I than cells
grown in MON (Fig. S4A). Conversely, treatment with 2-deoxy-D-
glucose, an antagonist of glucose uptake, had a greater effect on
survival of glycolysis-dependent MON (Fig. S4B). Interestingly,
21 vol. 74 j 1373–1385
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Fig. 1. Metabolic characteristics of CCA cells grown as monolayers or spheres. (A-B) OCRs of HUCCT1 and CCLP1 cells, as assessed by Seahorse mitostress test
(A) or oxygraph (B) analysis. Respiratory parameters include basal mitochondrial respiration, response to oligomycin A accounting for non-phosphorylating
mitochondrial respiration (oligo), FCCP-uncoupled mitochondrial respiration, spare respiratory capacity and coupling efficiency, calculated as described in the
supplementary materials and methods. Data were normalized on basal respiratory parameters in MON. (C) ECAR parameters derived from Seahorse glycostress
test analysis, normalized on basal glycolytic parameters of MON. Results are mean ± SD of 2 independent experiments performed on 10 (Seahorse) and 3
(Oxygraph) replicates for each condition (*p <−0.05, **p <−0.01, ***p <−0.001 vs. MON by Student's t test). (D) Energy phenotype of HUCCT1 and CCLP1 cells grown as
MON (diamonds) or SPH (triangles) in basal (empty shapes) or metabolic stress (full shapes) conditions, as described in the supplementary materials and
methods. CCA, cholangiocarcinoma; ECAR, extracellular acidification rate; MON, monolayer cultures; OCR, oxygen consumption rate; SPH, sphere cultures.
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Fig. 2. Mitochondrial mass and glycolysis are differentially regulated in CCA cells grown as MON or SPH. (A) Mitochondrial mass and membrane potential
were measured by FACS. Histograms represent the MFI of the MitoTracker probes normalized to mean MFI of MON. Data are mean ± SEM (n = 3, *p <−0.05, **p <−0.01
vs.MON by Student's t test). (B) Immunoblot of PGC-1a. b-actin immunoblot was performed to ensure equal loading. (C) PGC-1a gene expression levels, presented
as fold changes normalized to mean expression of MON. GAPDH was used as an internal control. Data are mean ± SEM (n = 3, **p <−0.01 vs. MON by Student's t
test). (D) [14C]-glucose uptake normalized by total proteins. Data are mean ± SEM (n = 3, *p <−0.05 vs. MON by Student's t test). (E) Extracellular lactate levels
normalized by protein content. Data are mean ± SEM (n = 3, ***p <−0.001 vs. MON by Student's t test). (F) GLUT1 gene expression levels, presented as in panel C.
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enrichment analysis; MFI, mean fluorescent intensity; MON, monolayer cultures; NES, normalized enrichment score; SPH, sphere cultures.
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this effect was less marked, and not statistically significant, in
CCLP1 cells, which express lower levels of HKII, and have a lower
ability to incorporate glucose. These results reinforce the concept
that CCA stem-like cells are more reliant on mitochondrial
metabolism than cells in MON, which are more sensitive to the
glycolysis pathway.

Exposure tometformin dramatically reduced the expression of
molecules related to stemness, self-renewal, pluripotency, drug
resistance and EMT in SPHof bothCCA cell lines,while virtually no
1376 Journal of Hepatology 20
effects were found in MON (Fig. S4C-D). Moreover, metformin
reduced activation of the Akt pathway only in SPH (Fig. S4C-D).
These data indicate that interfering with mitochondrial respira-
tion affects the stemness component of CCA.

PGC-1a is required to maintain stemness features and pro-
angiogenic actions of CCA
Because PGC-1a, a critical regulator of mitochondrial function, is
expressed at higher levels in SPH, we tested the effects of genetic
21 vol. 74 j 1373–1385



knockdown or pharmacologic inhibition of this molecule on
functional characteristics and intracellular signaling of SPH from
both CCLP1 and HUCCT1. As expected, PGC-1a depletion (Fig. 3A)
impaired mitochondrial mass (Fig. S5A). Although PGC-1a
silencing did not affect cell proliferation or apoptosis (Fig. S5B-C),
it markedly reduced CCA stem-like properties such as in vitro
spherogenicity (Fig. 3B, Fig. S5D) and expression of CSC-related
genes (Fig. 3C). These functional effects were accompanied by a
marked downregulation of signaling pathways relevant for CCA
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biology in SPH silenced for PGC-1a (Fig. 3D). Similarly, PGC-1a
knockdown significantly reduced the ability to invade a
basement-membrane-like matrix (Fig. 3E) and to migrate in a
Boyden chamber assay (Fig. S5E), key features of highly malig-
nant CCA cells. Furthermore, we found a significant correlation
between expression of PGC-1a and that of many stem-like genes
in a transcriptomic database of patients with CCA (Fig. 3F).29

Angiogenesis is critical to develop and sustain a microenvi-
ronment favorable to maintain the properties of CSC, and we
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previously demonstrated13 that conditioned medium from CCA-
SPH induces a higher angiogenic response than that from MON.
In SPH silenced for PGC-1a or treated with metforrmin, vascular
endothelial growth factor (VEGF) expression was significantly
reduced in both cell lines (Fig. S6A), indicating that the action of
1378 Journal of Hepatology 20
PGC-1a is likely to be mediated by mitochondria. As a clinical
counterpart, a significant correlation between VEGF and PGC-1a
expression was found in a transcriptomic database of patients
with CCA (Fig. S6B). To confirm that PGC-1a regulates angio-
genesis, we tested the effects of conditioned medium from SPH
21 vol. 74 j 1373–1385
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on capillary tube-like formation by human umbilical vein
endothelial cells in an angiogenic assay (Fig. S6C-D). As expected,
depletion of PGC-1a in SPH drastically reduced the neovascular
response in CCA-SPH. Overall, these data show that the CSC
microvascular environment is dependent on tumor metabolic
activity, regulated by PGC-1a.

To obtain additional information on the potential role of PGC-
1a, we employed SR-18292, a selective pharmacological inhibitor
which increases PGC-1a acetylation and its inhibition.30,31

Treatment with SR-18292 reduced PGC-1a levels and mito-
chondrial mass (Fig. 4A-B), cell viability, expression of Myc and
STAT3, and activation of P38MAPK and AKT (Fig. 4C-D). In
addition, pharmacologic inhibition of PGC-1a modulated a broad
range of genes implicated in maintenance of stemness, self-
renewal, and regulation of EMT (Fig. 4C-D). These data identify
mitochondrial respiration and PGC-1a as relevant targets in CCA
stem-like cells.

To demonstrate that interference with mitochondrial respi-
ration may have an impact on CCA stem-compartment growth
in vivo, we analyzed the effects of metformin and of SR-18292 on
tumors obtained by subcutaneous injection of cells derived from
SPH or from cells grown in MON. The growth of xenografts was
monitored with a dedicated in vivo imaging system (Vevo LAZR-
X photoacoustic imaging), which allows 3D-reconstruction and
exact calculation of tumor volume (Fig. 5). As expected, 28 days
after injection, the volume of tumors derived from SPH were
significantly larger than those from MON. Treatment of mice
with metformin or SR-18292 did not significantly modify the
volume of tumors derived from MON. In contrast, the growth of
tumors derived from SPH was significantly reduced by admin-
istration of metformin or SR-18292 (Fig. 5). Evaluation of tumors
using a caliper and conventional volume calculation provided
overlapping results (data not shown). No differences in liver/
body weight ratio and lung/body weight ratio were observed
(Fig. S7). These data show that interference with mitochondrial
respiration or PGC-1a selectively modulates the growth of tu-
mors derived from stem cell-enriched cultures.
Journal of Hepatology 20
Based on the results described above, we next focused on the
effects of metformin and SR-18292 on the molecular character-
istic of tumors derived from SPH. The weight of tumors and the
number of proliferating cells, as assessed by BrdU immuno-
staining, were significantly reduced by treatment with both
drugs (Fig. 6A-B). Gene expression profiles derived from a PCR
array specific for liver cancer pathways revealed common
downregulated genes in tumors from mice injected with SPH
and treated with metformin or SR-18292 (Fig. 6C). These
included markers of apoptosis (i.e. BIRC2, CFLAR, GSTP1, BID) and
cell cycle (CCND1, GADD45B, EP300, PTEN) as well as genes
involved in signal transduction such as the Wnt pathway, MAP
kinase or Met signaling, and DNA damage and repair (i.e. MSH2,
XIAP). Tumor tissues belonging to mice treated with SR-18292
showed a peculiar set of downregulated genes which con-
tained more cell cycle-related genes, together with genes
involved in immune and inflammatory responses or angiogen-
esis. Of note, gene cluster analysis showed that tumors frommice
injected with SPH and treated with metformin or SR-18292 were
more similar to those derived from MON than to those of un-
treated mice injected with SPH. At the protein level, suppression
of PGC-1a was associated with an increase in HKII expression,
suggesting a metabolic shift towards a more glycolytic-like
phenotype (Fig. 6D). Moreover, treatment with SR-18292 had
an impact on AKT activation, EMT and angiogenesis (CD31), thus
confirming the PCR array data. In aggregate, these findings
indicate an OXPHOS-addicted phenotype of the CCA-stem-like
component and suggest that CCA CSCs adapt to stress condi-
tions by acquiring mitochondrial flexibility, which is functionally
relevant for the maintenance of a stem-like phenotype.

Genes related to the mitochondrial system predict poor
prognosis in CCA patients
To translate our in vitro data to the clinical setting, we exploited a
published cohort of patients with CCA[29], who were dichoto-
mically stratified into ‘poor’ survival (<12 months, 30 patients)
and ‘good’ survival (>12 months, 64 patients) (Fig. 7A). Both
21 vol. 74 j 1373–1385 1379
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groups were tested for enhanced expression of crucial mito-
chondrial enzymes involved in the electron transport chain
(complex I-V) as well as in the Krebs cycle, by GSEA. Interest-
ingly, expression of genes of complex II (SDHA, SDHB, SDHC,
SDHD) significantly correlated with overall survival (p = 0.036),
whereas the other gene sets did not reach statistical significance
(Fig. 7B). Moreover, expression of complex II genes predicted a
shorter time to recurrence (p = 0.029, Fig. 7C). Accordingly, a
Journal of Hepatology 20
substantial correlation between PGC-1a, complex II and genes
related to stemness was observed in patients with CCA (Fig. 7D,
Table S1).

We next investigated PGC-1a expression at the protein level by
immunohistochemistry in a different cohort, observing variable
degrees of expression (Fig. 8A). Notably, patients with a high PGC-
1a immunostaining score had shorter overall and progression-
free survival, and higher angioinvasion and recurrence
21 vol. 74 j 1373–1385 1381



Research Article Hepatic and Biliary Cancer
compared to patients with a low PGC-1a score (Fig. 8B-E). These
data further indicate that inpatientswith CCA, PGC-1 a expression
is associated with significantly worse clinical outcomes.
Discussion
CSCs are endowed with self-renewal, pluripotency, plasticity and
differentiation potential. Due to these characteristics, they play a
pivotal role in initiation, progression, and response to treatment
in many types of cancer. Recent investigations have highlighted
the concept that cancer is characterized by specific metabolic
features, whereby genetic and environmental variables may be
accompanied by acquisition of a different metabolic state. In
spite of the significance of CSCs in cancer and of the limited
therapeutic opportunities available in CCA, the metabolic char-
acteristics of CSCs and their potential relevance in the biology of
this tumor have not been explored.
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Data reported in this study indicate that in CCA, stem-like
cells undergo metabolic reprogramming, resulting in a potenti-
ated OXPHOS system, while cells grown in MON, a condition not
associated with stemness features, rely more on glycolysis to
meet their energy demands. Mitochondrial respiration is far
more efficient in energy production than glycolysis, generating
36 molecules of ATP per molecule of glucose, as opposed to only
2 molecules of ATP produced in glycolysis. In agreement with
metabolic data, CCA CSCs showed marked changes in the num-
ber of mitochondria, and in their membrane potential. These
changes are likely to be very relevant when considering that one
of the most striking characteristics of CSCs is their ability to form
a specialized niche, termed the CSC microenvironment,21 to
adapt to changing conditions.10,20 This specific milieu facilitates
tumor progression by maintaining the principal properties of
CSCs. Indeed, CSCs are characterized by a highly plastic meta-
bolism, which allows them to survive under conditions of
metabolic stress by readily switching between OXPHOS and
glycolysis. These changes are to some extent tumor cell-spe-
cific.32 CCA is exquisitely sensitive to a specific microenviron-
ment, which is characterized by a thick fibrillar stroma where
oxygen and nutrients may be scarce. Based on the results of this
study, the acquisition of a more efficient oxidative metabolism
may allow CCA stem-like cells to better survive in these condi-
tions. Accordingly, the machinery for efficient glycolysis was
more developed in MON than in SPH, compatible with the
leading role of OXPHOS in the latter culture condition. These data
lead us to speculate that, in CCA, metabolic rewiring to OXPHOS
renders CSCs resistant to inhibition of glycolysis, providing the
cells with a higher degree of independence from microenviron-
mental nutrient supply.

Mitochondria play a pivotal role in regulating respiration, and
the observed changes in their number and function are clearly
related to data on OXPHOS. More important, we demonstrated
that these changes in metabolism had a functional role. We first
analyzed the effects of metformin and phenformin, both well-
established inhibitors of mitochondrial respiration complex I.
SPH exposed to these drugs showed a dose-dependent reduction
in cell survival, and a profound modulation of the expression of
different genes implicated in the biology of CCA, an effect absent
in MON, where mitochondrial respiration appears to be less
essential. Specifically, genes related to stemness and to angio-
genesis were significantly less expressed, while markers of
epithelial differentiation, e.g. E-cadherin, were increased. These
effects suggest that the mitochondrial respiration pathway may
support the growth and aggressiveness of CCA enriched with a
stem-like components.

Although the mechanisms determining the observed OXPHOS
phenotype are still unclear, we next aimed to establish a link
between regulatory proteins of mitochondrial biogenesis and the
stemness properties of CCA cells.33–37 We focused on the tran-
scription factor PGC-1a, a key regulator of mitochondrial
biogenesis, which enhances oxidative phosphorylation in many
invasive and highly malignant cancer cells.38–40 This factor was
also recently shown to regulate OXPHOS functionality and, most
importantly, self-renewal and tumorigenic capacity of pancreatic
CD133+ CSCs.34 In CCA cells, genetic knockdown of PGC-1a
decreased CSCs markers, in vitro self-renewal potential and
invasive capacity of stem-like cells. These results were confirmed
and expanded using SR-18292, a specific inhibitor of PGC-1a. In
both cell lines used in this study, exposure to SR-18292 reduced
21 vol. 74 j 1373–1385



mitochondrial biogenesis and sphere formation. These effects
were associated with downregulation of signaling pathways
linked to malignancy and EMT, and lower expression of genes
related to self-renewal, pluripotency and drug transport. These
data support the dependence of stem-like cells on mitochondrial
biogenesis and activity and identify an upstream molecular
mechanism.

Tumors grow in a tridimensional and multicellular environ-
ment, and cell culture is only partially representative of an in vivo
condition. Thus, we analyzed tumor xenografts developed in
mice using CCA cells from MON or SPH cultures, and the effects
of treatment with metformin or SR-18292. Remarkably, the ef-
fects of these drugs were non-significant in tumors developed
after MON injection. In contrast, tumors derived from SPH were
larger, and their volume was reduced by inhibiting mitochon-
drial respiration (with metformin) or PGC-1a expression (with
SR-18292). At a molecular level, the gene signature of tumors
derived from SPH was characterized by upregulation of several
pathways associated with malignancy. In contrast, treatment of
mice with metformin or SR-18292 made the signature of SPH-
derived tumors more similar to that of tumors derived from
MON. Of note, the effects of SR-18292 were not completely
overlapping with those of metformin and included upregulation
of genes involved in the glycolytic pathway and reduced
expression of genes regulating EMT or angiogenesis. Taken
together, these data provide for the first time, in CCA, a direct
correlation between oxidative metabolism and PGC-1a expres-
sion, the phenotype of stem-like cells, and the development of
CCA xenografts in vivo.

CSCs dynamically shape their microenvironment to maintain
a supportive niche, and drive interactions with other tumor
components, such as immune cells, cancer-associated fibroblasts,
and endothelial cells, to maintain a milieu which favors their
survival and growth. This is achieved via a complex crosstalk
with other cells of the niche, including secretion of soluble me-
diators, such as VEGF, which promotes angiogenesis through
paracrine signals.41–47 In CCA-SPH, PGC-1a silencing down-
regulated the ability of SPH to express VEGF, phenocopying the
effects of exposure to metformin. In addition, depletion of PGC-
1a reduced the ability of SPH-conditioned medium to induce
tube formation, a functional angiogenic assay. Along these lines,
acquisition of a mesenchymal phenotype, via a EMT process, is a
well-established feature of highly malignant cancers.48,49 In SPH,
PGC-1a and mitochondrial respiration significantly upregulated
molecules involved in EMT, which was also upregulated by
activation of AMPK. Altogether, these data identify mitochondrial
respiration as a new pathway regulated by PGC-1a and respon-
sible for maintenance of a stem-like phenotype and potentially
of the angiogenic niche and EMT in CCA.

The ultimate goal of translational research is to identify and
validate novel pathways or targets, the interference with which
could be eventually investigated in clinical trials. For this strat-
egy to be rational and possibly successful, the targets emerging
from cell culture and animal experiments must be present and
modulated in biologic material collected from patients with the
condition of interest. We first exploited transcriptomic data from
a published cohort of patients with CCA to search for possible
correlations between factors implicated in mitochondrial
biogenesis and respiration, expression of genes involved in the
aggressive biology of CCA, and clinical outcomes. In this respect,
we found several levels of interaction. Expression of PGC-1a in
Journal of Hepatology 20
SPH significantly and directly correlated with different genes
implicated in stemness and was strongly and directly correlated
with expression of VEGF, supporting the relation between
mitochondrial biogenesis and the angiogenic niche. Remarkably,
mitochondrial complex II expression correlated with a poor
prognosis when patients were dichotomically divided according
to their outcome, and the same factor and PGC-1a correlated
with several CSC-related genes in an oligoarray heatmap. In a
different cohort of patients, high-grade staining for PGC-1a
identified a subgroup of patients with shortened overall and
progression-free survival.

In conclusion, we have characterized the metabolic features
of CSCs from CCA, highlighting the predominance of oxidative
metabolism, supported by increased mitochondrial biogenesis
and signals generated via PGC-1a. These lines of information
provide significant advances in our understanding of the biology
of CSCs in CCA that could be of eventual relevance for the
management of this deadly tumor.
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