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Abstract

Motivation: Recent single-cell DNA sequencing technologies enable whole-genome sequencing of hundreds to
thousands of individual cells. However, these technologies have ultra-low sequencing coverage (<0.5x per cell)
which has limited their use to the analysis of large copy-number aberrations (CNAs) in individual cells. While CNAs
are useful markers in cancer studies, single-nucleotide mutations are equally important, both in cancer studies and
in other applications. However, ultra-low coverage sequencing yields single-nucleotide mutation data that are too
sparse for current single-cell analysis methods.

Results: We introduce SBMClone, a method to infer clusters of cells, or clones, that share groups of somatic single-
nucleotide mutations. SBMClone uses a stochastic block model to overcome sparsity in ultra-low coverage single-
cell sequencing data, and we show that SBMClone accurately infers the true clonal composition on simulated
datasets with coverage at low as 0.2x. We applied SBMClone to single-cell whole-genome sequencing data from
two breast cancer patients obtained using two different sequencing technologies. On the first patient, sequenced
using the 10X Genomics CNV solution with sequencing coverage ~0.03x, SBMClone recovers the major clonal com-
position when incorporating a small amount of additional information. On the second patient, where pre- and post-
treatment tumor samples were sequenced using DOP-PCR with sequencing coverage ~0.5x, SBMClone shows that
tumor cells are present in the post-treatment sample, contrary to published analysis of this dataset.

Availability and implementation: SBMClone is available on the GitHub repository https://github.com/raphael-group/

SBMClone.
Contact: braphael@princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell DNA sequencing technologies that measure the genomes
of individual cells are increasingly being used in cancer, metagenom-
ics and other applications (Gawad et al., 2016). In cancer, single-cell
DNA sequencing has been used to study the somatic evolution of
tumors and identify distinct groups of cells, or clones, that are sensi-
tive/resistant to treatment (10X Genomics, 2019; Laks et al., 2019;
Navin, 2015; Navin et al., 2011; Wang et al., 2014). While single-
cell DNA sequencing enables the measurement of genomic changes
in individual cells, current single-cell sequencing technologies have
limited accuracy and fidelity. Most single-cell DNA sequencing tech-
nologies rely on whole-genome amplification procedures like MDA
or MALBAC that result in DNA amplification errors, undersam-
pling and sequencing errors which complicate the identification of
single-nucleotide mutations (Gawad et al., 20165 Navin, 2015).

To address the limitations in identifying mutations in single-cell
sequencing data, a number of computational methods have been
developed to improve mutation calling by grouping cells with simi-
lar mutational profiles (Borgsmueller et al., 2020; Roth et al., 2016)
or shared cellular lineage (Ciccolella et al., 2018; El-Kebir, 2018;
Jahn et al., 2016; Malikic et al., 2019; McPherson et al., 2016; Ross
and Markowetz, 2016; Satas et al., 2019; Singer et al., 2018; Zafar
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et al., 2019). These methods have primarily been applied to analyze
single-cell DNA sequencing data obtained from limited genomic
regions: e.g. Single Cell Genotyper (SCG; Roth er al., 2016) and
Bayesian non-parametric clustering (BnpC; Borgsmueller et al.,
2020) have been applied to targeted single-cell sequencing datasets
with up to 420 cells and up to 105 mutations (Gawad et al., 2014;
McPherson et al., 2016), while BnpC and SCITE (Jahn ez al., 2016)
have been applied to whole-exome single-cell sequencing datasets
with up to 65 cells and up to 79 mutations (Leung et al., 2017; Wu
etal.,2017).

Recently, a number of new single-cell DNA sequencing technolo-
gies have been introduced that produce ultra-low coverage whole-
genome sequencing data from hundreds to thousands of individual
cells, with reads distributed approximately uniformly across the gen-
ome of each cell. These technologies include degenerate-oligonucleo-
tide-primed polymerase chain reaction (DOP-PCR; Navin et al.,
2011) with coverage of 0.1 — 0.5x per cell, and the 10X Genomics
Chromium CNV solution (10X Genomics, 2019) and Direct Library
Preparation (Laks et al., 2019) with coverage of 0.02 — 0.05x per
cell. The initial application of these technologies has been to identify
large (>1 Mb) copy-number aberrations (CNAs) in individual cells,
a reasonable goal with such low coverage sequencing. Recent studies
(Laks et al., 2019; Zaccaria and Raphael, 2019) showed that it was
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possible to identify single-nucleotide variants (SNVs) in ultra-low
coverage DNA sequencing data by merging a large number of single
cells with the same CNAs into a pseudo-bulk sample. However,
CNAs will not always identify every distinct clone in a sample: some
clones may have the same CNAs, or CNAs may not be present in
any cells. In these cases, the previous merging approaches would fail
to recover the complete clonal composition and may not reliably
measure SN'Vs.

In this work, we aim to address a more difficult question: is it
possible to detect SNVs directly from ultra-low coverage whole-
genome single-cell sequencing data and to partition cells into clones
according to their shared mutations? Obviously, one cannot expect
to reliably identify single-nucleotide mutations in individual cells
with sequencing coverage ~0.5x. However, when reasonably sized
clones are uniquely distinguished by a sufficiently large number of
mutations, one may expect that cells from the same clone share a
higher number of mutations than cells from different clones. We for-
mulate this problem as the clone block inference (CBI) problem,
where we combine sets of cells which share the same set of muta-
tions into blocks. This problem is closely related to several well-
studied problems in computer science, including co-clustering
(Dhillon et al., 2003; Kumar et al., 2011), spectral clustering
(Dhillon, 2001; Zha er al., 2001) and community detection
(Alzahrani and Horadam, 2016; Fortunato and Hric, 2016). We
show how to solve this problem by inferring a stochastic block
model (SBM) (Karrer and Newman, 2011) that describes the data.
This approach is substantially different from existing single-cell
algorithms which focus either on clustering cells according to their
mutation profiles or on clustering mutations according to the cells
that contain them. With sparse mutation data, neither the cell nor
mutation signal is sufficiently strong, but by simultaneously analyz-
ing both cells and mutations, we are able to aggregate the two
weaker signals into a stronger signal and recover a block structure.

We introduce SBMClone, a method that uses SBM inference
algorithms (Peixoto, 2014a, b) to infer the clonal composition from
single-cell whole-genome sequencing data. More specifically,
SBMClone uses the measurements from 7 single-nucleotide muta-
tions across m single cells to identify clones, which are subpopula-
tion of cells with the same complements of mutations, and clusters
of mutations that are present in the same clones. To assess the per-
formance of SBMClone, we generated a diverse collection of simu-
lated data using different parameters and experimental settings that
mimic the features of existing whole-genome single-cell sequencing
technologies with ultra-low coverage. We show that SBMClone can
accurately recover the clonal composition in sequencing data with
coverage as low as 0.2x, while three existing methods for single-cell
mutation analysis—SCG (Roth et al., 2016), SCITE (Jahn et al.,
2016) and BnpC (Borgsmueller et al., 2020)—cannot. We used
SBMClone to analyze single-cell whole-genome sequencing data
from two breast cancer patients (10X Genomics, 2019; Kim et al.,
2018). On the first patient, where 4 085 cells were sequenced using
the 10X Chromium platform with ultra-low coverage (~0.03x),
SBMClone recovers the major clonal composition consistent with
previous analysis when a small amount of additional information is
incorporated. On the second patient, where 90 cells were sequenced
using DOP-PCR with coverage ~0.5x, we show that SBMClone
identifies tumor cells present in the post-treatment sample, contrary
to the published analysis of this dataset using CNAs only. By jointly
clustering both cells and mutations, SBMClone enables the accurate
inference of clonal composition using single-nucleotide mutations in
ultra-low coverage single-cell whole-genome sequencing data.

2 Materials and methods

We measure mutations at # genomic loci in 7 evolutionarily related
single cells using ultra-low-coverage (~0.5x) DNA sequencing.
Because of this ultra-low coverage, there is substantial uncertainty
in the detection of any particular mutation in any particular cell. In
particular, most mutated locations will have no more than one
sequencing read that aligns to the location. If this read contains the
mutation, we may assume there is a reasonable chance that the cell

has the mutation (with a small probability of being incorrect due to
sequencing errors). However, if the sequencing read does not con-
tain the mutation, we cannot be certain of the mutation status since
generally there is more than one copy of a locus; e.g., there are two
copies of all diploid regions of the human genome. We represent our
measurements and the associated uncertainty using an m x n muta-
tion matrix D = [d;;] where d;j =1 if we observe a read in cell i
containing the mutation j and d;; =? otherwise (Fig. 1). D is an ex-
tremely sparse matrix: on the 10X Genomics Chromium data
studied below, only ~0.11% of entries are 1s.

Although the mutation matrix D is sparse, the shared evolution-
ary history of the cells imposes structure on D. Specifically, there is
a phylogenetic tree that describes the ancestral relationships between
cells. At single-cell resolution, each node of this phylogenetic tree is
a cell (either from the present time or ancestral) and each edge is
labeled by the mutation(s) that distinguish the parental cell from the
child cell. With ultra-low-coverage data, we have no hope of recon-
structing this single-cell tree. (Even with higher-coverage single-cell
sequencing data, it is often not possible to derive a fully resolved
tree of single cells due to allelic dropout. For example, SCITE (Jahn
et al., 2016), a method for inferring a phylogenetic tree from single-
cell tumor DNA sequencing data, introduces the mutation tree to
address uncertainty in the placement of cells on the tree.) While we
cannot reconstruct a tree on single cells with a sparse mutation ma-
trix D, the unknown tree imposes a structure on D. Specifically, we
expect to find multiple groups of cells, with each group of cells dis-
tinguished by one or more groups of shared mutations.

In applications like cancer where there is selection on mutations,
clonal expansions result in groups of cells, or clones, that share large
groups of mutations, including the positively selected mutation and
other passenger mutations that hitchhike with this mutation. Thus,
the rows and columns of D can be rearranged to obtain a block ma-
trix Dy, with row blocks Ay, ..., A, and column blocks By,...,B,
(Fig. 1). The row blocks correspond to cells that share the same
mutations, or clones, and the column blocks correspond to clusters
of mutations that are present in the same cells. The evolutionary
relationships between clones are described by a clone tree T, where
each row block A, corresponds to a vertex in T and each column
block B corresponds to an edge in T (Fig. 1). Note that we do not
aim to reconstruct T, but rather T imposes a block structure on the
mutation matrix D.

Our goal is to find such a block matrix DAM where each block (7,
s) has either many 1-entries (i.e. the cells in A, contain the mutations
in B;) or few 1-entries (i.e. the cells in A, do not contain the muta-
tions in B,). We formalize these ideas in the following problem.

CBI. Given a mutation matrix D € {1,?}"””, find a rearrange-
ment of the rows and columns of D to form a block matrix Dy, €
{1,?7}"™" with row blocks Ay, ...,A; and column blocks By, ... By,
and such that each block (A,, B;) has either a high or low proportion
of 1s.

We note that this problem is very different from existing meth-
ods for analyzing mutations in single-cell sequencing data.
Specifically, existing methods (Borgsmueller ef al., 2020; Ciccolella
et al., 2018; El-Kebir, 2018; Jahn et al., 2016; Malikic et al., 2019;
McPherson et al., 2016; Ross and Markowetz, 2016; Roth et al.,
2016; Satas et al., 2019; Singer et al., 2018; Zafar et al., 2019) at-
tempt to directly model the error rates of observing individual muta-
tions, or rely on distances between cells according to mutations or
distances between mutations according to cells. In our case, because
we have ultra-low-coverage data with very few mutations recorded
as present in individual cells and no confidence in the absence of a
mutation in an individual cell, such approaches are unlikely to work
well. Instead, one needs to consolidate signals simultaneously be-
tween groups of mutations and groups of cells.

One might consider imposing additional constraints on blocks,
such as a specific evolutionary model. Here, we impose no such con-
straints and instead solve the general problem. Note that the block
structure does not depend on the infinite sites assumption (perfect
phylogeny model) or any specific evolutionary model
(Supplementary Material S1). Thus, we model the block structure of
the mutation matrix D using the stochastic block model (SBM),
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Fig. 1. SBMClone solves the CBI problem using an SBM. (Top) An example mutation matrix D with 2 cells (rows) and # mutations (columns) is composed of entries with ei-
ther 1 or ?’ to indicate the measurement (black square) or lack of measurement (white square) of a mutation in each cell. The goal of the CBI problem is to infer the rearrange-
ment of the rows and columns of D that form the inferred block matrix Dk‘[ where rows are partitioned into k row blocks Ay, ..., A, (k=6 here), columns are partitioned
into ¢ column blocks By, ..., B, (£ = 7 here), and each block of D has either high (many black squares) or low (no black squares) proportions of 1s. (Bottom left) SBMClone
uses an SBM which is a generative model parameterized by the block probability matrix P = [p,;]. Each block probability p, s indicates the expected proportion of 1s within
the block composed of the cells in row block A, and the mutations in column block B,. (Bottom right) The mutation matrix D has a block structure because every row block A,
corresponds to a clone, which accumulate clusters of mutations that correspond to every column block Bg; this evolutionary process is described as the clone tree T where every

node correspond to a clone and every edge is labeled by a mutation cluster

which has been intensively studied as a model of community struc-
ture in networks (Abbe, 2017; Airoldi et al., 2008; Decelle et al.,
2011; Fortunato and Hric, 2016; Goldenberg et al., 2010; Karrer
and Newman, 2011; Larremore et al., 2014; Snijders and Nowicki,
1997; Zhou and Amini, 2019). The SBM is parameterized by a k x ¢
block probability matrix P = [p, ;| where p, indicates the probabil-
ity of observing a 1-entry in row i € A, and column j € B, and by
the block assignment variables v and e whose entries v; and e; indi-
cate the block assignments of row i and column j, respectively.
(While the SBM typically models a symmetric matrix encoding all
pairwise relationships between objects, we use the bipartite SBM
(Larremore et al., 2014) to avoid relationships between pairs of cells
or pairs of mutations.) According to the SBM, each entry d;; of the
mutation matrix with block assignments v;=7 and e¢;=s is sampled
independently at random from Bernoulli (p,). We emphasize that
the inference of blocks with distinct probabilities p,; is a positive
feature for our applications, as the probability to observe mutations
in different blocks may be influenced by CNAs.

We solve the CBI problem using the SBM inference algorithm in
Peixoto (2014a). While this algorithm is based on a variant of the
SBM that uses the Poisson distribution, the difference between this
model and the Bernoulli-distributed SBM is negligible when entries
in P are small (Perry and Wolfe, 2012), as is our case. This algorithm
incorporates model selection to choose the number k of clones and
the number ¢ of mutation clusters that best explains the observed
data. We also apply a variant of the SBM inference algorithm, the

hierarchical SBM (Peixoto, 2014b); the hierarchical SBM models
block matrices with nested blocks, as might be expected in our case
where the blocks of cells and mutations arise from the clone tree T.

3 Results
3.1 Simulated data

To assess the performance of SBMClone, we simulated mutation
matrices obtained from ultra-low coverage DNA sequencing data
for n mutations across m cells using a two-step procedure. First, we
constructed a binary m x n complete block matrix X = [x;;] where
xij = 1 indicates that cell 7 contains mutation j, and x;; = 0 other-
wise. We defined k clones Aq,...,A;, and ¢ mutation clusters
By, ..., By such that, for each clone  and mutation cluster s, either
all cells in 7 contain all mutations in s or no cells in 7 contain any
mutations in s (ie either 3., >.cp xij=|A,|-|Bs or
> ica, 2jen, ¥ij = 0). We describe the specific block matrices X used
to generate simulated data below. Second, given X and a block
probability p, we generated the mutation matrix D such that if x;; =
1 then d;; = 1 with probability p, and d;; = 7 otherwise. While the
relationship between sequencing coverage and p is complex and
highly dependent on read alignment and mutation calling, we esti-
mated the block probability values from a previous 10X Chromium
single-cell dataset (10X Genomics, 2019) and we found that an aver-
age per-cell sequencing coverage of 0.03x corresponds to
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p=0.0014, roughly a factor of 20 (see Supplementary Material S2
for a more detailed discussion).

Using this two-step procedure, we generated two types of muta-
tion matrices D. First, we simulated data using block matrices X
with 72 =4000 cells divided into two clones and 7 = 5000 mutations
divided into three mutation clusters (Section 3.1.1). Second, we
simulated data using a tree-structured block matrix X based on the
phylogenetic tree from Zaccaria and Raphael (2019). This phylo-
genetic tree was derived using CNAs and divides 72 = 4085 cells into
8 clones and 7 =10 556 mutations into 15 clusters (Section 3.1.2).
Since single-cell DNA sequencing technologies generally have differ-
ent levels of technical variability and errors (e.g. false positives,
amplification biases, doublets, etc.) (Gawad et al., 2016), we also
simulated realistic tree-structured block matrices using an empirical
block probability matrix P that we derived from the previously iden-
tified clones (Section 3.1.2). For each complete block matrix X, we
generated multiple mutation matrices D using different values of p.

We compared SBMClone to three existing methods for inferring
clones from single-cell sequencing data, SCG (Roth et al., 2016),
BnpC (Borgsmueller et al., 2020) and SCITE (Jahn et al., 2016), as
well as a naive approach. This naive approach represented each cell
i as the number of mutations it contains (i.e. its row sum) and
applied k-means clustering (Arthur and Vassilvitskii, 2007) to this
one-dimensional data. Both k-means and SCG were provided with
the correct number k of clones, while BnpC infers the number of
clones. We note that the single-cell methods were designed for much
higher-coverage sequencing data and not for the ultra-low coverage
whole-genome single-cell sequencing data that is the focus of this
study. In particular, these methods have been applied only to muta-
tion matrices with up to 3000 cells, up to 500 mutations and up to
60% missing entries.

We applied all methods to each simulated mutation matrix and
measured the performance of each method by computing the adjusted
Rand index (ARI) between the true and inferred partitions of cells
(clones). Both SCITE (Jahn et al., 2016) and BnpC (Borgsmueller
et al., 2020) did not scale to the large sizes of our simulated mutation
matrices. SCITE required multiple days of computation on most
instances, and exhibited poor performance on even the smallest instan-
ces. Therefore, we excluded SCITE from further analysis and we re-
port additional details in Supplementary Material S7. For BnpC, some
instances required >64 GB of memory or crashed with a floating point
underflow error; these issues may be due to the very recent release of
this method. Additional details on how BnpC and SCG were run are
in Supplementary Materials S3 and S6.

3.1.1 Block mutation matrices
We simulated mutation matrices using a complete block matrix X
composed of two clones, A; and A,, and three mutation clusters, By,
B, and Bj (Fig. 2A). Mutations in By were shared by both clones,
while mutations in B, and B3 were unique to A; and A,, respective-
ly. We simulated 1 228 880 mutation matrices, each with 100-4000
cells and 100-10 000 mutations. Moreover, we varied the number
of cells in each of the two clones as well as the number of mutations
in the three mutation clusters. We describe here results with
m=4000 cells, n=5000 mutations, |Ai|= 1600, |A;| = 2400,
|B1| = 1500, |B;| = 1400 and |Bs| = 2100. Additional results from
SBMClone with varied block sizes are reported in Supplementary
Material S4 and Figure S2.

We found that SBMClone outperformed all other methods across
a range of block probabilities p (Fig. 2B). While no method was able
to accurately recover the true clonal composition with extremely low
block probability (p < 1073, ARI< 0.01), SBMClone perfectly
recovered the clones with block probability p > § x 107 using ei-
ther the hierarchical or non-hierarchical model. We also analyzed the
number of clones inferred by SBMClone-H and found that when
ARI > 0.5, SBMClone-H inferred the correct number of clones
(Supplementary Material S10 and Fig. S5A). In contrast, the other
methods performed poorly. BnpC and SCG were unable to recover
clonal composition (ARI < 0.05) for all block probabilities p < 0.1
that were tested. The naive k-means clustering approach improved in
performance as p increased, reaching an ARI of approximately 0.9 at
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Fig. 2. SBMClone outperforms existing methods on simulated mutation matrices
with two clones and three clusters of mutations. (A) A complete block matrix X
with 7 cells and # mutations is used to simulate two clones A; and A, that share
mutations in the cluster By, while the two remaining clusters B, and B3 of mutations
are uniquely present in either A; or A,, respectively. (B) ARI (y-axis) in recovering
the simulated clones for SBMClone, SBMClone-H (hierarchical SBM), SCG (Roth
et al., 2016), BnpC (Borgsmueller et al., 2020) and k-means clustering (k-means)
applied to simulated mutation matrices with 7=4000 cells divided into two clones,
7n=5000 mutations divided into three clusters, and with varying block probability p
(x-axis in log-scale)

the highest value p = 0.1, a value that corresponds approximately to a
sequencing coverage of 2x. However, at lower values of p < 0.05 cor-
responding to sequencing coverage < 1X, in the range of current
whole-genome single-cell sequencing technologies, k-means has
ARI < 0.4, considerably worse performance than SBMClone.

We also investigated the performance of SBMClone with varying
tumor purity (i.e. the proportion of tumor cells in a sample) by
including a population of normal cells without measured somatic
mutations. We observed that SBMClone can accurately (ARI > 0.95)
recover low proportions of tumor cells (as low as 5%) in simulated
datasets with tumor purity as low as 25% and with block probability
p > 0.02 (Supplementary Fig. S3 and Material S5).

3.1.2 Tree-structured block mutation matrices

We also compared all methods on simulated tree-structured muta-
tion matrices containing multiple blocks, whose organization was
derived from a phylogenetic tree describing the evolution of the m
cells that accumulated 7 mutations. Specifically, we used a phylo-
genetic tree on eight clones (labeled J-T through J-vIII) across
4085 breast tumor cells that was previously inferred using CNAs
derived from single-cell whole-genome sequencing data using the
CHISEL algorithm (Zaccaria and Raphael, 2019). This previous
analysis also inferred 10 556 somatic mutations and placed them on
the edges of this tree (Zaccaria and Raphael, 2019). Using the clonal
structure encoded by the tree, we constructed a 4 085 x 10 556 com-
plete block matrix X with k=8 clones and £ = 15 mutation clusters,
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where blocks of 1s correspond to mutations that are present in each
clone and blocks of 0s correspond to mutations that are not present
(Fig. 3A).

We simulated two sets of 4085 x 10 556 mutation matrices. The
first set of 60 mutation matrices was created using a constant block
probability p across all blocks, varying this probability p from 1073
to 107", These values of p correspond to sequencing coverages of
0.02x and 2x, respectively. The second set of 30 mutation matrices
was created using empirical block probabilities P = [p, ] for each
block (7, s) that we derived from the clones and mutation clusters
identified in Zaccaria and Raphael (2019) (Fig. 3C). These empirical
block probabilities partially account for errors and variability in
single-cell DNA sequencing data; in fact, we note that empirical
probabilities are lower than expected in some blocks due to the pres-
ence of errors (see Supplementary Material S8 for details).
Moreover, to simulate higher sequencing coverage, we generated
mutation matrices by proportionally increasing all values in P by a
constant multiple—e.g. a multiple of 2 signifies that each value p,
is doubled to represent double the sequencing coverage (Fig. 3D).

We found that the performance of all methods was lower on this
simulated data than on the simpler block matrices above. While no
method was able to accurately recover the true clonal composition
with extremely low uniformly sampled block probabilities
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(p < 1073, ARI < 0.1) or unscaled empirical block probabilities
(multiple = 1, ARI < 0.1), SBMClone using either the SBM or hier-
archical SBM outperforms all other methods and perfectly recovers
the clones from uniformly sampled matrices with p > 0.05. With
lower block probabilities, SBMClone partially recovered the clonal
structure: ARI~ 0.85 with a uniform block probability of p = 1072,
and ARI~0.72 when considering simulated mutation matrices
when the empirical block probabilities are doubled. In contrast,
SCG and BnpC were unable to recover the clonal composition for
all values of the block probability p < 0.1 that were tested
(ARI < 0.05) or with triple the empirical block probabilities
(ARI < 0.01). While the naive k-means algorithm did not perform
as poorly, it performed considerably worse than SBMClone on uni-
form simulations (Fig. 3B, ARI < 0.7) as well as the non-uniform
simulations (Fig. 3C, ARI < 0.2). Across all tree-structured simula-
tions, SBMClone correctly inferred the number of distinct clones
when it obtained ARI > 0.5 (Supplementary Fig. SSB-D).

3.2 Cancer data

3.2.1 10X Genomics Chromium CNV solution
We used SBMClone to analyze the 10X Genomics Chromium
single-cell DNA sequencing data from a breast cancer patient
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Fig. 3. SBMClone outperforms existing methods on tree-structured simulated mutation matrices with both uniform and empirical block probabilities. (A) The complete block
matrix X is used to simulate tree-structured mutation matrices with eight tumor clones (J-1I,..., J-VIII) of 4 085 cells and with 15 clusters of 10 556 mutations, according to

a tumor phylogenetic tree previously inferred by the CHISEL algorithm from 4 085 breast tumor cells (Zaccaria and Raphael, 2019). The number of cells in each clone as well
as the number of mutations in each cluster are reported for each row block and column block, respectively. (B) ARI measures the performance of SBMClone when applying ei-
ther the SBM (SBMClone) or hierarchical SBM (SBMClone-H) inference algorithm, the other two existing methods [SCG (Roth et al., 2016) and BnpC (Borgsmueller et al.,
2020)], and a k-means algorithm (k-means) to tree-structured simulated mutation matrices with a uniform block probability p across all blocks and with varying values of p
(x-axis in log-scale). (C) The empirical block probability matrix P obtained from the 10X Chromium breast cancer data. Note that the values shown are percentages, i.e. the

actual probability corresponding to each entry is 100 times smaller. Each entry is the observed proportion of 1-entries in the mutation matrix D when the cells and mutations
are organized into the blocks given by the CHISEL phylogeny as in (A). (D) ARI measures the performance of SBMClone when applying either the SBM (SBMClone) or hier-
archical SBM (SBMClone-H) inference algorithm, other two existing methods [SCG (Roth ez al., 2016) and BnpC (Borgsmueller ez al., 2020)], and a k-means algorithm (k-
means) to tree-structured simulated mutation matrices with empirical block probabilities P = [, ] estimated from previous studies (Zaccaria and Raphael, 2019) and further

scaled by a multiple (x-axis)
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(10X Genomics, 2019). This dataset comprises 4085 tumor cells
(over 10 202 cells in total), which have been sequenced with ultra-
low coverage (~0.03x per cell). The CHISEL algorithm (Zaccaria
and Raphael, 2019) was used to identify allele- and haplotype-
specific CNAs in these cells (Zaccaria and Raphael, 2019). This ana-
lysis identified eight distinct clones (labeled g-I through g-vIII)
based on copy-number profiles, and constructed a phylogenetic tree
relating these clones. The first branch in this tree separates the eight
clones into two groups: a left branch containing 1952 cells from
clones J-I to J-I1, and a right branch containing 2033 cells from
clones J-I11 to J-VIII (Fig. 4A). We investigated whether it was
possible to recover this clonal composition by applying SBMClone
to the 10 556 somatic single-nucleotide mutations that were previ-
ously identified and assigned to the corresponding branches of the
phylogenetic tree (Zaccaria and Raphael, 2019).

All methods, including SBMClone, failed to recover the distinct
clones from the single-nucleotide mutations. This result was not sur-
prising and consistent with the simulations above, since the sequenc-
ing coverage of ~0.03x corresponds to a block probability of
approximately p < 1073 in simulated data (Fig. 3B). We saw in the
tree-structured simulated data above that with slightly larger values
of the block probability (p > 0.02), SBMClone could accurately re-
cover the distinct clones (Fig. 3B, ARI > 0.95). Since it was not pos-
sible to resequence the same cells with higher coverage, we created
higher-coverage data in silico by merging mutation calls from mul-
tiple single cells that were reported to be in the same clone by
CHISEL (see Supplementary Material S9 for details). While this ap-
proach may potentially propagate false-positive errors in the muta-
tion calls of the mutation matrix D, we believe that these errors are
much less common than the false negatives that we are addressing
by merging mutation calls. We applied the same merging approach
on our tree-structured simulated dataset with empirical block proba-
bilities and found that merging cells (Supplementary Fig. S4) had a
similar effect to increasing the value of block probability (Fig. 3C).
On the real breast tumor dataset, we found that merging a small
number of cells (>8) was sufficient to enable SBMClone to accurate-
ly separate the cells into two distinct evolutionary branches that
match the left and right branches in the CHISEL tree (Fig. 4B and

A

6557 SNVs

(141 cells) |

| (39 cells) |

{ [i2§ceils] J 111823 cells) J

C). We emphasize that merging such small numbers of cells still
results in a dataset with ultra-low coverage (~0.2x). Notably, we
also found that a similar merging of cells did not appreciably im-
prove the poor performance of other methods (Fig. 4B).

3.2.2 DOP-PCR

We used SBMClone to analyze the DOP-PCR single-cell DNA
sequencing data from breast cancer patient P2 from Kim ef al.
(2018). This dataset includes ultra-low coverage (=~0.5x) whole-
genome sequencing of 90 cells from two different time points: 46
pre-treatment cells and 44 post-treatment cells. The published ana-
lysis of this dataset identified tumor cells only in the pre-treatment
cells, and no tumor cells among the post-treatment cells (Kim et al.,
2018) (Fig. 5). This observation led (Kim et al., 2018) to classify P2
as a patient with the ‘clonal extinction’ phenotype, where tumor
cells were no longer detectable after treatment. Because of the low
sequencing coverage, Kim ez al. (2018) restricted their analysis to
CNAs using the R package ‘copy-number’ (Nilsen ez al., 2012).
Thus, we aimed to investigate whether single-nucleotide mutations
supported a different grouping of pre- and post-treatment cells.

We jointly analyzed sequencing reads from all 90 cells using
SBMClone. We used Bowtie2 (Langmead and Salzberg, 2012) to
align DNA sequencing reads using the same procedure and reference
genome hgl9 as described in the published analysis (Kim et al.,
2018). After removing putative germline variants using dbSNP
(Sherry et al., 2001) and a pseudo-matched normal sample (see
Supplementary Material S11 for details), we identified a total of
51 511 putative somatic SNVs. We applied SBMClone to the result-
ing 90 x 51511 mutation matrix D and identified a block matrix
with two distinct clones: one clone with 55 cells and the other clone
with 35 cells. Unfortunately, we could not directly compare the
clone assignments with the published results as the clone assign-
ments from Kim ez al. (2018) were not publicly available. However,
SBMClone’s results are consistent with the published result of a nor-
mal diploid clone with more cells and a single tumor clone with
fewer cells. Therefore, we hypothesized that the clone with 55 cells
corresponds to the normal diploid clone, while the other clone with
35 cells corresponds to the tumor clone.
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Fig. 4. SBMClone accurately recovers two distinct phylogenetic branches of 4 085 breast tumor cells from 10X Chromium single-cell DNA sequencing data by merging few

cells. (A) A tumor phylogenetic tree that was previously reconstructed by Zaccaria and Raphael (2019) from the eight tumor clones (J-1I,..., J-VIII) that were identified
using the CHISEL algorithm and defined as the leaves of the tree (the corresponding number of cells is indicated for each leaf). The edges of the tree were also labeled by a total
of 10 556 single-nucleotide mutations, with each edge labeled by the corresponding number of mutations. The phylogenetic tree separates the 4 085 cells from the eight clones
into two distinct branches, a left branch comprising 1952 cells and a right branch comprising 2033 cells. (B) ARI (y-axis) for SBMClone, SBMClone-H (hierarchical SBM),
SCG (Roth et al., 2016), BnpC (Borgsmueller ez al., 2020) and k-means clustering (k-means) in recovering the eight tumor clones previously identified by the CHISEL algo-
rithm from 10 556 single-nucleotide mutations, when merging a varying number of cells within the same clone (x-axis). (C) Clonal composition inferred by the previous copy-

number analysis with CHISEL and by SBMClone, each separating cells into either the left or right evolutionary branch
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Fig. 5. SBMClone identifies tumor cells in both pre- and post-treatment samples from a breast cancer patient contrasting with published analysis. (Left) Published copy-number
analysis of 90 cells from a breast cancer patient P2 (Kim et al., 2018) identified 16 tumor cells (green) in the pre-treatment sample, and no tumor cells in the post-treatment
sample. (Right) SBMClone analysis of 51 511 SNVs from the 90 sequenced cells identified tumor cells (green) in both the pre-treatment sample (21 tumor cells) and the post-
treatment sample (14 tumor cells). SBMClone’s results are supported by the identification of 18 958 SNV that separate tumor from normal cells: these SNVs have a high block
probability (0.145) in the tumor cells but a low block probability (0.050) in the normal cells

Interestingly, while the published analysis identified tumor cells
only in the pre-treatment sample, SBMClone identified a tumor
clone that consists of 21 pre-treatment tumor cells and 14 post-
treatment tumor cells (Fig. 5). There are three main pieces of evi-
dence corroborating this result. First, the 35 tumor cells identified
by SBMClone are distinguished from the normal cells by blocks of
mutations with substantially higher block probabilities, especially
the middle block comprising 18 958 SNVs: these mutations have a
much higher block probability in the tumor cells (0.145) than in the
normal cells (0.050) (Fig. 5). Notably, we observed that 538 of the
analyzed mutations are present exclusively in the 35 tumor cells
identified by SBMClone (232, 87 and 219 in each mutation block,
respectively). Second, we analyzed the read-depth profiles of all cells
and found that both the pre- and post-treatment cells identified as
tumor by SBMClone exhibit very similar read-depth profiles which
are consistent with the large CNAs reported in the previous analysis
by Kim ez al. (2018), while the normal cells have constant read
depth across the genome in both pre- and post-treatment samples
(see Supplementary Material S11 and Fig. S6). Finally, we observed
that SBMClone recovers nearly the same partition of cells when
applied to a set of mutations that also includes germline variants
(Supplementary Fig. S7). These analyses provide evidence against
the ‘clonal extinction’ classification of this patient from the original
publication (Kim et al., 2018), as SBMClone identified the presence
of both pre- and post-treatment tumor cells. This result shows that
analysis of single-nucleotide mutations can lead to important differ-
ences in the clonal composition from analysis of CNAs, and that
both types of mutations must be carefully analyzed.

4 Discussion

Recent single-cell DNA sequencing technologies enable whole-
genome sequencing of hundreds to thousands of individual cells.
Unfortunately, the ultra-low coverage of such technologies has thus
far limited their use to the analysis of large CNAs in individual cells
(Casasent et al., 2018; Laks et al., 2019; Kim et al., 2018; Navin,
2015; Navin et al., 2011; Zaccaria and Raphael, 2019). While
CNAs can often be used to effectively identify distinct clones, the
clonal composition of a tumor is not determined solely by CNAs;
single-nucleotide mutations are equally important, both in cancer

studies and in other applications of single-cell whole-genome
sequencing (Gawad e al., 2016). For example, distinct clones may
be characterized by the same complement of CNAs but different
single-nucleotide mutations, whose identification is thus crucial for
recovering the correct clonal composition. Moreover, recent studies
(Laks et al., 2019; Zaccaria and Raphael, 2019) showed that whole-
genome single-cell DNA sequencing data can be used to identify
single-nucleotide mutations by merging large sets of cells into a
pseudo-bulk sample. However, such approaches lose the characteris-
tic single-cell resolution provided by such technologies.

Here, we introduced SBMClone, a method that infers clonal
composition from single-nucleotide mutations identified in ultra-
low coverage whole-genome single-cell DNA sequencing data.
Specifically, SBMClone uses SBM inference algorithms to partition
cells into distinct clones containing different groups of mutations.
While current methods infer the clonal composition by clustering ei-
ther cells with similar mutation profiles or mutations present in the
same sets of cells, SBMClone simultaneously groups both cells and
mutations into distinct blocks.

We showed that SBMClone accurately infers clonal composition
in simulated datasets of varying complexity with per-cell coverage
as low as 0.2x. Even on much lower-coverage (~0.03x) data from
a breast cancer patient sequenced on the 10X Chromium platform
(10X Genomics, 2019), we showed that using a small amount of
additional information we can recover clonal compositions that are
corroborated by analysis of CNAs (Zaccaria and Raphael, 2019).
On single-cell whole-genome DOP-PCR data from a breast cancer
patient (Kim et al., 2018), we showed that SBMClone identifies
post-treatment tumor cells that were not identified in the original
copy-number analysis.

While SBMClone demonstrated the possibility of accurately
inferring clonal composition from ultra-low coverage single-cell
DNA sequencing data, there are several opportunities for future im-
provement. First, while our application of SBMClone focused on
single-nucleotide mutations, the method could be extended to ana-
lyze other types of mutations—such as CNAs or structural varia-
tions—either individually or jointly. Indeed, a method that analyzes
both single-nucleotide mutations and CNAs could be more powerful
to detect low-frequency clones and more robust to the variability
and errors in single-cell sequencing data. Second, while the
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sequencing coverage (~0.03x) of current 10X Genomics single-cell
sequencing datasets appears to be insufficient to identify clonal
structure using single-nucleotide mutations, our study demonstrates
that an approximately eightfold increase in coverage per cell
(=0.24 x) or the higher coverage obtained by DOP-PCR (~0.5x) is
sufficient for SBMClone to identify a subclone present in 220% of
sequenced cells. Even higher coverage may enable accurate inference
of clones with lower population frequency; indeed, the copy-number
analysis of the same 10X data identified eight clones, including one
clone representing <1% (39/4085) of the tumor cells (Zaccaria and
Raphael, 2019). Third, while SBMClone infers clonal composition
without enforcing any evolutionary constraints, one could incorpor-
ate a specific evolutionary model and jointly infer evolutionary
structure and clonal composition. Finally, SBMClone could be
extended to other applications, such as metagenomics or in vitro
evolution studies, in the latter case helping to monitor changes in
population dynamics over time.
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