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Abstract
After being trained on a fully-labeled training set, where the observations are grouped
into a certain number of known classes, novelty detection methods aim to classify the
instances of an unlabeled test set while allowing for the presence of previously unseen
classes. These models are valuable in many areas, ranging from social network and
food adulteration analyses to biology, where an evolving population may be present.
In this paper, we focus on a two-stage Bayesian semiparametric novelty detector, also
known as Brand, recently introduced in the literature. Leveraging on a model-based
mixture representation, Brand allows clustering the test observations into known train-
ing terms or a single novelty term. Furthermore, the novelty term is modeled with a
Dirichlet Process mixture model to flexibly capture any departure from the known pat-
terns. Brand was originally estimated using MCMC schemes, which are prohibitively
costly when applied to high-dimensional data. To scale up Brand applicability to large
datasets, we propose to resort to a variational Bayes approach, providing an efficient
algorithm for posterior approximation. We demonstrate a significant gain in efficiency
and excellent classification performance with thorough simulation studies. Finally, to
showcase its applicability, we perform a novelty detection analysis using the openly-
available Statlog dataset, a large collection of satellite imaging spectra, to search
for novel soil types.
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1 Introduction

Statistical methods for novelty detection are becoming increasingly popular in recent
literature. Similar to standard supervised classifiers, these models are trained on a
fully labeled dataset and subsequently employed to group unlabeled data. In addition,
novelty detectors allow for the discovery and consequent classification of samples
showcasing patterns not previously observed in the learning phase. For example,
novelty detection models have been successfully employed in uncovering unknown
adulterants in food authenticity studies (Cappozzo et al. 2020; Fop et al. 2022), col-
lective anomalies in high energy particle physics (Vatanen et al. 2012), and novel
communities in social network analyses (Bouveyron 2014).

Formally, we define a novelty detector as a classifier trained on a set (the training
set) characterized by a specific number of classes that is used to predict the labels of
a second set (the test set). For a detailed account of the topic, the interested reader is
referred to the reviews of Markou and Singh (2003a) and Markou and Singh (2003b),
where the former is devoted explicitly to statistical methods for novelty detection.

Within the statistical approach, different methodologies have been proposed to
construct novelty detectors. Recently, Denti et al. (2021) introduced aBayesian Robust
Adaptive Novelty Detector (Brand). Brand is a semiparametric classifier divided into
two stages, focused on training and test datasets, respectively. In the first stage, a
robust estimator is applied to each class of the labeled training set. By doing so, Brand
recovers the representative traits of each known class. The second step consists in
fitting a semiparametric nested mixture to the test set: the hierarchical structure of the
model specifies a convex combination between terms already observed in the training
set and a novelty term, where the latter is decomposed into a potentially unbounded
number of novel classes. At this point, Brand uses the information extracted from the
first phase to elicit reliable priors for the known components.

In their article, Denti et al. (2021) devised an MCMC algorithm for posterior esti-
mation. The algorithm is based on a variation of the slice sampler (Kalli et al. 2011)
for nonparametric mixtures, which avoids the ex-ante specification of the number of
previously unseen components, reflecting the expected ignorance about the structure
of the novelty term. As a result, the algorithm obtains good performance as it targets
the true posterior without resorting to any truncation. Nonetheless, as it is often the
case when full MCMC inference is performed, it becomes excessively slow when
applied to large multidimensional datasets.

In this paper, we aim to scale up the applicability of Brand by adopting a variational
inference approach, vastly improving its computational efficiency. Variational infer-
ence is an estimation technique that approximates a complex probability distribution
by resorting to optimization (Jordan et al. 1999; Ormerod andWand 2010), which has
received significant attention within the statistical literature in the past decade (Blei
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et al. 2017). In the Bayesian set-up, the distribution of interest is, of course, the poste-
rior distribution. Variational inference applied to Bayesian problems (also known as
variational Bayes, VB from now on) induces a paradigm shift in the approximation of
a complicated posterior: we switch from a simulation problem (MCMC) to an opti-
mization one. Broadly speaking, the VB approach starts with the specification of a
class of simple distributions called the variational family. Then, within this specified
family, one looks for the member that minimizes a suitable distributional divergence
(e.g., the Kullbak-Lielber divergence) from the actual posterior. By dealing with a
minimization problem instead of a simulation one, we can considerably scale up the
applicability of Brand, obtaining results for datasets with thousands of observations
measured in high-dimension in a fraction of the time needed by MCMC techniques.
Variational techniques have showcased the potential to enhance the relevance of the
Bayesian framework even to large datasets, sparking interest in its theoretical prop-
erties (e.g., Wang and Titterington 2012; Nieman et al. 2022; Ray and Szabó 2022),
and its applicability to, for instance, logistic regression (Jaakkola and Jordan 2000;
Rigon 2023), network analysis (Aliverti and Russo 2022), and, more in general, non-
conjugate (Wang 2012) and advanced models (Zhang et al. 2019).

The present paper is structured as follows. In Sect. 2, we review Brand and provide
a summary of the variational Bayes approach. In Sect. 3, we discuss the algorithm and
the hyperparameters needed for the VB version of the considered model. Section 4
reports extensive simulation studies that examine the efficiency and robustness of
our method. Then, in Sect. 5, we present an application to the Statlog dataset,
openly available from the UCI dataset repository. In this context, novelty detection
is used to discover novel types of soil starting from satellite images. We remark that
this analysis would have been prohibitive with a classical MCMC approach. Lastly,
Sect. 6 concludes the manuscript.

2 Background: Bayesian novelty detection and variational Bayes

This section introduces the two stages in which Brand articulates and briefly presents
the core concepts of the variational Bayes approach.

2.1 The Brandmodel

In what follows, we review the two-stage procedure proposed in Denti et al. (2021).
The first stage centers around a fully labeled learning set fromwhich we extract robust
information to set up a Bayesian semiparametric model in the second stage. More
specifically, consider a labeled training dataset with n observations grouped into J
classes. This paper will focus on classes distributed as multivariate Gaussians, but one
can readily extend the model using different distributions. To this regard, we will write
N (· | �) to indicate a Multivariate Gaussian density with generic location and scale
parameters � � (μ, �).
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In the first stage of the Brand model, within each of the J training classes, we
separately apply the Minimum Regularized Covariance Determinant (MRCD) esti-
mator (Boudt et al. 2020) to retrieve robust estimates for the associated mean vector
and covariance matrix. In detail, the MRCD searches for a subset of observations
with fixed size h (with n/2 ≤ h < n) whose regularized sample covariance has the
lowest possible determinant. MRCD estimates are then defined as the multivariate
location and regularized scatter based on the so-identified subset. Compared to the
popular Minimum Covariance Determinant (MCD, Rousseeuw and Driessen 1999;
Hubert et al. 2018), with MRCD we perform a convex combination of the h-subset
sample covariance matrix with a pre-specified, well-conditioned positive definite tar-
get matrix. While the former has zero-determinant when p > h, which would result
in an ill-defined MCD solution, the regularization introduced in MRCD ensures the
existence of the estimator even when the data dimension exceeds the sample size. This
feature implies that the robustness properties of the original procedure are preserved
whilst being applicable also to “p > n” problems. Such a characteristic is paramount in
the context considered in the present paper, where we specifically aim to scale up the
applicability of Brand to high-dimensional scenarios. We will denote the estimates

obtained for class j, j � 1, . . . , J , with �̄
MRCD
j �

(
μ̂
MRCD
j , �̂

MRCD
j

)
. These

quantities will be employed to elicit informative priors for the J known components
in the second stage. Specifically, in so doing, outliers and label noise that might be
present in the training set will not hamper the Bayesian mixture model specification
hereafter reported.

In the second stage, we estimate a semiparametric Bayesian classifier on a test set
withM unlabeled observations. We want to build a novelty detector, i.e., a model that
can discern between “known” units - which follow a pattern already observed in the
training set - or “novelties”. At this point, the likelihood for each observation is a
simple two-group mixture between a generic novelty component fnov and a density
reflecting the behavior found in the training set fobs . Given stage one, it is immediate
to specify fobs as a mixture of J multivariate Gaussians, whose hyperpriors elicitation

will be guided by each of the robust estimates �obs
j � �̄

MRCD
j . Therefore, we can

now write the likelihood for the generic test observation ym , where m � 1, . . . , M ,
as a mixture of J + 1 distributions:

L
(
ym | �obs , π

)
� π0 fnov +

J∑
j�1

π jN
(
ym | �obs

j

)
. (1)

Fitting this model to the test set allows us to either allocate each of theM observations
into one of the previously observed J Gaussian classes or flag it as a novelty generated
from an unknown distribution fnov .

The specification of fnov is more delicate. To specify a flexible distribution that
would reflect our ignorance regarding the novelty term, we employ a Dirichlet process
mixture model with Gaussian kernels (Escobar and West 1995). It is a mixture model
where the mixing distribution is sampled from a Dirichlet process (Ferguson 1973),
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characterized by concentration parameter γ and base measure H. In other words, we
have that fnov( ym) � ∑∞

k�1 ωkN
(
ym | �nov

k

)
, where the atoms are sampled from

the base measure, i.e., �nov ∼ H , and the mixture weights follow the so-called
stick-breaking construction (Sethuraman 1994), where wk � vk

∏
l<k(1 − vl ) and

vl ∼ Beta(1, γ ). To indicate this process, we will write ω ∼ SB(γ ). Thus, the
likelihood in (1) becomes, for m � 1, . . . , M ,

L(
ym | �, π

) � π0

[ ∞∑
k�1

ωkN
(
ym | �nov

k

)]
+

J∑
j�1

π jN
(
ym | �obs

j

)
.

This nested-mixture expression of the likelihood highlights a two-fold advantage.
First, it is highly flexible, effectively capturing departures from the known patterns and
flagging them as novelties. Second, the mixture nature of fnov allows to automatically
cluster the novelties, capturing potential patterns that may arise. Furthermore, clusters
in the novelty terms characterized by very small sizes can be interpreted as simple
outliers.

Notice that the previous nested-mixture likelihood can be conveniently re-expressed
as:

L
(
ym | �obs , π

)
�

∞∑
k�1

π̃kN
(
ym|�̃k

)
, (2)

where, for k ∈ N, we define π̃k � πk
1{0<k≤J }(π0ωk−J )1{k≥J } and

�̃k � (�obs
k )1{0<k≤J }(�nov

k )1{k≥J }. Note that, without loss of generality, we regard
the first J mixture components as the known components and all the remaining ones
as novelties.

Finally, as customary in mixture models, to ease the computation, we augment the
model by introducing the auxiliary variables ξm ∈ N, for m � 1, . . . , M , where
ξm � l means that the m-th observation has been assigned to the l-th component.
Therefore, the model in (2) simplifies to

ym | ξm , �̃, π ∼N
(
ym | �̃ξm

)
, ξm | π̃

i id∼
∞∑
k�1

π̃kδk(·). (3)

We complete our Bayesian model with the following prior specifications for the
weights and the atoms:

π ∼ Dirichlet(α0, α1, ..., αJ ), ω ∼ SB(γ ),

�obs
k ∼ NIW(μobs

k , νobsk , λobsk , �obs
k ), k � 1, . . . , J ,

�nov
k ∼ NIW(μnov

0 , νnov0 , λnov0 , �nov
0 ), k � J + 1, . . . , ∞,

(4)

where NIW indicates a Normal Inverse-Wishart distribution. To ease the notation,
let � � {�obs

k }Jk�1 ∪ {�nov
k }∞k�J+1, �k � (μobs

k , νobsk , λobsk , �obs
k ) and �0 � (μnov

0 ,
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νnov0 , λnov0 , �nov
0 ). We remark that the values for the hyperparameters {�obs

k }Jk�1 are
defined according to the robust estimates obtained in the first stage. See Denti et al.
(2021) for more details about the hyperparameters specification.

Given the model, it is easy to derive the joint law of the data and the parameters,
which is proportional to the posterior distribution of interest p(�, π , ξ | y). There-
fore, the posterior we target for inference is proportional to:

p(�, π , ξ | y) ∝
M∏

m�1

[
J∏

k�1

N ( ym | �obs
k )1ξm�k

∞∏
k�J+1

N ( ym | �nov
k )1ξm�k

]

×
J∏

k�1

NIW(�obs
k | �k)

∞∏
k�J+1

NIW(�nov
k | �0)

×
M∏

m�1

⎡
⎣

J∏
k�1

(πk)
1ξm�k

∞∏
k�J+1

π0

(
vk−J

k−J−1∏
h�1

(1 − vh)

)1ξm�k
⎤
⎦

×
J∏

k�0

(πk)
αk−1

∞∏
k�1

(1 − vk)
γ−1. (5)

The left panel of Fig. 1 contains a diagram that summarizes how Brand works. In the
following, we will devise a VB approach to approximate (5) in a timely and efficient
manner. The following subsection briefly outlines the general strategy underlying a
mean-field variational approach, while the thorough derivation of the algorithm used
to estimate Brand is deferred to Sect. 3.

Fig. 1 Diagrams depicting how Brand (left panel) and variational inference (right panel) work, respectively
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2.2 A short summary of mean-field variational Bayes

Working in a Bayesian setting, we ultimately seek to estimate the posterior distribution
to draw inference. Unfortunately, the expression in (5) is not available in closed form,
and therefore we need to rely on approximations. MCMC algorithms, which simulate
draws from (5), could be prohibitively slow when applied to large datasets. To this
extent, we resort to variational inference to recasts the approximation of (5) into an
optimization problem. For notational simplicity, while we present the basic ideas of
VB, let us denote a generic target distribution with p(θ | y) ∝ p(θ , y).

As in Blei et al. (2017), we focus on a mean-field variational family Q, a set con-
taining distributions for the parameters of interest θ that are all mutually independent:
Q � {qζ (θ ) : qζ θ � ∏

j qζ j (θ j )}. The postulated independence dramatically simpli-
fies the problem at hand. Notice that each member ofQ depends on a set of variational
parameters denoted by ζ .

We seek, among the members of this family, the candidate that provides the best
approximation of our posterior distribution p(θ | y). Herein, the goodness of the
approximation is quantified by the Kullback–Leibler (KL) divergence. Thus, we aim
to find the member of the variational family Q that minimizes the KL divergence
between the variational approximation and the actual posterior distribution. The KL
divergence DKL (· || ·) can be written as DKL (qζ (θ ) || p(θ | y))) � Eq [log qζ (θ )] −
Eq [log p(θ , y)] + log p( y). Unfortunately, we cannot easily compute the evidence
p( y). However, the evidence does not depend on any variational parameter and can
be treated as fixed w.r.t. θ during the optimization process. We then re-formulate
the problem into an equivalent one, the maximization of the Evidence Lower Bound
(ELBO), which is fully computable:

ELBO(q) � Eq [log p(θ , y)] − Eq [log qζ (θ )]. (6)

Maximizing (6) is equivalent to minimizing the aforementioned KL divergence.
To detect the optimal member q
 ∈ Q, we employ a widely used algorithm called

Coordinate Ascent Variational Inference (CAVI). It consists of a one-variable-at-a-
time optimization procedure. Indeed, exploiting the independence postulated by the
mean-field property, one can show that the optimal variational distribution for the
parameter θ j is given by:

q

ζ j
(θ j ) ∝ exp{E− j

[
log p(θ j , θ− j , y)

]}, (7)

where θ− j � {θl}l 
� j and the expected value is taken w.r.t. the densities of θ− j . The
CAVI algorithm iteratively computes (7) for every j until the ELBO does not register
any significant improvement. The basic idea behind the CAVI algorithm is depicted
in the right-half of Fig. 1.

In the next subsections, we will derive the CAVI updates for the variational approx-
imation of our model, along with the corresponding expression of the ELBO. We call
the resulting algorithm the variational Brand, or VBrand.
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3 Variational Bayes for the Brandmodel

In this section, we tailor the generic variational inference algorithm to our spe-
cific case. First, we write our variational approximation, highlighting the depen-
dence of each distribution on its specific variational parameters, collected in ζ �(
η, ϕ, a, b, ρobs , ρnov

)
. The factorized form we adopt reads as follows:

qζ (ξ , π , v, �obs , �nov) � qη(π)
M∏

m�1

qϕ(m) (ξ (m))
T−1∏
k�1

qak , bk (vk)

×
J∏

k�1

qρobs
k
(�obs

k )
J+T∏

k�J+1

qρnov
k

(�nov
k ).

(8)

In Eq. (8), we truncated the stick-breaking representation of the Dirichlet Process on
the novelty term at a pre-specified threshold T , as suggested in Blei and Jordan (2006).
This implies that q(vT � 1) � 1 and that all the variational mixture weights indexed
by t > T are equal to zero.

Then, we can exploit a key property of VB. Note that all the full conditionals of
the Brand model have closed-form expressions (c.f.r. Section S1 of the Supplemen-
tary Material) and belong to the exponential family. This feature greatly simplifies the
search for the variational solution. Indeed, it ensures that the corresponding optimal
variational distributions belong to the same family of the corresponding full condi-
tional, with properly updated variational parameters. Therefore, we can already state
that qη(π) is the density function of aDirichlet distribution, qϕ(m) (ξ (m)) is a Categorical

distribution, each qak , bk (vk) is a Beta distributions, and qρobs
k
(�obs

k ) and qρnov
k

(�nov
k )

are both Normal Inverse-Wishart distributions.

3.1 The CAVI parameters update

Once the parametric expressions for themembers of the variational family are obtained,
we can derive the explicit formulas to optimize the parameters via the CAVI algorithm.
In this subsection, we state the updating rules that have to be iteratively computed to
fit VBrand. As we will observe, the set of responsibilities {ϕ(m)

k }J+Tk�1 for m � 1, . . . ,

M , i.e., the variational probabilities ϕ
(m)
k � q(ξ (m) � k), will play a central role in all

the steps. In detail, the CAVI steps are as follows:

1. q

η(π ) is the density of a Dirichlet(η0, η1, . . . , ηJ ), where

η0 � α0 +
M∑

m�1

J+T∑
l�J+1

ϕ
(m)
l , η j � α j +

M∑
m�1

ϕ
(m)
j , for j � 1, . . . , J . (9)

Here, each hyperparameter linked to a known component is updated with the sum
of the responsibilities of the data belonging to the same specific known component.
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Likewise, the variational novelty probability hyperparameter η0 contains the sum
of the responsibilities of all data belonging to all the novelty terms.

2. Each q

ak , bk

(vk), for k � 1, . . . , T −1, is the density of a Beta(ak , bk). The update
for these variational parameters is given by:

ak � 1 +
M∑

m�1

ϕ
(m)
J+k , bk � γ +

T∑
l�k+1

M∑
m�1

ϕ
(m)
J+l . (10)

Here, as expected from the stick-breaking construction, the first parameter of
the variational Beta distribution is updated with the sum of the probabilities of
each point belonging to a specific novelty cluster k. At the same time, the second
parameter is updated with the sum of variational probabilities of belonging to one
of the next novelty components.

3. Both q

ρnov
k

(�nov
k ) and q


ρobs
k
(�obs

k ) are Nomal Inverse-Wishart densities. Let us

start with the updating rules of the known components. Note that each variational
parameter ρobs

k is a shorthand for
(
mobs

k , �obsk , uobsk , Sobsk

)
. These parameters have

the same interpretation as the parameters of (4), contained in �k . So we have

mobs
k � 1

λobsk +
∑M

m�1 ϕ
(m)
k

(
λobsk μobs

k +
M∑

m�1

ymϕ
(m)
k

)
,

�obsk � λobsk +
M∑

m�1

ϕ
(m)
k , uobsk � νobsK +

M∑
m�1

ϕ
(m)
k ,

Sobsk � �obs
k +

M∑
m�1

�̂
(m)
k +

λobsk

∑M
m�1 ϕ

(m)
k

λobsk +
∑M

m�1 ϕ
(m)
k

( yk − μobs
k )T ( yk − μobs

k ), (11)

where we defined �̂
(m)
k � ( ym − yk)( ym − yk)

Tϕ
(m)
k and yk �∑M

m�1 ymϕ
(m)
k /

∑M
m�1 ϕ

(m)
k . The update for the parameters in ρnov

k follows the
same structure, with the hyperprior parameters in �nov carefully substituted to
�obs .

4. Updating the responsibilities {ϕ(m)
k }J+Tk�1 form � 1, . . . , M , is themost challenging

step of the algorithm, given the nested nature of the mixture in (2). We recall that,
for a given m, the distribution qϕ(m) (ξ (m)) is categorical with J + T levels. Thus,
we need to compute the values for the J + T corresponding probabilities. For the
known classes k � 1, . . . , J , we have

logϕ
(m)
k ∝ E[logπk] + E[logN ( ym | �obs

k )], (12)

while for the novelty terms k � J + 1, . . . , J + T , we have

logϕ
(m)
k ∝ E[logπ0] + E[log vk−J ] +

k−J−1∑
l�1

E[log(1 − vl)]

+ E[logN ( ym | �nov
k )]. (13)
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For the sake of conciseness, we report the explicit expression for all the terms
of (12) and (13) in Section S2 of the Supplementary Material. This means that
the probability of datum ym to belong to cluster k depends on the likelihood of
ym under that same cluster and on the overall relevance of the kth cluster. Such
relevance is determined as the expected value of the relative component of the
Dirichlet distributed π and, for novelties, the stick-breaking weight, here unrolled
in its Beta-distributed components.

3.2 The expression of the ELBO for VBrand

In this subsection, we report the terms that need to be derived to obtain the ELBO in
Eq. (6) for the VBrandmodel. We start by computing the first term of Eq. (6), which
takes the following form:

E[log p] �
M∑

m�1

(
J∑

k�1

f (m, k)
1 +

J+T∑
k�J+1

f (k)2

)
+

J∑
k�1

f (k)3 +
J+T∑

k�J+1

f (k)4

+
M∑

m�1

(
J∑

k�1

f (m, k)
5 +

J+T∑
k�J+1

f (m, k)
6

)
+

J∑
k�0

f (k)7 +
T∑
l�1

f (l)8 + const ,

where the quantities { fk}8k�1 have the following expressions (note we have suppressed
the superscripts to ease the notation, and that ψ(·) indicates the digamma function):

f1 � ϕ
(m)
k E[log N ( ym | �obs

k )], f2 � ϕ
(m)
k E[log N ( ym | �nov

k )],

f3 � E[logNIW(�obs
k | �k)], f4 � E[logNIW(�nov

k | �0)].

Moreover, we have f5 � ϕ
(m)
k

(
ψ(ηk) − ψ

(∑J
j�0 η j

))
,

f6 � ϕ
(m)
k

⎡
⎣ψ(η0) − ψ(

J∑
j�0

η j ) + ψ(ak−J + bk−J ) +
k−J−1∑
h�1

ψ(bh) − ψ(ah + bh)

⎤
⎦,

and, lastly, f7 � (αk−1)(ψ(ηk)−ψ(
∑J

j�0 η j )), and f8 � (γ −1)(ψ(bl )−ψ(al+bl )).
The second term of Eq. (6) can be written as

E[log q] �
M∑

m�1

(
h(m)
1 + h(m)

2 +
T∑

k�1

h(m, k)
3 +

J∑
k�1

h(m, k)
4 +

T∑
k�1

h(m, k)
5

)
,

with h1 � ∑J+T
k�1 ϕ

(m)
k ln ϕ

(m)
k − ln

∑J+T
k�0 ϕ

(m)
k , h4 � E[logNIW(�obs

k | ρobs
k )],
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h5 � E[logNIW(�nov
k | ρnov

k )], and, finally,

h2 �
J∑

j�0

(η j − 1)

⎛
⎝ψ(η j ) − ψ(

J∑
j�0

η j )

⎞
⎠ + ln�

⎛
⎝

J∑
j�0

η j

⎞
⎠ −

J∑
j�0

ln�(η j ),

h3 � (ak − 1)(ψ(ak) − ψ(ak + bk))

+ (bk − 1)(ψ(bk) − ψ(ak + bk)) − ln

(
�(ak)�(bk)

�(ak + bk)

)
.

Additional details are deferred to Section S2 of the Supplementary Material.
At each step of the algorithm, one needs to update the parameters according to the

rules (9)–(13) and to evaluate all the terms in { fk}8k�1 and {hk}5k�1. Albeit faster than
MCMC, this articulates over numerous steps. To further reduce the overall computing
time, an R package relying on an efficient C++ implementation has been implemented.
The package is openly available at the GitHub repository JacopoGhirri/VarBRAND.
In the same repository, the interested reader can find all the R scripts written to run
the simulation studies and real data application that we will discuss in the following
sections.

3.3 VBrand clustering estimation

Ultimately, we seek to partition the observations into either known components or
novelties. While the recovery of a single posterior clustering solution is not immedi-
ate when using the Gibbs sampler due to label-switching (see Denti et al. (2021) for
a description of the post-processing algorithm in this context), it is almost straight-
forward to obtain it with a variational inference approach. As previously mentioned,
the responsibilities are pivotal in this context. Once the convergence of the ELBO is
reached, we are left with a matrix �
 � {ϕ
, (m)

k }, with M rows - one for each obser-
vation - and J + T columns - one for each possible cluster (known or novel). Then,
for each observation m � 1, . . . , M , the optimal clustering assignment is given by

c

m � arg max

k�1, ..., J+T
ϕ


, (m)
k .

Of course, c

m ∈ {1, . . . , J + T }. The set c
 � (

c

1, . . . , c


M

)
contains the estimated

partition of the data. We underline that, while J + T clusters are fitted to the data,
the number of distinct values in c
 will potentially be much lower than J + T . In
other words, we must distinguish between the number of fitted mixture components
and populated components. This way, T can be interpreted as an upper bound of the
number of novelty components expected to be observed while we let the data estimate
the number of needed novelties T 
 ≤ T .
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4 Simulation studies

In this section, we report the performance of our variational algorithm on a range of
simulated datasets. In particular, our simulation study is articulated into three differ-
ent experiments. Each experiment investigates a different aspect of the model while
altogether providing a multi-faceted description of its performance.

The first experiment focuses on the scaling capabilities of our proposal; the sec-
ond compares the results and efficiency of VBrand with the original slice sampler,
while the last one assesses the sensitivity of the recovered partition to the hyperprior
specification. For the MCMC algorithm, we follow the default hyperprior setting sug-
gested in Denti et al. (2021). Moreover, we run the slice sampler for 20,000 iterations,
discarding the first 10,000 as burn-in. As for VBrand, we use the same hyperprior
specifications used for the MCMC (unless otherwise stated), while we use k-means
estimation to initialize the means of the novelty terms. We set a threshold ε � 10−9

as stopping rule.

4.1 Classification performance

We test the classification performance of our proposal by applying VBrand to a
sequence of increasingly complex variations of a synthetic dataset. We monitor the
computation time and different clustering metrics to provide a complete picture of the
overall performance. In particular, we compute the Adjusted Rand Index (ARI, Hubert
and Arabie (1985)), the Adjusted Mutual Information (AMI, Vinh et al. (2009)), and
the Fowlkes-Mallows Index (FMI, Fowlkes and Mallows (1983)). While the first two
metrics correct the effect of agreement solely due to chance, the latter performs well
also if noise is added to an existing partition. Thereupon, the joint inspection of these
three quantities aim to provide a complete picture of the results.

The considered data generating process (DGP) for this experiment is based on a
mixture of 7 bivariate Normals. In detail, the first three components represent the
known classes, appearing in both training and test sets, while the remaining 4 are
deemed to be novelties, present only in the test set. The components are characterized
by different mean vectors μk , correlation matrices (σ 2

k , ρk), and cardinalities in the

training (nk) and test (Mk). We consider a reference scenario, where
∑3

k�1 nk � n �
900 and

∑7
k�1 Mk � M � 1000. The main attributes of this DGP are summarised in

the first block, named SS1, of Table 1.
Starting from this basic mechanism, we subsequently increment the difficulty of the

classification tasks. Specifically, we modify both the data dimension and the sample
size as follows:

• Sample size: while keeping unaltered the mixture proportions, we consider the sam-
ple sizes ñk � q · nk and M̃k � q · Mk , with multiplicative factor q ∈ {0.5, 1, 2.5,
5, 10} in both training and test sets;

• Data dimensionality: we augment the dimensionality p of the problem by consid-
ering p ∈ {2, 3, 5, 7, 10}. Each added dimension (above the second) comprises
independent realization from a standard Gaussian. Note that the resulting datasets
define a particularly challenging discrimination task: all the information needed to
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Table 1 Characteristics of the synthetic datasets used in the three simulation studies (SS1−SS3). The com-

ponents flagged with ∗ are novelties. † the variances reported in this table refer to the low overlap scenario.

For the high overlap scenario, we consider σ 2
 � 6σ 2

SS1 C1 C2 C3 C∗
4 C∗

5 C∗
6 C∗

7

μk (− 5, − 5) (− 4, − 4) (4, 4) (0, 0) (5, − 10) (5, − 10) (− 10, − 10)

σ 2 1 2 2 1 1 1 0.1

ρ 0.9 0 0 −0.75 0.9 0.9 0

nk 300 300 300 – – – –

Mk 200 200 250 90 100 100 60

SS2 C1 C2 C∗
3 C∗

4 C∗
5 – –

μk (2, 2) (− 2, − 2) (2, − 2) (− 2, 2) (0, 0) – –

nk 500 500 – – – – –

Mk 200 200 200 200 200 – –

SS3 C1 C2 C3 C∗
4 C∗

5 C∗
6 –

μk (− 5, 5) (5, 5) (5, − 5) (0, 0) (0, 0) (− 5, 5) –

σ 2 † 0.5 0.5 0.5 0.5 0.5 1.5 –

ρ 0 0 0 0.8 −0.8 0 –

nk 50 50 50 – – – –

Mk 1950 1950 1950 2000 2000 100 –

distinguish the different components is contained in the first two dimensions. In
contrast, the remaining ones only display overlapping noise.

For each combination of sample size and dataset dimension, we generate 50 replica-
tions of each simulated dataset and summarize the results by computing the means
and the standard errors of the chosen metrics. Results for this experiment are reported
in Fig. 2. We immediately notice that the clustering performances deteriorate as the
dimensionality of the problem increases. This trend is expected, especially given the
induced overlap in the added dimensions. However, the classification abilities of our
method remain consistent and satisfactory across all metrics. Indeed, as we can see
from the three panels at the top, ARI, AMI, and FMI are all strictly above 70% across
all scenarios. This outcome indicates that not only are the known classes correctly
identified and clustered as such, but the flexible nonparametric component effectively
captures the novelty term. The computation time (bottom panel) grows exponentially
as a function of the test set cardinality. Interestingly, the increment of data dimension-
ality does not significantly impact the computational costs, suggesting an effective
scalability of our proposal to high dimensional problems. Indeed, even when the test
size is in the order of tens of thousands, the devised CAVI algorithm always reaches
convergence in less than half a minute. Also, we remark that the time needed for con-
vergence is sensitive to the different initialization provided to the algorithm, explaining
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Fig. 2 Performance metrics and elapsed time obtained by the VBrand algorithm stratified by number of
variables p and size scaling n. The dots represent the averages obtained over 50 replicates of the simulated
experiment, while the vertical bars display the associated standard errors

the high variance that characterized the computational costs. Finally, it is worth com-
menting on the seemingly higher computational costs that appear when p � 2. The
lower panel of Fig. 2 contains the total time needed to reach convergence, which
changes across runs, as the number of iterations may vary. The lower dimensionality
allows the algorithm to better explore the mean-field distributional space, obtaining
more precise solutions at the cost of higher total convergence time. This feature is
reflected by consistent good performances of our method when p � 2. For complete-
ness, in Section S3 of the Supplementary Material, we report a plot summarizing the
computational cost per iteration.

4.2 Comparison with MCMC

We now compare the variational and the MCMC approaches for approximating the
Brand posterior. The MCMC algorithm we consider is the modified slice-sampler
introduced in Denti et al. (2021). We compare the estimating approaches leveraging
on the sameDGPhighlighted in the previous section and slightlymodified accordingly.
In detail, we consider five spherical bivariate Gaussian to generate the classes, out of
which three are deemed as novelties: the basic details of the resulting DGP can be
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Fig. 3 Performancemetrics (MCMC in red, variational Bayes -VB - in blue) stratified by number of variables
p and sample size scaling factor q under the complex scenario. The dots represent the averages obtained
over 50 replicates of the simulated experiment, while the vertical bars display the associated standard errors

found in the second block ofTable 1 (SS2).We consider 50 different scenarios resulting
from the interactions of the levels of the following three attributes:

• Simple vs. complex scenarios: we set the variance of all the mixture components
to either σ 2

S � 0.2 or σ 2
C � 0.75 (the only exception being σ 2

C∗
5

� 0.375). The

former value implies clear separation among the elements in the simple scenario.
In contrast, the latter variance defines the complex case, where we induce some
overlap that may hinder the classification. A descriptive plot is displayed in Section
S3 of the Supplementary Material;

• Sample size: we modify the default sample sizes n � M � 1000 by considering
different multiplicative factors in q ∈ {0.5, 1, 2.5, 5, 10}, thus obtaining datasets
ranging from 500 to 10000 observations.
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Fig. 4 Computational time in seconds (MCMC in red, variational Bayes - VB - in blue) grouped by number
of variables p, sample size scaling factor q, and type of scenario. The dots represent the averages obtained
over 50 replicates of the simulated experiment, while the vertical bars display the associated standard errors

• Data dimensionality: we augment the dimensionality p of the problem by con-
sidering p ∈ {2, 3, 5, 7, 10}. The dimensionality augmentation is carried out as
described in Sect. 4.1.

We assess the classification performanceswith the samemetrics previously introduced.
For each of the 50 simulated scenarios, we perform 50Monte Carlo replicates to assess
the variation in the performances. A summary of the classification results under the
complex scenario are reported in Fig. 3. The panels show that the slice sampler always
outperforms the VB implementation in the two-dimensional case. However, as the
dimensionality of the dataset increases the MCMC performance rapidly drops, while
VBrand always obtains good clustering recovery, irrespective of the data dimension-
ality and the sample size. Similar results are obtained under the simple scenario, for
which a summarizing plot can be found in Section S3 of the Supplementary Material.
Figure 4 compares the algorithms in terms of computation time. As expected,VBrand
provides results in just a fraction of the time required by the MCMC approach, being
approximately two orders of magnitude faster.

These results cast light not only on the apparent gain in computational speed when
using the variational approach,which is expected by anymeans, but also on the superior
recovering of the underlying partition in the test set in more complex scenarios.

4.3 Sensitivity analysis

Finally, we investigate the sensitivity of the model classification to different hyper-
prior specifications. Two pairs of crucial hyperparameters may considerably affect the
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clustering results. The first two are α and γ , which drive the parametric and nonpara-
metric mixture weights, respectively. The second pair is given by theNIW precision
λnov0 and degrees of freedom νnov0 of the novelty components. To assess their impact,
we devise a sensitivity analysis considering each possible combination of the follow-
ing hyperparameters: α ∈ {0.1, 0.55, 1}, γ ∈ {1, 5.5, 10}, λnov0 ∈ {1, 5, 10}, and
νnov0 ∈ {4, 52, 100}, thus defining 81 scenarios.We fit VBrand to a dataset composed
of five bivariate Normals, considering a fixed sample size for both training and test
sets.We chose a small sample size for the training set to limit the informativeness of the
robust estimation procedure. Moreover, for each combination of the hyperparameters,
we consider both low and high values for the variances of the mixing components,
obtaining scenarios with low overlap (LOV) and high overlap (HOV), respectively.
Additional details about the data-generating process can be found in the third block
of Table 1 (SS3). For this experiment, we compare the retrieved partitions in terms of
ARI, as done in Sects. 4.1 and 4.2, and by monitoring the F1 score, i.e., the harmonic
mean of precision and recall. The results are reported in Fig. 5. We immediately notice
by inspecting the panels that for the LOV case the method performs well regardless of
the combination of hyper-parameters chosen for the prior specification. In the HOV
scenario the recovery of the underlying true data partition is less effective, as it is
nevertheless expected. In particular, it seems that setting a high value for the degrees

Fig. 5 Classification metrics obtained over 50 replicates for 81 combinations of the hyperparameters α, γ ,
λnov0 , and νnov0 under the low overlap (LOV) and high overlap (HOV) cases. The dots represent the averages
obtained over 50 replicates of the simulated experiment, while the vertical bars display the associated
standard errors
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of freedom νnov0 produces a slight drop in the ARI metric. This behavior is due to
the extra flexibility allowed to the novelty component, by which some of the units
belonging to the known groups are incorrectly captured by the novelty term.

In summary, our proposal increases the scalability of the approach introduced in
Denti et al. (2021), allowing for the original novelty detector to be successfully applied
to complex and high-dimensional scenarios while being protected by contaminated
samples as the robust learning phase (the first stage) presented in Denti et al. (2021)
remains unaltered.

5 Application to novel soil type detection

For our application, we consider the Statlog (Landsat Satellite) Data
Set, publicly obtained from the UCI machine-learning repository.1 It consists of a
collection of observations from satellite images of different soils. Each image contains
four spectral measurements over a 3x3 grid, recorded to classify the soil type captured
in the picture. There are a total of six different soil types recorded: Red Soil (RS),
Grey Soil (GS), Damp Grey Soil (DGS), Very Damp Grey Soil (VDGS), Cotton Crop
(CC), and Soil with Vegetation Stubble (SVS). We frame the original classification
problem in a novelty detection task by removing the images of CC and SVS from the
training set, leaving these groups in the test set to be detected as novelties.

Even when performing a simple classification, a method that can account for the
possible presence of previously unseen scenarios can be of paramount utility in many
fields. For example, new plants (Christenhusz and Byng 2016), animals (Camilo et al.
2011), and viruses (Woolhouse et al. 2012) are progressively discovered every year.
Likewise, related to our application, landscapes present novelties at increasing rates
(Finsinger et al. 2017). Moreover, a scalable model that can discern and separate out-
lying observations is necessary when dealing with real-world data, allowing the results
to be robust to outliers or otherwise irregular observations. Once these observations are
flagged, they can be the objective of future investigations. Thus, our novelty detection
application to the Statlog dataset is a nontrivial example that could encourage the
broader utilization of our method.

The original data are already split into training and test sets. After removing the
CC and SVS classes from the training set, we obtain a training set of n � 3486 obser-
vations. The test set instead contains M � 2000 instances. Each observation includes
the four spectral values recorded over the 9-pixel grids. Therefore, we will model
these data with a semiparametric mixture of 36-dimensional multivariate Normals.
Given the large dimensionality of the dataset, the application of the MCMC estima-
tion approach is problematic in terms of both required memory and computational
time. Indeed, estimating the model via slice sampler becomes unfeasible for most lap-
top computers. Moreover, we recall that theMCMC approach showed some numerical
instabilities in our simulation studies when applied to large dimensional datasets.

We apply VBrand adopting a mixture with full covariance matrices to capture
the potential dependence across the different pixels. Being primarily interested in

1 https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29.

123

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29


Variational inference for semiparametric Bayesian novelty ... 699

Fig. 6 Top-left panel: collection of ELBO trajectories obtained via CAVI updates starting from 200 different
random intializations; the trajectory providing the highest ELBO is highlighted in blue (the y axis is truncated
for improved visualization). Top-right panel: projection of the test dataset onto a two-dimensional space
via the tSNE algorithm. Bottom panel: heatmap of the resulting confusion matrix

clustering, we first rescale the data to avoid numerical problems. In detail, we divided
all the values in both training and test by 4.5 to reduce the dispersion. Indeed, before
the correction, the variabilities within groups ranged from 25.40 to 228.04. After,
the within-group variability ranges from 1.25 to 11.26, significantly improving the
stability of the algorithm.

Since the variational techniques are likely to find a locally optimal solution, we
run the CAVI algorithm 200 times adopting different initializations. For each run, we
obtain different random starting point as follows:

• we set the centers for the noveltyNIWs equal to the centers returned by a k-means
algorithm performed over the whole test set, with k being equal to the chosen
truncation;

• theDirichlet parameters, νnov andλnov are randomly selected. In particular, we sam-
ple the Dirichlet parameters from (0.1, 1) and the NIW parameters from (1, 10)
through Latin Hypercube sampling.
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The other variational hyperparameters are assumed fixed, equal to the corresponding
prior hyperparameters. In Section S4 of the Supplementary Material, we report a
detailed list of the hyperparameter specifications that we adopted for this analysis.

As a final result, we select the run with the highest ELBO value, being the one
whose variational distribution has the lowest KL divergence from the true posterior.
The top-left panel of Fig. 6 shows the ELBO trends for all the run we performed.
The bottom panel of Fig. 6 reports the resulting confusion matrix: T � 10 potential
novelty components are fitted to the data, but only T 
 � 8 have been populated. We
observe that the algorithmsuccessfully detectedboth novelties, achieving a satisfactory
classification performance of the previously observed soil types (ARI� 0.590, FMI�
0.664, and AMI� 0.593). However, the model struggles with classifying the DGS
instances, often mistaken for GS or VDGS. Such difficulty is explained by the overlap
between these groups, as shown by the visualization of the test set obtained via the
tSNE projection (Hinton and van der Maaten 2008), reported in the top-right panel of
Fig. 6: from the plot, we see that it is not straightforward to establish clear boundaries
between GS, DGS, and VDGS soil types.

Overall,VBrand captures themain traits of the data and flags some observations as
outliers (e.g., Novelty clusters 4 and 5), which may warrant further investigation. All
in all, our variational approach provides a good clustering solution in a few seconds
and it is fast enough to allow for a brute-force search for a better, albeit only locally
optimal, solution employing multiple initializations.

6 Discussion and conclusions

Performing novelty detection in high-dimensional and massive datasets presents sub-
stantial challenges, arising from the intrinsic, yet widespread nowadays, difficulty of
the task and the associated computational complexities. To this aim,Bayesian inference
offers an effective solution to tackle the problem, as it provides a well-defined proba-
bilistic framework that allows for the fruitful incorporation of pre-existing knowledge
into the modeling pipeline through informative prior specifications. However, the use
of simulation-based algorithms, such as MCMC techniques commonly employed in
estimating Bayesian models, may pose severe limitations to the scalability and appli-
cability of prior-informed novelty detectors when huge datasets are to be processed.

Motivated by this issue, in this paper we introduced VBrand, a variational Bayes
algorithm for novelty detection, to classify instances of a test set that may conceal
classes not observed in a training set. We showed how VBrand outperforms the
previously proposed slice sampler implementation in terms of both computational
time and robustness of the estimates. The application to soil data provides an example
of the versatility of our method in a context where the MCMC algorithm fails because
of the large dimensionality of the problem.

Our results pave the way for many possible extensions. First, the variational algo-
rithm can be enriched by adding a hyperprior distribution for the concentration
parameter of the novelty DP (Escobar and West 1995). While in practice VBrand
already obtains very good classification performance, this addition would lead to a
consistent model for the number of true clusters. Second, we can consider different
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likelihood specifications and develop variational inference novelty detectors for, but
not limited to, functional or graph-valued data. Third, at the expense of efficiency, we
can explore more complex specifications for the variational distributions, as in struc-
tured variational inference. Albeit potentially slower, this choice would lead to an
algorithm that could better capture the complex structure of the posterior distribution
we are targeting. Finally, we can resort to stochastic variational inference algorithms
(Hoffman et al. 2003), to scale up VBrand’s applicability to massive datasets that
could benefit from novelty detection techniques.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11634-023-00569-z.
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