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Abstract

We extend a Liouville-type result of D. G. Aronson and H. F. Weinberger and E.N. Dancer
and Y. Du concerning solutions to the equatidpu = b(x) f(u) to the case of a class of
singular elliptic operators on Riemannian manifolds, which includeg¢Heaplacian and are the
natural generalization to manifolds of the operators studied by J. Serrin and collaborators in
Euclidean setting. In the process, we obtain an a priori lower bound for positive solutions of
the equation in consideration, which complements an upper bound previously obtained by the
authors in the same context.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction
Let f be a continuous function oR satisfying the conditions
(i) f(O) = f(a) =0, (i) f(s) >0in (0,a), (i) f(s) <0 in (a,+00). 0.1)
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In recent years, the study of the semilinear diffusion equation
us = Au+ f(u) on [0, +o00) x R™, (0.2)

which arises in population biology and chemical reaction theory, has attracted the
attention of many researchers in the field, $&&/1] and [AW2] for references and
background.

In [AW2], Aronson and Weinberger showed thaff ils C* and

o ()
then a “hair trigger” effect takes place, and any non-identically zero solutiant)
of (0.2) with values in[0, a] is such that

im wu(x,r) =a,
t——+00

uniformly in x € R™. Moreover, the exponent-t2/m in (0.3) is sharp in the sense
that the hair trigger effect fails if + 2/m in (0.3) is replaced by any larges.

As a consequence of the hair trigger effect one deduces a Liouville result for the
elliptic problem associated t®.{@), namely, any solutioru of

Au+ f(u)=0 (0.4)

with values in[0, a] is constant and identically equal to either Ocar

It should be noted that the assumptigits) < O for s > a implies that any
non-negative, globally bounded solutian of (0.4) satisfies & u<a, and that iff
is superlinear at-oo, then any non-negative solution is in fact globally bounded (see
[DM,PRS1).

As for the sharpness of the exponeng-2/m in (0.3) in order that this kind of
Liouville-type result hold, it was shown by Dand®], that ifm > 2 ande > m/(m—2)
one can find a functiory € C1(R) satisfying 0.1) and f(s)>cs® for s — 0+, such
that (0.4) has a positive solutiom with 0 < u < a which tends to zero at infinity.

In subsequent work, Du and GufpG], extended the investigation to the case of
the p-Laplace operator, and conjectured thawif> p then the sharp exponent should
be given by Serrin’s exponeiat= m(p —1)/(m — p) (which reduces to = m/(m — 2)
in the case of the Laplacian).

The conjecture has been recently established by Dancer arf@®@Dly using results
due to Bidaut-Veron and Pohozaf®VP], and to Serrin and Zo{SZ]. For the sake
of comparison, we report here their result.

Theorem (Dancer and DUDD]). Let f be continuous of0, +o0) and locally quasi-
monotone(in the sense that for any bounded intenjai, so] contained in[0, +00)
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there exists a continuous increasing function h such thab + 4 (s) is non-decreasing

in [s1, s2]), and assume that f satisf.1) for somea > 0. Let p > 1 and if m>p,
assume furthermore that there exist- 0 and ¢ > 0 such that

f(s)=esC Vs e (0, ), (0.5)
where
Ee(0,400)if p=mand e O,m(p—1/m—p)] if m>p.

Let b(x) € CO(R™) satisfy0 < ¢1<b(x)<c2 < +00 on R™. Then any solution of
div (|Vu|1’*2w) L h)f) =0 onR™ (0.6)

satisfying0<u <a is constant(and identically equal to eithe® or a).

As remarked in[DD], the range of values of in (0.5 is sharp. Furthermore, it
follows from the condition thatf(s) < O for s > a that any globally bounded non-
negative solutioru of (0.6) satisfies 6{u <a, and if f in addition satisfies a condition
of the type

liminf — 2

s—>400 5o

>0

for somes > p—1, then any non-negative solution d@.§) is in fact, globally bounded
(see[DG]).

The purpose of this paper is to extend this result in various directions. First of all, we
consider the equation in the setting of Riemannian manifolds, where the techniques used
in the Euclidean setting are no longer applicable. We also consider a class of operators
which is substantially more general than the stangek@placian, and variations thereof
studied elsewhere (see, e[glo,HeKM]), where the operators are assumed to satisfy
a suitable homogeneity condition. The lack of this homogeneity again requires the
introduction of entirely new methods. Finally, we relax the conditionb@n). In this
respect, we note that the conditions éKx) assumed in Dancer and Du’s result,
essentially amount to the constancy igfc). On the other hand, we are able to deal
with the case wheré(x) tends to zero, and we relate its rate of decay to the global
geometry of the ambient manifold.

Towards this aim, le{M, (, )) be a complete Riemannian manifold, and debe a
fixed reference point oM. We denote by-(x) the Riemannian distance fromto o,
and by B, the geodesic ball of radius centered ab.

Let ¢ € C1((0, +00)) N C([0, +00)) satisfy the following structural conditions:

() @0 =0; (i) o) >0 Ve>0; (i) p(t)<At® Vi>0 (0.7)



S. Pigola et al./Journal of Functional Analysis 219 (2005) 400—-432 403

for some positive constantd and 5. For u € CY(M), we consider the differential
operator defined (in the appropriate weak sense) by

Lou = div (|W|—1<p(|w|)w)

and which, from now on, we will refer to as the-Laplacian.
Different choices ofp lead to well-known operators such as
e the Laplace—Beltrami operator, correspondingpt@) = ¢;
o the p-Laplacian, diy(|Vu|P~2Vu) corresponding tap(t) = tP~1, p > 1;

e the mean curvature operator v—) corresponding tap(r) = t(141%)~1/2,

/ ‘2
and so on.

The extension of Dancer and Du result mentioned above is the following:

Theorem A. Let ¢ be a function satisfying the conditions listed(t7) (i)—(iii), and

(iv)o'(t) >0 Vt> 0. (0.7)

Let f e C9([0, +00)) satisfy(0.1) for somea > 0, and

fiminf — 7

§—+00 il

>0 (0.8)
for somes > max(1, }; let alsob(x) € C°(M), and suppose that

C

for someC > 0 and 0<u < 1+ 4. Let u be a non-negative solution of

Lou = —b(x)f(u) onM. (0.10)
Assume that
log vol B,
i (©11)
and, if
(vol (0B,)) ™ e L (+00), (0.12)
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assume furthermore that
fOzer® 0<rx1 (0.13)

for someé > 0 and ¢ > 0. Finally, if

¢=9, (0.14)
suppose also that
u@=Crn ™’ re > 1 (0.15)
for somef >0, C > 0, and that
liminf —09vlB . (0.16)

r—+oo plto—0(E—o+e)—p

for somee > 0. Then u is constant and identically equal @oor a.

Remark 0.1. With respect to assumption8.(1) and .12, it is quite easy to see that
the former may hold independently of the validity of the latter. Rather more elaborate
arguments allows to construct models manifolds such that

(vol 0B,)~ Y% ¢ LY(+00), (0.17)

and yet volB, grows arbitrarily fast. In particular0(17) does not imply that@.11) or
(0.16), hold.

As for condition Q.15), it seems to have no counterpart [IDD]. We will show at
the end of Section 1 below, that it is automatically satisfied in the situation considered
in [DD], but becomes necessary in our more general setting.

We point out that our methods allow us to obtain the followih§ version of
(the first part of) Theorem A. The second part can be generalized in a similar way.

Theorem A. Let f € C%([0, +00) and b(x) satisfy the conditions listed in the state-
ment of Theorermd\, and let u be a non-negative solution @.10. Suppose that

lo u
lim inf 109 /5, u*

im inf — 3 < +o0 (0.18)

for someg > 0, and if (0.12 holds and assume furthermore th#0.13 holds for
someé with 0 < & < 6. Then eitheru =0 or a.
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In fact our methods allow to obtain a version of Theorem A for the more general
class of divergence form operators defined as followshlbé a symmetric tensor field
defined onM, that is a section o&?7T*M, and letp be a real-valued function with
the properties described i.7) (i)—(iii). For u € CX(M) we consider the differential
operator defined (in weak sense) by

Lo = div (IVul oI Vuhh(Tu, )F) (0.19)

where? : T*M — TM denotes the musical isomorphism, so th&tVu|, -)* is the
vector field onM defined by

(h(Vu, )t X) = h(Vu, X) VX € T, M.

Note that theg-Laplacian is obtained by choosing asthe metric of M. The above
operators may be viewed as the natural, intrinsic generalization to Riemannian manifolds
of the fully quasi-linear singular elliptic operators considered by Pucci Serrin and Zou
(see[PuSz,PuS] They also generalize thd-Laplace operators as defined [iHeKM]

in the setting of nonlinear potential theory. For the latter class of operators we refer
to work by Holopainen[Ho], who obtains interesting Liouville-type results. From a
somewhat different point of view, see also the recent paper by Coulhon, Holopainen
and Saloff-CostdCHSC].

The paper is organized as follows: in Section 1 we will outline a proof of Theorem A,
describe some consequences and examples, and, in particular, show how Dancer and
Du’s result compares with Theorem A. This depends on an a priori estimate for positive
solutions of 0.10 under curvature assumption, Proposition B, which we prove at the
end of the Section. It should be stressed that in order that the results of Proposition B
be applicable in Theorem A, the bounds obtained must be polynomiglxin It turns
out that this is, in some sense, a Euclidean phenomenon. In most of the genuinely
non-Euclidean settings, the bounds are in fact exponential, and the conclusion of the
second part of Theorem A fails. In this sense, the geometrically significant part of the
Theorem A is that up to0(13 inclusive. The second part of the Theorem, as well
as the full strength of Dancer and Du’s result, depends upon very specific properties
of R™.

In Section 2, we consider the more general operators defined.18)(and we will
describe how to extend to such a class of operators some of the results obtained in
[RS,PRS1] In particular, we will describe conditions ensuring that the analog of the
@-parabolicity holds onM, and that solutions of differential inequalities of the form

Lppuz=b(x)g(u)

are necessarily bounded above. We will then state a version of Theorem A valid in this
context.
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1. Outline of the proof of Theorem A and Dancer and Du’s result

To better appreciate the content of Theorem A and compare it with Dancer and Du’s
result, we begin by illustrating an outline of the proof, referring to Section 2 below
for the complete proofs of many of the facts we are going to use. We*setsup,, u
and u, = inf u.

Stepl. The assumptions f(s) > Cs? for s > 1, with ¢ > max{1, ¢}, b(x) >C(1+
r(x))™*, 0<u < 1+ 9, and the volume growth conditior0.L1), liminf,_, ; logvol
B, /rito—I < 400, imply thatu* < +oo (see[PRS1, Theorem B, Remark 1.6knd
Theorem?2.3 below). Note that the same conclusion holds if we assume that condition
(0.1)) is replaced by condition0(18 in the statement of Theorem’Asee [PRS1,
Remark 1.66]

Step 2. Sinceu is bounded above, and).(l1) holds, Theorem A in[PRS1] (see
also Theoren?2.1 below) implies that— f (u*) <0, so that, by @.1), u* € [0, a], and
O0<u<a on M. It follows that:

Lou<0 onM. (1.2)

Again, the same conclusion holds if we assume conditba instead of Q.11).
Step3. If

(vol 9B,) ™° ¢ L1 (+00),

then, by Theorem A inRS], (M, (, )) is ¢-parabolic, and therefore >0 together
with (1.1) imply that u is constant. Sincé(x) is positive onM andf vanishes only in
0 andg, it follows form (0.10 that eitheru = 0 or a.

Step4. If

(vol 03,)_1/(3 € LY (+0),

then (M, (, )) is not necessarilyp-parabolic, and further analysis is required. First, we
note that G<u, <a, and that, applying Theorem’An [PRS1] (see also RemarR.2
after the proof of Theoren2.1), we have f (u4) <0. Thus,u, is either 0 ora. In the
latter case we have, = u* = a, so thatu = q; if u, = u* =0, againu is constant.
Thus, the only case to considerig = 0 and O< u*<a. To show that this cannot
occur, it suffices to prove that under appropriate assumptigns 0.

Now, sinceu satisfies {.1) and it does not vanish identically, by the strong minimum
principle, [PuSZ,PuS] u is strictly positive onM. If (0.13 holds with & < ¢, then
(0.1) and Theorenm2.5 below, imply thatu, > 0, and we are done. If0(13 holds
and £ >0, then we observe that is a solution of

Lou = —b(x) fu)
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with
fu) = f(u)u_(é_‘5+‘°‘) and b(x) = b(x)ué_é‘”.
According to 0.8) and Q.15 we have
b() > C(Lr(x)) H 00

and the required conclusion follows from0.16) and a further application of
Theorem2.5,

To compare the conclusion of Theorem A with Dancer and Du’s result, we need
to obtain a priori lower bounds for non-negative solutions @f1Q). As mentioned
in the introduction, these can be obtained by a comparison argument under curvature
conditions.

We begin with a lemma, whose content is to describe some properties of solutions

of a suitably radialized version of the inequalifi,v > 0.

Lemma 1.1. Let ¢ € C%([0, +00)) N CL((0, +00)), satisfy conditiong0.7) (i) and (ii),
and assume thap is strictly increasing on0, ¢) and that

o) ~ Cot* as t— O+ (1.2)

for someCy, { > 0. Let g € C1([0, +00)) be such thatg(0) = 0, g(r) > 0, if r > 0,
g'(t) > 0 for r > 1, and suppose thafor somem > 1,

g()~ "D/ e L (400). (1.3)

Fix H > 0 and R > 0; then there existsB > 0 such that having denoted with
Y [0, p(e)) — [0, ¢) the local inverse ofp, the functiono defined by

+00
a(r) =/ v (Bg(t)l"") dt, (1.4)
is defined andC? on [R, +00) and satisfies

@(e1) + (m — DL () = 0, 5)
a(r)<a(R)=D < H, o/ (r) <0 Vr>=R. '

Furthermore

o +OO v
a(r) ~ (B/co)l/éf g~ " Var as r > 4o0. (1.6)

r
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In particular, if limsup._, , ., &'/g < 400, then there exist€ > 0 such that
a(r)=Cg(r)~ " V¢ for r>R 1.7)
and if g’/g is eventually decreasing

a(r)>c&g(r)—<m—1>/i for r>R. (1.8)

g'(r)

Proof. Note that sinceg is eventually increasing ang(s)~~D/C is integrable at
infinity, g(r) — 400 ast — +oc. In particular, ifB is sufficiently small,Bg()~" b
< ¢@(e) for every r>R. Furthermore, it follows from X.2) that y(s) ~ (s/Co)**,
so that

v (Bg)™ V) ~ (B/Co) g(r) "IN, (1.9)

and the integral inX.4) is finite for everyr > R. It is clear thatx is C?, decreasing,
and that, by choosing a small@& if necessary, it can be arranged that) < H
on [R, +o0). A computation shows that satisfies {.5). It follows from (1.9) that o
satisfies 1.6). Finally, if g’/g<n for t >R, the integrand in X.6) is bounded from
below by

1 o
Eg(” m=D/=1er(p),

and (.7) follows integrating, and recalling that(r) — 4+oco ast — +oo. A similar
argument shows that i§/g’ is eventually decreasing thed.$) holds. [

Proposition B. Let ¢ and g satisfy the conditions listed in the statement of Lemma

1.1, and assume that, having denoted Mtiy) the distance function from € M, we
have

Ar<(m — 15 (r(x)) (1.10)
8

pointwise in the complement of the cut locus of o. Let u be a non-negatigelution
of

Lou<0, (1.11)
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Then there exist constants C ad> 0 such that
+oo .
u(x)>c/ ¢~ " Y/Cqr on M\ Bg. (1.12)

r(x)

Furthermore, iflimsup._, | ., &'/g < +o0, then there exist€ > 0 such that
u(x)=Cg(r(x)) "™ V% if x e M\ Bg, (1.13)
and if g’/g is eventually decreasing,

(r(x))

ux)y=cs gr(x)~ ™D/ if x e M\ Bg. (1.14)
g'(rx))

Proof. Fix R > 0 such thatg’(r) > 0 for t > R, chooseB small enough that the
function « defined in (.4) satisfies the conditions in the statement of Lemina

with H = i”faBR u, and setv(x) = a(r(x)). It follows from (1.5 and (.10, that the

inequality

Lov=—¢ (|<x/|)/ — o (1) Ar
>—¢ () = (m — 1)%0 (1/1) =0 (1.15)

holds pointwise in the complement of the cut locusopfind, by adapting an argument
of Yau [Y], weakly onM. Thus

Lov=Louon M\ Bg
v < uon 0Bg. (1.16)

We claim thatu Zv on M\ Bg. Indeed, if this were not the case, there would exist
n >0 andxg € M\ Bg such thatu(xg) < v(xg) — . Thus the set

Ay ={x e M\ Bg : u(x) <v(x)—n}

would be open, non-empty, ang € A, € A, € M \ Bg. Moreover, sincev(x) — 0
asr(x) — +oo, while u is positive onM, Zn is bounded, and sinckl is complete,
compact. Sincer = v —n on dA,, by the weak comparison principle (see e[guSZ,
Lemma 2]or [RS, Proposition 2.Ju>v —#y on A, and therefore: (xg) > v(xo) — 7,
contradicting the definition off and xp.

Now the required lower estimates follows from Lemrmd. O
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As mentioned above, the upper estimaiel() in the statement of the Proposition
can be deduced from suitable curvature bounds. The following corollary illustrates a
typical result.

Corollary 1.2. Let (M, (,)) be an mdimensional complete Riemannian manifoliek
o € M be a fixed reference point i, and letr(x) be the distance function from.
Assume that the radial Ricci curvature of M satisfy

RiCC(M,M)(VI", Vryz —(m —1)G(r), (117)

for some positive functio® € C1([0, +00) such that
/

i inf G
O Dogem =

(i) imsupG(r) < 4o0,
r—+00

(i) G(r)Y? ¢ LY (+00),

(Vi) exp<—g—1<m —1)Dy / ' G(s)V/? ds) € LY (+o0) (1.18)
0

for someDgp > 0. Let ¢ be as in the statement of the propositiand let u be a
non-negative non-identically zero solution of

Lou<O on M.
Then there exist constants > 0 and D > Dg such that

r(x)
u(x)=C exp(—c—l(m - 1)D/

G(s)Y/? ds) . (1.19)
0

If G is assumed to be non-increasing then

r(x)

u(x)=CG(r(x)) Y2 exp(—(—l(m - 1)D/ G(s)Y? ds) . (1.20)
0

Proof. Set

_ 1 " 172
g(r) = W |:eXp<D/O G(s) ds> - 1i| .
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It follows from the Laplacian comparison theorem (§B&RS, Lemma 2.4]or [PRS2,
Lemma 2.1]for a more analytically flavored approach) thatDfis sufficiently large,
then

g'r)

Ar<(m—1
rsom )ﬂﬂ

pointwise in the complement of the cut locus @&and weakly onM. Note that since
g(r) — 400 asr — +oo, by (1.18 (iii), we have

g'(r)

~ DG(r)Y? asr — 4oo.
g(r)

We chooseD > Dg, so that, by 1.18 (iv), condition (L.3) in Lemma 1.1 holds, and
applying Proposition B we deduce that, for sorie> 0,

m— r(x)
(@)= Hg(r(x) T >cexp(—<m - 1)?/ G(s)l/zds) ,
0

which can be improved to

r(x)
Mm>ccuu»4ﬂem<—mp-n§/ﬁ Gﬁfﬂdﬁ,
0

if G is non-increasing. O

To illustrate the kind of lower bounds that can be obtained applying Coroll&y
assume thatl(17) holds with

2
1472

Gr) =

which corresponds to a geometric behavior borderline between the Euclidean and
non-Euclidean case. Indeed, a manifold with a pole, whose radial Ricci curvature is
non-positive, and tends to zero faster thHar-r(x)2)~1 is quasi-isometric to Euclidean
space (see, e.GW]).

It can be shown that, iy is defined as in the proof of Corollar§.2, then the
inequality

/

Ar<(m— 15
g
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holds if
1+ 1+ 4B?
D>B = 1tV 457
2
and, in this case,
glr) < PP as r - +oo

(see,[RRS, Lemma 2.4Jor [BRS, Lemma 5.1} Thus, g(r)~ "D/ < p=m=-1D/C
€ LY(+o0) provided D > {/(m — 1), and then non-negative solutions of

Lou<0
satisfy the bound
u(x)> Cr(x)l_D('”_l)/C.

In particular, in the case of theLaplacian, for which! = p—1, if B" > (p—1)/(m—1)
then

u(x)=Cr(x)Bo=0/v=1 it B~ (p—1)/(m — 1) (1.21)

while, if B’<(p —1)/(m — 1), then, for everyy > 0 there existsC = C(y) > 0 such
that

u(x)>=Cr(x)™". (1.22)

Similarly, if (M, (,)) = (R™, can) we haveAr = (m — 1)/r, so that the inequality
Ar<(m — 1)g'/g holds if g(r) = r? with D>1, and we deduce that non-negative
solutions of

A,u<0
satisfy the bound
u(x)=>Cri=m=0/e=b ity 5 p (1.23)
while, if m < p, for everyy > 0 there existaC = C() > 0 such that

u(x)=Crx)". (1.24)



S. Pigola et al./Journal of Functional Analysis 219 (2005) 400—-432 413

We note in passing that these estimates agree with the boQr and (.22 letting
B — 0 and thereforeB” — 1.

Inserting .23 in the statement of Theorem A, with= p — 1 andu = 0, we see
that condition Q.16 becomes

mlogr

= <
_m-=p gz
L= Gt

liminf

for somee > 0. It follows that in this case Theorem A is applicable provided

m(p—1)
m—p ’

0<¢é<

which should be compared with the range

m(p —1)
m—p

0<<<

obtained by Dancer and Du.

On the other hand, il» = p, using (.24 we see that conditiorD(16) holds provided
p—n(é—p+1+e) >0 for somen, ¢ > 0, and this clearly holds for every > 0.

We remark that ifp = m, thenR™ is p-parabolic, and in this case the conclusion of
Theorem A actually holds without having to assume any further condition Ok&3Y
on the behavior of near 0.

As noted in the Introduction, while Proposition B is applicable under fairly weak
geometric assumptions, the bounds it provides can be used in Theorem A only if they
are polynomial inr(x), and this imposes rather strict restrictions on the geometry of
the manifold.

Indeed, if we assume that the Ricci curvature satisfiek?( with G(r) = (1+r2)~#/?
with 0 u < 2 then the lower bound given by Corollafy2 is no longer polynomial
in r(x), and it turns out that the conclusion of Theorem A fails.

To see this, letM = R™ and letds? be the metric onR™ \ {0} given, in polar
coordinates, by the formulds? = dr? + g(r)2d0?, where g solves the differential
equation

" _ B2 2\—n/2
{g B2(1+r?)~12g, (1.25)

8(0)=0,¢(0) =1

Theng is smooth and even at the origin, and theref@sé extends to a metric o™
with radial sectional curvature given b (x) = B2(1+ r(x)?) /2,
We claim that if 0Ky < 2, anda(r) = ’”T‘lK(r), then the differential equation

Au+a(r)u=0 (1.26)
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has a positive radial solution o™, with values in(0, 1], and with the further property
that

1 1-(m-Du/8 exp|:—m - 1Br1—u/2:|
2
-1
Su(x)<Cr exp[—’Z—Brl_ﬂ/z] (1.27)
—u

for r > 1, for someC > 0. Thus, if f € C%R) is such thatf(r) > 0 in (0, 2),
f@) =1t if t € [0,1], f(t) <0 in (2, +00), f(t) = —1° if t € [4, +0o0), for some
g > 1, thenu is a positive, bounded, non-constant solution of

Au+a(r)f(m)=0.

Note that, according t§BRS] Proposition 5.1, we have

2B
g(r)gCr”/4 eXp|:—2 rl_/‘/21| (1.28)
—u

for r > 1, so that
logvol B, <Cri="? for r>>1

and therefore

—Iog \2/O| B <Cr W2 0 asr — +oo,
yeH
and Q.11 holds. Also 0.12 holds withae = 1 = §. On the other hand,0(14 does
not hold for anyf and consequently0(15 does not make sense.
To prove the claim one proceeds H3R]. Let f be a solution of the differential
initial value problem

B+ 0n —DEDE +arf=0, (1.29)
pO) =1, p(0) =0.

Then f is defined onf0, +00) andu(x) = f(r(x)) is a radial solution of 1.26) on M.
To show thatf is positive on(0, +00) and has the required asymptotic behavior, we
note that for every > 1 the function¢, () defined by

(:bs(t) =({—y) [g(s)g(t)]*(mfl)/Z
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is a subsolution ofX.29 on (0, s], and satisfies the conditions listed[BR] Lemma 1.2.

The lemma implies thaf is everywhere positive, and in fact there exi€s> 0, such
that, for every O< §< 3, 1<s,

B(s)=C1.(5)0™ 2.
Since

/ _ 1 m_lg/(é)
¢“(5)__[s—6+ 2 g0

] 6,(0).

the left-hand side of1(27) follows from the definition of¢,, the upper bound1(28
for g, and the asymptotic relationgo) ~ o, g'(6) ~ 1 asé — 0.
As for the upper estimate, one observes that the function defined by

v(r) = (r = b)g(n) T2

is a positive radial subsolution ofl 29 defined on(b, +o0), such thatv’(b1) > 0O if
b1 > b is sufficiently close tdb. According to Lemma 1.3 ifBR], there existsC > 0
such that

p<Cv on [b, +00).

The right-hand side of1(27) now follows from this, and the lower bound

2B
g(r)}CeXp|:—2_

rl—,u/2:|
I

obtained in[BRS], Proposition 5.2.

2. More general operators

In this section we turn our attention to the more general operalgrs defined in
the introduction. We will prove versions of our results for this class of operators, and
deduce the results stated for tpelLaplacian as special cases.

We begin by introducing some terminology. Lbtbe the symmetric tensor field
which enters in the definition0(19 of the operator’,, ,. We will assume throughout
that h satisfies the following bounds

ho(r<h(X,X)<hy(r) VX e T:M,|X| =1 x € 0B, (2.1)



416 S. Pigola et al./Journal of Functional Analysis 219 (2005) 400—-432

for some positive continuous functioris. defined on[0, +o0), and define

hoo(s) if 9<1,
ha(r)={ ht(s)<1—6>/2h+(s)<1+‘5>/2 if 6> 1, 22
and
H(r) = suphs(s). 23)

s<r

Now we are ready to state our first result, which extends to the opetasor
Theorem A in[PRS1] valid for the ¢-Laplacian.

Theorem 2.1. Let (M, (,)) be a complete Riemannian manifpldt o be a reference
point in M, and r(x) be the distance function from o. Let satisfy the structural
conditions (0.7) (i)—(iii), let h be a symmetric covariant two tensor field such that
h_(r) > 0 for everyr > 0, and let H be defined ir2.2). Suppose thab(x) is a
continuous function on M satisfying

1
b(x)> 2.4
Q(r(x)) 4
where Q is a positivecontinuous non-increasing function
Given f € CO(R), assume that: € C1(M) satisfiesu™ = sup,, u < +oo and
ﬁ(p,h”>b(x)f(u) (2.5)
on the set
Q,={xeM:ulx)>y} (2.6)
for somey < u*. If
_ HMNOr)
A s =0 @)
and, either
.. . Q@)H(r)logvol B,
IrITJ_rgZ s < 400 (2.8)
or
H
liminf M/ lu|? < +oo for somep > 0, (2.9)
r—+o00o rl+() Br

then f(u*)<0.
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Proof. The proof is a modification of that of Theorem A [RRS1] First of all we
note that if .5 holds onQ,, then it holds on®,, for everyy <y’ < u*.

Next, we assume by contradiction thétu*) > 0. By increasingy if necessary, we
may suppose thaf (u)>C > 0 in Q,, and thatu satisfies

‘C([)h =

on £,.
0(r(x)) ( )

for some B > 0. Fix 0 < n < 1. By choosingy sufficiently close tou™ we may
suppose thaf” := y — u* +5n>n/2 > 0, so that, having defined = u — u* + 5, we
have sup =5, Q = @7 and

Lonv= Q( (x)) on Q. (2.10)

Pick R > 0 large enough thaBg N QF # ¢, fix { > 1 to be determined later, and
let  : M — [0, 1] be a smooth cutoff function such that

Wy =1o0nB,; (i)y=0o0nM\Byy; (ii)|Vyl g%l//l/’i, (2.11)

for some constanCy = Co({) > 0. Note that this is possible sinde> 1. Next, let
/R — [0, +00) be acC?! function such that

Mt)y=0 fore<I, X(@)>=0 Vr, (2.12)
fix o > 2 to be determined later, and consider the vector fWglavhich is defined by
W =22 Vol (I VoDh(To, F

on QF and vanishes elsewhere. Note that, in faitis zero off Bo- N Q7.

Setting for ease of notatioh, = h(Vv, Vv)/|Vv|?, a computation that use®.(0),
hy>0, ) >0, |h(Vv, v¢)|<h1/2h1/2|vU||v¢| and |Vu|o(|Vo]) = A~Yo p(|Vu))1+1/0
yields

L2 141/
Q(r(x)) t A YA (V) hy

—2ayP A (Vo) Vil h

div W >y ® i (v)v* 1

12
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SinceW is compactly supported, integrating, and applying the divergence theorem, we
obtain

a—1
AL/

/lﬁzai(v)v“_lQ(r(x))_lg— /lﬁZa/«L(v)va—Z(pﬂVU|)1+1/5hv

1, _ 1/2
w2 [ P Vo T Y,
(2.13)
We apply to the second integral on the right-hand side the inequalitya”a?/p +

b?/(go?), with p =149, ¢ = (1+9)/9, and withg > 0 chosen in such a way
that the first integral cancels out, and obtain, éos (1+ 0)/2

2<3+155A o0
o
(1+ 00 (g — 1)9

X/wzcﬁ—(l'i‘(s)|vw|l<‘r5}\-(v)vc{71+5

f YA 0 (x0)) <

xh (=02 O/, (2.14)

Now, sincey is supported onBy., and Q is non-decreasingQ (r(x)) < Q(2r) on the
support ofy, and the left-hand side o2(14) is bounded from below by

0@2r)t f Yo (). (2.15)

On the other hand, sinqec/(oc—l)]5 <29 for o>2, the constant on the right-hand side
of (2.19) is estimated byC(A, d)a with C(A, 6) independent of>2. Further, using
(2.1 (iii), we may write

l//20(7(1Jr5) |le|l+5 — l102:)(*(:l.Jr(S)(]-*l/C) (wfl/élvlim)l—&-é

20— (1+6)(1-1/0) Co
< -
<y T

Finally, recalling thath_ <h, <h,, we see that

1-8)/2 -
pA-0)/2 < hﬁr ~)/ if 6<1,
v -~ h(l—())/z if 521

and therefore

WO R s < 2r) (216)
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on By,. Thus, the right-hand side oR (14 is estimated from above by

C(Co, A, o) - —1/0) =145

Now, we choos€ > 1 close enough to 1 that-2(1+0)(1—1/{) > 0, and apply Hélder
inequality with conjugate exponents and «/(xz — 1), to estimate the last expression
with

140

M “_1+()H(2r) (/ 1//2“ O(_1)(l})>(0€—1)/95

1
8 </ WZX(l+5)(1l/C)o<vac—1+5cx/1(v)) g (2.17)

Using .15 and @.17) in (2.14), simplifying and rearranging, and recalling that= 1
on B, andy = 0 off By, and thaty/2<v<#n on the setQ} where i(v) > 0, we
deduce that, itx > max{2, (1+ 0)},

,{(v)g{clwnéa}a/lg A(V) (2.18)
2r

B 71+0
.,

with €1 = 21-Y2C(Cq, A, ). We now set

r1+<5

1= ) = e 0@ H @

so that we may rewrite2(18 as

/ A< (1B rieenHe) [ )ay R,
B, Bo,

where B = 1/(4C1). We remark thaB depends om, ¢ and {, but is independent of
R and therefore of;.

Applying Lemma 1.1 in[PRS1]with G(r) = fB, A(v), we deduce that there exists
a constantS which depends only o such that, for every > 2R,

Q) H(r) Iog/ Q(F)H(F)

i ~ T o9 . (v) + SBy~log 2. (2.19)

Now choose/ in such a way that sup= 1. Then the integral on the left-hand side is
bounded above by a multiple of logvB}, while, asr — 400, the first term on the
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right-hand side tends to zero. Thus, we conclude that

liminf 2070

—0
iminf — 15 logvol B, >SBy~“log 2,

with S and B independent of;. Letting  tend to zero we contradicR(8). Similarly,
choosing a functionl such that & A7) < (t+u*—n)? for t >I" we see that the integral
on the left-hand side of2(19 is bounded from above by

/ |ul?
B,

and, arguing as above, and letting— 0 we contradict2.9). O

Remark 2.2. Let ¢, f, b, Q, handH be as in Theorer@.1, and assume that e C1(M)
is such thatu, = supu > —oo and satisfies

—Lppuzb(x) f(u) (2.20)
on the set
Qy={xeM:ulkx) <y} (2.212)

for somey < u,. If either 2.8) or (2.9 hold, then f (u,) <O0.
Indeed, it suffices to note that the functien= —u is bounded abovey* = —u,
andv satisfies

Lonv=b(x)g(v)

with g(t) = f(—t). In the assumptions of Theorethl, g(v*) = f(u4) <O0.

Our next task is to prove that, under appropriate assumptions, solutiods, pi
>b(x) f(u) are necessarily bounded above.

Theorem 2.3. Let ¢, b, Q, h and H be as in Theore®.1, and assume that € C1(M)
satisfies

Lo pu=bx) f ), (2.22)
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on the setQ, = {x : u(x) > vy} for somey < u*, where f is a continuous function on
R such that

iiminf 22 < o (2.23)

t—>+o0 t0

for someg > 0. If either (2.8) or (2.9) holds then u is bounded above

Proof. Again the proof follows adapting the arguments used in the proof of Lemma
1.5 in [PRS1] Assume by contradiction that is unbounded, so tha®, is non-empty

for everyy > 0. By increasingy if necessary we may assume thatr) > Bt? if t>7.

For ease of notation, we assume tifat= 1, so that, on®,,

Lo pu=bx)u’.

Clearly, we may also assume thatr) is bounded above
Let R > O be large enough tha®, N Bg is non-empty. LetZ : R — [0, +o00) be a
€1, non-decreasing function such thatr) = 0 for <y, fix { > 1 such that

1406

and, as in the proof of Theorethl, choose aC* cutoff functiony =, : M — [0, 1]
such that, forr >R,

(WY =1onB,; (i)y=0o0nM\By; (ii)|Vyl g%n//l/l (2.25)

for some constanCq = Co({) > 0. Finally, fix « > max{1+ 9, 2¢} and f > 0 to be
determined later, and consider the vector fidlddefined by

W = %2l |Vu| Lo Vu)h(Vu, ).

Note that the properties of and imply that W vanishes offB,. N ,. Proceeding
as in the proof of Theore.1, we estimate

div W =y Aw)b(xu + A%‘pa)»(u)uﬁflw (Vu) ™ n,

—ap* Ay o (V)b *nY 2 vy,

whereh is defined in 2.1) andh, = h(Vu, Vu)/|Vu|?. Next we apply to the second
term on the right-hand side the inequality <a”a?/p + b4 /(go?), with p = 1+ 9,
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= (1+ 9)/0, and with ¢ > 0 chosen in such a way that the first term on the
right-hand side cancels out, namely,

pltoyo _ 110
ALY o

and insert the resulting inequality in the above estimate, to obtain
divw>¢%(u)b(x)u“+ﬁ

—C(A 5) ﬂ lﬂa (1+5))(u)uﬁ+5h(l 5)/2h<1+5)/2|vw|1+0

whereC (A, §) > 0 depends only upoA andd. Now, we integrate, apply the divergence
theorem, recall thatV is compactly supported, and obtain

/ Y Au)b(x)u’ P
ot 6, (1=0)/2, (140)/2 1 1145
<C(A, 5)? W A)ulton; RO 2|y 10 (2.26)

Multiplying and dividing byb(x)Y/? in the integral on the right-hand side, and applying
Holder inequality with conjugate exponergisand q yield

o— (145 1-9)/2, (1+0)/2
/lﬁl (+b)/1(u)uﬁ+5hf, )/ h(++ )/ |v¢|l+5

1/p
< ( f w“bu)z(u)u(ﬂ”)”)

) T
o—(1+0)(1-1/0)q 1—q,(1-0)q/2; (14+0)q/2
x (/lﬂ 2)b ()¢ A (—wm> ) ,

providedo — (1+ 6)(1 — 1/{)q > 0. Choosingp = (i + 6)/(f + 6) (which is greater
than 1 by the conditiorr > §), the first integral on the right-hand side is equal to the

integral on the left-hand side 02.26). Thus inserting into Z.26), and simplifying, we
obtain

f Y Aw)b () u’ P

q
(C(A 5)1_+b> /wa (1+o)")(u)b( )1 qh(l 9)q/2

s HO/2)7 A0 (2.27)



S. Pigola et al./Journal of Functional Analysis 219 (2005) 400—-432 423

Sinceu > y on Q, andy = 1 on B, the integral on the left-hand side is bounded
from below by

yhre / b(x)Au). (2.28)

On the other hand, usin@.@5 (ii) and (iii), and the fact that) is supported onBy,,
we show that the right-hand side d?.27) is bounded from above by

C 146 h’(llf(3)/2h(l+5)/2 q
:C(A,é) o x sup( + / A)b(x). (2.29)
Bor By,

rito g b(x)

We insert .29 and @.29 into (2.27), useb(x)> Q(r(x))~ !, with Q non-decreasing,
apply the reasoning that led t@.46), and recall the definition off and the expression
of ¢, to get

p+a

146 | -9
/ Z(u)b(x)é{ ¢ H@QoEa™ } A)b(x), (2.30)
B, Ba,

yﬂ—(s V1+5 ﬁb

where C > 0 depends only om, ¢ and Cp.
Now we choose

1 s rl+5
bro=o= 5" "Hanoay

so that, 2.24), implies that the conditionx — (1 + 9)(1 — 1/{)q > 0 holds. Moreover,
by (2.7), « - 400 asr — 400, and, thereforex/ <2 holds for sufficiently large.
Thus, for such values af, (2.30 yields

400 140

1\ &G@=) H@ZH0@)
/ i(u)b(x)<<—) [ stwneo, (231)
Br 2 Bor

At this point, arguing as in the final part of the proof of Theor@m, one verifies
that, suitable choices of, allow to contradict assumption2.8) or (2.9), respectively.
O

Remark 2.4. Arguing as above, one verifies that it is possible to obtain a version for
the £,, , operator of Theorem B ifPRS1] Again the volume growth conditions (0.7)
and (0.8) in Theorem B are replaced ®:8) and @.9), respectively.
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We next prove a counterpart of the above result, stating that under appropriate
conditions, non-negative, non-identically zero solutions of the inequality

— Lo pu=b(x) f () (2.32)

are necessarily bounded away from 0.

Theorem 2.5. Let ¢ satisfy the conditiong0.7) (i)—(iv), and let b(x), Q, h and H
satisfy the assumptions of Theoré@l. Let f € CO(R), and assume that € C1(M)
is non-negative and non-identically zemnd satisfieq2.32 on the set

Q= {x 1 u(x) < 70} (2.33)
for someyg > u, = infu. If
f(t)}th, ast — 0+ for someé < 0, (2.34)

and either(2.8) or (2.9 hold, thenu, > 0.

Proof. Observe that, by the strong minimum principlejs strictly positive onM. We
assume by contradiction that, = 0, so thatu satisfies 2.32 on Q, for every y <y,.
We fix y € (0, yol in such a way that

f(t))BtCV, for some constanB > 0 andt € (0, ), (2.35)
so that
— Ly pu>Bu® (2.36)

on Q,. For ease of notation, we may suppose tBat 1.

Let 2: R — R be acC? function such thati(r) = 0 if r>7y, A(r) > 0 if r <y, and
/'<0. ChooseR > 0 large enough thaBg N Q, # ¢, and, forr >R, let y =y, be
a smooth cutoff function withy = 1 on B,, y = 0 off By and |Vy| g(Co/r)% for
someCp and{ > 1 independent of.

Finally, let W be the vector field defined by

W = —y*2w)uP|Vu| Lo (| Vu)h(Vu, )t (2.37)

where o, f > 0 are constants to be determined later.



S. Pigola et al./Journal of Functional Analysis 219 (2005) 400—-432 425

Using, as in the proofs of Theorem®1 and 2.3 A'>0, |Vo|(|Vu|)>A"1/°
Q(IVu) ™, by = h(Vu, Vi) /|Vu[? > O and |h(Vo, V)| <hy/*hY| V0V, we

estimate

p

a5 A p(vu)0n,

div W >y b(uF +
—op* L 2uP oV ul) Ve 2nY . (2.38)

Now we argue as in the previous proofs, and estimate the last term on the right-hand

side using the inequalijcyzbg“’}fp + %, with p = 1+ 1/, ¢ = 1+ 6, and with

o =[P+ 5)/(AY%45)19/A+9) chosen in such a way as to cancel the second term.
Integrating the resulting inequality, applying the divergence theorem, observing that

W is compactly supported, and using the properties of the cut off fundatigield

o
/ W awbus <y (%) rl%,

5 / Yo DAY (1), 6=y (1012 02 (5 39)

providedo — (14 9)(1—1/{) > 0, where the constarf; = C1(Cp, A, 0) is independent
of o, f, andr.

Multiplying and dividing byb(x)¥?, and applying Hélder inequality with conjugate
exponenty and g to be determined later subject to the conditior (1+ 9)(1— 1/{)
g > 0, we estimate from above the integral on right-hand side2@B9 by

. 1/p
( / zp“b(x)z(u)u@—ﬂ)l’)

. X 1/
x ( / lﬁa(Hé)(l1/5)‘1}v(u)b(x)1_qh,(41_b)4/2h3r1+‘>)q/2) " (2.40)

Choosingp in such a way thatéo — f)p = & — f5, namelyp = (f — &)/( — ), so that

p > 1 by the assumption thdt < o, the first integral in 2.40 is equal to the integral
on the left-hand side of2(39. Thus inserting, simplifying, and using the definition of
H, the lower boundb(x) > Q(r(x))~1, and 1, <Y <1p,., We obtain

P q
E-p *\" H@)Q@r)
/B, A)b(x)us"" < (Cl (ﬁ) R o 5 Aw)b(x),

providedo > (1+6)(1—1/{)q. Sinceq = (f—¢&)/(0— &), if we chooseff = a+ ¢, the
condition becomes t (1+0)(1—1/{)/(0 — &), which holds provided is sufficiently
close to 1. Now, sincet < y on @, us~# > y=F for g > ¢ andoa/p < 1, we
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deduce that

. o/(6—=&)
/ )b (x) < (CWOGMOC) / Au)b(x),
By Bor

140

whence, choosing

1 . rl+5
o= "/_(5_0 i
2C1 H2r)Q(2r)

and assuming that eitheR.@) or (2.9) hold, a contradiction is reached arguing as in
the last part of the proof of Theorethl [

In order to obtain a version of Theorem A for th, , operator, the only missing
ingredients are the analog of the volume growth conditions that implytparabolicity.

We will say that a manifold i, h)-parabolic if the only bounded abow@' solutions
of the inequality

Ly npu=0 (2.41)
are constant.
It is a relatively straightforward matter to check that the proofs[R$] can be

adapted to treat the case at hand. We state the analogue of Theorem A therein.

Theorem 2.6. Let (M, (, )) be a complete manifoJcassume thatp satisfies the struc-
tural conditions(0.7) (i)—(iii), and leths be definedas in (2.2), by

hy(r) if 6<1

hs(r) = {h_(r)(l—é)/2h+(r)(l+5)/2 if 5> 1.

<h5(r)vol (619,)1/5)7l ¢ LY (+00).

Then M is(¢, h)-parabolic

The proof of the theorem follows as [RS] and depends on a version of Lemma 1.1
in [RS], which in the present case reads as follows:

Lemma 2.7. Let f € CO(R), and let u be a non-constaxt! solution of the differential
inequality

Lo nu=VulFo(IVu)h(Vu, Vu) f (). (2.42)
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Assume that there are functionse C1(7) and f € C°() defined on an interval
I D u(M) such that

(u) >0, (2.43)
2 () + f () > fu) > 0 (2.44)

on M. Then there exisRy depending only on u and a constafit> 0 independent of
o and f3, such that for everyr > R> Ry,

-1 r 140 ~1/0 0
{ / ﬁ(u)go(wm)wm} e / ACRN . (2.45)
Br R \Jos, Bw)°

Proof. The proof follows the lines of that of Lemma 1.1 [RS]. The vector field
considered there is replaced by

Z = ()| Vu| " p(IVu)h(Vu, -F.

Then, applying the divergence theorem, Holder inequality, and arguing as in the original
proof one arrives at the differential inequality, valid for- R > Ry,

5 -1/0
o
Gy TG =C / ﬂhﬁlfé)/2h<l+5>/z
o8, Pu)? +

where we have set
G(r) = /B Ba)yp(IVu)0n,.
Recalling that
h,ﬂl_ﬁ)/zhfw)/zgh(;,

one concludes the proof as [RS]. O

Proceeding as in Section 1 yields the following version of Theorem A of the Intro-
duction for theL, , operator.
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Theorem 2.8. Let ¢, h, hs and H be as in the statement of Theor2rh, and suppose
that

hs(r)<H(@r)<Cr',
for somev > 0. Let u € C1(M) be a non-negative solution of
Lonpu =—bx)f(u) onM.

whereb € CO(M) is such that

R

for someC > 0and0 < u < 1+, and f € C%([0, +o0)) satisfiesf(0) = f(a) =0,
f(@) >0 (0,a), f(t) <0in (a, +00), for somea > 0, and

f(s)

liminf ———= >0
s—>—+00 1o
for somes > max1, §}. Assume that
log vol B,

LU ey
and, if
(hs vol (0B,)) ™ e L (+00),
assume furthermore that

f(H)=ct® 0<t<k1,

for someé > 0 and ¢ > 0. Finally, if

suppose also that

u@)=Cr)? re)>1
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for somef >0, C > 0, and that

iminf log vol B,
AU T e R T

+00

for somee > 0. Then u is constant and identically equal @oor a.

In order to apply the methods described in Section 1 to obtain “a priori” lower
bounds for solutions of

ﬁ(p,hu <0,

one needs to describe the action of the oper#lgy, on radial functions. This is the
content of the following lemma.

Lemma 2.9. Let o« be a strictly monotonicC? function on [R,+o00) and set
v(x) = a(r(x)). Then on M \ Bg, we have

Ly nv(x)=(sgna’)[@(|o')]'h(Vr, Vr)

Proof. Recalling the definition ofZ,, ,, we compute

Ly pv(x)=(sgne)p(|o!Ydiv [A(Vr, -)*]
H(VIsgnd)(le/ D], ~(Vr, -)?). (2.47)

Now,

(VI(sgno)p(lo/ )1, h(Vr, %) = (sgna)[@(lo/ NI h(Vr, Vr).
On the other hand, if; is a local orthonormal frame,

div[A(Vr, )F]1= (Dgh(Vr, )%, E;)

1

=) Eih(Vr.e;) = h(Vr, Dy, Ey)

1

=> (Dg,h)(Vr. Ei) + h(Dg, Vr. E;)
=(divh)(Vr) + > h(E;, Ej)Hess(E;, E)
ij
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=(dIVh)(Vr) + (h, HeSS’)SzT*M,

whence the required conclusion follows upon inserting the above identities2rtd.(

O
Now, if we assume that
/
ho<h<hy, |dvhI<p(), [Hess|< () —dr@dr),
8
we have
/
h(Vr, V) 2h_ and (h, HesS')gopey < (m — Dhy &
g
If, in addition, o/ < 0, it follows that
Lo pv(x)=—h(Vr, Vr) {[(P(|OC/|)]/
1 / g/
+ ——@(o) | B(r) + (m —Dhy(r)=|¢. (2.48)
h_(r) g

This proves

Lemma 2.10. Maintaining the notation introduced abaovassume that: is a solution
of the problem

Lol DY + hil(r)qo(loc’|)[,[3(r) + (m — 1)/’1.,.(!‘)%] =0 on|[R,+00), (2.49)
o(R) =D,da <0,

and letv(x) = a(r(x)), then
Lonv=0 on M\ Bg.

As in the proof of Proposition B above, a comparison argument shows thatisif
a non-negative solution of

Lopu<0 onM (2.50)
ando satisfies 2.49 with D< min,g u, then

u>v on M\ Bg. (2.51)
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To find a solution of 2.49 we write

~/

—— [ﬁ(r) +(m — 1>h+(r>g—} =(m—1< (2.52)
h_(r) g 8

so that the equation satisfied bybecomes

[l Y + (m — 1)%<p(|oc’|) =0, (2.53)

which can be analyzed as in Section 1.
To illustrate the kind of bounds that can be obtained in the manner described above,
we consider the case whe(#/, (,)) is R™ with its canonical Euclidean metric, so that
the Hessian condition holds with(r) = r. We assume further that. = C1<Co2 = hy,
and thatfi(r) = C3/r for r > 1, so that

AN

,andg(r) = CrA, r>1

%1|°°\1

with ACT[C3+ (m — 1)Co] (m — 1)~
Assuming that the functiorp satisfies the condition stated in Lemrtél, condition
(1.3, namelyg~™~D/C ¢ L1(+00) amounts to

(m—-1A > C.

If this is the case, Lemma.1 applies, and we conclude that any positive solution
of (2.50 satisfies the a priori lower estimate

u(x)=Cr-m=DA/L for p 1.
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