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Abstract

We extend a Liouville-type result of D. G. Aronson and H. F. Weinberger and E.N. Dancer
and Y. Du concerning solutions to the equation�pu = b(x)f (u) to the case of a class of
singular elliptic operators on Riemannian manifolds, which include the�-Laplacian and are the
natural generalization to manifolds of the operators studied by J. Serrin and collaborators in
Euclidean setting. In the process, we obtain an a priori lower bound for positive solutions of
the equation in consideration, which complements an upper bound previously obtained by the
authors in the same context.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

Let f be a continuous function onR satisfying the conditions

(i) f (0) = f (a) = 0, (ii ) f (s) > 0 in (0, a), (iii ) f (s) < 0 in (a,+∞). (0.1)
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In recent years, the study of the semilinear diffusion equation

ut = �u+ f (u) on [0,+∞)× Rm, (0.2)

which arises in population biology and chemical reaction theory, has attracted the
attention of many researchers in the field, see[AW1] and [AW2] for references and
background.

In [AW2], Aronson and Weinberger showed that iff is C1 and

lim inf
s→0+

f (s)

s1+2/m > 0, (0.3)

then a “hair trigger” effect takes place, and any non-identically zero solutionu(x, t)

of (0.2) with values in[0, a] is such that

lim
t→+∞ u(x, t) = a,

uniformly in x ∈ Rm. Moreover, the exponent 1+ 2/m in (0.3) is sharp in the sense
that the hair trigger effect fails if 1+ 2/m in (0.3) is replaced by any larger�.

As a consequence of the hair trigger effect one deduces a Liouville result for the
elliptic problem associated to (0.4), namely, any solutionu of

�u+ f (u) = 0 (0.4)

with values in[0, a] is constant and identically equal to either 0 ora.
It should be noted that the assumptionf (s) < 0 for s > a implies that any

non-negative, globally bounded solutionu of (0.4) satisfies 0�u�a, and that if f
is superlinear at+∞, then any non-negative solution is in fact globally bounded (see
[DM,PRS1]).

As for the sharpness of the exponent 1+ 2/m in (0.3) in order that this kind of
Liouville-type result hold, it was shown by Dancer[D] , that if m > 2 and� > m/(m−2)
one can find a functionf ∈ C1(R) satisfying (0.1) and f (s)�cs� for s → 0+, such
that (0.4) has a positive solutionu with 0 < u < a which tends to zero at infinity.

In subsequent work, Du and Guo,[DG], extended the investigation to the case of
the p-Laplace operator, and conjectured that ifm > p then the sharp exponent should
be given by Serrin’s exponent� = m(p−1)/(m−p) (which reduces to� = m/(m−2)
in the case of the Laplacian).

The conjecture has been recently established by Dancer and Du[DD], using results
due to Bidaut-Veron and Pohozaev[BVP], and to Serrin and Zou[SZ]. For the sake
of comparison, we report here their result.

Theorem (Dancer and Du[DD]). Let f be continuous on[0,+∞) and locally quasi-
monotone(in the sense that for any bounded interval[s1, s2] contained in[0,+∞)
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there exists a continuous increasing function h such thatf (s)+h(s) is non-decreasing
in [s1, s2]), and assume that f satisfy(0.1) for somea > 0. Let p > 1 and, if m�p,
assume furthermore that there exist� > 0 and c > 0 such that

f (s)�cs� ∀s ∈ (0, �), (0.5)

where

� ∈ (0,+∞) if p = m and � ∈ (0,m(p − 1)/(m− p)] if m > p.

Let b(x) ∈ C0(Rm) satisfy0 < c1�b(x)�c2 < +∞ on Rm. Then any solution of

div
(
|∇u|p−2∇u

)
+ b(x)f (u) = 0 on Rm (0.6)

satisfying0�u�a is constant(and identically equal to either0 or a).

As remarked in[DD], the range of values of� in (0.5) is sharp. Furthermore, it
follows from the condition thatf (s) < 0 for s > a that any globally bounded non-
negative solutionu of (0.6) satisfies 0�u�a, and if f in addition satisfies a condition
of the type

lim inf
s→+∞ −

f (s)

s�
> 0

for some� > p−1, then any non-negative solution of (0.6) is in fact, globally bounded
(see[DG]).

The purpose of this paper is to extend this result in various directions. First of all, we
consider the equation in the setting of Riemannian manifolds, where the techniques used
in the Euclidean setting are no longer applicable. We also consider a class of operators
which is substantially more general than the standardp-Laplacian, and variations thereof
studied elsewhere (see, e.g.[Ho,HeKM]), where the operators are assumed to satisfy
a suitable homogeneity condition. The lack of this homogeneity again requires the
introduction of entirely new methods. Finally, we relax the condition onb(x). In this
respect, we note that the conditions onb(x) assumed in Dancer and Du’s result,
essentially amount to the constancy ofb(x). On the other hand, we are able to deal
with the case whereb(x) tends to zero, and we relate its rate of decay to the global
geometry of the ambient manifold.

Towards this aim, let(M, 〈 , 〉) be a complete Riemannian manifold, and leto be a
fixed reference point onM. We denote byr(x) the Riemannian distance fromx to o,
and byBr the geodesic ball of radiusr centered ato.

Let � ∈ C1((0,+∞)) ∩ C0([0,+∞)) satisfy the following structural conditions:

(i) �(0) = 0; (ii ) �(t) > 0 ∀t > 0; (iii ) �(t)�At� ∀t�0 (0.7)
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for some positive constantsA and �. For u ∈ C1(M), we consider the differential
operator defined (in the appropriate weak sense) by

L�u = div
(
|∇u|−1�(|∇u|)∇u

)

and which, from now on, we will refer to as the�-Laplacian.
Different choices of� lead to well-known operators such as

• the Laplace–Beltrami operator, corresponding to�(t) = t ;
• the p-Laplacian, div

(|∇u|p−2∇u) corresponding to�(t) = tp−1, p > 1;

• the mean curvature operator div

(
∇u√

1+|∇u|2

)
, corresponding to�(t) = t (1+ t2)−1/2,

and so on.
The extension of Dancer and Du result mentioned above is the following:

Theorem A. Let � be a function satisfying the conditions listed in(0.7) (i)–(iii), and

(iv)�′(t) > 0 ∀t > 0. (0.7)

Let f ∈ C0([0,+∞)) satisfy (0.1) for somea > 0, and

lim inf
s→+∞ −

f (s)

s�
> 0 (0.8)

for some� > max{1, �}; let also b(x) ∈ C0(M), and suppose that

b(x)� C

(1+ r(x))�
on M (0.9)

for someC > 0 and 0�� < 1+ �. Let u be a non-negative solution of

L�u = −b(x)f (u) on M. (0.10)

Assume that

lim inf
r→+∞

log volBr

r1+�−�
< +∞ (0.11)

and, if

(
vol (�Br)

)−1/� ∈ L1(+∞), (0.12)
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assume furthermore that

f (t)�ct� 0 < t � 1 (0.13)

for some� > 0 and c > 0. Finally, if

���, (0.14)

suppose also that

u(x)�Cr(x)−�, r(x)� 1 (0.15)

for some��0, C > 0, and that

lim inf
r→+∞

log volBr

r1+�−�(�−�+ε)−�
< +∞ (0.16)

for someε > 0. Then u is constant and identically equal to0 or a.

Remark 0.1. With respect to assumptions (0.11) and (0.12), it is quite easy to see that
the former may hold independently of the validity of the latter. Rather more elaborate
arguments allows to construct models manifolds such that

(vol �Br)
−1/� /∈ L1(+∞), (0.17)

and yet volBr grows arbitrarily fast. In particular, (0.17) does not imply that (0.11) or
(0.16), hold.

As for condition (0.15), it seems to have no counterpart in[DD] . We will show at
the end of Section 1 below, that it is automatically satisfied in the situation considered
in [DD], but becomes necessary in our more general setting.

We point out that our methods allow us to obtain the followingLq version of
(the first part of) Theorem A. The second part can be generalized in a similar way.

Theorem A′. Let f ∈ C0([0,+∞) and b(x) satisfy the conditions listed in the state-
ment of TheoremA, and let u be a non-negative solution of(0.10). Suppose that

lim inf
r→+∞

log
∫
Br

uq

r1+�−�
< +∞ (0.18)

for someq > 0, and if (0.12) holds, and assume furthermore that(0.13) holds for
some� with 0 < � < �. Then eitheru ≡ 0 or a.
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In fact our methods allow to obtain a version of Theorem A for the more general
class of divergence form operators defined as follows: leth be a symmetric tensor field
defined onM, that is a section ofS2T ∗M, and let� be a real-valued function with
the properties described in (0.7) (i)–(iii). For u ∈ C1(M) we consider the differential
operator defined (in weak sense) by

L�,hu = div
(
|∇u|−1�(|∇u|)h(∇u, ·)�

)
, (0.19)

where � : T ∗M → TM denotes the musical isomorphism, so thath(|∇u|, ·)� is the
vector field onM defined by

〈h(∇u, ·)�, X〉 = h(∇u,X) ∀X ∈ TxM.

Note that the�-Laplacian is obtained by choosing ash the metric ofM. The above
operators may be viewed as the natural, intrinsic generalization to Riemannian manifolds
of the fully quasi-linear singular elliptic operators considered by Pucci Serrin and Zou
(see[PuSZ,PuS]). They also generalize theA-Laplace operators as defined in[HeKM]
in the setting of nonlinear potential theory. For the latter class of operators we refer
to work by Holopainen[Ho], who obtains interesting Liouville-type results. From a
somewhat different point of view, see also the recent paper by Coulhon, Holopainen
and Saloff-Coste[CHSC].

The paper is organized as follows: in Section 1 we will outline a proof of Theorem A,
describe some consequences and examples, and, in particular, show how Dancer and
Du’s result compares with Theorem A. This depends on an a priori estimate for positive
solutions of (0.10) under curvature assumption, Proposition B, which we prove at the
end of the Section. It should be stressed that in order that the results of Proposition B
be applicable in Theorem A, the bounds obtained must be polynomial inr(x). It turns
out that this is, in some sense, a Euclidean phenomenon. In most of the genuinely
non-Euclidean settings, the bounds are in fact exponential, and the conclusion of the
second part of Theorem A fails. In this sense, the geometrically significant part of the
Theorem A is that up to (0.13) inclusive. The second part of the Theorem, as well
as the full strength of Dancer and Du’s result, depends upon very specific properties
of Rm.

In Section 2, we consider the more general operators defined in (0.19), and we will
describe how to extend to such a class of operators some of the results obtained in
[RS,PRS1]. In particular, we will describe conditions ensuring that the analog of the
�-parabolicity holds onM, and that solutions of differential inequalities of the form

L�,hu�b(x)g(u)

are necessarily bounded above. We will then state a version of Theorem A valid in this
context.
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1. Outline of the proof of Theorem A and Dancer and Du’s result

To better appreciate the content of Theorem A and compare it with Dancer and Du’s
result, we begin by illustrating an outline of the proof, referring to Section 2 below
for the complete proofs of many of the facts we are going to use. We setu∗ = supM u

and u∗ = infM u.
Step1. The assumptions−f (s) > Cs� for s � 1, with � > max{1, �}, b(x)�C(1+

r(x))−�, 0�� < 1+ �, and the volume growth condition (0.11), lim inf r→+∞ log vol
Br/r

1+�−� < +∞, imply that u∗ < +∞ (see[PRS1, Theorem B, Remark 1.6b], and
Theorem2.3 below). Note that the same conclusion holds if we assume that condition
(0.11) is replaced by condition (0.18) in the statement of Theorem A′ (see [PRS1,
Remark 1.6e]).
Step 2. Sinceu is bounded above, and (0.11) holds, Theorem A in[PRS1] (see

also Theorem2.1 below) implies that−f (u∗)�0, so that, by (0.1), u∗ ∈ [0, a], and
0�u�a on M. It follows that:

L�u�0 on M. (1.1)

Again, the same conclusion holds if we assume condition (0.18) instead of (0.11).
Step3. If

(
vol �Br

)−1/�
/∈ L1(+∞),

then, by Theorem A in[RS], (M, 〈 , 〉) is �-parabolic, and thereforeu�0 together
with (1.1) imply that u is constant. Sinceb(x) is positive onM and f vanishes only in
0 anda, it follows form (0.10) that eitheru ≡ 0 or a.
Step4. If

(
vol �Br

)−1/� ∈ L1(+∞),

then (M, 〈 , 〉) is not necessarily�-parabolic, and further analysis is required. First, we
note that 0�u∗�a, and that, applying Theorem A′ in [PRS1] (see also Remark2.2
after the proof of Theorem2.1), we havef (u∗)�0. Thus,u∗ is either 0 ora. In the
latter case we haveu∗ = u∗ = a, so thatu ≡ a; if u∗ = u∗ = 0, againu is constant.
Thus, the only case to consider isu∗ = 0 and 0< u∗�a. To show that this cannot
occur, it suffices to prove that under appropriate assumptionsu∗ > 0.

Now, sinceu satisfies (1.1) and it does not vanish identically, by the strong minimum
principle, [PuSZ,PuS], u is strictly positive onM. If (0.13) holds with � < �, then
(0.11) and Theorem2.5 below, imply thatu∗ > 0, and we are done. If (0.13) holds
and ���, then we observe thatu is a solution of

L�u = −b̃(x)f̃ (u)
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with

f̃ (u) = f (u)u−(�−�+ε) and b̃(x) = b(x)u�−�+ε.

According to (0.8) and (0.15) we have

b̃(x)�C(1+ r(x))−�−�(�−�+ε)

and the required conclusion follows from (0.16) and a further application of
Theorem2.5.

To compare the conclusion of Theorem A with Dancer and Du’s result, we need
to obtain a priori lower bounds for non-negative solutions of (0.10). As mentioned
in the introduction, these can be obtained by a comparison argument under curvature
conditions.

We begin with a lemma, whose content is to describe some properties of solutions
of a suitably radialized version of the inequalityL�v�0.

Lemma 1.1. Let � ∈ C0([0,+∞))∩C1((0,+∞)), satisfy conditions(0.7) (i) and (ii),
and assume that� is strictly increasing on[0, �) and that

�(t) ∼ C0t
	 as t → 0+ (1.2)

for someC0, 	 > 0. Let g ∈ C1([0,+∞)) be such thatg(0) = 0, g(t) > 0, if t > 0,
g′(t) > 0 for t � 1, and suppose that, for somem > 1,

g(t)−(m−1)/	 ∈ L1(+∞). (1.3)

Fix H > 0 and R > 0; then there existsB > 0 such that, having denoted with

 : [0,�(�))→ [0, �) the local inverse of�, the function� defined by

�(r) =
∫ +∞

r



(
Bg(t)1−m) dt, (1.4)

is defined andC2 on [R,+∞) and satisfies

{
�(|�′|)′ + (m− 1) g

′
g
�(|�′|) = 0,

�(r)��(R) = D < H, �′(r) < 0 ∀r�R.
(1.5)

Furthermore,

�(r) ∼ (B/C0)
1/	
∫ +∞

r

g(t)−(m−1)/	 dt as r →+∞. (1.6)
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In particular, if lim supr→+∞ g′/g < +∞, then there existsC > 0 such that

�(r)�Cg(r)−(m−1)/	 for r�R (1.7)

and if g′/g is eventually decreasing,

�(r)�C
g(r)

g′(r)
g(r)−(m−1)/	 for r�R. (1.8)

Proof. Note that sinceg is eventually increasing andg(t)−(m−1)/	 is integrable at
infinity, g(t)→+∞ as t →+∞. In particular, ifB is sufficiently small,Bg(t)−(m−1)

< �(�) for every t�R. Furthermore, it follows from (1.2) that 
(s) ∼ (s/C0)
1/	,

so that



(
Bg(t)−(m−1)

)
∼ (B/C0)

1/	g(t)−(m−1)/	 (1.9)

and the integral in (1.4) is finite for everyr�R. It is clear that� is C2, decreasing,
and that, by choosing a smallerB if necessary, it can be arranged that�(r) < H

on [R,+∞). A computation shows that� satisfies (1.5). It follows from (1.9) that �
satisfies (1.6). Finally, if g′/g�� for t�R, the integrand in (1.6) is bounded from
below by

1

�
g(t)−(m−1)/	−1g′(t),

and (1.7) follows integrating, and recalling thatg(t) → +∞ as t → +∞. A similar
argument shows that ifg/g′ is eventually decreasing then (1.8) holds. �

Proposition B. Let � and g satisfy the conditions listed in the statement of Lemma

1.1, and assume that, having denoted byr(x) the distance function fromo ∈ M, we
have

�r�(m− 1)
g′

g
(r(x)) (1.10)

pointwise in the complement of the cut locus of o. Let u be a non-negativeC1 solution
of

L�u�0. (1.11)
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Then there exist constants C andR > 0 such that

u(x)�C

∫ +∞

r(x)

g(t)−(m−1)/	 dt on M \ BR. (1.12)

Furthermore, if lim supr→+∞ g′/g < +∞, then there existsC > 0 such that

u(x)�Cg(r(x))−(m−1)/	 if x ∈ M \ BR, (1.13)

and if g′/g is eventually decreasing,

u(x)�C
g(r(x))

g′(r(x))
g(r(x))−(m−1)/	 if x ∈ M \ BR. (1.14)

Proof. Fix R > 0 such thatg′(t) > 0 for t > R, chooseB small enough that the
function � defined in (1.4) satisfies the conditions in the statement of Lemma1.1
with H = inf �BR

u, and setv(x) = �(r(x)). It follows from (1.5) and (1.10), that the
inequality

L�v=−�
(|�′|)′ − �

(|�′|)�r
�−�

(|�′|)′ − (m− 1)
g′

g
�
(|�′|) = 0 (1.15)

holds pointwise in the complement of the cut locus ofo, and, by adapting an argument
of Yau [Y] , weakly onM. Thus

L�v�L�uon M \ BR

v < uon �BR. (1.16)

We claim thatu�v on M \BR. Indeed, if this were not the case, there would exist
� > 0 andx0 ∈ M \ BR such thatu(x0) < v(x0)− �. Thus the set

A� = {x ∈ M \ BR : u(x) < v(x)− �}

would be open, non-empty, andx0 ∈ A� ⊆ A� ⊆ M \ BR. Moreover, sincev(x)→ 0
as r(x)→ +∞, while u is positive onM, A� is bounded, and sinceM is complete,
compact. Sinceu = v− � on �A�, by the weak comparison principle (see e.g.,[PuSZ,
Lemma 2]or [RS, Proposition 2.5]) u�v − � on A�, and thereforeu(x0)�v(x0)− �,
contradicting the definition of� and x0.

Now the required lower estimates follows from Lemma1.1. �



410 S. Pigola et al. / Journal of Functional Analysis 219 (2005) 400–432

As mentioned above, the upper estimate (1.10) in the statement of the Proposition
can be deduced from suitable curvature bounds. The following corollary illustrates a
typical result.

Corollary 1.2. Let (M, 〈, 〉) be an m-dimensional complete Riemannian manifold, let
o ∈ M be a fixed reference point inM, and let r(x) be the distance function fromo.
Assume that the radial Ricci curvature of M satisfy

Ricc(M,〈,〉)(∇r,∇r)� − (m− 1)G(r), (1.17)

for some positive functionG ∈ C1([0,+∞) such that

(i) inf
r>0

G′

G3/2 > −∞,

(ii ) lim sup
r→+∞

G(r) < +∞,

(iii )G(r)1/2 /∈ L1(+∞),

(vi) exp

(
−	−1(m− 1)D0

∫ r

0
G(s)1/2 ds

)
∈ L1(+∞) (1.18)

for someD0 > 0. Let � be as in the statement of the proposition, and let u be a
non-negative, non-identically zero solution of

L�u�0 on M.

Then there exist constantsC > 0 andD�D0 such that

u(x)�C exp

(
−	−1(m− 1)D

∫ r(x)

0
G(s)1/2 ds

)
. (1.19)

If G is assumed to be non-increasing then

u(x)�CG(r(x))−1/2 exp

(
−	−1(m− 1)D

∫ r(x)

0
G(s)1/2 ds

)
. (1.20)

Proof. Set

g(r) = 1

DG(0)1/2

[
exp

(
D

∫ r

0
G(s)1/2 ds

)
− 1

]
.
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It follows from the Laplacian comparison theorem (see[RRS, Lemma 2.4], or [PRS2,
Lemma 2.1]for a more analytically flavored approach) that ifD is sufficiently large,
then

�r�(m− 1)
g′(r)
g(r)

pointwise in the complement of the cut locus ofo and weakly onM. Note that since
g(r)→+∞ as r →+∞, by (1.18) (iii), we have

g′(r)
g(r)

∼ DG(r)1/2 as r →+∞.

We chooseD�D0, so that, by (1.18) (iv), condition (1.3) in Lemma 1.1 holds, and
applying Proposition B we deduce that, for someH > 0,

u(x)�Hg(r(x))
−m−1

	 �C exp

(
−(m− 1)

D

	

∫ r(x)

0
G(s)1/2 ds

)
,

which can be improved to

u(x)�CG(r(x))−1/2 exp

(
−(m− 1)

D

	

∫ r(x)

0
G(s)1/2 ds

)
,

if G is non-increasing. �

To illustrate the kind of lower bounds that can be obtained applying Corollary1.2,
assume that (1.17) holds with

G(r) = B2

1+ r2 ,

which corresponds to a geometric behavior borderline between the Euclidean and
non-Euclidean case. Indeed, a manifold with a pole, whose radial Ricci curvature is
non-positive, and tends to zero faster than(1+r(x)2)−1 is quasi-isometric to Euclidean
space (see, e.g.[GW]).

It can be shown that, ifg is defined as in the proof of Corollary1.2, then the
inequality

�r�(m− 1)
g′

g



412 S. Pigola et al. / Journal of Functional Analysis 219 (2005) 400–432

holds if

D�B ′ = 1+√1+ 4B2

2

and, in this case,

g(r)  rD as, r →+∞

(see, [RRS, Lemma 2.4]or [BRS, Lemma 5.1]). Thus, g(r)−(m−1)/	  r−(m−1)D/	

∈ L1(+∞) providedD > 	/(m− 1), and then non-negative solutions of

L�u�0

satisfy the bound

u(x)�Cr(x)1−D(m−1)/	.

In particular, in the case of thep-Laplacian, for which	 = p−1, if B ′ > (p−1)/(m−1)
then

u(x)�Cr(x)1−B ′(m−1)/(p−1) if B ′ > (p − 1)/(m− 1) (1.21)

while, if B ′�(p − 1)/(m− 1), then, for every� > 0 there existsC = C(�) > 0 such
that

u(x)�Cr(x)−�. (1.22)

Similarly, if (M, 〈, 〉) = (Rm, can) we have�r = (m − 1)/r, so that the inequality
�r�(m − 1)g′/g holds if g(r) = rD with D�1, and we deduce that non-negative
solutions of

�pu�0

satisfy the bound

u(x)�Cr1−(m−1)/(p−1) if m > p (1.23)

while, if m�p, for every � > 0 there existsC = C(�) > 0 such that

u(x)�Cr(x)−�. (1.24)
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We note in passing that these estimates agree with the bounds (1.21) and (1.22) letting
B → 0 and thereforeB ′ → 1.

Inserting (1.23) in the statement of Theorem A, with� = p − 1 and� = 0, we see
that condition (0.16) becomes

lim inf
m logr

r
p−m−p

p−1 (�−p+1+�)
< +∞

for some� > 0. It follows that in this case Theorem A is applicable provided

0 < � <
m(p − 1)

m− p
,

which should be compared with the range

0 < �� m(p − 1)

m− p
,

obtained by Dancer and Du.
On the other hand, ifm = p, using (1.24) we see that condition (0.16) holds provided

p − �(�− p + 1+ �) > 0 for some�, � > 0, and this clearly holds for every� > 0.
We remark that ifp = m, thenRm is p-parabolic, and in this case the conclusion of

Theorem A actually holds without having to assume any further condition like (0.13)
on the behavior off near 0.

As noted in the Introduction, while Proposition B is applicable under fairly weak
geometric assumptions, the bounds it provides can be used in Theorem A only if they
are polynomial inr(x), and this imposes rather strict restrictions on the geometry of
the manifold.

Indeed, if we assume that the Ricci curvature satisfies (1.17) with G(r) = (1+r2)−�/2

with 0�� < 2 then the lower bound given by Corollary1.2 is no longer polynomial
in r(x), and it turns out that the conclusion of Theorem A fails.

To see this, letM = Rm and let ds2 be the metric onRm \ {0} given, in polar
coordinates, by the formulads2 = dr2 + g(r)2d�2, where g solves the differential
equation

{
g′′ = B2(1+ r2)−�/2g,

g(0) = 0, g′(0) = 1.
(1.25)

Theng is smooth and even at the origin, and thereforeds2 extends to a metric onMm

with radial sectional curvature given byK(x) = B2(1+ r(x)2)−�/2.
We claim that if 0�� < 2, anda(r) = m−1

2 K(r), then the differential equation

�u+ a(r)u = 0 (1.26)
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has a positive radial solution onMm, with values in(0,1], and with the further property
that

C−1r1−(m−1)�/8 exp

[
−m− 1

2− �
Br1−�/2

]

�u(x)�Cr exp

[
−m− 1

2− �
Br1−�/2

]
(1.27)

for r � 1, for someC > 0. Thus, if f ∈ C0(R) is such thatf (t) > 0 in (0,2),
f (t) = t if t ∈ [0,1], f (t) < 0 in (2,+∞), f (t) = −t� if t ∈ [4,+∞), for some
� > 1, thenu is a positive, bounded, non-constant solution of

�u+ a(r)f (u) = 0.

Note that, according to[BRS] Proposition 5.1, we have

g(r)�Cr�/4 exp

[
2B

2− �
r1−�/2

]
(1.28)

for r � 1, so that

log volBr �Cr1−�/2 for r � 1

and therefore

log volBr

r2−� �Cr−1+�/2 → 0 as r →+∞,

and (0.11) holds. Also (0.12) holds with � = 1 = �. On the other hand, (0.14) does
not hold for any� and consequently (0.15) does not make sense.

To prove the claim one proceeds as[BR]. Let 
 be a solution of the differential
initial value problem

{

′′ + (m− 1) g

′(r)
g(r)


′ + a(r)
 = 0,

(0) = 1, 
′(0) = 0.

(1.29)

Then
 is defined on[0,+∞) andu(x) = 
(r(x)) is a radial solution of (1.26) on M.
To show that
 is positive on(0,+∞) and has the required asymptotic behavior, we
note that for everys > 1 the function�s(t) defined by

�s(t) = (t − s) [g(s)g(t)]−(m−1)/2
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is a subsolution of (1.29) on (0, s], and satisfies the conditions listed in[BR] Lemma 1.2.
The lemma implies that
 is everywhere positive, and in fact there existsC1 > 0, such
that, for every 0< �� 1

2, 1�s,


(s)�C1�
′
s(�)�

m−1.

Since

�′s(�) = −
[

1

s − �
+ m− 1

2

g′(�)
g(�)

]
�s(�),

the left-hand side of (1.27) follows from the definition of�s , the upper bound (1.28)
for g, and the asymptotic relationsg(�) ∼ �, g′(�) ∼ 1 as�→ 0.

As for the upper estimate, one observes that the function defined by

v(r) = (r − b)g(r)−(m−1)/2

is a positive radial subsolution of (1.29) defined on(b,+∞), such thatv′(b1) > 0 if
b1 > b is sufficiently close tob. According to Lemma 1.3 in[BR], there existsC > 0
such that


�Cv on [b1,+∞).

The right-hand side of (1.27) now follows from this, and the lower bound

g(r)�C exp

[
− 2B

2− �
r1−�/2

]

obtained in[BRS], Proposition 5.2.

2. More general operators

In this section we turn our attention to the more general operatorsL�,h defined in
the introduction. We will prove versions of our results for this class of operators, and
deduce the results stated for the�-Laplacian as special cases.

We begin by introducing some terminology. Leth be the symmetric tensor field
which enters in the definition (0.19) of the operatorL�,h. We will assume throughout
that h satisfies the following bounds

h−(r)�h(X,X)�h+(r) ∀X ∈ TxM, |X| = 1, x ∈ �Br (2.1)
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for some positive continuous functionsh± defined on[0,+∞), and define

h�(r)=
{
h+(s) if ��1,
h−(s)(1−�)/2h+(s)(1+�)/2 if � > 1,

(2.2)

and

H(r) = sup
s� r

h�(s). (2.3)

Now we are ready to state our first result, which extends to the operatorL�,h
Theorem A in[PRS1], valid for the �-Laplacian.

Theorem 2.1. Let (M, 〈, 〉) be a complete Riemannian manifold, let o be a reference
point in M, and r(x) be the distance function from o. Let� satisfy the structural
conditions (0.7) (i)–(iii), let h be a symmetric covariant two tensor field such that
h−(r) > 0 for every r > 0, and let H be defined in(2.2). Suppose thatb(x) is a
continuous function on M satisfying

b(x)� 1

Q(r(x))
on M, (2.4)

where Q is a positive, continuous, non-increasing function.
Given f ∈ C0(R), assume thatu ∈ C1(M) satisfiesu∗ = supM u < +∞ and

L�,hu�b(x)f (u) (2.5)

on the set

�� = {x ∈ M : u(x) > �} (2.6)

for some� < u∗. If

lim
r→+∞

H(r)Q(r)

r1+�
= 0 (2.7)

and, either

lim inf
r→+∞

Q(r)H(r) log vol Br

r1+�
< +∞ (2.8)

or

lim inf
r→+∞

Q(r)H(r)

r1+�

∫
Br

|u|p < +∞ for somep > 0, (2.9)

then f (u∗)�0.
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Proof. The proof is a modification of that of Theorem A in[PRS1]. First of all we
note that if (2.5) holds on��, then it holds on��′ for every ���′ < u∗.

Next, we assume by contradiction thatf (u∗) > 0. By increasing� if necessary, we
may suppose thatf (u)�C > 0 in ��, and thatu satisfies

L�,hu� B

Q(r(x))
on ��.

for someB > 0. Fix 0 < � < 1. By choosing� sufficiently close tou∗ we may
suppose that� := � − u∗ + ���/2 > 0, so that, having definedv = u − u∗ + �, we
have supv = �, �v

� = �u
� and

L�,hv� B

Q(r(x))
on �v

�. (2.10)

Pick R > 0 large enough thatBR ∩ �v
� "= ∅, fix 	 > 1 to be determined later, and

let 
 : M → [0,1] be a smooth cutoff function such that

(i)
 ≡ 1 on Br ; (ii )
 ≡ 0 on M \ B2r ; (iii ) |∇
|� C0

r

1/	, (2.11)

for some constantC0 = C0(	) > 0. Note that this is possible since	 > 1. Next, let
� : R → [0,+∞) be aC1 function such that

�(t) = 0 for t��, �′(t)�0 ∀t, (2.12)

fix � > 2 to be determined later, and consider the vector fieldW which is defined by

W = 
2��(v)v�−1|∇v|−1�(|∇v|)h(∇v, ·)�

on �v
� and vanishes elsewhere. Note that, in fact,W is zero offB2r ∩ �v

�.
Setting for ease of notationhv = h(∇v,∇v)/|∇v|2, a computation that uses (2.10),

hv >0, �′�0, |h(∇v,∇
)|�h
1/2
v h

1/2
+ |∇v||∇
| and |∇v|�(|∇v|)�A−1/��(|∇v|)1+1/�

yields

divW �
2��(v)v�−1 B

Q(r(x))
+ �− 1

A1/�

2��(v)v�−2�(|∇v|)1+1/�hv

−2�
2�−1�(v)v�−1�(|∇v|)|∇
|h1/2
v h

1/2
+ .
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SinceW is compactly supported, integrating, and applying the divergence theorem, we
obtain ∫


2��(v)v�−1Q(r(x))−1�−�− 1

A1/�

∫

2��(v)v�−2�(|∇v|)1+1/�hv

+2�
∫


2�−1�(v)v�−1�(|∇v|)|∇
|h1/2
v h

1/2
+ .

(2.13)

We apply to the second integral on the right-hand side the inequalityab��pap/p +
bq/(q�q), with p = 1+ �, q = (1+ �)/�, and with � > 0 chosen in such a way
that the first integral cancels out, and obtain, for� > (1+ �)/2

∫

2��(v)v�−1Q(r(x))−1� 2�+1��A

(1+ �)1+�

��

(�− 1)�
�

×
∫


2�−(1+�)|∇
|1+��(v)v�−1+�

×h(1−�)/2
v h

(1+�)/2
+ . (2.14)

Now, since
 is supported onB2r , andQ is non-decreasing,Q(r(x))�Q(2r) on the
support of
, and the left-hand side of (2.14) is bounded from below by

Q(2r)−1
∫


2�v�−1�(v). (2.15)

On the other hand, since[�/(�−1)]��2� for ��2, the constant on the right-hand side
of (2.14) is estimated byC(A, �)� with C(A, �) independent of��2. Further, using
(2.11) (iii), we may write


2�−(1+�)|∇
|1+�=
2�−(1+�)(1−1/	)(
−1/	|∇
|)1+�

�
2�−(1+�)(1−1/	) C0

r1+�
.

Finally, recalling thath−�hv�h+, we see that

h(1−�)/2
v �

{
h
(1−�)/2
+ if ��1,

h
(1−�)/2
− if ��1

and therefore

h(1−�)/2
v h

(1+�)/2
+ �h��H(2r) (2.16)
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on B2r . Thus, the right-hand side of (2.14) is estimated from above by

C(C0, A, �)�

r1+�
H(2r)

∫

2�−(1+�)(1−1/	)��−1+��(v).

Now, we choose	 > 1 close enough to 1 that 2−(1+�)(1−1/	) > 0, and apply Hölder
inequality with conjugate exponents� and �/(� − 1), to estimate the last expression
with

C(C0, A, �)�

r1+�
��−1+�H(2r)

(∫

2�v�−1�(v)

)(�−1)/�

×
(∫


2�−(1+�)(1−1/	)�v�−1+���(v)
)1/�

. (2.17)

Using (2.15) and (2.17) in (2.14), simplifying and rearranging, and recalling that
 = 1
on Br and 
 = 0 off B2r , and that�/2�v�� on the set�v

� where �(v) > 0, we
deduce that, if� > max{2, (1+ �)},

∫
Br

�(v)�
{
C1

Q(2r)H(2r)

r1+�
���

}�
∫
B2r

�(v) (2.18)

with C1 = 21−1/�C(C0, A, �). We now set

� = �(r) = r1+�

4C1Q(2r)H(2r)��
,

so that we may rewrite (2.18) as

∫
Br

�(v)�(1/2)B�−�r1+�/(Q(2r)H(2r)
∫
B2r

�(v) ∀r�R,

whereB = 1/(4C1). We remark thatB depends onA, � and 	, but is independent of
R and therefore of�.

Applying Lemma 1.1 in[PRS1] with G(r) = ∫
Br

�(v), we deduce that there exists
a constantS which depends only on� such that, for everyr�2R,

Q(r)H(r)

r1+�
log

∫
Br

�(v)� Q(r)H(r)

r1+�
log

∫
BR

�(v)+ SB�−� log 2. (2.19)

Now choose� in such a way that sup� = 1. Then the integral on the left-hand side is
bounded above by a multiple of log volBr , while, asr → +∞, the first term on the
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right-hand side tends to zero. Thus, we conclude that

lim inf
r→+∞

Q(r)H(r)

r1+�
log volBr �SB�−� log 2,

with S and B independent of�. Letting � tend to zero we contradict (2.8). Similarly,
choosing a function� such that 0��(t)�(t+u∗−�)q for t�� we see that the integral
on the left-hand side of (2.19) is bounded from above by

∫
Br

|u|p

and, arguing as above, and letting�→ 0 we contradict (2.9). �

Remark 2.2. Let �, f, b, Q, h andH be as in Theorem2.1, and assume thatu ∈ C1(M)

is such thatu∗ = supu > −∞ and satisfies

−L�,hu�b(x)f (u) (2.20)

on the set

�� = {x ∈ M : u(x) < �}, (2.21)

for some� < u∗. If either (2.8) or (2.9) hold, thenf (u∗)�0.
Indeed, it suffices to note that the functionv = −u is bounded above,v∗ = −u∗

and v satisfies

L�,hv�b(x)g(v)

with g(t) = f (−t). In the assumptions of Theorem2.1, g(v∗) = f (u∗)�0.

Our next task is to prove that, under appropriate assumptions, solutions ofL�,hu

�b(x)f (u) are necessarily bounded above.

Theorem 2.3. Let �, b, Q, h and H be as in Theorem2.1, and assume thatu ∈ C1(M)

satisfies

L�,hu�b(x)f (u), (2.22)
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on the set�� = {x : u(x) > �} for some� < u∗, where f is a continuous function on
R such that

lim inf
t→+∞

f (t)

t�
> 0 (2.23)

for some� > �. If either (2.8) or (2.9) holds then u is bounded above.

Proof. Again the proof follows adapting the arguments used in the proof of Lemma
1.5 in [PRS1]. Assume by contradiction thatu is unbounded, so that�� is non-empty
for every � > 0. By increasing� if necessary we may assume thatf (t)�Bt� if t��.
For ease of notation, we assume thatB = 1, so that, on��,

L�,hu�b(x)u�.

Clearly, we may also assume thatb(x) is bounded above
Let R > 0 be large enough that�� ∩ BR is non-empty. Let� : R → [0,+∞) be a

C1, non-decreasing function such that�(t) = 0 for t��, fix 	 > 1 such that

1− 1+ �
�− �

(
1− 1/	

)
> 0 (2.24)

and, as in the proof of Theorem2.1, choose aC∞ cutoff function
 = 
r : M → [0,1]
such that, forr�R,

(i)
 ≡ 1 on Br ; (ii )
 ≡ 0 on M \ B2r ; (iii ) |∇
|� C0

r

1/	 (2.25)

for some constantC0 = C0(	) > 0. Finally, fix � > max{1+ �,2�} and 
 > 0 to be
determined later, and consider the vector fieldW defined by

W = 
��(u)u
|∇u|−1�(|∇u|)h(∇u, ·)�.

Note that the properties of� and 
 imply that W vanishes offB2r ∩ ��. Proceeding
as in the proof of Theorem2.1, we estimate

divW �
��(u)b(x)u�+
 + 


A1/�

��(u)u
−1� (|∇u|)1+1/� hu

−�
�−1�(u)u
�(|∇u|)h1/2
u h

1/2
+ |∇
|,

whereh± is defined in (2.1) andhu = h(∇u,∇u)/|∇u|2. Next we apply to the second
term on the right-hand side the inequalityab��pap/p + bq/(q�q), with p = 1+ �,
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q = (1 + �)/�, and with � > 0 chosen in such a way that the first term on the
right-hand side cancels out, namely,

�(1+�)/� = 1+ �

�A1/�



�

and insert the resulting inequality in the above estimate, to obtain

divW �
��(u)b(x)u�+


−C(A, �)�
1+�


�

�−(1+�)�(u)u
+�h

(1−�)/2
u h

(1+�)/2
+ |∇
|1+�,

whereC(A, �) > 0 depends only uponA and�. Now, we integrate, apply the divergence
theorem, recall thatW is compactly supported, and obtain∫


��(u)b(x)u�+


�C(A, �)
�1+�


�

∫

�−(1+�)�(u)u
+�h

(1−�)/2
u h

(1+�)/2
+ |∇
|1+�. (2.26)

Multiplying and dividing byb(x)1/p in the integral on the right-hand side, and applying
Hölder inequality with conjugate exponentsp and q yield∫


�−(1+�)�(u)u
+�h
(1−�)/2
u h

(1+�)/2
+ |∇
|1+�

�
(∫


�b(x)�(u)u(
+�)p
)1/p

×

∫ 
�−(1+�)(1−1/	)q�(u)b(x)1−qh(1−�)q/2

u h
(1+�)q/2
+

(
|∇
|

1/	

)(1+�)q



1/q

,

provided�− (1+ �)(1− 1/	)q > 0. Choosingp = (
+ �)/(
+ �) (which is greater
than 1 by the condition� > �), the first integral on the right-hand side is equal to the
integral on the left-hand side of (2.26). Thus inserting into (2.26), and simplifying, we
obtain ∫


��(u)b(x)u�+


�
(
C(A, �)

�1+�


�

)q ∫

�−(1+�)q�(u)b(x)1−qh(1−�)q/2

u

×h(1+�)q/2
+ |∇
|(1+�)q . (2.27)
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Since u > � on �� and 
 = 1 on Br the integral on the left-hand side is bounded
from below by

�
+�
∫
Br

b(x)�(u). (2.28)

On the other hand, using (2.25) (ii) and (iii), and the fact that
 is supported onB2r ,
we show that the right-hand side of (2.27) is bounded from above by

{
C(A, �)

C0

r1+�

�1+�


�
sup
B2r

(
h
(1−�)/2
u h

(1+�)/2
+

b(x)

)}q ∫
B2r

�(u)b(x). (2.29)

We insert (2.28) and (2.29) into (2.27), useb(x)�Q(r(x))−1, with Q non-decreasing,
apply the reasoning that led to (2.16), and recall the definition ofH and the expression
of q, to get

∫
Br

�(u)b(x)�
{

C

��−�

H(2r)Q(2r)

r1+�

�1+�


�

} 
+�
�−� ∫

B2r

�(u)b(x), (2.30)

whereC > 0 depends only onA, � andC0.
Now we choose


+ � = � = 1

4C
��−� r1+�

H(2r)Q(2r)
.

so that, (2.24), implies that the condition�− (1+ �)(1− 1/	)q > 0 holds. Moreover,
by (2.7), �→+∞ as r →+∞, and, therefore,�/
�2 holds for sufficiently larger.
Thus, for such values ofr, (2.30) yields

∫
Br

�(u)b(x)�
(

1

2

) ��−�

4C(�−�)
r1+�

H(2r)Q(2r)
∫
B2r

�(u)b(x), (2.31)

At this point, arguing as in the final part of the proof of Theorem2.1, one verifies
that, suitable choices of�, allow to contradict assumptions (2.8) or (2.9), respectively.

�

Remark 2.4. Arguing as above, one verifies that it is possible to obtain a version for
the L�,h operator of Theorem B in[PRS1]. Again the volume growth conditions (0.7)
and (0.8) in Theorem B are replaced by (2.8) and (2.9), respectively.
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We next prove a counterpart of the above result, stating that under appropriate
conditions, non-negative, non-identically zero solutions of the inequality

−L�,hu�b(x)f (u) (2.32)

are necessarily bounded away from 0.

Theorem 2.5. Let � satisfy the conditions(0.7) (i)–(iv), and let b(x), Q, h and H
satisfy the assumptions of Theorem2.1. Let f ∈ C0(R), and assume thatu ∈ C1(M)

is non-negative and non-identically zero, and satisfies(2.32) on the set

��0
= {x : u(x) < �0} (2.33)

for some�0 > u∗ = inf u. If

f (t)�Ct�, as t → 0+ for some� < �, (2.34)

and either(2.8) or (2.9) hold, then u∗ > 0.

Proof. Observe that, by the strong minimum principle,u is strictly positive onM. We
assume by contradiction thatu∗ = 0, so thatu satisfies (2.32) on �� for every ���0.

We fix � ∈ (0, �0] in such a way that

f (t)�Bt�, for some constantB > 0 and t ∈ (0, �), (2.35)

so that

−L�,hu�Bu� (2.36)

on ��. For ease of notation, we may suppose thatB = 1.
Let � : R → R be aC1 function such that�(t) = 0 if t��, �(t) > 0 if t < �, and

�′�0. ChooseR > 0 large enough thatBR ∩ �� "= ∅, and, for r�R, let 
 = 
r be

a smooth cutoff function with
 = 1 on Br , 
 = 0 off B2r and |∇
|�(C0/r)

	 for

someC0 and 	 > 1 independent ofr.
Finally, let W be the vector field defined by

W = −
��(u)u−
|∇u|−1�(|∇u|)h(∇u, ·)�, (2.37)

where�,
 > 0 are constants to be determined later.
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Using, as in the proofs of Theorems2.1 and 2.3, �′�0, |∇�|(|∇u|)�A−1/�

�(|∇u|)1+1/�, hu = h(∇u,∇u)/|∇u|2 > 0 and |h(∇v,∇
)|�h
1/2
v h

1/2
+ |∇v||∇
|, we

estimate

divW �
�b(x)u�−
 + 


A1/�

�u−
−1�(u)�(|∇u|)1+1/�hu

−�
�−1�(u)u−
�(|∇u|)|∇
|h1/2
u h

1/2
+ . (2.38)

Now we argue as in the previous proofs, and estimate the last term on the right-hand
side using the inequalityab� �pap

p
+ bq

�qq , with p = 1+ 1/�, q = 1+ �, and with

� = [
(1+ �)/(A1/���)]�/(1+�), chosen in such a way as to cancel the second term.
Integrating the resulting inequality, applying the divergence theorem, observing that

W is compactly supported, and using the properties of the cut off function
 yield

∫

��(u)b(x)u�−
�C1

(
�



)� �

r1+�

×
∫


�−(1+�)(1−1/�)�(u)u�−
h
(1−�)/2
u h

(1+�)/2
+ , (2.39)

provided�−(1+�)(1−1/	) > 0, where the constantC1 = C1(C0, A, �) is independent
of �, 
, and r.

Multiplying and dividing byb(x)1/p, and applying Hölder inequality with conjugate
exponentsp andq to be determined later subject to the condition�− (1+ �)(1− 1/	)
q > 0, we estimate from above the integral on right-hand side of (2.39) by

(∫

�b(x)�(u)u(�−
)p

)1/p

×
(∫


�−(1+�)(1−1/�)q�(u)b(x)1−qh(1−�)q/2
u h

(1+�)q/2
+

)1/q

. (2.40)

Choosingp in such a way that(�− 
)p = �− 
, namelyp = (
− �)/(
− �), so that
p > 1 by the assumption that� < �, the first integral in (2.40) is equal to the integral
on the left-hand side of (2.39). Thus inserting, simplifying, and using the definition of
H, the lower boundb(x)�Q(r(x))−1, and 1Br �
�1B2r , we obtain

∫
Br

�(u)b(x)u�−
�
(
C1

(
�



)�
H(2r)Q(2r)

r1+�
�

)q ∫
B2r

�(u)b(x),

provided� > (1+�)(1−1/	)q. Sinceq = (
−�)/(�−�), if we choose
 = �+�, the
condition becomes 1> (1+ �)(1−1/	)/(�− �), which holds provided	 is sufficiently
close to 1. Now, sinceu < � on ��, u�−
 > ��−
 for 
 > �, and �/
 < 1, we



426 S. Pigola et al. / Journal of Functional Analysis 219 (2005) 400–432

deduce that

∫
Br

�(u)b(x)�
(
C1��−�H(2r)Q(2r)

r1+�
�
)�/(�−�) ∫

B2r

�(u)b(x),

whence, choosing

� = 1

2C1
�−(�−�) r1+�

H(2r)Q(2r)
,

and assuming that either (2.8) or (2.9) hold, a contradiction is reached arguing as in
the last part of the proof of Theorem2.1. �

In order to obtain a version of Theorem A for theL�,h operator, the only missing
ingredients are the analog of the volume growth conditions that imply the�-parabolicity.
We will say that a manifold is(�, h)-parabolic if the only bounded aboveC1 solutions
of the inequality

L�,hu�0 (2.41)

are constant.
It is a relatively straightforward matter to check that the proofs in[RS] can be

adapted to treat the case at hand. We state the analogue of Theorem A therein.

Theorem 2.6. Let (M, 〈 , 〉) be a complete manifold, assume that� satisfies the struc-
tural conditions(0.7) (i)–(iii), and let h� be defined, as in (2.2), by

h�(r) =
{
h+(r) if ��1
h−(r)(1−�)/2h+(r)(1+�)/2 if � > 1.

If

(
h�(r)vol (�Br)

1/�
)−1

/∈ L1(+∞).

Then M is(�, h)-parabolic.

The proof of the theorem follows as in[RS] and depends on a version of Lemma 1.1
in [RS], which in the present case reads as follows:

Lemma 2.7. Let f ∈ C0(R), and let u be a non-constantC1 solution of the differential
inequality

L�,hu� |∇u|−1�(|∇u|)h(∇u,∇u)f (u). (2.42)
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Assume that there are functions� ∈ C1(I ) and 
 ∈ C0(I ) defined on an interval
I ⊃ u(M) such that

�(u)�0, (2.43)

�′(u)+ f (u)�(u)�
(u) > 0 (2.44)

on M. Then there existR0 depending only on u and a constantC > 0 independent of
� and 
, such that, for every r > R�R0,

{∫
BR


(u)� (|∇u|) |∇u|
}−1

�C



∫ r

R

(∫
�Bt

�(u)1+�


(u)�
h�

)−1/�



�

. (2.45)

Proof. The proof follows the lines of that of Lemma 1.1 in[RS]. The vector field
considered there is replaced by

Z = �(u)|∇u|−1�(|∇u|)h(∇u, ·)�.

Then, applying the divergence theorem, Hölder inequality, and arguing as in the original
proof one arrives at the differential inequality, valid forr > R�R0,

G(r)−(1+1/�)G′(r)�C

(∫
�Br

�(u)1+�


(u)�
h
(1−�)/2
u h

(1+�)/2
+

)−1/�

,

where we have set

G(r) =
∫
Br


(u)�(|∇u|)1+1/�hu.

Recalling that

h
(1−�)/2
u h

(1+�)/2
+ �h�,

one concludes the proof as in[RS]. �

Proceeding as in Section 1 yields the following version of Theorem A of the Intro-
duction for theL�,h operator.
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Theorem 2.8. Let �, h, h� and H be as in the statement of Theorem2.5, and suppose
that

h�(r)�H(r)�Cr�,

for some� > 0. Let u ∈ C1(M) be a non-negative solution of

L�,hu = −b(x)f (u) on M.

whereb ∈ C0(M) is such that

b(x)� C

(1+ r(x))�
on M

for someC > 0 and 0 < � < 1+ �, and f ∈ C0([0,+∞)) satisfiesf (0) = f (a) = 0,
f (t) > 0 (0, a), f (t) < 0 in (a,+∞), for somea > 0, and

lim inf
s→+∞ −

f (s)

t�
> 0

for some� > max{1, �}. Assume that

lim inf
r→+∞

log volBr

r1+�−(�+�)
< +∞

and, if

(
h� vol (�Br)

)−1/� ∈ L1(+∞),

assume furthermore that

f (t)�ct� 0 < t � 1,

for some� > 0 and c > 0. Finally, if

���,

suppose also that

u(x)�Cr(x)−�, r(x)� 1
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for some��0, C > 0, and that

lim inf
r→+∞

log volBr

r1+�−�(�−�+ε)−(�+�)
< +∞

for someε > 0. Then u is constant and identically equal to0 or a.

In order to apply the methods described in Section 1 to obtain “a priori” lower
bounds for solutions of

L�,hu�0,

one needs to describe the action of the operatorL�,h on radial functions. This is the
content of the following lemma.

Lemma 2.9. Let � be a strictly monotonicC2 function on [R,+∞) and set
v(x) = �(r(x)). Then, on M \ BR, we have

L�,hv(x)=(sgn�′)[�(|�′|)]′h(∇r,∇r)

+(sgn�′)�(|�′|){div h(∇r)+ 〈h,Hessr〉S2T ∗M}. (2.46)

Proof. Recalling the definition ofL�,h, we compute

L�,hv(x)=(sgn�′)�(|�′|)div [h(∇r, ·)�]
+〈∇[(sgn�′)�(|�′|)], h(∇r, ·)�〉. (2.47)

Now,

〈∇[(sgn�′)�(|�′|)], h(∇r, ·)�〉 = (sgn�′)[�(|�′|)]′h(∇r,∇r).

On the other hand, ifEi is a local orthonormal frame,

div [h(∇r, ·)�]=
∑
i

〈DEi
h(∇r, ·)�, Ei〉

=
∑
i

Eih(∇r, ei)− h(∇r,DEi
Ei)

=
∑
i

(DEi
h)(∇r, Ei)+ h(DEi

∇r, Ei)

=(div h)(∇r)+
∑
i,j

h(Ei, Ej )Hess(Ei, Ej )
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=(div h)(∇r)+ 〈h,Hessr〉S2T ∗M,

whence the required conclusion follows upon inserting the above identities into (2.47).
�

Now, if we assume that

h−�h�h+, |div h|�
(r), |Hessr|� g′

g
(〈 , 〉 − dr ⊗ dr) ,

we have

h(∇r,∇r)�h− and 〈h,Hessr〉S2T ∗M �(m− 1)h+
g′

g
.

If, in addition, �′ < 0, it follows that

L�,hv(x)�−h(∇r,∇r)
{
[�(|�′|)]′

+ 1

h−(r)
�(|�′|)

[

(r)+ (m− 1)h+(r)

g′

g

]}
. (2.48)

This proves

Lemma 2.10.Maintaining the notation introduced above, assume that� is a solution
of the problem

{
[�(|�′|)]′ + 1

h−(r)�(|�′|)[
(r)+ (m− 1)h+(r) g
′
g
] = 0 on [R,+∞),

�(R) = D, �′ < 0,
(2.49)

and let v(x) = �(r(x)), then

L�,hv�0 on M \ BR.

As in the proof of Proposition B above, a comparison argument shows that, ifu is
a non-negative solution of

L�,hu�0 on M (2.50)

and � satisfies (2.49) with D� min�BR
u, then

u�v on M \ BR. (2.51)
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To find a solution of (2.49) we write

1

h−(r)

[

(r)+ (m− 1)h+(r)

g′

g

]
= (m− 1)

g̃′

g̃
(2.52)

so that the equation satisfied by� becomes

[�(|�′|)]′ + (m− 1)
g̃′

g̃
�(|�′|) = 0, (2.53)

which can be analyzed as in Section 1.
To illustrate the kind of bounds that can be obtained in the manner described above,

we consider the case where(M, 〈, 〉) is Rm with its canonical Euclidean metric, so that
the Hessian condition holds withg(r) = r. We assume further thath− = C1�C2 = h+,
and that
(r) = C3/r for r � 1, so that

g̃′

g̃
= �

r
, and g̃(r) = Cr�, r � 1

with �C−1
1 [C3+ (m− 1)C2] (m− 1)−1.

Assuming that the function� satisfies the condition stated in Lemma1.1, condition
(1.3), namely g̃−(m−1)/	 ∈ L1(+∞) amounts to

(m− 1)� > 	.

If this is the case, Lemma1.1 applies, and we conclude that any positive solutionu
of (2.50) satisfies the a priori lower estimate

u(x)�Cr−(m−1)�/	 for r � 1.
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