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A B S T R A C T   

Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and 
play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the 
pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. 
Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies 
are deeply investigated as a means to restore health or prevent disease. 

This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the 
most recent strategies in manipulating individual patient’s microbiota for the management and prevention of 
inflammatory conditions.   

1. Introduction 

The dualistic crosstalk between the microbiota and the immune 
system starts before birth and it is shaped throughout life as a conse
quence of geographic, cultural and dietary habits as well as individual’s 
genetic background. For this reason, each individual harbors its own 
normobiotic microbiota, making difficult the identification of a fixed 
health-associated microbial ecology. The alteration of the gut micro
biota composition leads to a condition called “dysbiosis”. Dysbiotic 
events occur throughout life (i.e. upon antibiotic usage, as a conse
quence of infections, or upon drugs administration). However, micro
biota’s resilience restores the normobiotic state, possibly aided by the 
immune system. Though, if repeated dysbiosis-leading events occur and 
the newly-shaped microbiota diverges too much from the healthy status, 
then microbiota-modifying interventions are necessary to restore 

normobiosis. Interestingly, dysbiotic individuals vary more in microbial 
community composition than healthy individuals [1]. This concept re
minds of the Anna Karenina’s incipit: ‘All happy families look alike; each 
unhappy family is unhappy in its own way’. The original cause of dys
biosis induces different types of microbiome instability. Upon these 
premises and according to the nature of dysbiosis, different therapeutic 
approaches aimed at restoring the normobiosis can be envisaged. When 
health-associated bacteria are depleted, as observed in autoimmune 
diseases, supplementation of missing bacteria may be a solution. Simi
larly, Clostridium (C.) difficile-induced colitis is efficiently treated by 
completely reshuffling the microbial composition via fecal transplant. 
On the contrary, if the microbial dysbiosis is associated with the 
enrichment of specific pathogens, antimicrobials such as antibiotics, 
bacteriocins and bacteriophages may be used. Another potential strat
egy is represented by probiotics, living microorganisms which can 
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confer positive effects on health by impacting on the resident micro
biota, intestinal epithelium cells, and, globally, the immune system [2]. 
Among them, lactic acid bacteria are the most frequently used as 
non-pharmacological methods to promote gut health and potentially 
modulate dysbiosis in inflammatory bowel diseases (IBD) [3]. 

Here, we review the possible usage of microbiota-targeted therapies 
to restore normobiosis and resolve inflammation in several major in
flammatory conditions (Tables 1–5). 

2. Microbiota-targeted approaches to resolve infection-related 
inflammation 

Dysbiosis may be both a cause and a consequence of enteral in
fections. Many enteric parasites, including Trichuris [4], Heli
gmosomoides [5], Giardia [6], Blastocysts [7], Cryptosporidium [8] and 
Entamoeba [9] induce marked changes in the structure of the gut 
microbiota [10]. For instance, infection with Toxoplasma (T.) gondii is 
accompanied by reduced bacterial diversity, expansion of facultative 
anaerobes (i.e. members of the family Enterobacteriaceae), loss of barrier 
integrity in the gut and bacterial translocation, that collectively 
contribute to immune-mediated pathologies [11]. During enteric in
fections, anti-microbial peptides (AMPs) and toxin delivery secretory 
systems (T6SS, T3SS) are upregulated and released [12]. As a 

consequence, colonization resistance by the gut microbiota is disrupted 
and dysbiosis occurs. Protective species belonging to the phyla Bacter
oidetes and Firmicutes are strongly reduced while species belonging to the 
phylum Proteobacteria largely expand [13,14]. Additionally, the antibi
otics administered to eliminate pathogens further modify the structure 
of the microbiota and drastically disturb the process of colonization 
resistance [15]. Antibiotics may also favor the development of 
multidrug-resistance (MDR) or invasive species [16], contributing to the 
exacerbation of intestinal inflammation. 

Infection-induced dysbiosis provokes the loss of commensals syn
thesizing bacteriocins and short-chain fatty acids (SCFAs) [17]. Simi
larly, dysbiosis reduces health-promoting Clostridia [18–20] and 
barrier-protecting species including Bacteroides thetaiotaomicron and 
Akkermansia muciniphila [21,22]. Pathobionts normally present in low 
abundance in healthy individuals expand during infections, becoming 

Table 1 
List of microbiota-modulating tools in animal models and patients affected by 
infective diseases.  

Type of 
infection 

Microbiota 
modulation tool 

Studies in animal 
models 

Studies in patients 

Clostridium 
difficile 

Antibiotics Vancomycin; 
Fidaxomycin [27] 

Vancomycin; 
Fidaxomycin [27]  

FMT – 

(28, 29, reviewed in 
30) 
Fatal adverse events in 
two cases (Escherichia 
coli contaminated FMT 
[32]  

Microbiota- 
based products – 

RBX2660 (31, 
PUNCHCD3, 
NCT03244644) 
Oral capsule: 
CP101 
(NCT03110133) 
RBX7455 
(NCT02981316) 
SER-109 (33, 34, 
NCT03183128) 
Multi-strain probiotics 
consortium [35] 
SER-262 
(NCT02830542) 
VE303 
(NCT03788434) 

Mycobacterium 
tuberculosis 

Combinatory 
therapies with 
probiotics 

– 

Antibiotics or vitamins 
plus probiotics 
(Bifidobacterium spp. 
and Lactobacillus spp,) 
[44,45]  

Next- 
generation 
probiotics 

– 
Bifidobacterium 
adolescentis resistant to 
anti-TB drugs [46]  

FMT [47] –  

Postbiotics 

Indolepropionic 
acid [38,39] 

– 
Bacteria-derived 
AMPs [42,43] 

Sars-Cov2 FMT – 

Pre-COVID19 as 
preventive setting [50, 
51] 
Post-COVID19 as 
therapeutic for the 
cytokine storm 
(NCT04824222)  

Table 2 
List of microbiota-modulating tools in animal models and patients in immune- 
compromised conditions.  

Immune 
compromised 
condition 

Microbiota 
modulation 
tool 

Studies in animal 
models 

Studies in patients 

Cancer therapies- 
associated 
Mucositis and 
Colitis 

Probiotics [63] (Reviewed in 64)  

FMT [65,66,67,68,69, 
70], Bifidobacterium 
spp. and 
Enterococcus 
gallinarum [69,72] 

(71, NCT03772899; 
NCT03637803) 

HSCT and GvHD Probiotics L. rhamnosus GG 
[79] 

L. rhamnosus GG [80] 
was inefficient  

Prebiotics – (NCT027630331, 
NCT02805075, 81)  

FMT – (83− 86, 
NCT02269150; 
NCT03359980; 
NCT03492502; 
NCT03549676; 
NCT03720392) 

HIV and AIDS Probiotics – [100,101,102]  
FMT In SIV infected 

primates [103] 
(104, 105, 
NCT03008941)  

Table 3 
List of microbiota-modulating tools in animal models and patients having 
dysbiosis-induced inflammation in CNS disorders.  

CNS 
disorders 

Microbiota 
modulation 
tool 

Studies in animal 
models 

Studies in patients 

Multiple 
Sclerosis 

Probiotics PSA+ B. fragilis or 
Bifidobacterium [122] 

Multi-strain probiotics 
consortium [124]  

FMT [120,123] (125, NCT04150549; 
NCT03975413 and 
NCT03183869) 

Parkinson’s 
disease 

Probiotics Bifidobacterium spp., 
Lactobacillus spp. and 
Lactococcus spp. 
[133] 

Planned clinical trials 
with; MRx0005 
(Parabacteroides 
distasonis) and MRx0029 
(Megasphaera 
massiliensis) 

Alzheimer’s 
Disease 

Antibiotics [140] –  

Probiotics Human isolates of 
Bifidobacterium 
longum [142] 

Lactobacillus and 
Bifidobacterium 
multistrain probiotic 
[143,144]  

FMT Transplant from 
diseased mice into 
GM one [139] 

–  

F. Strati et al.                                                                                                                                                                                                                                    



Seminars in Immunology xxx (xxxx) xxx

3

dominant species [23,24]. 
In these contexts, restoration of the gut microbiota may be effective 

to support the resolution of inflammatory processes. 

2.1. Community acquired bacterial infections 

Microbiota-targeted therapies are highly effective for the treatment 
of C. difficile infection (CDI). C. difficile uses toxin-derived quorum 
sensing (QS) signals to regulate its persistence in the gastrointestinal 
(GI) tract, leading to dysbiosis [25]. Indeed, through this mechanism of 
action, C. difficile sustains the enrichment of indole-producing bacteria 
at the expense of beneficial indole-sensitive bacteria [26]. Antibiotics, 
including vancomycin and fidaxomicin, are an effective method to 
prevent and treat CDI, although an inappropriate usage contributes to 
CDI by compromising gut microbiota composition and colonization 
resistance [27]. 

Results from randomized clinical trials (RCTs) and metanalyses 
demonstrated the superiority of fecal microbiota transplantation (FMT) 
for recurrent and antibiotic resistant infections [28]. The seminal 
comparative study of Van Nood [29] demonstrated that 81 % of patients 
had resolution of recurrent CDI (rCDI) after a single duodenal fecal 
infusion compared with 31 % in the vancomycin group [29]. A sys
tematic review of 2017, including seven randomized controlled trials 
and 30 case series, showed that clinical resolution occurred in 92 % of 
patients treated with FMT [30]. One caveat of FMT usage is the lack of 
standardization in the methods of collection, storage and administration 
to patients [28]. Different companies are trying to standardize FMT. 
Rebiotix-Ferring started the experimentation of the product RBX2660, a 
microbiota-based suspension derived from healthy donors’ stools. This 
microbial product successfully met the primary endpoint in a phase 3 
prospective, multicenter, randomized, double-blinded, placebo-con
trolled trial presented at DDW 2021 (PUNCHCD3, NCT03244644). The 
product had already demonstrated superiority to placebo in previous 
phase 2 trials in rCDI with no adverse effects [31]. However, two re
ported fatal cases of CDI patients treated with an FMT contaminated 
with a beta-lactamase producing E. coli led the Food and Drug Admin
istration agency to generate a safety warning document and pushed the 
research of alternatives to FMT [32]. 

Indeed, oral capsules have been largely implemented as alternatives 
to endoscopy-administered FMT. The Openbiome initiative (https: 
//www.openbiome.org) is pioneering this application field providing 
formulations of full spectrum lyophilized incapsulated microbiota. 
CP101 (Finch Therapeutics) is an oral capsule containing full-spectrum 
microbiota derived from donor stool. It is being investigated in a phase 2 
double-blind, placebo-controlled, dose-finding trial in patients with 
rCDI (NCT03110133). RBX7455 (Rebiotix) is a lyophilized, broad- 
spectrum gut microbiota preparation in a room-temperature stable 
oral capsule. A single-center, three-arm phase 1 clinical trial of RBX7455 
for treatment of rCDI is under way (NCT02981316). Seres Therapeutics 
investigated the efficacy of encapsulated spores derived from stool of 
healthy donors. In an exploratory study, 30 patients with rCDI were 

treated with SER-109 after they had a therapeutic response with oral 
antibiotics; CDI resolved in 96.7 % of patients [33] and gut microbial 
diversity increased significantly. In addition to the growth of organisms 
included in SER-109, nonSER-109 bacteria also increased in prevalence. 
For example, Bacteroides present normally in healthy individuals but not 
in the SER-109 product were augmented in 38 % of patients while 
Klebsiella, a pathogenic bacterium, decreased by 92 % already at week 4 
[33]. However, a phase 2 study did not show that SER-109 was superior 
to placebo (44 % of patients in the SER-109 group had rCDI compared 
with 53.3 % in the placebo group; the difference was not statistically 
significant) [34]. A phase 3 multicenter, randomized, double-blind, 
placebo-controlled trial is under way (NCT03183128; Seres Therapeu
tics, Inc). 

Recent alternatives to FMT include rationally designed microbial 
consortia growth in the laboratory under specific pathogen free condi
tions and assembled in defined proportions in commercially available 
products. Pioneer of the field is surely the a multi-strain probiotics 
consortium, composed by lactobacilli and bifidobacteria which also 
showed efficacy in reducing the incidence of antibiotic-associated 
diarrhea (AAD) in average-risk hospital patients exposed to systemic 
antibiotics [35]. More recently data for SER-262 (Seres Therapeutics, 
Inc) were presented at DDW2021. SER-262 is a fermentation-derived, 
rationally designed, oral microbiome therapeutic that contains bacte
ria from clades of healthy persons. The ability of SER-262 to prevent a 
first recurrence of CDI after appropriate antibiotic therapy for primary 
CDI was assessed in a recently completed phase 1b trial 
(NCT02830542). Similarly, VE303 (Vedanta Biosciences, Inc), an orally 
administered live bacterial consortium in powder form, is undergoing 
assessment for prevention of rCDI in a phase 2 clinical trial 
(NCT03788434); results are expected soon as the study finished in 
September 2021. 

2.2. Mycobacterium (M.) tuberculosis 

Tuberculosis (TB) is still one of the most deadly disease worldwide 
with an estimated 1.4 million deaths annually [36]. First line treatments 
include narrow spectrum antibiotics (i.e. isoniazid, pyrazinamide and 
ethambuthol) showing little or no activity outside the mycobacterial 
genus, often combined with the broad-spectrum antibiotic rifampin. 
However, prolonged TB-antibiotic treatments are often associated with 
structural changes in the microbiota [37]. Therefore, strategies aimed at 
promoting the restoration of a normobiotic microbiota such as dietary 
interventions and defined probiotic administration have been proposed. 

Microbial metabolites and actively secreted bioactive molecules 
administered through dietary interventions are currently under evalu
ation in antibiotic treated-TB patients. Among them, microbiota-derived 
indolepropionic acid (IPA) has been shown to inhibit M. tuberculosis by 
antagonizing its tryptophan biosynthesis [38,39]. Additional positive 
effects of IPA on epithelial barrier restitution and on the activation of 
innate and adaptive immune responses have been proposed [40,41]. 
Bacteriocins isolated from L. salivarius, Streptococcus cricetus, and 

Table 4 
List of microbiota-modulating tools in animal models and patients suffering from cardiovascular diseases.  

Cardiovascular disease Microbiota modulation 
tool 

Studies in animal models Studies in patients 

Atherosclerosis and coronary artery 
disease Probiotics 

L. fermentum MTCC:5898 [162] 

Lactobacillus and Bifidobacterium (NCT05095350) 
S. thermophilis, L. acidophilus LA-5 and B. bifidum 
BG-12 [163] 
L. plantarum DR7 or L. plantarum PH40 [165]  

FMT [151,166,167] 
https://www.trialregister.nl/trial/4188, NTR4338 [168] 
(NCT04406129) 

Chronic and acute heart failure Diet Choline-rich, TMAO-containing diet [174] –  

Probiotic – 
L. rhamnosus GG [175] 
L. acidophilus (NCT03968549)  

FMT [177] –  
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Enterococcus faecalis demonstrated in vitro antimycobacterial activity 
which exceeds that of the TB antibiotic rifampicin [42], with nisin and 
lacticin being effective towards M. tuberculosis, M. kansasii, 
M. smegmatis, and M. avium subspecies paratuberculosis [43]. Synergism 
with TB antimicrobials may therefore allow for shortening of current 
antibiotics regimens or reducing antibiotic dosing to limit toxic side 
effects. 

Combinatory therapy of antibiotics and probiotics such as Bifido
bacterium spp. are reported to restore normobiosis in TB patients [44, 
45]. A longitudinal study reported that a multi-strain probiotic formu
lation (Lactobacillus (L.) acidophilus, L. casei, L. rhamnosus, L. bulgaricus, 
Bifidobacterium (B.) breve, B. longum, and Streptococcus thermophilus) 
combined with supplementation of vitamins B1, B6, and B12 increased 
serum concentrations of IFNγ and interleukin (IL-)12, needed for the 
resolution of infection. Next generation probiotics, including rationally 
designed strains resistant to TB therapy are currently under study [46]. 

FMT demonstrated to reverse the increased susceptibility of 
antibiotic-treated mice to M. tuberculosis infection [47], but unfortu
nately no data are currently available for FMT administration in TB 
patients. 

2.3. SARS-CoV2 

Microbiota-replacing therapies have been proposed in patients 
infected with SARS-CoV2. Recent pivotal papers investigated the 
connection between gut microbiome dysbiosis and COVID-19 severity 
and proposed that SARS-CoV-2 infection may also disturb the intestinal 
microbial ecology. Interestingly, it has been shown that SARS-CoV-2 can 
undergo prolonged shedding in stool and that gut microbiome pertur
bations may associate with COVID-19 severity [48,49]. Recently, FMT 
treatment contributed to reduce the severity risk of COVID19 [50]. 
Indeed, FMT-treated CDI patients subsequently infected by SARS-CoV2 
experienced only mild clinical course of COVID-19, albeit they had 
risk factors for severe features/adverse outcomes of COVID-19 (i.e. 
frailty/comorbidities and immunosuppression) [50]. Authors hypothe
sized that FMT might have mitigated more adverse outcomes, poten
tially through impacting microbiome-immune interactions [50]. Similar 
results were obtained by Gasbarrini and colleagues [51]. An RCT has 

been recently submitted in clinicaltrial.gov, aimed at evaluating the 
impact of FMT for risk reduction of COVID-19 disease progression 
(FeMToCOVID) (NCT04824222). 

3. Microbiota-targeted approaches to resolve dysbiosis-induced 
inflammation in immune-compromised individuals 

Individuals receiving immunosuppressive agents or diagnosed with 
human immunodeficiency virus (HIV) infection, acquired immune 
deficiency syndrome (AIDS), inherited or primary immunodeficiency 
syndromes and hematologic or solid malignancies are considered 
immunocompromised. All these individuals carry different types of 
dysbiosis, which may influence therapies outcomes. 

In this context, microbial-modifying treatments may help in 
restoring normobiosis, sustaining the immune system functions. Among 
them, FMT is identified as the most promising therapeutic approach, but 
its use has been limited due to the perceived risk of transferring mi
croorganisms with potentially unknown functions in these categories of 
fragile individuals [52]. In light of these concerns autologous FMT or 
rationally designed consortia may offer a solution with lower risks. 

3.1. Cancer therapies-associated mucositis and colitis 

Prolonged anti-cancer therapies generate chronic toxicities inducing 
fibrosis, vascular damage and atrophy of the affected tissue or organ 
[53]. Moreover, it is well demonstrated that numerous anti-cancer 
agents significantly disrupt the intestinal microbiota, shifting its di
versity towards a Gram- enterotype [54]. The cytotoxic damage to the 
intestinal lining (mucositis) induced by anti-cancer therapies combined 
with the outgrowth of opportunistic Gram- microbes predisposes pa
tients to secondary infections and various complications. On top of that, 
when mucosal ulceration occurs inflammation is propagated by bacteria 
translocation. Microbial interactions with immune cells in the breached 
epithelium modulate oxidative stress responses, inflammatory processes 
and intestinal permeability [55]. However, the gut microbiota can 
contribute to the mucus layer regeneration and epithelial repair [56]. 
Thus, microbiota-targeted intervention may have a supportive role by 
preventing acute toxicities and secondary complications. 

Table 5 
List of microbiota-modulating tools in animal models and patients suffering from chronic inflammatory disorders.  

Chronic inflammatory 
disorders 

Microbiota 
modulation tool 

Studies in animal models Studies in patients 

Rheumatoid Arthritis Probiotics L. casei [179,180] L. casei [181,182] 
L. rhamnosus GR-1 and L. reuteri RC-14 [183]  

FMT – (NCT03944096) 

Type 1 Diabetes Probiotics – 

L. rhamnosus and B. lactis Bb12 (189, NCT03032354) 
L. salivarius, L. johnsonii and B. lactis (NCT03880760) 
Multi-strain probiotics consortium (NCT03423589) 
None of these trails have published results yet  

Synbiotic – L. sporogenes plus FOS [185]. (NCT03961347)  
FMT – Ongoing clinical trial (NCT04124211).  

GM bacteria 
GM Lactococcus lactis secreting proinsulin 
and IL10 [188] GM Lactococcus lactis; ongoing clinical trial (NCT03751007). 

Inflammatory Bowel 
Disease Antibiotics 

Broad spectrum antibiotics [198] 
Ciprofloxacin, metronidazole and rifaximin [190,191,192,193,194,195] Metronidazole [199,200]  

Probiotics 
Multi-strain probiotics consortium [208] E. coli Nissle 1917 [206,207] 

Saccharomyces boulardii [212] Multi-strain probiotics consortium in UC patients [209,210] 
Saccharomyces boulardii (213− 215)  

FMT [199,219] 
Clinical trials in mild-moderate UC patients (218, 220, 224, 225, STOP-Colitis, 
NCT03016780, NCT02390726) 
IMPACT-Crohn study [223]  

GM bacteria 

GM Lactococcus lactis [226] 

GM Lactococcus lactis (227, 228, NCT00729872) 
GM E. coli Nissle [236] 
E.Coli MDS42 -mediated RNA interference 
[237]  

PT PT toward E. Coli AIEC [243] PT toward K. pneumoniae BX002-A, BX003 (NCT04737876) 
PT toward E. coli AIEC (NCT03808103)  
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Radiotherapy causes major changes in the gut microbial composition 
[57,58] and germ free (GF) mice are resistant to lethal radiation en
teritis, indicating that microbiota controls intestinal disease processes 
consequent to radiation-induced damage [59]. Antibiotics-treated mice 
show a higher survival rate upon irradiation than not treated mice [60]. 
Cytotoxic chemotherapy or radiotherapy generally induces increases in 
Bacteroides and Enterobacteriaceae and decreases in Bifidobacterium, 
Faecalibacterium prausnitzii, and Clostridium cluster XIVa [61]. Pelvic 
radiotherapy can substantially decrease Firmicutes and increase Fuso
bacterium phyla [57], while patients with rectal cancer and partial 
response to chemo-radiation show an increase of Bacteroidales [57]. 
Patients who experienced diarrhea, a severe side effect of anticancer 
therapies, were shown to have increased Bacteroides, Dialister, Veillonella 
and reduced Clostridium XI and XVIII, Faecalibacterium, Oscillibacter, 
Parabacteroides, and Prevotella [57]. Some evidences also suggests that 
patients undergoing radiotherapy have a high incidence of CDI, which is 
associated with high mortality rates [62]. 

Despite strong preclinical support in animal models [63], the efficacy 
of probiotic formulations to counterbalance cancer therapies-derived 
toxicities in humans has been limited and data are controversial. A 
recent meta-analysis of six randomized controlled trials investigated the 
activity of oral probiotics in limiting post-radiotherapy diarrhea [64]. 
However, the heterogeneity of patients-inclusion criteria, the presence 
or absence of concomitant chemotherapy, the end-point assessment and 
the types of bacteria used as probiotics limit the possibility to draw 
definitive conclusions. Few studies evaluated the contribution of FMT in 
the resolution of radiation-induced dysbiosis and inflammation. In a 
preclinical setting, FMT reversed antibiotic- and chemotherapy-induced 
gut dysbiosis in mice [65]. Another preclinical study investigated the 
effect of FMT on FOLFOX-induced mucosal injury. BALB/c mice 
implanted with syngeneic CT26 colorectal adenocarcinoma cells were 
injected with FOLFOX concomitantly with FMT. Normobiosis restora
tion by FMT reduced the severity of chemotherapy-induced diarrhea and 
intestinal mucositis [66]. 

Immunotherapies targeting negative regulators of T cell activation, 
such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), pro
grammed cell death protein 1 (PD-1) and programmed cell death ligand 
1 (PD-L1) are associated with a higher risk of developing severe colitis 
[67]. Certain bacterial signatures have been shown to associate with 
differential responses to immunotherapies [67,68], both in terms of 
treatment efficacy and toxicity. Indeed, targeting of CTLA-4 was not 
efficient in the treatment of tumors in antibiotic-treated or GF animals 
[68,69]. Since the antitumor efficacy of the CTLA-4 blockade was 
dependent on distinct Bacteroides spp., microbial fecal transplantation of 
Bacteroides spp.-rich feces from humans into GF mice induced a signif
icant response to CTLA-4 blockade and negatively correlated with tumor 
size in recipient mice [68,69]. Moreover, modulation of the gut micro
biota by patient’s derived FMT alters antitumor immunity and response 
to immunotherapy in gnotobiotic mice [70]. Altogether these evidences 
suggest that FMT may be a valid therapeutic option for refractory 
immunotherapy-induced colitis [71]. In 2018, the first case series of 
immune checkpoint inhibitor- associated colitis successfully treated 
with FMT was published and identified an increase in the proportion of 
regulatory T cells (Tregs) post FMT treatment [71]. A phase 1, unblinded 
single-arm study is currently underway to investigate the efficacy of 
donor FMT as a prophylactic, adjunct supportive care measure in mel
anoma patients (NCT03772899). Recently, the candidate live bio
therapeutic MRx0518 was studied for its proven anti-tumorigenic effects 
and immune-stimulatory properties. Indeed, the strain MRx0518 
Enterococcus gallinarum elicits a strong pro-inflammatory response in key 
components of the innate immune system, including toll-like receptor 
(TLR) 5 and NFkB, but also in intestinal epithelial cells inducing IL-8 
production. Mechanistic studies indicated that flagellin produced by 
MRx0518 may play a role in its therapeutic properties [72]. MRx0518 is 
now being tested in a phase 1/2 trial in combination with pem
brolizumab for solid tumors with acquired resistance to checkpoint 

immunotherapy (NCT03637803). 

3.2. Hematopoietic stem cell transplantation (HSCT) & Graft versus host 
disease (GvHD) 

In patients undergoing extensive conditioning regimens for HSCT, 
which include high dose chemotherapy and radiation therapy, mucosal 
barrier disruption allows translocation of bacteria into the blood circu
lation resulting in bloodstream infections (BSI) and sepsis. Enterobac
teriaceae, Staphylococci, Enterococci, P. aeruginosa, and Streptococci 
represent the most common BSI pathogens [73]. Microbiota-modulating 
therapies in these patients may thus not only reverse dysbiosis but also 
decrease the risk of infectious complications. Longitudinal analysis of 
the microbiome of HSCT recipients showed a reduction in obligate an
aerobes, associated with an expansion of pathogenic species (including 
Viridans-group Streptococci and vancomycin-resistant Enterococcus) [74]. 
Conversely, increased bacterial donor diversity reduced the risk of 
allogenic-(a) GvHD [75] and associated to lower mortality rate [76]. 
Probiotic usage in HSCT patients has been proposed and tested, with no 
patients developing BSI even though the clinical outcomes were mostly 
inconsistent [77,78]. Preclinical studies in mice indicated that admin
istration of the probiotic L. rhamnosus GG reduced the incidence of 
aGvHD [79], but the first randomized clinical trial on allo-HSCT patients 
supplemented with L. rhamnosus GG did not show changes in the inci
dence of GvHD [80]. 

Dietary fibers fermented by gut microbiota (such as starches, fruc
tooligosaccharides (FOS) and galactooligosaccharides (GOS)), 
commonly known as prebiotics, can alter microbiota composition while 
minimizing the risk of bacteremia in immunocompromised populations. 
A retrospective study showed that the combined supplementation of 
glutamine, fiber and FOS in HSCT patients effectively decreased the 
severity of mucosal damage post-transplant, mucositis and diarrhea. 
Accordingly, survival at day 100, weight loss and the number of intra
venous hyperalimentation were better in patients on prebiotics 
compared to those who did not receive the supplementation [81]. Two 
clinical trials are currently investigating the association between potato 
starch and risk of GvHD (NCT027630331) and tolerability of HSCT 
patients to FOS (NCT02805075) [82]. Several small studies have 
demonstrated a beneficial effect of FMT on remission of GvHD in 
allo-HSCT patients [83–86]. A case study with 4 patients has shown 
donor FMT was efficient to control acute intestinal steroid-refractory 
and -dependent GvHD, with 3 out of 4 patients showing complete res
olution [83]. Encapsulated FMT, as well as nasogastric tube delivery, 
were also successful in treating GvHD [84,85]. FMT was capable to 
restore microbiota composition and increase diversity with the abun
dance of Bacteroidetes, Bacteroidaceae, Ruminococcaeae and Desulfovi
brionaceae accompanied by amelioration of clinical symptoms including 
stool volume, abdominal pain and longer progression-free survival [86]. 
Auto-FMT may be preferable to allo-FMT due to a lower risk of GvHD 
insurgence, albeit risks associated with the reintroduction of 
HSCT-associated pathobionts exist. FMT demonstrated efficacy in the 
safe eradication of MDR organisms (MDRO), as shown in small study 
involving 10 allo-HSCT patients [87]. Additional ongoing clinical trials 
(NCT02269150; NCT03359980; NCT03492502; NCT03549676; 
NCT03720392) are currently evaluating the impact of FMT on HSCT 
patients [87]. 

3.3. Human immunodeficiency virus (HIV) & acquired immunodeficiency 
virus (AIDS) 

HIV is a retrovirus with CD4 + T cell tropism leading to a severe 
immunodeficiency, alteration of the intestinal barrier [88] and rapid 
and massive destruction of CD4 + T lymphocytes. Infected individuals 
manifest HIV-associated intestinal lesions (“HIV enteropathy”) charac
terized by inflammation and mucosal atrophy [89], which persist 
despite antiretroviral therapy (ART) [90,91]. During HIV enteropathy, 
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intraepithelial cells display a downregulation of host genes associated to 
epithelial barrier and gut microbiota regulation [89,92]. 

Report of HIV-associated dysbiosis are discordant, yet available data 
show a major depletion of Bacteroides in favor of Proteobacteria [93], an 
enrichment of pathobionts (Enterococcus, Streptococcus, Staphylococcus, 
Salmonella, and Escherichia species) and a significant reduction of sym
bionts throughout the entire intestinal tract [94]. Importantly, dysbiosis 
seems to be aggravated by ART [95,96]. Patients with immunologic 
failure on ART manifest an increase of Enterobacteriaceae instead of 
Lactobacillus [97]. Moreover, butyrate synthesized by dominant species 
(Fusobacterium nucleatum, Clostridium cochlearium, and Eubacterium 
multiforme) in HIV patients is capable to reactivate both unintegrated 
HIV-1 genomes and latent HIV proviruses through histone deacetylase 
(HDAC) inhibition [98,99]. 

Current microbial modulating therapies in HIV involve the admin
istration of probiotics [100,101] [102] and FMT [103–105]. Adminis
tration of probiotics has been tested in several studies on people living 
with HIV (PLHIV) [106,107]. However, PLHIV are continuously on ART 
[108], which showed improved prognosis if compared to probiotics 
alone, therefore hindering the direct evaluation of probiotics efficacy in 
this context. 

Few small studies investigated the administration of FMT in HIV 
infected subjects or SIV-infected primates [103–105]. Among them, the 
most successful and recent study [105] involved 30 HIV-infected sub
jects on ART with a CD4/CD8 ratio < 1 that were administered weekly 
fecal microbiota capsules or placebo for 8 weeks. FMT attenuated 
HIV-associated dysbiosis increasing significantly the α-diversity of 
FMT-treated patients. The Lachnospiraceae and Ruminococcaceae fam
ilies, which are typically depleted in people with HIV, were the taxa 
more robustly engrafted across time-points (NCT03008941). 

4. Microbiota-targeted approaches to resolve dysbiosis-induced 
inflammationin Central Nervous System (CNS) disorders 

The bidirectional communication between the gut and the CNS is of 
utmost importance in maintaining homeostasis of the two biological 
systems [109] Indeed, the gut microbiota affects the development of 
neural systems that govern the endocrine response to stress. GF mice 
show exaggerate hypothalamic–pituitary–adrenal responses and 
reduced brain-derived neurotrophic factor (BDNF) levels compared to 
gnotobiotic mice. This phenomenon can be reversed by treatment with 
probiotics or by restoring the microbiota during early stages of devel
opment [110]. 

Alterations in the composition of the gut microbiota have been 
implicated in a wide variety of neurological disorders, among which 
Multiple Sclerosis (MS), Parkinson’s Disease (PD), Alzheimer Disease 
(AD) and neuropsychiatric disorders like major depressive and mood 
disorders [111–114]. We are at the infancy of understanding the role of 
gut microbes in the development of these disorders; we don’t know yet if 
gut dysbiosis is merely a consequence or a cause of these diseases. 
However, there is increasing evidence that circulating microbial-derived 
pro-inflammatory mediators may contribute to the progression of CNS 
disorders [115]. To note, up to 40 % of patients with IBDs reveals psy
chosocial disturbances [116]. A recent seminal work showed that in
testinal inflammation leads to dissemination of microbiota-derived 
lipopolysaccharides (LPS) due to impairments of the gut vascular bar
rier, important to control the dissemination of bacteria from the intes
tine to the liver [117]. In this context, the inflammatory response 
promotes the concomitant closure of choroid plexus endothelial cells 
leading to deficit in short-term memory and anxiety-like behavior [118]. 
Thus, this work suggests that IBD-associated neurological abnormalities 
are a consequence of deregulated gut–brain vascular axis due to 
microbiota-mediated systemic inflammation [118] and that manipula
tion of the microbial dysbiosis may regulate not only inflammatory re
sponses but also counterbalance neurological disturbances. 

4.1. Multiple sclerosis (MS) 

MS is a CNS-related autoimmune disorder characterized by neuro
inflammation, infiltration of lymphocytes into the CNS, demyelination 
and axonal loss. The gut microbiota of MS patients significantly differs 
from that of healthy subjects; even more strikingly, the gut microbiota 
differs between MS patients with active disease vs patients in the 
remission phase [119,120]. The evidence of a gut-brain connection in 
MS is provided by different translation approaches. In the experimental 
autoimmune encephalomyelitis (EAE) model of MS, colonization of the 
gut microbiota is required for the induction of the EAE. GF mice show 
less severe EAE whereas colonization with Segmented Filamentous 
Bacteria results in dysregulated Th17 responses which exacerbate the 
severity of the disease [121]. On the contrary, treatments with poly
saccharide A+ (PSA+) B. fragilis or Bifidobacterium alleviate EAE 
symptoms [122]. The strong immunomodulatory role of the gut 
microbiome in MS was elegantly demonstrated by transplanting feces 
from diseased individuals into GF animals that exhibited one of the 
hallmark symptoms of MS, i.e. autoimmune encephalomyelitis. The 
animal’s symptoms correlated with an increase in relative abundance of 
Akkermansia, which is significantly higher in MS patients, together with 
the species Acinetobacter calcoaceticus [120,123]. On the other hand, MS 
patients also exhibited reduced levels of Parabacteroides distasonis, a 
species associated with anti-inflammatory activity. Accordingly, mice 
“humanized” with microbiota from MS patients had reduced pro
portions of IL-10-producing Tregs [120,123]. Thus, much interest is now 
focused on possible therapeutic intervention via the gut microbiota. A 
change in the microbiota composition was observed in MS patients 
treated with a multi-strain probiotics consortium, but not in healthy 
controls [124]. FMT in MS patients reverted their neurological symp
toms although they were treated for underlying GI symptoms and con
stipation [125]. Three clinical trials are currently ongoing to test the 
efficacy of FMT in MS patients (NCT03183869, NCT03975413 and 
NCT04150549). Overall, these studies demonstrate that different ther
apeutic strategies targeting the microbiome may be effective in MS. 

4.2. Parkinson’s disease (PD) 

PD is a progressive nervous system disorder that affects voluntary 
movements. Motor function deterioration is due to accumulation of 
misfolded α-synuclein (αSyn) and loss of dopamine-producing neurons 
[126]; patients also typically suffer from GI symptoms that can precede 
PD diagnoses by many years [127]. Gut inflammation and accumulation 
of αSyn in the enteric nervous system and vague nerve suggest that the 
PD etiopathology may start in the gut [128]. Indeed, PD patients have an 
altered gut microbiota composition compared to heathy individuals 
characterized by the enrichment of pro-inflammatory Enterobacteriaceae 
and depletion of anti-inflammatory SCFAs-producing bacteria such as 
taxa from Lachnospiraceae family and Faecalibacterium prausnitzii 
[129–131]. The gut microbiota contributes to PD pathophysiology also 
by reducing the efficacy of anti-PD drugs and increasing the rates of 
levodopa (L-dopa) drug inactivation [132]. 

The first study to demonstrate mechanistically the role of the 
microbiota in PD pathophysiology used a translational approach in 
which transplantation of gut bacteria from individuals with PD into GF 
mice replicated some PD-like motor symptoms [111]. Administration of 
a probiotic mix containing Bifidobacterium, Lactobacillus and Lactococcus 
strains significantly attenuated the deterioration of motor dysfunctions 
in the MitoPark PD mouse model [133]. A novel probiotic formulation 
(SLAB51) showed to control the toxic effects of 6-hydroxydopamine in 
vitro and in vivo in models of PD [134]. Because of the role that the 
microbiota has in neuroinflammatory processes, 4D is now planning a 
first-in-man study in patients with PD by using the live biotherapeutic 
candidates, MRx0005 (Parabacteroides distasonis) and MRx0029 (Mega
sphaera massiliensis), which showed in vitro neuroprotective properties 
[135] 
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4.3. Alzheimer’s disease (AD) 

The gut microbiota has a role also in AD, the leading cause of de
mentia worldwide. The brain pathology associated with AD includes the 
formation of insoluble beta-amyloid precursor protein (Ab) deposits and 
hyperphosphorylated tau protein in the brain that trigger a cascade of 
pathological events leading to dementia. Several microbial factors have 
been linked to AD pathogenesis. In AD patients, alterations in the gut 
microbiota composition have been observed with decreased abundance 
of Firmicutes and Bifidobacterium and increased abundance of Bacter
oidetes and Enterobacteriaceae; these shifts correlate with inflammation 
and increased expression of amyloid proteins [136,137]. 

The mouse models APP/PS1 line and the 5XFAD transgenic mice 
exhibit marked changes in the gut microbiota correlating with neuro
inflammatory markers similar to human AD [138–141]. Fecal trans
plantation from conventionally-raised APP/PS1 mice into GF APP/PS1 
hosts increased cerebral Ab pathology while antibiotic-induced micro
biota depletion attenuates inflammation and brain pathology [139,140]. 
Metabolic analyses revealed significant changes in amino acid–related 
metabolism affecting principally Th1 immune responses [138]. The 
translational value of the microbiota in AD is therefore under evalua
tion. Supplementation of the Bifidobacterium longum (NK46) human 
isolates in 5xFAD-transgenic mice promotes an anti-inflammatory 
response associated with shifts in gut microbiota composition, reduc
tion of fecal and blood LPS levels, suppression of NF-κB activation and 
TNF-α expression; NK46 treatment also alleviated cognitive decline in 
5XFAD-Tg [142]. A randomized, double-blind, placebo-controlled trial 
using a Lactobacillus and Bifidobacterium multistrain probiotic product 
showed improvements in the Mini Mental State Exam [143]. However, 
another clinical trial evaluating the efficacy of probiotic supplementa
tion in AD showed no improvement in cognition [144]. 

5. Microbiota-targeted approaches to resolve dysbiosis-induced 
inflammationin cardiovascular disease (CVD) 

CVD consists of multiple disorders, including atherosclerosis, coro
nary artery disease (CAD), acute and chronic heart failure (CHF), 
arrhythmia, atrial fibrillation and heart valve complications with an 
increasing prevalence in the elderly [145]. Recent studies have high
lighted the connection between CVD and the gut microbiota [146,147]. 
Dysbiosis, along with alterations in microbiota-derived metabolites (i.e. 
choline-derived trimethylamine-N-oxide (TMAO)), represents a newly 
established risk factor for the development of CVD [148–150] and 
augments pathologic conditions such as hypertension [151]. Hyper
tensive subjects display an increase in the Firmicutes to Bacteriodes ratio 
of their gut microbiota that is limited by antibiotic treatment in mice, 
resulting in effective lowering of the blood pressure [152,153]. In light 
of these findings, targeted therapies aimed at restoring normobiosis, 
intestinal integrity and microbiota-derived metabolites are conceived. 
The role of prebiotics, probiotics and synbiotics in CVD are deeply 
reviewed by Olas and by Oniszczuk et al. [154,155] Thus, here we will 
focus on the most effective microbiota treatments and the most recent 
clinical trials. 

5.1. Atherosclerosis and coronary artery disease (CAD) 

The gut microbiota can be involved in the progression of CAD by 
accelerating the formation of atherosclerotic plaques upon colonization. 
Interestingly, bacterial DNA was found in atherosclerotic plaques [156] 
and patients with symptomatic, stenotic plaques were characterized by 
the unique presence of the genus Collinsella in their intestinal microbiota 
[157] The gut microbiota of CAD patients has a greater α-diversity than 
healthy controls, with abundance of Firmicutes and Fusobacterium, 
Enterobacteriaceae and Streptococcus spp. [112,158]. Dysbiosis and 
disruption of epithelial integrity cause bacterial-metabolites trans
location and systemic inflammation. The microbial-derived metabolite 

TMAO plays a major role in the formation of atherosclerotic plaques, 
showing dose-dependent association with plaques size, myocardial 
infarction and it represents a long-term risk factor for adverse cardiac 
events [159,160] On the contrary, SCFAs exhibit anti-inflammatory 
properties, maintain barrier integrity, and regulate blood pressure 
[161] Administration of several composition of fermented milk (i.e. L. 
fermentum MTCC:5898) in rodents showed significant effectiveness in 
the treatment of CAD by lowering the systemic inflammation, the sys
tolic blood pressure and the atherogenic index [162]. Moreover, 
administration of a probiotic consortium containing S. thermophilis, 
L. acidophilus LA-5 and B. bifidum BG-12, as well as administration of 
L. plantarum DR7 or L. plantarum PH40 showed cholesterol lowering 
properties [163–165] An interventional double-blind clinical trial 
(NCT05095350) is now recruiting to assess the effect of a probiotic 
powder composed of Lactobacillus and Bifidobacterium in the manage
ment of hypertension. 

Microbiota transplant from hypertensive donors into GF mice exac
erbated CVD symptoms such as blood pressure and vascular inflamma
tion [151,166]. On the contrary, FMT from healthy donors’ stool to 
hypertensive rodents decreased their disease state modulating the 
sympathetic nervous activity, the production of arachidonic acid and 
increasing the presence of healthy gut bacterial species such as Bacter
oides fragilis [166,167]. A first interventional clinical trial tested the 
effect of vegan/vegetarian donor FMT on the production of TMAO and 
subsequently on the vascular inflammation in patients with metabolic 
syndrome (https://www.trialregister.nl/trial/4188, NTR4338). 
Vegan/vegetarian FMT resulted in detectable changes in the recipient 
gut microbiota, however it failed to change levels of TMAO [168]. 
Currently restoration of the gut microbiota composition on primary 
hypertension upon FMT is under evaluation in a double-blind clinical 
trial (NCT04406129), results are expected by mid 2022. 

5.2. Chronic and acute heart failure (HF) 

An innovative theory connects heart failure with dysbiosis and 
damaged intestinal permeability. The heart-intestine axis hypothesis 
suggests that reduced cardiac outflow in CHF causes a lower blood flow 
in the intestine, modifying intestinal permeability, absorption and 
inflammation [169,170] In a first observational study, patients with 
severe CHF were characterized by a dysbiotic gut microbiota rich in the 
pathogenic bacteria Candida Campylobacter and Shigella, that correlated 
with disease severity, intestinal permeability and inflammation [147]. 
Other studies confirmed the dysbiotic state of CHF patients with the 
increase of Ruminococcus gnavus and the decrease of Faecalibacterium 
prausnitzii [171,172]. Moreover, there is an imbalance in the production 
of TMAO in CHF patients [171]. TMAO is now considered a valuable 
prognostic indicator of major adverse cardiac events in heart failure 
(HF), with elevated TMAO levels in both chronic and acute HF patients 
[173]. Administration of choline-rich or TMAO-containing diet to 
C57BL6/J mice significantly enhanced HF severity and myocardial 
fibrosis, affirming their role in CVD progression [174]. The probiotic 
administration of L. rhamnosus GG to patients with coronary artery 
disease resulted in improved cardiovascular-related factors and 
decreased serum levels of the inflammatory cytokine IL1β [175]. An 
interventional clinical study is assessing the effect of the probiotic strain 
L. acidophilus in patients with HF in terms of dysbiosis reconstitution and 
inflammatory index (NCT03968549). However, no results have been 
published yet. Interestingly, also myocarditis, a condition caused by 
inflammation of the heart muscle that ultimately leads to HF [176], is 
characterized by a dysbiotic gut microbiota [177]. Hu et al. have 
recently investigated the gut microbiota composition of experimental 
autoimmune myocarditis (EAM) mouse model and found an increase in 
microbial richness, diversity and in the Firmicutes to Bacteroides ratio 
[177]. They also evaluated the efficacy of FMT in the myocarditis setting 
by administration of healthy donor stools to EAM mice. FMT-treated 
EAM animals showed a rebalanced Firmicutes/Bacteroides ratio, a 
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decreased inflammatory condition with lower expression of IFN-Y in the 
heart and a general amelioration of the myocarditis [177]. 

6. Microbiota-targeted approaches to resolve dysbiosis-induced 
inflammationin chronic disorders 

The composition and function of the intestinal microbiota of patients 
suffering from autoimmune diseases, including IBD, Rheumatoid 
Arthritis (RA), and Type1 Diabetes (T1D) is profoundly altered. 
Although each immune disease carries a specific dysbiotic signature, 
their luminal or mucosal microbiome is steadily different from that of 
first-degree relatives or healthy controls and their microbial dysbiosis 
often precedes the onset of the disease [178]. In these patients the ge
netic predisposition, the environmental cues, the pharmacological 
treatments as well as the aberrant chronically activated immune system, 
along with alteration in the epithelial barrier functions contribute to 
generate and fuel intestinal dysbiosis. 

Targeting gut dysbiosis may be pivotal to end the vicious circle of 
inflammation-dysbiosis observed in these patients. Currently, the ma
jority of trials targets the inflammation/dysbiosis axis restoration by 
probiotics (both consortia and single strains) and by FMT. Some new 
products consist of bioengineered bacteria secreting proteins, such as 
interleukins, to reduce autoimmune responses and are currently under 
evaluation mainly in preclinical models of IBD. 

6.1. Rheumatoid arthritis (RA) 

Although there is evidence that anti-inflammatory therapies com
bined with microbial targeted approaches strongly complements RA 
patients’ dysbiosis, few studies are currently available. L. casei was 
tested in animal models of arthritis [179,180], showing a decreased 
incidence of the diseases in association with reduced production of in
flammatory cytokines [179,180] In RA patients, supplementation of 
encapsulated, active L. casei [181] induced a reduction of 
pro-inflammatory cytokines and an increase of anti-inflammatory IL-10, 
associated with the reduction of the disease activity scores for tender 
and swollen joints. Combined administration of L. casei, L. acidophilus 
and B. bifidum in capsules was sufficient to reduce the disease activity 
score; however, tender and swollen joints scores were not decreased 
[182]. Administration of both L. rhamnosus GR-1 and L. reuteri RC-14 in 
capsules to RA patients in a randomized, double- blind, 
placebo-controlled clinical trial highlighted a decrease in circulating 
pro-inflammatory cytokines, although no overall clinical improvement 
was reported [183]. One clinical trial (NCT03944096, FARM) is 
currently testing FMT for treating RA patients but no results have been 
released yet. 

6.2. Type I diabetes (T1D) 

Currently several studies investigate the possibility to use microbial- 
modulating therapies to control hyperglycemia. Following successful 
preclinical studies in animal models of T1D [184], a first clinical trial in 
children diagnosed with T1D evaluated the efficacy of a synbiotic 
administration of L. sporogenes and FOS for 8 weeks [185]. The synbiotic 
mix improved glycemic indices as compared to a placebo control group 
[188]. Another clinical trial (NCT03961347) is currently evaluating the 
effect of supplementation of L. johnsonii to adults with T1D, based on 
favorable preclinical results [186–188]. 

Few clinical trials are evaluating the effects of a bacteria consortia on 
T1D patients. In a first trial (NCT03032354), L. rhamnosus and B. lactis 
Bb12 were administered to children with T1D [189]. In a second one 
(NCT03880760), the mix was composed by L. salivarius, L. johnsonii and 
B. lactis. While the third multiple bacterial therapy clinical trial 
(NCT03423589) was designed to administer the a multi-strain probiotics 
consortium to T1D patients. None of these trails have published results. 
Currently there is only one clinical trial evaluating the benefit of FMT in 

T1D (NCT04124211), but it is still in the recruitment phase. 
To note, an innovative trial (NCT03751007) in the United States and 

Belgium is testing the use of genetically engineered bacteria, Lactococcus 
lactis secreting proinsulin and IL10 (AG019-Precigen Actobio T1D, LLC). 
This genetically modified bacterial strain was firstly tested on NOD 
mice, in which its administration plus anti-CD3 therapy induced a 
reduction in the hyperglycemia [188]. 

6.3. Inflammatory bowel disease (IBD) 

Given the close interconnection between gut microbiota dysbiosis 
and the aberrant activation of the mucosal immune system in IBD, 
microbe-targeted therapies aimed at restoring gut normobiosis and im
mune homeostasis are promising therapeutic options. Among them, 
antibiotics, pre and probiotics, FMT and consortia administration are the 
most widely implemented in preclinical and clinical studies. Antibiotics 
have been used to control intestinal inflammation by selectively elimi
nating specific pathobionts; ciprofloxacin, metronidazole or rifaximin 
are largely used in the clinical practices [190]. Ciprofloxacin and 
metronidazole are commonly administered to Crohn’s Disease (CD) 
patients [191] and are effective for anal lesions and delay of post
operative recurrence [192] by reducing TNF-α, IL-1β and IL-8 [193] or 
by inducing long-term changes in the immune phenotype of Treg and 
naive T-cells [194]. Rifaximin, a non-absorbable antibiotic, showed an 
excellent safety profile coupled with a reduction of colonic inflamma
tion and bacterial translocation in the mesenteric lymph nodes (mLNs) 
[195]; however, it does not yet have validated efficacy [196]. Despite 
some favourable clinical effects, the use of broad-spectrum antibiotics 
hampers the reconstitution of the gut microbiota and promotes a 
pro-inflammatory phenotype in the long term. Indeed, we recently 
demonstrated how a short-term treatment with broad-spectrum antibi
otics profoundly affected the frequency and function of intestinal 
invariant natural killer T (iNKT) cells, a population of T lymphocytes 
capable of recognising the mucosal microbiota in IBD patients [197], but 
not of CD4 + T cells in the absence of intestinal inflammation [198]. 
Reconstitution of the gut microbiota after antibiotic treatment was 
sufficient to imprint colonic iNKT and CD4 + T cells toward a Th1-Th17 
pro-inflammatory phenotype, aggravating clinical conditions upon in
testinal inflammation [198]. On the other hand, we recently showed 
that not all antibiotics are alike and metronidazole administration in 
colitic mice [199,200] efficiently controls the outgrowth of pathobionts, 
supporting instead the maintenance of SCFA-producing taxa which, in 
turn, sustain the activity of anti-inflammatory mucosal T cell pop
ulations in vivo and ex vivo [200]. 

Similarly, the use of probiotics may modulate dysbiosis in IBD pa
tients [3], through their strain-specific metabolisms and metabolic 
by-products (i.e. SCFAs, bacteriocins, hydroperoxides, secondary bile 
acids, and lactic acids) [201]. Different strains of Lactobacillus and 
Bifidobacterium showed significant capability to reduce 
pro-inflammatory IL-6 and IL-17 levels [202], restoring the Treg/Th17 
balance [203] and to control the overgrowth of pathobionts belonging to 
Enterobacteriaceae [204,205]. E. coli Nissle 1917 (EcN) can colonize the 
intestine and perform several documented protective functions, 
including IL22 -mediated epithelial restitution [206] and Treg expan
sion [207]. Thus, it’s being successfully used to extend remission phases 
in IBD patients in the clinical practice. The treatment with a multi-strain 
probiotics consortium has been shown to possess anti-inflammatory 
properties in experimental colitis [208] and in different randomized, 
double-blind, placebo-controlled trials. The use of this probiotics mix in 
Ulcerative Colitis (UC) patients showed significant effects in terms of 
clinical remission and clinical response during active UC and pouchitis 
with no side-effects [209,210]. 

Not only bacteria but also fungi are used as probiotics. Saccharomyces 
boulardii is a well characterized probiotic yeast often used to alleviate GI 
tract disorders [211]. Moreover it showed efficacy in preclinical models 
of IBD in alleviating symptoms by trapping pathogenic T cells in the 
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mLNs [212] and it was tested in both UC [213,214] and CD patients 
[215]. 

Nevertheless, probiotics effects are often transient and limited in 
most IBD subsets because of i) inability to replace/restore the microbial 
species depleted, ii) colonization resistance, since the individual 
immunological status and mucosal microbial features are associated 
with probiotics persistence, iii) treatment timing and proper delivery 
mode [216]. 

Although it is clear that in rCDI FMT efficiently eliminates the 
pathogen and its virulence factors [217], less it is known on the mech
anisms behind the therapeutic effects of FMT in IBD. Different RCTs 
have been performed so far in IBD patients, with those performed in 
mild-moderate UC giving the best results [218]. Mechanistically, we 
recently showed that therapeutic FMT administered during acute [199] 
and chronic [219] experimental colitis restores eubiosis and directly 
modulates both innate and adaptive mucosal immune responses towards 
the control of intestinal inflammation. Therapeutic FMT not only is able 
to reduce colonic inflammation, as demonstrated by decreased levels of 
the pro-inflammatory cytokines TNFa, IL1-β and IFN-γ, but also initiates 
the restoration of intestinal homeostasis through the simultaneous 
activation of different immune-mediated pathways [199]. Indeed, 
higher amounts of colonic IL-10 as well as increased frequencies of 
IL-10-producing APC, CD4 + T and iNKT cells were observed in 
FMT-treated mice as compared to untreated ones [199]. 

These preclinical evidence on the anti-inflammatory role of FMT 
have been confirmed by several RCTs in IBD patients. In a single-centre, 
prospective, open-label pilot study, the impact of FMT preparation and 
donor characteristics on the therapy success was evaluated [220]. Im
mune cell profiling was performed on mucosal biopsies before and after 
FMT to assess its impact on mucosal T cell immunity. Analysis of CD4 +
T cell cytokine production revealed a significant reduction of IFNγ in 
Tregs at week 4 compared to time of transplant, however no difference 
in IL4, IL17, IL22 or Th17 was reported [220]. Moreover, specific 
members of the gut mycobiota can play a protective function in the gut 
[221]. Getting a better knowledge on host response to these organisms 
might harbour potential predictive markers on the outcome of 
microbiome-based therapies and should be further explored in future 
FMT trials [222]. The IMPACT-Crohn study showed that FMT is effica
cious also in CD patients, showing that higher donor colonization 
associated with maintenance of remission [223]. The STOP-Colitis study 
is evaluating not only the efficacy and safety of FMT in UC patients, but 
also the colonic immune profile of recipients before and after FMT. 
Furthermore, a Chinese FMTFUC study is evaluating local and systemic 
inflammatory markers in UC FMT-treated patients (NCT03016780). 
Finally, the University of Vermont Medical Centre (NCT02390726) is 
assessing inflammatory markers pre- and post-FMT as well as changes in 
the host immune response via measurement of both mucosal and pe
ripheral T-cells populations (Th1, Th2, Th17). Similarly, convincing 
data have been shown concerning the preliminary results of trials in 
paediatric UC [224]. 

In this context, a recent paper by the group of Joel Dore’ analysed 
data from a paediatric trial in which patients received personalized anti- 
inflammatory treatments over a period of one year [225]. Stool samples 
at 0, 4, 12 and 52 weeks allowed an estimation of microbiota status 
(through 16S rRNA gene sequencing) and host inflammatory status 
(through the measurement of fecal calprotectin levels). Longitudinal 
data showed that the improvement of inflammatory status is accompa
nied by an enrichment of microbiota diversity. Their observations 
strongly suggest that inflammation suppression should be combined 
with microbiota management, where possible, to improve the efficacy of 
UC treatment. 

7. New frontiers: live biotherapeutics products (LBPs) and 
Phage Therapy (PT) 

A new era in microbial research is addressing specific patient’s needs 

towards the comprehension of a wider microorganism’s range with 
potential health benefits, including Live biotherapeutics products (LBPs) 
and Phage therapy (PT). 

LBPs conform to the normal definition of probiotic, including also 
genetically modified microorganisms (GMMs) and their use is addressed 
under a pharmacological point-of-view. GMMs are designed to deliver a 
range of anti-inflammatory molecules such as anti-TNF, anti-IL17 and 
IL10 and efficiently alleviate mucosal inflammation by promoting a 
homeostatic immunologic profile. L. lactis is the most prevalent bacteria 
used as GMM because it is a non-pathogenic, non-invasive, non- 
colonizing Gram + bacterium. For this reason, it is already used in the 
dairy food industry. In a pivotal work, intragastric administration of 
IL10-secreting L. lactis controlled intestinal inflammation in a model of 
DSS-induced chronic colitis [226]. The effect of bacteria-derived IL10 
was equal to the daily administration of recombinant IL10 [226]. These 
encouraging results led to the evaluation of a placebo-uncontrolled 
phase-I clinical trial, in which 10 CD patients were treated with IL10 
producing L. lactis [227]. The trial identified the treatment as safe with a 
decrease in disease activity in 8 out of 10 patients [227]. A larger 
phase-II, randomized, double-blind placebo-controlled, multi-centre 
dose-escalation study (NCT00729872) met all three primary endpoints 
but did not found any statistically significant amelioration of mucosal 
healing in patients treated with IL10-secreting L. lactis [228]. The lack of 
clinical effect could depend on the limited bacteria viability, which may 
be enhanced by newly developed technological improvements or to a 
wrong protein-targeting strategy. 

GMM L. lactis has been also used as a tool to deliver not only anti- 
inflammatory cytokines, but also heat-shock proteins (HSPs), cytokine 
antagonistic receptors, protease inhibitors and antioxidant enzymes, 
which are known to restrict the exacerbation of IBD [229–231, 
231–235]. Interestingly, at DDW21 it was presented an E. coli Nissle 
engineered to secrete IL22 only in the gut thanks to a specific FNR 
promoter, which is induced in the low-oxigen colonic environment 
[236]. 

To solve the issues related with bacterial viability and protein 
expression and delivery, newly developed approaches are now being 
tested. A non-pathogenic strain of E.Coli MDS42 has been engineered to 
invade the colon epithelium and release small hairpin RNA (shRNA) 
interfering TNF directly in target cells [237]. The bacterium-mediated 
RNA interference strategy significantly reduced inflammation in colitic 
mice, resolving the limitations of protein-based treatments [237]. 

PT consists in the exploitation of lytic viruses to invade and disrupt 
bacterial cells and thus it has been re-discovered in therapy of bacteria- 
associated diseases. However, it was recently shown that bacteriophages 
themselves could exacerbate intestinal inflammation in colitic mice 
through the induction of IFNy responses upon TLR-9 binding [238]. 
Thus, extra care is put in the formulation and administration of PT as 
well as in its safety regulation [239–241]. Preclinical studies in 
DSS-treated mice showed that administration of a bacteriophage cock
tail targeting E. coli AIEC, which is implicated in the pathogenesis of IBD 
[242], reduced DSS associated colitic symptoms [243]. In humans, a 
Phase 1a clinical study (NCT04737876) evaluated the safety, tolera
bility and pharmacokinetics of oral phage therapy (BX002-A) toward 
K. pneumoniae. These results demonstrated safety and tolerability with 
no serious adverse events, leading to discontinuation of the study for any 
of the 18 healthy participants. The study is still ongoing with a Phase 
1b/2a clinical trial aimed at evaluating the effect of PT (BX003) on 
people infected by K. pneumoniae with results expected by mid-2022. 
Another phase 1/2a double-blind, randomized, placebo-controlled 
trial started in 2019 (NCT03808103) and it is assessing the safety and 
efficacy of PT (EcoActive) toward the E. coli AIEC strain in 30 CD pa
tients with inactive disease state; results are expected by the end of 
2022. These preliminary results suggest that PT has the potential for 
being considered a reliable therapy in antibiotic-resistant bacter
ia-associated diseases, although further research on adverse effects 
associated to inflammatory events is needed. 
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8. Conclusions/Discussion 

Alterations in the composition of the gut microbiota have been 
implicated in a wide variety of pathologies, spanning from inflammatory 
to neurological, metabolic and autoimmune disorders. Both, intra- (i.e. 
IBD, C.difficile infection) and extra- intestinal (i.e. CVD, CNS, COVID- 
19) diseases are associated with dysbiosis, with changes in gut perme
ability and with exacerbated local or systemic immune responses. Thus, 
modulating patients’ dysbiosis is arising as a novel strategy for the 
treatment of the aforementioned diseases, with particular emphasis on 
the inflammatory-induced disorders [244,245]. Extra-intestinal diseases 
are often associated with bacteria metabolites or derivatives which are 
produced in the intestine but translocated to distant sites due to the 
rupture of the intestinal barrier during dysbiosis (i.e. TMAO production 
in CVD). Moreover, a casual role of gut microbiome was observed in 
many extra-intestinal diseases. Therefore, dietary interventions, resto
ration of gut integrity and normobiosis through prebiotics, probiotics or 
FMT may indirectly affect extra-intestinal disease outcomes. Many 
remarkable challenges are common among intra- and extra-intestinal 
diseases for the efficacy of microbiota-targeted therapy, as choosing 
the correct bacteria consortium, assessing stable engraftment and 
delineate safety concern. 

FMT represents an alternative for the normalization of dysbiosis 
among different inflammatory pathologies, however one main pitfall is 
that specific parameters for collection, storage and administration to 
patients are still mostly unknown [28]. Clinically, other promising 
microbiota-associated interventions such as the use of prebiotics, pro
biotics and live biotherapeutics are under evaluation. However, due to 
the unique microbiota signature of each individual a personalized 
approach based on microbiome stratification is needed [246]. Moreover, 
although discouraging, it is important to realize that this field of 
research must deal with complex numerous variables, such as general 
lifestyle habits, diet, age and mode of birth which are further influenced 
by the host genome. To address this issue, machine-learning represents a 
promising tool, exploiting existing metagenomic and metabolomic data, 
integrating personalized therapies based on genetics, environmental 
factors and the underlying microbial community present within an in
dividual [247]. Undoubtfully, the results of the ongoing RCTs cited in 
this review will provide invaluable insights on efficacy, long-term safety 
and durability of microbiota restoration therapies. 
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