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ABSTRACT

We present two new tools for studying and modelling metal absorption lines in the circumgalactic medium. The first tool,
dubbed ‘NMF Profile Maker’ (NMF-PM), uses a non-negative matrix factorization (NMF) method and provides a robust means
to generate large libraries of realistic metal absorption profiles. The method is trained and tested on 650 unsaturated metal
absorbers in the redshift interval z = 0.9-4.2 with column densities in the range of 11.2 < log (N/em™?) < 16.3, obtained from
high-resolution (R > 4000) and high-signal-to-noise ratio (S/N > 10) quasar spectroscopy. To avoid spurious features, we train on
infinite S/N Voigt models of the observed line profiles derived using the code ‘Monte-Carlo Absorption Line Fitter’ (MC-ALF),
a novel automatic Bayesian fitting code that is the second tool we present in this work. MC—ALF is a Monte-Carlo code based
on nested sampling that, without the need for any prior guess or human intervention, can decompose metal lines into individual
Voigt components. Both MC—ALF and NMF-PM are made publicly available to allow the community to produce large libraries
of synthetic metal profiles and to reconstruct Voigt models of absorption lines in an automatic fashion. Both tools contribute to
the scientific effort of simulating and analysing metal absorbers in very large spectroscopic surveys of quasars like the ongoing
Dark Energy Spectroscopic Instrument, the 4-m Multi-Object Spectroscopic Telescope, and the WHT Enhanced Area Velocity

Explorer surveys.
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1 INTRODUCTION

In the current cold dark matter paradigm of structures’ formation
and evolution, the modelling of baryons is representing a challenge
due to the large array of physical processes affecting this baryonic
component (e.g. Vogelsberger et al. 2020, and references therein).
As these processes (e.g. gas cooling, star formation, stellar/active
galactic nucleus feedback, and their interplay with gravity) combine
to shape the morphological and physical properties of the galaxies
as we observe them today, the detailed study of the gas environment
has become a priority in the field of galaxies’ evolution.

The circumgalactic medium (CGM), i.e. the baryonic component
that connects the galaxies’ interstellar medium with their large-
scale environment (intergalactic medium), plays a key role in our
understanding of how galaxies evolve, by allowing us to follow
the ’baryon cycle’ in which gas cycles into, out of, and through
galaxies. Observations of this component both in emission and
absorption allow us to trace the thermal and chemical evolution of
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diffuse gas in the Universe as a function of redshift (e.g. Tumlinson,
Peeples & Werk 2017, and references therein). In the last two
decades, an increasing effort has been put into the study of the CGM
physical properties (temperature, density, and metallicity) through
the analysis of absorption lines in spectra of background sources
like bright quasars, such as intervening metal absorbers, broad
absorption line (BAL) quasars, HI selected systems like damped
Ly o absorbers (DLAs), or Lyman limit systems (LLSs). Studies
across these different populations enable access to a wide range of
gas column densities, i.e. log (Nem™2) > 11 (e.g. Sargent, Steidel
& Boksenberg 1989; Schaye et al. 2000; Prochaska, Herbert-Fort &
Wolfe 2005; Simcoe et al. 2011; Rafelski et al. 2012; Fumagalli et al.
2016; D’Odorico et al. 2022), which in turn trace varying degrees of
overdensities.

With the advent of the Sloan Digital Sky Survey (SDSS; York et al.
2000) and the compilation of the SDSS quasar catalogues (final re-
lease by Lyke et al. 2020), astronomers now have access to just under
a million spectroscopically confirmed quasars to statistically assess
the properties of absorption line systems and trace the distribution and
physical properties of the gaseous component around galaxies across
the Universe (e.g. Noterdaeme et al. 2008; Prochaska, O’Meara &
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Worseck 2010; Lan, Ménard & Zhu 2014; Garnett et al. 2017; Anand,
Nelson & Kauffmann 2021; Anand, Kauffmann & Nelson 2022).
These statistical studies have further enabled follow-up observations
with high-resolution spectrographs on 8- and 10-m class telescopes
that opened the possibility of identifying characteristic features in
absorption systems while simultaneously allowing us to map the
correlations between the galaxies and the ambient gaseous haloes
(e.g. Werk et al. 2016; Prochaska et al. 2017; Fossati et al. 2019;
Mackenzie et al. 2019; Rudie et al. 2019; Dutta et al. 2020; Lofthouse
et al. 2020, 2023; Wilde et al. 2021).

A boost to these studies is imminent thanks to large surveys at
4-m class telescopes, like the Dark Energy Spectroscopic Instrument
(DESI; DESI Collaboration et al. 2016) survey, the 4-m Multi-Object
Spectroscopic Telescope (4MOST; de Jong 2019) survey, and the
WHT Enhanced Area Velocity Explorer (WEAVE, Dalton et al.
2012; Jin et al. 2023) survey. As the size and quality of the data
increase, novel, fast, and efficient approaches for identifying and
characterizing absorption lines are needed. This is why an increasing
effort has been put into proposing efficient approaches to: (i) identify
the different classes of quasars absorbers like metals (Cooksey
et al. 2013; Zhu & Ménard 2013; Zou et al. 2021), BALs (Guo &
Martini 2019), DLAs (Garnett et al. 2017), and LLSs (Fumagalli,
Fotopoulou & Thomson 2020) and (ii) to derive models of the
different line profiles that can accurately reproduce their behaviour
in terms of maximum likelihood (e.g. Carswell & Webb 2014) or
Bayesian estimates (Liang & Kravtsov 2017). Similarly, as samples
increase, systematic errors overcome by far statistical uncertainties
(e.g. Fumagalli et al. 2020). Tools are therefore required to create
high-quality mocks to train and validate the science pipelines used to
analyse the spectra and extract physical information on the absorption
lines.

The objective of this paper is to contribute to the tools available
in the field to tackle these challenges. Specifically, we present a
new code, Monte-Carlo Absorption Line Fitter (MC—ALF), which
provides an automatic reconstruction of the shape of line profiles and
extracts posterior distributions of the relevant physical parameters
(such as the number of components, column density, and Doppler pa-
rameter of each component). Moreover, we introduce a new method,
called NMF Profile Maker (NMF-PM) that generates synthetic
but realistic-looking line profiles following a given distribution of
desired line widths. Combined, these new codes provide useful
pre- and post-processing tools to aid the science exploitation of
future wide-field surveys, contributing both to the simulation of
quasar spectra with realistic absorption lines, and to the higher level
analysis of downstream data products. In particular, our codes are
tailored to the electronic transition lines of metal species (both low-
and moderate-ion transitions, with ionization potential IP < 30-40
and IP ~ 40-100 eV, respectively) that can be used to study the
multiphase nature of the CGM.

Our tools rely on advanced numerical techniques. Specifically,
for MC-ALF, we adopt a Bayesian nested sampling approach to the
line profile fitting. This method efficiently explores the full parameter
space by slicing it into subvolumes and fitting nested N dimensional
contours to identify the regions with a strong likelihood gradient
where accurate sampling is required. For NMF-PM, instead, we
rely on the non-negative matrix factorization (NMF), which is a
subclass of multivariate analysis techniques often associated with
pattern recognition and blind source separation (Lee & Seung 2000),
also used within the astronomical community (e.g. Zhu & M¢énard
2013; Hurley et al. 2014; Ren et al. 2018). Offering us a well-
established statistical framework for carrying out the representation
of positive and continuous signals, the NMF is an ideal algorithm

for summarizing the information contained in a large data set of
metal absorbers and for carrying out robust modelling and prediction
making.

One of the largest difficulties in the development of synthetic
metals’ profiles via machine learning (ML) methods is to have a
sample of training data, which satisfies both quality and quantity
requirements. However, as part of three large and complete galaxies’
surveys in quasar fields —the MUSE Analysis of Gas around Galaxies
(MAGG, Dutta et al. 2020; Lofthouse et al. 2020) survey, the Quasar
Sightline and Galaxy Evolution (QSAGE, Bielby et al. 2019; Dutta
etal. 2021) survey, and the MUSE Ultra Deep Field (MUDF; Fossati
et al. 2019) — our team has assembled a library of ~700 metal
absorption lines representative of moderately to highly overdense
gas. Thanks to this data set, we are now able to train algorithms
to generate metal profiles in quasar spectra with ML across a large
variety of column densities, redshifts, and line widths.

The paper is structured as follows: In Section 2, we describe the
spectroscopic surveys that provided the data to compile our library
of metal systems. In Section 3, we present and test the Voigt fitting
algorithms at the basis of MC-ALF, which we used to produce a
set of unsaturated metals profiles with infinite signal-to-noise ratio
(S/N). In Section 4, we introduce instead NMF-PM, presenting the
NMF formulation useful to produce synthetic metal profiles. The
latter are presented in Section 5 and are discussed in the context of
the upcoming large surveys of background quasars. A summary is
presented in Section 6.

2 LIBRARY OF ABSORPTION LINE SYSTEMS

2.1 Spectroscopic surveys adopted

For the purpose of developing, training, and testing our codes, we
assemble a library of moderate-to-high S/N spectra of absorption
lines in different ionization stages and at different redshifts. Next, we
provide a brief description of the compilation of the spectroscopic
campaigns that form the data set used in this work. We refer the
reader to the listed references for additional details on data quality,
and reduction techniques.

2.1.1 The MAGG survey

The MAGG survey (Lofthouse et al. 2020) is based upon a MUSE
Large Programme (ID 197.A-0384; PI Fumagalli) of 28 quasar
fields at redshift 3.2 < z < 4.5 for which S/N > 10 and medium-
(4000-10000) or high-resolution (20 000-50000) spectroscopy is
available. High-resolution spectroscopy is a compilation of data from
the Ultraviolet and Visual Echelle Spectrograph (UVES; Dekker
etal. 2000), the High-Resolution Echelle Spectrometer (HIRES; Vogt
et al. 1994), and the Magellan Inamori Kyocera Echelle instruments
(Bernstein et al. 2003), while moderate resolution spectroscopy is
from ESI (Sheinis et al. 2002) and X-SHOOTER (Spano et al. 2006;
Vernet et al. 2011). A total of 62 individual spectra were assembled
for the 28 quasars.

Instrument-specific pipelines were used to carry out the data
reduction, which included bias subtraction, flat-fielding, dark sub-
traction (where applicable), and wavelength calibration. Once one-
dimensional (1D) spectra were extracted, and eventually combined
if multiple exposures were present, the spectra were further flux-
calibrated and continuum-normalized, when applicable (details are
provided in Lofthouse et al. 2020).

The MAGG surveys led to the identification of a large variety of
metals (low- and moderate-ions) associated with LLSs (Lofthouse
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et al. 2023) or selected to be C1v and Si1v doublets at 3.0 <z <4.2
(Galbiati et al. 2023), and Mg 11 absorbers at 0.9 < z < 1.4 (Dutta
et al. 2020).

2.1.2 The QSAGE survey

The QSAGE survey (Bielby et al. 2019) is a Hubble Space Telescope
(HST) Wide-Field Camera 3 survey of 12 quasar fields at redshift
1.2 < z < 2.4 imaged in the near-infrared (90 percent complete
down to F140W ~ 26 mag) and with HST Space Telescope Imaging
Spectrograph (STIS; Kimble et al. 1998) high-resolution (=30 000)
archival ultraviolet spectra. As for the MAGG survey, the QSAGE
quasar fields were supplemented by additional spectroscopy. Addi-
tional medium-to-high-resolution (& 12 000-24 000) far-ultraviolet
and near-ultraviolet data were taken with the HST Cosmic Origins
Spectrograph (COS, Osterman et al. 2011; Green et al. 2012) as part
of the COS Absorption Survey of Baryon Harbors (e.g. Tripp et al.
2011). Together with the STIS data, COS data were reduced using
the instrument-specific pipelines, which carried out overscan and
bias subtraction, cosmic rays rejection, dark subtraction, flat fielding,
spectroscopic wavelength, and flux calibration. Finally, supplemen-
tary optical high-resolution data (=40 000) were a compilation of
HIRES and UVES spectra retrieved from the Keck Observatory
Database of Ionized Absorption toward Quasars (O’Meara et al.
2015, 2017) and from the Spectral Quasar Absorption Database
(Murphy et al. 2019), respectively (we refer the reader to Dutta
et al. 2021 for further details on data reduction). The QSAGE survey
provides us with Mg II systems across z & 0.1 — 1.3 and C 1V systems
across z ~ 0.1 — 2.4 as identified in S/N > 10 spectra by Dutta et al.
(2021).

2.1.3 The MUDF survey

The MUDF survey is a MUSE large program (ID 1100.A-0528;
PI Fumagalli) targeting a region on the sky containing two bright
quasars at z &~ 3.2 (Lusso et al. 2019). As a part of the MUDF
survey, the MUSE observations were complemented by ancillary
UVES high-resolution spectroscopy (D’Odorico, Petitjean & Cris-
tiani 2002; Fossati et al. 2019). As for this work, we make use of
the data set relative to the brighter quasar, which provides us with
S/IN ~ 25 per pixel. Data were reduced with the UVES pipeline
following a standard reduction process. The reduced spectra were
then reformatted with a custom script and input to the ESPRESSO
Data Analysis Software (Cupani et al. 2016) for the final operations
of co-addition and continuum fitting. Further details on the data
acquisition and data reduction of the MUDF data can be found in
Fossati et al. (2019). The MUDF provides us with low- and moderate-
ion absorbers in the redshift range z ~ 0.9 — 3.2.

2.2 Statistical properties of the absorption line library

MAGG, QSAGE, and MUDF led to a total sample of 688 metal
absorption lines. As these data and their fits set the basis for our
NMF algorithm with which we aim at tracing and reproducing the
lines’ intrinsic shapes (see Section 4), we restricted the sample to
only unsaturated metal lines by excluding those profiles for which
the continuum normalized flux reaches zero. For each ion, we
then selected the strongest transition (highest oscillator strength).
However, in case the corresponding profile was saturated, we then
selected the weakest transition, subject to the constraint that it was
not saturated as well. Less than 1 per cent of our library consists of
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medium-to-low-resolution spectra (e.g. ESI and XSHOOTER data)
of single transition lines for which hidden saturation may affect the
associated velocity profiles. The remaining sample of medium-to-
low-resolution absorbers consists of doublets and multiple transitions
of the same ion for which the effect of hidden saturation is mitigated
by MC-ALF, which fits together transitions with different oscillator
strengths belonging to the same ion (see Section 3.4). Finally,
since we decouple the column density from the line profile, hidden
saturation should not affect building the profile generation library —
provided that the shape of the line is not distorted in the core as in
the case of evident saturation. This resulted in 650 profiles of which
we show a small sample and the relative ion contribution in Fig. 1.

The moderate-ions (447 profiles) are dominated by C1v and
Si1v absorbers, while the majority of the low-ions (203 profiles)
is represented by Mg II absorbers. We also compare the distributions
of redshifts, column densities, and AVy, values, i.e. the velocity
range within which the velocity distribution encompasses 90 per cent
of the optical depth of the line, relative to the low- and moderate-
ions classes (cyan and red sample in Fig. 2). On average the low-
ion distribution peaks at lower redshifts, zy = 2.4 & 1.1, than
the distribution traced by the moderate-ions, z,, = 3.4 £ 0.4. On
the other hand, the column density distributions peak at similar
values although they are characterized by a different dispersion,
ie. 10g(N/cm‘2)1 =13.1£0.9 and log(N/cm_z)m =134+0.7.
Finally, when the AVy distribution is plotted separately for the low-
and intermediate-ions, the highly ionized species can show broader
line widths.

3 MC-ALF: THE MC-ALF CODE

To extract the wealth of information on the kinematic, chemical, and
ionization conditions of the gas probed by absorption line systems,
it becomes necessary to model the spectral features. Albeit non-
parametric techniques exist (e.g. apparent optical depth; Savage
& Sembach 1991), Voigt fitting has become the main modelling
technique to extract the lines’ physical properties. Decomposing
absorption line profiles into Voigt components can be an expensive
task, particularly because of the degree of subjectivity in setting initial
conditions. Alternative approaches to Voigt profile fitting that used
x>—based codes (e.g. Fontana & Ballester 1995; Davé et al. 1997;
Carswell & Webb 2014; Cooke et al. 2014; Krogager 2018) have been
sought, e.g. by using Bayesian techniques. These techniques have the
advantage of being relatively less computationally expensive in cases
where multiple absorption component fitting is needed. Moreover,
by sampling the posterior distribution of the parameters’ values their
uncertainties and degeneracies can be better constrained.

Within this framework, one example is BayesVP (Liang &
Kravtsov 2017) which models Voigt profiles and generates posterior
distributions for the column density, Doppler parameter, and redshifts
of the corresponding absorber. However, it is based on an affine-
invariant Markov chain Monte Carlo (MCMC) sampler that does not
easily converge in a high-dimensional parameter space, thus resulting
in computationally expensive runs when the initial conditions or the
number of free parameters are not known. To obviate this problem,
one can resort to nested sampling (Skilling 2006) which provides
complete statistical information and makes it possible to efficiently
carry out model comparison via the Bayesian evidence.

In this work, we present the technical details and quality assurance
tests of a new Bayesian fitting code first introduced in Fossati et al.
(2019) and dubbed the MC-ALF. MC-ALF has four innovative
features compared to other absorption line fitting codes: (i) it requires
minimal input from the user as no initial conditions are given but only
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Figure 1. Top panel: 650 absorbers in our sample — ~ 70 per cent are moderate-ions, the remaining ~ 30 per cent is represented by low-ions. Bottom panels:
Subsample of data fitted with MC—ALF. The sample gathers a large variety of profiles in terms of the number of components in each profile and A Vg distribution.
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the allowed range of the parameters is required; (ii) using Bayesian
statistics the final result provides the full posterior distribution for
each parameter and their covariance matrix, leading to an optimal
statistical description of the data; (iii) it samples the multidimensional
likelihood space using POLYCHORD (Handley, Hobson & Lasenby
2015), a nested sampling algorithm that has the best performance
for high-dimensional parameter spaces with multiple degeneracies
between parameters, as it is the case of the multicomponent Voigt
parametrization of complex absorption profiles; (iv) it is naturally
adaptive, shown to accurately retrieve all the information of both
high- and low-resolution profiles with execution times that scale
with the complexity of the profile (typically related to the instrument
resolution and data S/N. See Sections 3.4 and 3.6 for more details).
All these characteristics make MC—ALF ideally suited to study in an
automatic fashion big-data samples from large spectroscopic surveys
where the combination of moderate resolution and S/N reduces the
need for complex (and expensive to compute) absorption models.

3.1 Formalism for Voigt profile fitting

The analytic model at the basis of MC-ALF is the canonical
combination of multiple Voigt functions that are used to describe
line profiles of any complexity. The absorption line arising from a
transition 7 of an ion can be described by the optical depth of the

RASTAI 2, 470-491 (2023)

transition, 7,(v), which is determined by the column density of the
ion, N, along with a set of atomic parameters describing the line
strength, f;, the damping constant, I';, and the resonance frequency,
v;, i.e.

7 (V) = Nsigi(v), )

where s; is the frequency-integrated absorption cross-section given
by

nez

si=—f, @)
mec

with e the electron charge, m, the electron mass, and ¢ the speed

of light. Finally, the frequency-dependent line profile for a single

component is
H(u;, a;)

i) = ==, 3
¢i(v) Avi/r 3
with the Voigt function
ai [T exp(=y?)
H,a) =~ [ dy———" 4
(ui, a;) ﬂ[m y(ui—y)2+a,-2 “

where a; = I';//4mw Av;, u; = (v — v;)/Av; is the re-scaled frequency,
y = v/b is the velocity in units of the Doppler parameter, b = (2kT/m
+ £%)Y2, which is given by the gas temperature, T, the element
mass, m, and the turbulent velocity, &. Finally, Av; = v; o¢b/c, with
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v; o the transition rest-frame frequency. Thus, the Voigt function is
the convolution of the Gaussian line broadening due to thermal and
turbulent motion with the Lorentzian contribution from natural line
broadening and it can be separated from the normalization factors, N
and s;, intervening in Equation (1) to model the optical depth of the
considered transition.

By summing over all the Ny Voigt components, the resulting
transmitted flux, /;(v), of a background source with intensity, /o,
is given as

Ny
Li(v) = Iye™ =1 ), o)

Equation (5) defines our model and its free parameters are the
column density, the Doppler parameter, the redshift, and the number
of components, i.e. 6 = {N, b, z, Ny}.

3.2 Bayesian inference and posterior sampling

Within the Bayesian inference framework the posterior distribution,
‘P, is proportional to the product between the likelihood, £ and the
prior probability distribution functions (PDFs), , so that

PO) x L(O) x 7(0) (6)

is proportional to the product between the probability of observing
the data given a specific set of parameters and their prior distributions.
Specialized to our case, the data are represented by the measured flux,
F, in a spectral interval. Then we can write

£o)=[[u@IF), @)

were /; is the likelihood relative to an individual pixel i, i.e.

1 [Fi(e) - F?}
=exp ,

207

li= (®)

2mo;

with o; the flux error.

The likelihood space is sampled via the nested sampling algorithm
POLYCHORD. The sampling starts with a large number of live points
(nyve) Within a region of the parameter space sampled by the prior
distribution. These points are sequentially updated so that those with
the smallest value of the posterior density are eliminated (termed
dead points) and are replaced by a new live point, again drawn
from the prior, whose likelihood is larger than that of the point that
was discarded. To generate new points POLYCHORD uses the so-
called slice sampling where new live points are generated by taking
arandom slice through the parameter space that includes the current
live point, and randomly generating new points until one with a
higher likelihood is found. The process is then repeated with the
new point and a slice in a new random direction, for a user-defined
number of repetitions (Mrepear). The length of this chain of repetitions
should be large enough so that the final live point is decorrelated
from the start point.

3.3 Model comparison

Metal absorbers can be characterized by complex profiles where
line blending can make it difficult to retrieve the number of Voigt
components that better define the observed profile. This, together
with the fact that we aim at sampling a large space of parameters,
yields the necessity of choosing between competing models. In turn,
this capability obviates the need for the user to specify a set of
initial conditions or strong priors for the parameters. In a pre-release
version of MC-ALF code used by Fossati et al. (2019), the number of

Voigt components was kept as a fixed parameter at each fit iteration
and multiple fits with an increasing number of components were
performed to decide on the best decomposition model using the
Akaike Information Criterion (Akaike 1974). To improve the code
performance, a non-negligible aspect for deploying this code in
large surveys, we have refactored the code to include the number
of components in the likelihood calculation, so that a single fit can
be performed keeping the number of components as a free parameter.
Thus, the algorithm is terminated once the improvement in the
likelihood is some small fraction of the currently calculated once.
Moreover, this version has the added value of providing posterior
distributions of the number of components which can be useful in
the case of highly complex profiles.

3.4 MC-ALF configuration file

A MC-ALF configuration file has three main blocks: input, com-
ponents, and pcsettings, with which the user defines the input
information, the parameters for the components to be fitted, and the
setting of the POLYCHORD solver through their attributes. In input, the
main information the code requires are the spectral data to fit. This
is an ascii table with three columns providing the wavelength in A,
the continuum normalized flux, and its error. There is no preferential
order with which the columns must be organized as long as this
information is provided in the coldef attribute. The user will then
have to specify the transitions to fit (only atomic transitions belonging
to the same ion can be fit together), following a naming convention
that sees the ion name followed by its rest-wavelength in A and
separated by a white space.

Next, the user will provide the wavelength range (or disjoint
ranges) to fit the data with Voigt components. These are described by
their column density (A in log units of cm—2), the Doppler parameter
(b in kms™!), and the redshift of the transition. The number of
Voigt components is an additional free parameter in the fit and the
user will specify the range to be explored via the ncomp attribute.
Similarly, the range of b-parameter values to be fitted can be passed as
brange. If required, it is possible to include a user-defined number
of “filler’ Voigt profiles designed to describe absorption lines arising
from blends of different ions at different redshifts in the wavelength
range being fit and controlled by the nfil1 attribute. The range of
column density, and b-parameter values for the ‘fillers’ is then passed
viaNrangefill and brangefill, respectively. Note that, while
the dynamic range of each of the free parameters can be specified in
the code configuration file, reasonable default values are provided to
the code.

Finally, the user can control the parameters of the POLYCHORD
algorithm directly in the pcsettings block, defining the number of
live points (nlive) and the number of slices (num_repeats) at
each iteration, therefore, balancing execution time and the likelihood
accuracy. A more detailed description of these parameters can
be found in Handley et al. (2015). An example of an MC-ALF
configuration file is shown in Fig. 3.

We note that the code’s upgrade of including the number of Voigt
components as free parameters (see Section 3.3) has improved the
execution time by a factor of 5-10 so that, in its default configuration
(ncomp = 1-15, nlive = 500, and num_repeats = 50) MC-
ALF takes ~1.3 total CPU hours to run on recent Intel processor
and to model multiple-components, high-resolution spectra. As the
models are expected to be simpler for lower resolution and lower S/N
data, the code can be optimized for speed by reducing the interval
of components to be considered and by reducing the nlive and
num_repeats (for typical WEAVE-like data we set these to ncomp
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#Can handle multiple comma-separated regions to fit
#Specfile, linelist and wavefit are mandatory
Linput

specfile = J020944.61+051713.6_UVES_spec.txt
linelist = CII 1334

wavefit = 6488, 6494

coldef = Wave,Flux, Err

specres = 7,18

# ncomp can be a range, nfill is currently a fixed value

# If not specified assuming one component and zero fillers
[components]

ncaomp = 1,5

nfill =9

contval = ©.95,1.04

Nrange = 13,15

Nrangefill = 11,18
brange = 1,30
brangefill = 1,38

# Define directories, chaindir and plotdir are subdirs
# of outdir

[pathing]

datadir = /Input_dir/

outdir = /Qutput_dir/

chainfmt = pc_output_name

chaindir = pc_Fits/

plotdir = pc_Plots/

# Settings of the polychord sclver
[pcsettings]

nlive = 2a9e

num_repeats = 350
precision_criterion = ©.001

feedback = 1
do_clustering = False
equals = True

read_resume =
write_resume =
write_live = False
write_dead = F

write_prior
posteriors = False
cluster_posteriors = False

Figure 3. Example of an MC-ALF configuration file. In this example, the ion
to fitis a C1lion in a high-resolution spectrum as specified in the 1inelist
and specres attributes in the input block. The range of the fitted parameters,
i.e. the column density (N in log units), the Doppler parameter (b in km s~ 1),
and the redshift of the transition are specified in the components block. If
they are not provided, the code assumes default values. The pcsetting block
controls the parameters of the POLYCHORD algorithm (see text for more
details).

=1-3,nlive =350, and num_repeats = 50, having the profiles
fully analysed in tens of seconds on a single core machine).

3.5 MC-ALF output

When the fit has converged, the MC—ALF output is saved in an ascii
file that will list the following columns for each posterior sample:
the components’ weight, the total evidence, the best likelihood, the
fitted continuum, and spectral resolution (if they are free parameters),
and the values of the fitted parameters, i.e. the column density, the
redshift, and the b-parameter. As an example, Figs 4 and 5 show the
model fits obtained with MC—ALF. The fit is run on a Cmix1334 A
absorber (high-resolution spectrum, 8 kms™!) with a value for the
column density log (N/cm™2) = 14.3. We show that the best model
reproduces the data mainly with three Voigt components, although
there is a non-zero probability that a four-component model can also
be compatible with the data (Fig. 4). Moreover, the full posterior
distribution is saved and can be used for further processing and
analysis by the users. For example, the corner plot in Fig. 5 shows the
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covariance and distribution of Voigt parameters for each component
(N, z, and b).

3.6 Code validation and quality assurance tests

We test MC-ALF capabilities by analysing a set of five synthetic
profiles mimicking Mg11, Silv, and NV systems, characterized
by different total column densities, 13.8 < log (N/cm™2) < 16.0,
and number of Voigt components, 6 < Ny < 15, at different
redshifts, and for which we have a priori knowledge of the Doppler
parameter and column density values relative to each Voigt com-
ponent (Fig. 6). The profiles have been created to reproduce the
performance of UVES/VLT (Very Large Telescope) spectra, i.e.
they are characterized by a resolution of 8 kms™' with a pixel
sampling of 2.5 km s~'. Finally, a Poisson noise component is added

in each profile, 0 = /02 ... + Uszky, with o gouree 80 that the MC—

ALF performances could be tested as a function of different S/N
ratio (per pixel) with respect to the continuum of the background
source, namely S/N = 5, 10, 20, 30, 50, 100, and 500, and the sky
noise, o gy, so that the continuum dominates by a factor 4 on the sky
signal already at S/N = 10.

Next, we model these profiles with MC-ALF and the results are
shown in Fig. 7 where we compare the probability densities of
the input and retrieved distributions of b-parameters and column
densities as a function of the different S/N of the input spectra. The
Kolmogorov—Smirnov (KS) test p-value scores (given on top of the
respective distributions) show that Doppler parameter estimates are
more sensitive to the quality of the analysed spectra compared to
that of the column density estimates. Nonetheless, MC—ALF is able
to recover the total input distributions (p-value > 0.1) of both the
b-parameters and column densities already at S/N = 10. At lower
S/N ratios, some discrepancies are found when analysing individual
components because it becomes increasingly difficult to accurately
match, in a statistical sense, single input-versus-retrieved Voigt
components (leading to p-value < 0.1). Hence, these discrepancies
reflect a mismatch in components rather than inaccuracies in MC—
ALF to recover values. We find that the retrieved fraction of the Ny
components is on average < f™ >=10.77, 0.83, 0.88, and 0.88 for
S/IN =5, 10, 20, and 30, respectively, while at higher S/N, MC-ALF
retrieves all the input components (except for single high-density
components that MC-ALF may split in two; see below). Thus, in the
low S/N regime, it is better to test the code capabilities relative to the
total (integrated) values of the fitted parameters. When these are con-
sidered, MC—-ALF successfully retrieves the input total distribution
with a mean relative error of < §°¢¥ >=0.12,0.09, 0.11, and 0.08
at S/N =5, 10, 20, and 30. In Section 6, we provide additional tests
for thousands of simulated profiles in the low S/N, low-resolution
regime.

Focusing on the S/N = 500 test, we compare the recovered values
of b-parameters, column densities [in log (N/cm~?)], and redshifts
(the latter being converted to AV = c“}%;:"‘“, with ¢ the speed of
light) against their input values (Fig. 8). For the three distributions,
we find mean relative errors of < § >= 0.4, 0.007, and 0.62 x 10~°.
We note that the errors for the b-parameters and column densities
are dominated by the errors associated with single Voigt components
with log(N/cm™2) > 15.0. When these are excluded from our
computation the relative errors for the two distributions drop to <§>
=0.03, 0.002, respectively. These high-column density components
are also responsible for MC—ALF to find in output one additional
Voigt profile for the Mgl absorber with log (N/cm™2) = 15.97
(second-row panels in Fig. 6). This phenomenon is the result of the

decomposition of the single Voigt profile in a narrow component that
best describes the high-optical depth regime and a broad component
that best fits the wings. In Fig. 8, this spurious detection is responsible
for the most discrepant Ab value.

Finally, in Fig. 8, we mark as red-empty dots the saturated
Voigt components, i.e. with flux density levels reaching zero in
the normalized spectra, for which the column density value may
no longer be estimated with a few percent accuracy. We then
additionally tested the performances of MC-ALF in presence of
saturation. As before, the test is carried out on a UVES/VLT-like
synthetic profile. The absorber is a single Voigt component of C1I
at 21334 A with a b-parameter fixed at b = 15 kms~! and column
density values 14 < log(N/cm~2) < 18.5. The profiles, shown in
Fig. 9 in the case of S/N = 20, are saturated for log(N/cm~—2) > 14.5
and for log(N/cm_z) = 18.5 (an extreme value useful for testing) the
damping wings of the Lorentzian become significant compared to
those of the Gaussian contribution (see Equation 4).

The impact of saturation on the fits is shown in Fig. 10 as
b versus log(N /cm™~2) plot. In this figure, the blue dots trace the full
posterior samples provided in output by MC-ALF and the dotted
grey lines show the simulated b and column density values. When
the line is not saturated, in our example for log(N/cm*Z) = 14.0, the
retrieved columns density and b-parameter is a sensitive measure of
their true values. Moving towards the saturated regime, the column
density estimate is a lower limit with an average relative error of
< 8'9¢N = 0.006. The b-parameter is yet well constrained with an
average relative error of <6”> = 0.03. Finally, for log(N/cm™?) =
18.6 the optical depth in the damping wings becomes significant and
the fit returns accurate estimates of the column density, as expected.

4 NMF-PM: THE NMF-PM CODE

We now introduce the second tool we present in this paper, NMF-
PM. In what follows we first outline the data standardization steps we
followed to prepare our library of metal profiles for the NMF analysis.
Afterwards, we present a brief overview of the NMF formalism and
outline the details of how we built a statistically robust process of
NMEF reconstruction and simulation. Finally, we show how the results
of this analysis are used to build the NMF-PM python module, a
metal absorber profile maker which we make publicly available.

4.1 Data standardization

NMF is an alternative approach to dimensionality reduction (e.g.
to principal component analysis) where it is assumed that the data
can be decomposed (or transformed) into non-negative components.
Despite its desirable properties (it automatically extracts sparse and
meaningful features from a set of non-negative data vectors), the
NMF fitting requires the data to be normalized and regularized for
an unbiased decomposition. By using MC-ALF on our library of
absorbers, we obtain infinite S/N Voigt models of absorption profiles
of different strengths and with a range of velocity distributions
(see Fig. 1). In particular, our library consists of 650 unsaturated
metal profiles of which we aim at reproducing their intrinsic shape
(Section 2.2). To prepare and standardize the data for the NMF
decomposition, we adopt the following two-step procedure.

As a first step, we need to determine the rest-frame velocity of
the profiles and shift them to a common velocity frame. For this, we
can use the model Voigt components to re-sample the profiles at a
resolution of 1 kms~! and to transform them to a common rest-frame
velocity centred at 0 km s~!. As the profiles may exhibit several Voigt
components of different strength, here we define the zero velocity as
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Figure 6. Simulated profiles (black) used to test the Voigt Component fitting routine. The profiles are characterized by different column densities and number
of Voigt components as given in the legend. For simplicity, we only show the case for S/N = 500, with the 1o sigma array in grey. For each profile, the MC-ALF
fit is shown as a solid red line with 1o uncertainty as a shaded area. The dotted blue lines represent individual Voigt components centred at the velocities
highlighted by the blue ticks.
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Figure 7. Violin plots comparing the probability density of b-parameters and column densities as traced by the input (light blue) and retrieved (dark blue)
samples as a function of the S/N of the input spectra. In each violin, the horizontal central dashed line is the median and the dotted lines are the 25 per cent and
75 per cent quartiles. The distributions are determined from the entire sample of Voigt components as depicted by their relative swarm plots (dots). MC-ALF
recovers the total input distributions (p-value > 0.1) for S/N > 10. At lower S/N, the code must be tested relative to the integrated values of the fitted parameters.

A Vs, i.e. the value at which the velocity distribution encompasses
50 per cent of the optical depth of the line.

The second step involves the recovery of the optical depth and
the normalization of the line profiles. Rather than considering the
transmitted flux, we elect to describe profiles in terms of their optical
depth, t(v), for which non-negativity is inherent to the data being
considered and the normalization step is more straightforward. As
recalled in Equation (1), t(v) is the product of the ion column
density, N, the frequency integrated absorption cross-section, s, and
of the velocity profile. Thus, the normalization of the optical depth by
the product N x s allows us to retrieve the line intrinsic profiles, ¢(v),
without carrying the added complexity of individual column densities
and oscillator strengths of different absorbing ions, and to focus
on the line shape as the only general property we wish to describe
and reproduce in the mock-making step. Once velocity profiles are
generated, the full absorption line systems can then be recovered by
multiplying back the desired column density and strength of an ion.
The imperfect approximation we are introducing at this step is to
separate the correlation between an ion and its Doppler parameter,
due to the atomic mass dependence. This approximation fails in the
limit of single lines that are thermally broadened, but it holds for
the majority of the profiles where turbulence and the combination of
multiple components determine the line shape. Finally, as the profiles

used to train and test the NMF algorithm are models obtained via
runs of MC-ALF on our set of observed data, very small structure is
lost at moderate resolutions compared to high-resolution modes, so
our modelling performs best for resolutions that are comparable to
the lowest one in our library, i.e. X-shooter-like, and caution should
be taken when applying this model to particularly high spectral
resolutions.

4.2 Application of the NMF method

4.2.1 Overview of the formalism and general concepts

The NMF formalism assumes that a non-negative data set of n
samples and v features can be approximated by the (dot) product
of two non-negative matrices.

D~ XC, )

where D € R"*" is the matrix representation of the original data.
Matrix X has the shape n x m, where m is the number of reduced
features in NMF space. The matrix C has the shape m x v and
represents the coefficient matrix of the m reduced features, or in other
words a representation of the new reduced features in the original
feature space. Thus, via NMF, we generate a low-dimensional
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Figure 8. b-Parameters, column densities, and velocity accuracy for the retrieved sample of Voigt components when the profiles with S/N = 500 are analysed.
Continuous and dashed red circles identify saturated lines and lines with log (N/cm™2) > 15, respectively. The largest deviating point in the retrieved
b-parameter corresponds to one of these lines. The histograms of the residuals are plotted on the right.

encoding of a high-dimensional space. From Equation (9), it follows
that each row in the matrix D (each sample) is a linear combination
of the row vector in the matrix X with coefficient vectors supplied
by the matrix C, i.e.

di = xjcj. (10)
j=1

Thus, NMF recasts an original vector onto new component axes of
latent features, x;, and the projections onto such an NMF space are
given by the vectors in C.

Specialized to our application, we have n line profiles character-
ized by v velocities, which collectively can be represented by a matrix
Q of dimension n x v. We wish to reduce the dimensionality of the
problem and assume that each of these profiles can be represented
by m features where m < v. We apply NMF to Q and obtain two
matrices X and C whose matrix multiplication is represented by R:

Q~R=XC. (11)

We find R such that it is the closest representation of Q. The
decomposition works by minimizing the squared Frobenius norm
(i.e. a generalization of the Euclidean norm to matrix algebra)
between Q and the matrix product XC. In particular, our NMF
fit implements a coordinate descent solver, i.e. an iterative process
that successively updates the fitted parameters until convergence is
reached.

RASTAI 2, 470-491 (2023)

Once R is obtained we can further create a synthetic set of profiles
by randomly assigning NMF latent features from their retrieved
distributions in X and then carrying out the linear combination as in
Equation (10), i.e.

m
SiZZXjij, (]2)
Jj=1

where s; is the ith simulated vector in the matrix S of dimension n
x v, and X¥; is a random sampling of the NMF features in X relative
to the jth NMF component. This is the main concept on which this
work is based. In what follows, we show how we decompose a
line profile, q;, into its low-dimensional representation, r;, and then
use the resulting NMF decomposition to create a set of synthetic
spectra, §;.

4.2.2 Implementation and tests of the NMF reconstruction

We apply the formalism set above to our library of absorption line
profiles, with which we compute the low-dimensional representation
needed for profile generation. Key to this process is to determine
how well the reconstructed values fit the observed ones. It is also
important to quantitatively assess how reliable the new synthetic
data are with respect to the observed spectra. These considerations
set a twofold testing process to quantify the ability of the NMF in: (i)
reconstructing the profiles, and (ii) producing a new set of synthetic
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higher column density values as given in the legend. For log(N/cm™2) > 14.5 the profiles are saturated and for log(N/cm~2) = 18.5 the damping wings of
the Lorentzian become significant compared to those of the Gaussian contribution. For each profile, the MC—ALF fit is shown as a solid red line with +1o
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data. For the first task, we use the residual variance, o2, defined as
the sum of the squares of the difference between the input profile,
qi, and its reconstructed counterpart, r;. We also test the model
accuracy by carrying out KS tests of the A Vy distributions as traced
by the input and reconstructed data. For the second task, we again
use the KS test, setting as a requirement that the synthetic profiles
must be characterized by a AVy, distribution that is statistically
consistent with that of the original profiles. These tests define our
key performance indicators (KPIs).

When applying this method to our library, we noticed that the
variety of profiles in our sample, which is described by the large
range in AVy, affected the goodness of the NMF fitting. Running
NMF on the entire sample resulted in a model with a high degree
of complexity (high number of NMF components, or equivalently
a high-dimensional NMF space). This model ended up producing
synthetic data not always similar to the observed profile shapes, thus
failing to reproduce the input AV distribution. To obviate this issue,
we designed an algorithm that applies the NMF on subsets of profiles

in smaller bins of AVyy, where the bins are selected adaptively by
optimizing the two KPIs defined above.

We now describe the step-by-step procedure followed in designing
this algorithm.

(i) Definition of AVy, bins: We define bins of AVy, of increasing
size varying as s = begge + k x 20 km s~!, where begge TEprESents
the lower bound edge of the considered A Vy bins and k in the range 1
< k < 4. We select the subsample of profiles, satisfying the condition
AVg; < s and on this, we perform multiple runs of NMF fitting,
each with an increasing number of NMF components, m, specifically
2 <m < 30.

(ii)) NMF fits: For each AVy, bin, the NMF analysis returns the
feature vectors X;j and their coefficient vectors in C. The reconstructed
profiles, rj, are then computed following Equation (10). Mock
profiles are created by randomly sampling latent feature components
from X (i.e. from each column, see Equation 12) to create the new
latent feature matrix. As the number of artificial profiles created
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Figure 10. b versuslog(N/cm~?) plot to test MC—ALF fits on a saturated
C 11 absorber. Blue dots trace the full posterior samples provided in output by
MC-ALF. The dotted grey lines show the simulated » and column density
values. In presence of saturation, however, when the damping wings are not
yet significant, the column density estimate is on average a lower limit with
a relative error of < 8¢V >= 0.006. When the damping wings contribution
becomes significant, in our example for log(N/cm~2) > 18, the fit returns
accurate estimates of the column density.

in this manner cannot exceed the size of the input data sample in
that specific AVy, bin, we carry out 100 different realizations of the
simulation, each time sampling 66 per cent of the size of the input
data.

(iii) KPIs analysis: The reconstructed and simulated samples are
analysed in terms of AVy, distributions and finally statistically
compared with the distribution of AVy, values of the input data
sample using the p-values returned by the KS test. The performance
of the reconstruction process is additionally tested by computing the
mean residual variance between the input and reconstructed profiles,
namely < o7 >= M with n the number of input data.

(iv) NMF model selection: To determine the optimal NMF model,
we consider all the NMF representations that simultaneously satisfy
the condition p-value > 0.1 in both the data-versus-reconstructed
and data-versus-simulated KS tests and for these we compare their
o2 distributions as a function of the number of NMF components,
m. A reasonable expectation is that o> decreases in value as m
increases. However, an overestimation of m would include noise
in the simulated profiles. As a solution, we consider the relative
<o?> improvement and select the optimal NMF model as the one
for which we first measure an improvement larger than 40 per cent.
In case the p-value condition is satisfied in multiple AVy, bins, the
optimal NMF model in each bin is selected as above, and finally the
optimal bin size is chosen as the one in which the <o?> value is the
lowest. At the end of this step, the bin edge value, begge, is updated
to be the upper bound of the current step, and the process is repeated
till the entire sample of data is analysed.

RASTAI 2, 470491 (2023)

(v) Problematic AVqy, bins: The procedure outlined above also
identifies AVyy bins in which the condition p-value > 0.1
is never met. These are bins of AVy, values in the ranges
80-100, 100-120, and 120-140 kms~'. As one would expect, the
most dominant factor that can cause the NMF to fail is the diversity
in the complexity of the input data, which we can parametrize
with the number of Voigt components. Thus, we further divided
the data falling in such problematic bins into low and high number
of Voigt components subsets. We stress that low/high number of
Voigt components does not imply low/high AVy, values as it can be
seen from Fig. 1 (bottom panel), where profiles with similar velocity
widths are characterized by significantly different numbers of Voigt
components. Thus, we split the two categories such that each contains
roughly 50 per cent of the total profiles in the bin. Once the division
is done, we repeat the procedure outlined earlier to find the optimal
NMF decomposition.

Examples of the procedure described above are shown in Figs 11
and 12 (the KPI analysis run over the entire sample of data is provided
in the online material) where, our KPIs for the NMF fitting and
modelling are presented for a subsample of data falling in increasing
size of AVy, bins used in the iterative process that determines the
final bin to select and, within this, the optimal NMF model. The
profiles characterized by low values of AVy, are always preferred
to be grouped together in the smallest bin size of 20 km s~'. For
example, the NMF decomposition on all the profiles with AVyy <
80 kms~! would succeed in the reconstruction step (i.e. p-values
> (.1), but it would fail in generating synthetic profiles with the
targeted AV distribution (i.e. at least one NMF model for which p-
values > 0.1 is present). On the other hand, running the procedure on
the sample of data for which AVy, < 20 kms~' identifies multiple
NMF models (shown as black framed in the top-left panel of Fig. 11)
that simultaneously satisfy the condition p-value > 0.1 in both the
data versus reconstructed and data versus simulated KS tests. Thus,
the algorithm selects the NMF model with a <o2> improvement
closest to 40 per cent (bottom panel in Fig. 11), i.e. the model with
m = 6 NMF components (dotted-white frame in the top-right panel
of Fig. 11).

At larger AV values (> 180 km s~!), the NMF fitting is less
sensitive to the bin size. A clear case is shown in Fig. 12, where both
the reconstructed and simulated profiles are statistically consistent
in following the same AVy, distributions as the one traced by the
input data in bins of size 20, 40, 60, and 80 km s~!. As described
above, by analysing the variation of the relative <o->> improvement
we are able to avoid NMF overfitting, and finally the optimal bin
size is chosen as the one in which the difference between the input
and the reconstructed profiles is the lowest (lowest value of <o?>
as shown in ‘data — reconstruction residual variance’ plot). In our
example (Fig. 12), the optimal NMF fit is obtained for profiles with
200 < AVgo/kms™! < 220 with m = 11 NMF components.

Fig. 13 shows the NMF analysis relative to the profiles for which
the analysis based on a simple division in bins of AVy, is not
possible due to the complexity of their shapes. These are profiles
with a spread in velocities mostly falling within the range 100
< AVgy/kms~! < 140. For these profiles we take advantage of the
information we have on the number of Voigt components used for
their decomposition (see Section 3 for more details) and the NMF
fitting is run separately on two different samples, namely the low-
and high-Voigt components samples, defined such that each contains
roughly 50 per cent of the total profiles.

To validate the procedure, we use the NMF algorithm described
above to generate artificial profiles, and reproduce the input data in
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Figure 11. Examples of the performance metrics (KPIs) in the NMF reconstruction and simulation process for profiles characterized by small values of velocity
widths (AVgg < 80 kms™"). Top-left panel: Data-versus-reconstructed (grid cells) and data-versus-simulated (ellipses) KS tests of the AVoq distributions as a
function of the number of NMF components, m, and AVqg bins of the input data. The colour code follows the KS test p-value statistics, with p-value > 0.1
the threshold we use for statistical significance. Orange framed regions are where p-value > 0.1 for both data-versus-reconstructed and data-versus-simulated
distributions. Top-right panel: Same as the top-left panel, with the map coloured by the mean residual variance (log <o>>) between the input and reconstructed
profiles. The white dotted frame identifies the selected NMF model. Bottom panel: Relative <o2> improvement between NMF models with an increasing
number of NMF components (blue dots with line) for the AVyy bin where the condition p-value > 0.1 is satisfied as given in the legend. The grey horizontal
line identifies the 40 per cent threshold in < 6,2, > improvement we use to avoid NMF overfitting.
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Figure 12. Same as Fig. 11 but for data characterized by larger velocity widths, 200 < AVqy < 280 km s~ In this example, the p-value condition is satisfied
in multiple AVoq bins (as given in the legend). Dots with lines show the relative <o>> improvement between NMF models with increasing number of NMF
components. Relative to the last two A Vg bins only one NMF configuration satisfies our criteria, i.e. m = 27, resulting in a single value in the < "rzes > diagnosis
plot and the two points, red and green, overlapping.

RASTAI 2, 470-491 (2023)

202 YOJBI\ /Z UO Josn Bo000Ig OUBIA I BUSIOAIUN AQ L6Y2EZL/0.1/1/Z/2101e/1Se/W0d dno"olwspeoe)/:sdjy Woij POPEOjuMOQ


art/rzad031_f12.eps

New tools for generating and modelling metal lines 485

AVyp: 100-120 kms—?

Cell: data — simulated KS test
Ellipse : data — reconstructed KS test

data — reconstructed <o, >

-— - 1.2

1.3

o~ o 1.3

.4

wn w 1.5

1.5

I~ ~ A7

A7

-] o -1.9

— — 2

&F SF B

g $°
W 2 w 2
s Se
¥eo 2o
E b ol E ) )
o~ (3]
o (]
o~ (3]
wn w
o~ (3]
b~ B~
o~ o™
o [+7]
o™ o™

HighVC
= | =T -
-5.0 =25 -4 =2

2 2
Logip <0;,.> Logy <0, >

< g2, > Diagnosis

L] ™
w wn
~ ~
< o
cEi.:-' E’.:
g% g®
Le o e =
e £~ mom
L J =
taEom XS
© 3]
o~ @ o~
& 2 &
~ [ =) ~
[y ] : o™
[=2] =]
o™ ."' o™~
LowVC
1 = =1
0 1 0 1
p — value p — value
0

-40

-60

Percent improvement

=100
18 20 22

—+— Low VC
—=+— High VC

24 26 28 30
m (# NMF Comp. )

Figure 13. Same as Figs 11-12, but for input data falling in the problematic bin with 100 < AVgy < 120 kms~!. KS tests (top-left panel) and residual
variance estimations (top-right panel) are carried out on the low and high number of Voigt components.

size, resolution (1 kms™"), and quality (infinite S/N). The goal is to
compare synthetic and input data qualitatively and quantitatively by
comparing their optical depths and AVy, distributions, respectively.
As we have shown in Section 4.2.2 this is achieved by randomly
sampling the NMF coefficients from their respective distributions of

PDFs and finally using them as a new set of projections onto the NMF
axes. The results of our simulations are presented in Fig. 14, where we
show the comparison between synthetic (gold) and observed (blue)
profiles, in terms of their optical depth distribution after having re-
sampled them at a resolution of 8 km s~ (from left to right and
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Figure 14. Comparison between input (blue) and simulated (gold) velocity profiles for a fixed column density of log(N/cm~2) = 12.

top to bottom, the profiles are characterized by increasing AVyg
values). Our main result is that the diversity of the line profiles is
well reproduced in the simulated sample despite the complexity of
the input information. We evaluate the accuracy of our model by
carrying out KS tests between the AVy distributions of the input
versus simulated and reconstructed profiles, as shown in Fig. 15. We
find that the simulated profiles have a AVy distribution statistically
close to the one traced by the reconstructed (p-value = 0.9) and
input (p-value = 0.8) samples. Finally, in Fig. 16, we show that the
individual components of the synthetic profiles have representative b-
parameters and column densities when compared to the distributions
traced by the observed absorbers (p-values > 0.9 for both samples).
The evaluation for the b-parameters is carried out by running MC—
ALF on 100 simulated C1v profiles that are characterized by a
resolution of 8 kms™', ideal S/N = 500 values, and total column
densities that follow the same distribution we measure for our input
sample (see Fig. 2 bottom panel). The check on the column density
values, instead, is run on a smaller sample of 20 profiles, simulated
with a realistic noise component, such that 15 < S/N < 30 and
moderately strong, i.e. with total column densities in the range
13 < log(N/cm~2) < 13.5. Such a choice is for the results to be
the least affected by uncertainties related to profile fitting. Indeed,
for lower column densities it may become difficult to match single

RASTAI 2, 470-491 (2023)

input-versus-retrieved Voigt components, while for higher values,
single components may reach saturation and the column densities
may no longer be estimated with a few per cent accuracy (see Fig. 7
central panel). The comparison is then carried out with a sample of
real C1v profiles with similar characteristics.

4.3 The NMF-PM python package

To enable the use of this tool by the community, we inserted the
NMF feature matrix, X, and coefficient matrix, C in a python
module, which we dubbed the NMF-PM. To run NMF-PM, the
user will have to specify the number of simulated profiles to obtain
in output via the parameter nsim, the ions to simulate, together
with their rest-frame wavelengths and column density values passed
via the parameters ion, trans_wl, and ion_1ogN, respectively.
As discussed in Section 2.2, when considering different families
of ions, i.e. moderate- and low-ion families, the absorbers may be
characterized by different AVy, distributions. Thus one feature of
the NMF-PM is to allow the user to specify which class of ion
they are simulating via the parameter ion_family. This can be set
to ‘moderate’ or ‘low’ for the simulated profiles to follow a AVyg
distribution as the one we measure for our samples of moderate- and
low-ions (see Fig. 2, top panel), or the user can feed their own AVy,
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Figure 15. Left-hand panel: Violin plots comparing the probability density
of the AVyy distributions as traced by the reconstructed (light blue) and
simulated (dark blue) profiles, where the central dashed line is the median
and the dotted lines are the first and third quartiles. The entire distribution is
shown as a swarm plot (dots). Right-hand panel: Same as the left-hand panel,
but where the comparison is carried out between the input and simulated
profiles. The p-value scores show that the simulated profiles are characterized
by values statistically close to those traced by the reconstructed and input data.

PDF. NMF-PM also allows for the creation of ion doublets (e.g.
C1v and MgI) by setting to ‘true’ doublets and by providing a
value for the dbl_fratio and dbl_dvel parameters for a given
oscillator strength ratio and velocity shift (in km s~!) for the second
line.

With this configuration, NMF-PM simulates absorber profiles
characterized by 1 kms~! resolution and with no noise. However,
the user can further: (i) convolve the profiles with a Gaussian kernel
switching to ‘true’ the convolved parameter and consequently
providing the resolution (full width at half-maximum; FWHM) via
res; (ii) add a random Gaussian noise component by providing a
value for the desired S/N (per pixel) via SNR;! and (iii) carry out a
profile re-sampling providing a value for the px_scale parameter.
The re-sampling is implemented such that it conserves overall the
integrated flux. Via its attribute, NMF-PM will return the convolved
and re-sampled synthetic metal profiles with noise, and the associated
noise and wavelength arrays. It will also return the original flux and
wavelength arrays at a resolution of 1 kms~! not convolved nor re-
sampled. The NMF-PM class with its parameters and attributes is
shown in Fig. 17.

NMEF-PM has been optimized to efficiently generate synthetic
metal profiles: Even performing the convolution step, the addition of
Gaussian noise, and pixel re-sampling, the NMF-PM method runs
in a matter of minutes on a single core computer to generate a library
of 10° objects.

I'This represents the S/N ratio (per pixel) with respect to the continuum of the
background source. To add a noise component relative to the sky signal the
parameter sigma_sky can be used.

mm Data
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Figure 16. Top panel: Normalized distributions of b-parameter values for
observed (blue) and simulated (gold) velocity profiles. The simulations trace
afamily of high-resolution C IV profiles, with S/N = 500. Bottom panel: Same
as the top panel; however, this time the distributions are relative to column
densities values. Here, the simulations trace high-resolution C 1V profiles, with
15 < S/N < 30, and 13 < log(N/cm’z) < 13.5. p-Value scores larger than
0.9 for both distributions show that the synthetic profiles have representative
b-parameters and column densities values.

5 SIMULATED PROFILES IN LARGE SURVEYS

The automated tools we have described in this work open to the
opportunity of testing our capability of detecting and analysing
absorption features in spectra of different data quality in large
surveys. To showcase the capabilities and further test the performance
of our code for these applications, we run a library of 10° synthetic
metal profiles mimicking C IV absorbers using the moderate velocity
distribution (see the red histogram in the top panel of Fig. 2). Profiles
are generated in a flat distribution of column density in the interval
10"*—10"° cm™2, while the S/N is uniformly distributed in the
interval 2.5-15. We mock a WEAVE-like survey (Jin et al. 2023) by
setting the pixel scale to 16 km s~ and the resolution to 60 km s~'.

Fig. 18 (left-hand panel) shows the measured equivalent width
(EW) for the stronger line of the doublet measured on noisy profiles
in comparison with the intrinsic value derived from the noise-free
simulated profiles. To better capture the intrinsic scatter in the
distribution rather than a possible bias, we compute the average of the
absolute discrepancy, normalized by the true value. Values less than
one in this metric identify EW values retrieved with high precision.
These plots reveal the expected trend of increasing precision in the
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nmf_profile_maker. NMFPM

class nmf_profile_maker.NMFPM(NMF _dct, nsim =None, ion_family="moderate’, filename_ion_family=None, ion_logN=[14.0], ion=None,
trans_wi=None, filename_ion_list=None, convolved=False, res=8, px_scale=None, SN=[None], sigma_sky=None, doublet=False, dbl_dvel=0)

Non-Negative Matrix Factorization - Profile Maker (NMFPM)

Generate profiles from two non-negative matrices (X,C). whose product approximates the matrix Q of observed metals in quasar spectra. These
profiles can be used to generate large libraries of realistic metal absorption profiles

Parameters:

Attributes:

NMF_dct: Dictionary containing the information about the non-negative matrices (X,C).
X : NMF_dct ['X'] ndarray of shape shape n x m, where m is the number of reduced features in the NMF space

C : NMF_dct ['C"] ndarray of shape m x v. It represents the coefficient matrix of the m reduced features

nsim: int, default = 1
Number of profiles to be generated.

ion_family: {'moderate', 'low', ‘'user'}, default='moderate’
Ions families to be considered.Valid options:

* 'moderate': If 'moderate' the profiles will follow a DeltaV_9@ distribution typical of
moderate ions transitions.

= 'low': If 'low' the profiles will follow a DeltaV_9@ distribution typical of low ions
transitions

» 'user': If 'user' the profiles will follow a DeltaV_9@ distribution provided by the user
with filename_ion_familiy

filename_ion_familiy: str, default=None
User filename for DeltaV_9@ pdf if ion_family = 'user’

ion_logN: ndarray of shape (nsim,), default=[14.0]
log Ion Column Density in cm™-2

ion: ndarray of shape (nsim,), default=[CIV]
Ion transition to be simulated

trans_wl: ndarray of shape (nsim,), default=[1548.2040]
Ion transition wavelength in Angstrom

filename_ion_list: str, default = None
User filename for lines' physical parameters

convolved: Boolean, default = True
Allow for the generated profile to be convolved with a Gaussian kernel

res: float, default = 8
Resolution of the generated profiles in km/s

px_scale: float, default = None
If not None resample while preserving flux the final profiles using px_scale as pixel samplinc

SN: float, default = [None]
Signal-to-Noise ratio of the continuum signal used to compute the Gaussian noise to be added

sigma_sky = int, default = None
RMS value of the sky signal. If not None the sky noise is computed as a random distribution
centred on @ and with dispersion sigma_sky

doublet: Boolean, default = False
Enables creation of doublets

dbl_fratio: float, default = 0
If doublet True, create a second line with oscillator strengh f_line_2 = dbl_fratio % f_line_1

dbl_dvel: float, default = 0
If doublet True, create a second line with center shifted in velocity by dbl_dvel [km/s]

flux: nsim synthetic spectra, with noise if so desired
flux_nonoise: nsim synthetic spectra, no noise
noise: associated noise values

wave: wavelenath values for the nsim svnthetic spectra

Figure 17. NMF-PM python class with parameters and attributes.
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Figure 18. Test of detection and analysis of C IV absorption features of different quality in WEAVE-like spectra. Left-hand panel: Mean EW relative errors (on
a logarithmic scale) as a function of S/N and input column density values for 10° test profiles. For clarity reasons, the metric has been smoothed with a 2 x 2
Gaussian kernel. Right-hand panel: Same as the left-hand panel; however, this time the mean relative error statistics is shown for the column densities and for a
subsample of 10* profiles. Given the lower number statistics, the smoothing is carried out on a 3 x 3 kernel window. Values less or equal than zero identify the
regions in the log(N/cm~2) versus §/N plane of high precision in the fitted values.

measurement as both column density and S/N increase. At moderate
S/N, or <4, C1v can be measured reliably only for column density
> 10" cm™2. Next, we proceed and fit a subsample of 10* profiles
with MC—ALF to study the accuracy in retrieving the column density
using the same metric we used for the previous test. The results are
shown in Fig. 18 (right-hand panel): Excluding the bins characterized
by both 3 < S/N < 5 and log(N/cm~2) = 13.5, for which the
quality of the data prevent the fit to run correctly, MC-ALF can
retrieve the input information at all S/N and column density values
considered. In particular, fits of mildly saturated and unsaturated
profiles with log(N/cm™2) < 14.5 are less sensitive to variations in
SIN for S/N > 7. For S/N < 7, the accuracy decreases, with the
lowest values (~40 per cent) measured for S/N ~ 3. For heavily
saturated lines (in our example for log(N/cm™2) > 14.5), MC—
ALF fits have larger uncertainties (~ 20 per cent for S/N < 10),
although the accuracy increases as a function of the S/N. The effect of
saturation on low-resolution spectra is further analysed by repeating
the test presented in Fig. 10 for C1I profiles this time convolved
with a FWHM of ~60 kms~!. The results (Fig. 19) show that, by
exploring the full underlying posterior, MC—ALF is able to recover
the degeneracy between the b-parameter and the column density
estimates due to hidden saturation resulting in broad and degenerate
posterior distributions. For saturated profiles, in the regime when
the damping wings are not yet significant (in this example for
log(N/cm™2) < 18), the full posterior PDF should be used for
an accurate propagation of uncertainties.

6 SUMMARY AND CONCLUSIONS

In this work, we present two new tools for studying and modelling
metal absorption lines in the CGM: MC-ALF to automatically
reconstruct the physical parameters of the absorbers and NMF-PM
to generate synthetic but realistic-looking line profiles following a
given distribution of desired line width.

The observational data we used for developing, training, and test-
ing our codes come from a compilation of spectroscopical campaigns,
which collected high-resolution, high-S/N spectra of 42 quasar fields
at redshifts 1.2 < z < 4.5 (Section 2). These surveys identified a
family of ~1000 moderate- and low-ion absorbers along the quasars’
line of sight. By considering only unsaturated profiles, we selected
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Figure 19. Same as Fig. 10; however, this time the b versus log(N /cm™~2) plot
is shown for saturated profiles at a resolution of 60 km s~!. The broader range
of fitted parameters is an indication of hidden saturation at play, resulting in
a larger relative error for the column density estimates (< slogN ~ = 0.05).

a sample of 650 absorbers, with redshifts in the range of z = 0.9 —
4.2 and column densities in the range 11.2 < log(N/cm™2) < 16.3.
These represent our library of absorption line systems, which gathers
alarge variety of profiles in terms of shape and line widths. Our tools
rely on advanced numerical techniques. MC—ALF uses a Bayesian
approach to absorption line fitting, which, with minimal human inter-
vention, can decompose metal lines into individual Voigt components
providing the posterior distributions of the line parameters such as the
column density, the Doppler parameter, and the redshift. Moreover,

RASTAI 2, 470-491 (2023)

202 UDJBIN /Z UO Josn 820001 OUBI IP BISIOAUN A L6Y2EZ2/0LY/LIZ/9191ME/)SEI/W0D dNO IS pED.//:SA)Y WOI) POPEOJUMOQ


art/rzad031_f18.eps
art/rzad031_f19.eps

490 A. L. Longobardi et al.

as the likelihood space is sampled via the nested sampling algorithm
POLYCHORD, MC-ALF is highly efficient in discriminating among
competing models for profiles of different complexity (typically
related to the instrument resolution and data S/N). Quality assurance
tests on simulated UVES-like profiles demonstrate that MC—ALF is
able to recover the input information with small relative errors: For
the b-parameters, column densities, and redshifts distributions we
find mean relative errors of < § >= 0.03, 0.002, and 0.62 x 107°,
respectively.

We next showed that NMF methods offer a straightforward
statistical framework for physically relevant predictions of non-
negative, continuous signals after the data have been properly
standardized (Section 4.1). Moreover, as outliers can significantly
impact NMF, we build a statistical framework to select the most
appropriate bin in AVy, to perform the fitting. The results are
evaluated in terms of residual variance, o2, of the difference between
the input profile and its reconstructed counterpart and KS tests among
the AVy, distributions as traced by the input, reconstructed, and
simulated data. We then inserted the NMF feature matrix, X, and
coefficient matrix, C in the NMF-PM python module with which the
user can simulate 10° metal profiles following a given distribution
of desired line width in approximately 10 min (on a one core
machine).

Upcoming wide-field surveys, like DESI, 4MOST, and WEAVE,
are taking the challenge of observing an unprecedented sample
(around a million) of quasar spectra to detail the properties and
the evolution of the galaxies’ CGM across the Universe. This work
aims at contributing to the scientific effort of simulating, testing
the detection, and calibrating the observations of metal absorbers
in large quasar surveys. In particular, we have shown that our tools
will make it possible to reliably simulate, identify and characterize
both weak and strong metal absorption lines even in a low-resolution
regime. This will, in turn, enable the study of a large sample of
lower and higher column density and/or higher redshift systems to
resolve small- and large-scale CGM effects and their relation with
the surrounding larger-scale environment (e.g. Dutta et al. 2020;
Lofthouse et al. 2020, 2023) and to target regions in the Universe
at a key epoch for galaxy formation and evolution. On the basis of
making our modelling easily accessible to the large astronomical
community, we make publicly available MC-ALF and NMF-PM
that will allow any user to produce a library of synthetic profiles and
analyse them with a simple click of a key. MC-ALF and NMF-PM
are available on the github pages provided in the Data Availability
section.
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