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Abstract
An ultrametric Gaussian mixture model is a powerful tool for modeling hierarchical rela-
tionships among latent concepts, making it ideal for studying complex phenomena in diverse
and potentially heterogeneous populations. However, in many cases, only an incomplete
set of observations is available on the phenomenon under study. To address this issue, we
propose MissUGMM, an ultrametric Gaussian mixture model which takes into account the
missing at random mechanism for the unobserved values. Our approach is estimated using
the expectation-maximization algorithm and achieves favorable results in comparison to
other existing mixture models in simulations conducted with synthetic and benchmark data
sets, even without a theorized ultrametric structure underlying the data. Furthermore, Mis-
sUGMMis applied to a real-world problem for exploring the sustainable development of cities
across countries starting from incomplete information provided by municipalities. Overall,
our results demonstrate that MissUGMM is a powerful and versatile model in dealing with
missing data and is applicable to a broader range of real-world problems.

Keywords Ultrametricity · Gaussian mixture model · Missing data ·
Hierarchy of latent concepts · Cities’ sustainable development

1 Introduction

In real applications, missing values often occur in the data by requiring specific strategies
to treat them. Available-case analysis and imputation beforehand are examples of ad hoc
methods used to force an incomplete data set into a rectangular complete data format on
which applying statistical methodologies (Little & Rubin, 2019). To introduce proper models
able to handle missing data, the mechanism that governs the relationship between a missing
variable and its underlying value has to be analyzed. Assuming that the indicator pinpointing
the pattern of unobserved values of a variable is random, Rubin (1976) distinguished three
cases that differ for the assumptions on themissing indicator distribution. Themost restrictive
is called missing completely at random (MCAR) and considers the unobserved values not

B Giorgia Zaccaria
giorgia.zaccaria@unimib.it

Francesca Greselin
francesca.greselin@unimib.it

1 Department of Statistics and Quantitative Methods, University of Milano-Bicocca,
Via Bicocca degli Arcimboldi 8, Milan 20100, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00357-024-09492-0&domain=pdf
http://orcid.org/0000-0003-2929-1748
http://orcid.org/0000-0001-9119-9104


Journal of Classification

depending on the data, whether they are missing or observed; under the less restrictive
missing at random (MAR) assumption, the unobserved values depend only on the observed
data, whereas the missing not at random (MNAR) mechanism assumes the distribution of the
missing indicator depending on themissing values themselves. In different fields,MCAR and
MAR are the prevailing used mechanisms thanks to their easier tractability. Indeed, under
these assumptions, the missingness mechanism can be considered to be ignorable, i.e., the
parameters of the missing data distribution are distinct from the parameters of the observed
data distribution (Schafer, 1997; Little & Rubin, 2019).

In the model-based clustering literature (see, among others, McLachlan & Peel, 2000;
Fraley & Raftery, 2002; McNicholas, 2016; Bouveyron et al., 2019, for an overview), several
methodologies have been proposed for modeling heterogeneous populations in the pres-
ence of missing data by means of finite mixture models. Ghahramani and Jordan (1995)
first handled the incomplete data problem in Gaussian mixture models (GMMs), where the
mixture components are assumed to be normally distributed with component mean vectors
and covariance matrices as parameters. More parsimonious GMMs were proposed with the
aim of reducing the number of the model parameters mostly deriving from the component
covariancematrices. Specifically, Serafini et al. (2020) extended the work of Ghahramani and
Jordan (1995) by including constrained structures for the component covariancematrices that
are based upon their eigen-decomposition, as previously proposed by Banfield and Raftery
(1993) and Celeux and Govaert (1995) in the presence of complete observations. Further-
more, Wang (2013) and Wang and Lin (2020) dealt with the missing information problem
in GMMs with a twofold goal that consists of reaching model parsimony on one hand and
dimensionality reduction on the other hand. These authors worked on the extension of the
mixtures of (common) factor analyzers (MFA, Ghahramani & Hinton, 1997; McLachlan
et al., 2003; Baek et al., 2010) with missing values by assuming a factorial parameterization
of the component covariance matrices. It has to be highlighted that these methodologies were
developed under theMAR assumption and estimated via the expectation-maximization (EM)
algorithm (Dempster et al., 1977; Redner & Walker, 1984) and its extensions (McLachlan
& Krishnan, 2008). The EM algorithm is indeed effective for handling the missing data
problem, as it can deal with both conceptual and actual missing data.

Notably, the MFA model inspects latent structures underlying the data assuming uncor-
related factors; however, hierarchical relationships among unobserved dimensions can also
occur inmultidimensional phenomena. To deal with such a case, Cavicchia et al. (2022) intro-
duced an ultrametric Gaussian mixture model, where the hierarchical relationships among
completely observed variables are modeled via an ultrametric structure with the pivotal fea-
ture of being one-to-one associated with a hierarchy of latent concepts. Nonetheless, this
model is not able to tackle the occurrence of missing values, that is often recurring in several
applications, unless removing or imputing the data beforehand.

In this paper, we introduceMissUGMM, an ultrametric Gaussian mixture model designed
to handle missing data. Within this model, we adopt theMARmechanism for the unobserved
values and propose an EM algorithm to effectively take this additional source of missingness
into account. The performance of the proposal is assessed through an extensive simulation
study both on synthetic data, where a hierarchical structure of variables is assumed, and
on benchmark data sets, in which hierarchical relationships among variables have not been
inspected beforehand. In terms of classification and missing values imputation, the results
provide evidence on the advantages of using this new methodology compared with other
existing mixture models in the literature. Moreover, the study on synthetic data assesses the
performance of MissUGMM in recovering the hierarchical structure of variables. Finally,
having tailored the model proposed by Cavicchia et al. (2022) to account for missing data
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allows to analyze a broadermanifold ofmultidimensional phenomena,whosemeasurement is
often affected by lack of information. Specifically, we apply MissUGMM to study the cities’
sustainable development in an incomplete data framework.We delve into the characterization
of this phenomenon by pinpointing the dimensions that may differently contribute to its
definition within and across countries. Overall, the study provides interesting insights into
distinct patterns of sustainable development among cities.

The remainder of the paper is organized as follows. In Section 2, we introduce Mis-
sUGMM, together with details on the EM algorithm used for its estimation. Section 3
illustrates an extensive simulation study on both synthetic and benchmark data sets, which is
further expanded upon in the Supplementary Materials. The application of MissUGMM to a
real data set is depicted in Section 4, where we investigate the cities’ sustainable development
in the world. Section 5 completes the paper and outlines future developments of the proposed
methodology.

2 Ultrametric GaussianMixture Model with Missing Data

2.1 Background

LetX = (X1, . . . , X p)
′ be a p-dimensional random vector and x = (x1, . . . , xp)′ its realiza-

tion. Suppose thatX follows a finite mixture ofGmultivariate Gaussian distributions, whose
pdf is given by

f (x;�) =
G∑

g=1

πgφp
(
x;μg,�g

)
, (1)

where πg is the mixing proportion of the gth component such that πg > 0 for g = 1, . . . ,G,
and

∑G
g=1 πg = 1, μg and �g are the mean vector and covariance matrix of the gth mixture

component, respectively. The pdf parameters in Eq. 1 are encompassed by � = {π , θ}, with
π = {πg}Gg=1 and θ = {μg,�g}Gg=1. The ultrametric Gaussian mixture model (Cavicchia
et al., 2022) parameterizes the component covariance matrix �g as follows:

�g = Vg(�Wg + �Bg )V
′
g + diag

(
Vg(�Vg − �Wg )V

′
g

)
. (2)

The (p × Q) variable-group membership matrix Vg defines a partition of the variable
space into a reduced number Q of groups, with Q ≤ p. The remaining three parameters in
Eq. 2 express the features of the variable groups. The diagonal group-wise variance matrix
�Vg of order Q identifies their variance, denoted by Vgσqq . Lastly, �Wg is the diagonal
within-group covariance matrix of order Q representing the covariance within the variable
groups, indicated by Wgσqq , and �Bg is the between-group covariance matrix of the same
order embodying the relationships among the variable groups, via Bgσqh . Therefore, the set
of parameters θ is given by {μg,�Vg ,�Wg ,�Bg ,Vg}Gg=1.

�g in Eq. 2 is extended ultrametric (Definition 2, Cavicchia et al., 2022) if the following
constraints hold for each component of the mixture:

(i) Vg is binary and row-stochastic.
(ii) �Bg is symmetric, with all diagonal entries equal to zero and triplets of off-diagonal val-

ues complying with the ultrametric condition, i.e., Bgσqh ≥ min{Bgσqs , Bgσhs }, q, h, s
= 1, . . . , Q, s �= h �= q .

(iii) min{Wgσqq : q = 1, . . . , Q} ≥ max{Bgσqh : q, h = 1, . . . , Q, h �= q}.
(iv) Vgσqq > |Wgσqq | for q = 1, . . . , Q.
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(v) �g is positive definite (pd).

Constraints (iii) and (iv) impose an ordering among the elements of �Vg ,�Wg , and �Bg ,
which entails a hierarchy over the variable groups, each associated with a latent concept. For
satisfying constraint (v), if �g is not pd, a coefficient a corresponding to the absolute value
of its smallest eigenvalue (Cailliez, 1983) plus an arbitrary small positive constant ξ is added
to its main diagonal. It has to be noticed that this corresponds to imposing the constraint
λp(�g) ≥ ξ , where λp(�g) is the pth eigenvalue of �g and λp(�g) ≤ · · · ≤ λ1(�g).

2.2 MissUGMM and Its Parameter Estimation

In many real applications, data can be affected by missing values occurring in the collection
process giving x to be divided into a po- and a (p − po)-dimensional vector containing the
observed and missing variables, respectively. The ultrametric Gaussian mixture model with
missing data (MissUGMM) assumes that the missing data mechanism is MAR and ignor-
able. MissUGMM is estimated via the EM algorithm by considering two sources of missing
information: the missing values in the data and the unit-component membership. Letting
x = (x1, . . . , xn)′ be a random sample of size n, where the ith observation xi is divided into
(xoi ′i , xmi ′

i )′, the missing data correspond to {xmi
i }ni=1, whereas the unit-component member-

ships are denoted as {zi }ni=1 with zi = (zi1, . . . , ziG)′, where zig = 1 if the ith observation
belongs to the gth component, and zig = 0 otherwise. It is worth noticing that the pattern of
missing values can differ across the n observations; hence, oi and mi depend on i.

The MissUGMM log-likelihood of the complete data {xoii , xmi
i , zi }ni=1 is

�c(�) =
n∑

i=1

G∑

g=1

zig

{
log(πg) − 1

2
log

(|�g|
)

− 1

2
tr

[
�−1

g

([
xoii
xmi
i

]
− μg

) ([
xoii
xmi
i

]
− μg

)′] }
, (3)

where�g is the extended ultrametric covariance matrix in Eq. 2 subject to constraints (i)–(v)
(refer to Section 2.1, omitted henceforth). In Eq. 3 onward, constant terms not depending on
the model parameters are omitted and the squared Mahalanobis distance δ

(
xi ,μg;�g

)
is re-

written by considering the trace properties, i.e., δ
(
xi ,μg;�g

) = (xi −μg)
′�−1

g (xi −μg) =
tr
(
(xi − μg)

′�−1
g (xi − μg)

) = tr
(
�−1

g (xi − μg)(xi − μg)
′), where xi is partitioned into

observed and missing vectors.
The EM algorithm maximizes the complete data log-likelihood in Eq. 3 by alternating

an expectation step (E-step) and a maximization step (M-step) until convergence. The E-
step consists of the computation of the expected value of Eq. 3 given the observed data
{xoii }ni=1 and the current estimates of the model parameters in �; then the M-step involves
the maximization of the expected value obtained in the E-step. Before detailing them, we
recall some useful results for the E-step, stemming from the properties of the multivariate
Gaussian distribution.

Proposition 1 If a p-dimensional random vector Xi is partitioned into (Xoi ′
i ,Xmi ′

i )′, then
[
Xoi
i

Xmi
i

] ∣∣∣∣zig = 1 ∼ Np

([
μ
oi
g

μ
mi
g

]
,

[
�

oi ,oi
g �

oi ,mi
g

�
mi ,oi
g �

mi ,mi
g

])
. (4)
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Therefore,

Xoi
i

∣∣zig = 1 ∼ Npoi
(
μoi
g ,�oi ,oi

g

)
, (5)

Xmi
i

∣∣xoii , zig = 1 ∼ Np−poi
(
μmi |oi
g ,�mi ,mi |oi

g

)
, (6)

where xoii is a realization of Xoi
i and

μmi |oi
g = μmi

g + �mi ,oi
g

[
�oi ,oi

g

]−1
(xoii − μoi

g ),

�mi ,mi |oi
g = �mi ,mi

g − �mi ,oi
g

[
�oi ,oi

g

]−1
�oi ,mi

g .

Proof See Mardia et al. (1979, Theorem 3.2.4, p. 63), among others. ��

Proposition 1 is based upon the theorem we recall below.

Theorem 1 If �g is an extended ultrametric covariance matrix partitioned as follows

[
�

oi ,oi
g �

oi ,mi
g

�
mi ,oi
g �

mi ,mi
g

]

according to the corresponding partition of Xi |zig = 1, �oi ,oi
g is nonsingular.

Proof The variables in Xoi
i can belong to the same variable group or different groups in Vg .

In both cases, since�g is pd thanks to constraint (v), its principal minor composed of the poi

variables in Xoi
i is pd as well (Sylvester’s criterion, Gilbert, 1991; Horn & Johnson, 2013,

Theorem 7.2.5, p. 439). ��

The steps of the EMalgorithm formaximizing (3) are described hereinafter. In this section,
we omit the reference to the iteration t, for simplicity reasons; then, the estimates represented
by the symbols ·̂ and ·̃ refer to the iteration t, e.g., �̂ and z̃ig . At iteration t + 1, the E-step is
formalized as

Q(�; �̂) = E
[
�c(�)|xo11 , . . . , xonn ; �̂

]

=
n∑

i=1

G∑

g=1

E[Zig|xoii ; �̂]
{
log(πg) − 1

2
log

(|�g|
)

− 1

2
tr

(
�−1

g E
[
	(xoii ,Xmi

i ,μg)
∣∣xoii , zig = 1; �̂

]) }
, (7)

where 	(xoii ,Xmi
i ,μg) =

([
xoii
Xmi
i

]
− μg

) ([
xoii
Xmi
i

]
− μg

)′
. Equation 7 requires the com-

putation of the following expected values:

(a) the expected value of Zig given the observed data xoii and the current estimate of the
overall parameter vector �̂, i.e.,

E[Zig|xoii ; �̂] =
π̂gφpoi

(
xoii ; μ̂

oi
g , �̂

oi ,oi
g

)

∑G
h=1 π̂hφpoi

(
xoii ; μ̂

oi
h , �̂

oi ,oi
h

) := z̃ig; (8)

123



Journal of Classification

(b) the expected value of 	(xoii ,Xmi
i ,μg) given the observed data xoii , the membership of

the ith observation to the gth component, that is zig = 1, and the current estimate of the
overall parameter vector �̂, i.e.,

E
[
	(xoii ,Xmi

i ,μg)
∣∣xoii , zig = 1; �̂

] =
[
A B
B′ C

]
,

where

A = (
xoii − μoi

g

)(
xoii − μoi

g

)′

B = (
xoii − μoi

g

)(
E[Xmi

i |xoii , zig = 1; �̂] − μmi
g

)′

C = E[(Xmi
i − μmi

g )(Xmi
i − μmi

g )′|xoii , zig = 1; �̂].
Recalling Proposition 1, the expected values in B and C are computed as

E[Xmi
i |xoii , zig = 1; �̂]

= μ̂mi
g + �̂

mi ,oi
g

[
�̂

oi ,oi
g

]−1
(xoii − μ̂oi

g ) := μ̂mi |oi
g , (9)

E[(Xmi
i − μmi

g )(Xmi
i − μmi

g )′|xoii , zig = 1; �̂]
= �̂

mi ,mi |oi
g + (μ̂mi |oi

g − μmi
g )(μ̂mi |oi

g − μmi
g )′, (10)

where �̂
mi ,mi |oi
g := �̂

mi ,mi
g − �̂

mi ,oi
g

[
�̂

oi ,oi
g

]−1
�̂

oi ,mi
g . It is worth noticing that the terms

−�̂
mi ,oi
g

[
�̂

oi ,oi
g

]−1
�̂

oi ,mi
g in the latter equation and �̂

mi ,oi
g

[
�̂

oi ,oi
g

]−1
(xoii − μ̂

oi
g ) in Eq. 9

can be interpreted as the adjustment for imputing the conditions in the expectation com-
putation.

Therefore, we obtain Q(�; �̂) necessary for the M-step, that can be re-written as

Q(�; �̂) =
n∑

i=1

G∑

g=1

z̃ig log(πg) − 1

2

G∑

g=1

ñg
{
log

(|�g|
) + tr

(
�−1

g Sg
)}

(11)

where Sg = 1

ñg

∑n
i=1 z̃ig

[
A B
B′ C

]
with the expected values in Eqs. 9 and 10 replaced into B

and C, respectively, and ñg = ∑n
i=1 z̃ig .

The M-step maximizes Q(�; �̂) with respect to � by updating the estimates of the
MissUGMMparameters. Specifically, at iteration t+1, denoted by ∗ in the followingM-step
formulas,

(a) the estimate of the prior probabilities in π = {πg}Gg=1 is

π̂∗
g = ñg

n
; (12)

(b) the estimate of the mean vectors in θ = {μg, �g}Gg=1 is

μ̂∗
g =

∑n
i=1 z̃ig

[
xoii

μ̂
mi |oi
g

]

ñg
; (13)

(c) the estimate of the extended ultrametric covariance matrices in θ = {μg, �g}Gg=1 is

�̂
∗
g = V̂∗

g

(
̂�

∗
Wg

+ ̂�
∗
Bg

)
V̂∗′
g + diag

(
V̂∗
g(

̂�
∗
Vg

− ̂�
∗
Wg

)V̂∗′
g

)
. (14)
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The estimates in Eq. 14 are obtained by plugging μ̂
oi∗
g and μ̂

mi∗
g into Sg to attain S̃∗

g . The
estimation of Vg is a combinatorial problem (see constraint i). Indeed, Vg is estimated
row-by-row, i.e., for the jth row the one occurs in the qth column if assigning the jth
variable to the qth group for the gth component maximizes (11), j = 1, . . . , p, q ∈
{1, . . . , Q}. Given the actual configuration of the estimate of Vg , maximizing (11) with
respect to the other parameters composing �g , one at a time, gives rise to the following
estimates. The group-wise variance matrix is updated by

̂�
∗
Vg

= V̂∗+
g diag(S̃∗

g)V̂
∗
g, (15)

subject to constraint (iv) and where (·)+ denotes the Moore-Penrose inverse of a matrix.
Given ̂�

∗
Vg
, the updating formula of the within-group covariance matrix is given by

̂�
∗
Wg

= (
(V̂∗′

g V̂
∗
g)

2 − V̂∗′
g V̂

∗
g

)+diag
[
V̂∗′
g

(
S̃∗
g − diag(V̂∗

g
̂�

∗
Vg
V̂∗′
g )

)
V̂∗
g

]
, (16)

subject to constraint (iii). It is worth noticing that theMoore-Penrose inverse of a diagonal
matrix is obtained by taking the reciprocal of its non-zero diagonal elements and letting
the others set to zero. Therefore, it avoids the singularity problem of

(
(V̂∗′

g V̂
∗
g)

2−V̂∗′
g V̂

∗
g

)

that can occur if variable groups are singleton. In the latter case, the only parameter
reflecting the group-specific feature is the variance and thus we set Wg σ̂

∗
qq = Vg σ̂

∗
qq for

the variable groups of size one.
Finally, ̂�

∗
Bg

is computed from

�̃
∗
Bg

= V̂∗+
g S̃∗

g(V̂
∗′
g )+, (17)

such that constraint (ii) holds.

After convergence, the missing values are imputed using the conditional mean method.
The predictor for the missing values of the ith observation is given by

X̂mi
i = E[Xmi

i |xoii ; �̂] =
G∑

g=1

ẑigE[Xmi
i |xoii , zig = 1; �̂],

where ẑig are the posterior probabilities computed at convergence andE[Xmi
i |xoii , zig = 1; �̂]

is obtained as in Eq. 9 by considering the final estimates of the model parameters.

2.3 Algorithm Implementation Details

In the following two sections, we provide some details on the EM algorithm for estimating
MissUGMM concerning its initialization, stopping criterion, and model selection.

2.3.1 Initialization

As pointed out by many authors, the log-likelihood function of a finite mixture model can
have multiple local maxima by requiring the need for a strategy to increase the chance of
obtaining a global optimum (see, for instance, McLachlan & Peel, 2000, Chapter 2.12). To
reach this goal, the EM algorithm can be run several times by starting from different initial
values for the model parameters and letting it converge each time. Among several solutions,
the one with the highest value of the maximized log-likelihood is retained. Under the MAR

123



Journal of Classification

assumption and the distinctness of the observed and missing parameters, we can evaluate the
observed data log-likelihood for MissUGMM

�(�̂o) =
n∑

i=1

log

( G∑

g=1

π̂gφpoi

(
xoii ; μ̂oi

g , �̂
oi ,oi
g

))
(18)

at each iteration of the EM algorithm (Little & Rubin, 2019) and among solutions obtained
with different starting values (e.g., 30 in our experiments).

The starting values for computing the initial parameters ofMissUGMMconcern the impu-
tation of the missing values {xmi

i }ni=1, and the resulting initialization of {zi }ni=1 and {Vg}Gg=1
based on the completed data. Missing data can be imputed according to several approaches.
One of the most used is the sample mean of the observed data for each variable (see, for
instance, Wang, 2013); nonetheless, this approach does not take the heterogeneity of the data
into account. For this reason, in the initialization step of our algorithm, we impute missing
values according to the k-nearest neighbors method (Fix & Hodges, 1951; Cover & Hart,
1967) by using the Euclidean distance, setting k = 5 and considering only complete cases
as neighbors. The unit-component membership and the variable-group membership can be
initialized randomly or via specific methodologies for detecting clustering structures and
variable partitions, respectively. Specifically, we recommend to use k-means (MacQueen,
1967) with k = G to obtain initial values of {zi }ni=1, and the solution of the ultrametric
algorithm proposed by Cavicchia et al. (2020) and adapted for covariance matrices to com-
pute initial values for {Vg}Gg=1. Both methods return partitions of objects (observations or
variables). It has to be highlighted that the predicted component membership of each unit
is evaluated at the EM algorithm convergence (Section 2.3.2) according to the maximum a
posteriori, i.e., i ∈ g if g = argmax{̂zig′ : g′ = 1, . . . ,G}. Since ẑig takes values in [0, 1], a
feasible alternative to the k-means initialization is fuzzy k-means (Bezdek, 1974).

2.3.2 Stopping Criterion andModel Selection

The convergence of the EM algorithm is often evaluated through the relative change of the
log-likelihood in Eq. 18 in two sequential iterations. However, Lindstrom and Bates (1988)
stated that this is not a proper measure of convergence, but rather of lack of progress. For
this reason, we select Aitken’s acceleration procedure as the stopping criterion of the Mis-
sUGMM algorithm, which was first inspected by Böhning et al. (1994) (see also McLachlan
& Krishnan, 2008, Section 4.9). By considering �(�̂o(t)) = �(t) for simplicity reasons, the
algorithm converges if �

(t+1)∞ − �(t) < ε (McNicholas et al., 2010), where ε is a small arbi-
trary positive constant (e.g., 1.5× 10−8 in our experiments). �(t+1)∞ is the Aitken accelerated
estimate of the log-likelihood at iteration t + 1, which is given by

�(t+1)∞ = �(t) + 1

1 − a(t)
(�(t+1) − �(t)),

where a(t) represents the ratio of successive increments, i.e.,

a(t) = �(t+1) − �(t)

�(t) − �(t−1)
.

Alternative stopping criteria based on Aitken’s acceleration procedure are illustrated in
McNicholas et al. (2010).

The algorithm for estimating MissUGMM can be run when fixing the number of mixture
components G and variable groups Q. Their choice is thus a crucial issue to cope with. If no
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prior information exists on the clustering structure and the specific dimensions composing
the phenomenon under study, we can use the Bayesian information criterion (BIC, Schwarz,
1978) to select the pair (G, Q). Generally speaking, BIC is the most prevailing choice of
model selection criterion in GMMs thanks to its good performance under certain regularity
conditions (Fraley & Raftery, 1998). BIC has the form

BICG,Q = 2 �G,Q(�̂o) − ν log n,

where �G,Q(�̂o) is the maximized observed data log-likelihood and ν = 2G(p + Q) − 1−
(cV ,W + cW ,B) is the number of free parameters in the model. This number is obtained by
considering G − 1 parameters for the estimation of the mixing proportions, Gp for the mean
vectors, andG(p+2Q−1)−(cV ,W +cW ,B) for the extended ultrametric covariancematrices.
Specifically, the latter include p parameters in Vg minus Q constraints (non-empty groups),
Q values in �Vg and �Wg , Q − 1 values in �Bg , cV ,W and cW ,B constraints corresponding
to the cases in which constraints (iv) and (iii), respectively, are activated in the algorithm,
i.e., Vgσqq = |Wgσqq | + 1.5 × 10−8 and min{Wgσqq , q = 1, . . . , Q} = max{Bgσqh, q, h =
1, . . . , Q, h �= q}. For a review of the model selection criteria in GMMs see Celeux et al.
(2018) and McLachlan and Rathnayake (2014).

3 Simulation Study

The performance of MissUGMM is evaluated on synthetic (Section 3.1) and benchmark
(Section 3.2) data. In both cases, the proposed methodology is compared to GMM, imple-
mented via the fast EM algorithm proposed by Lin et al. (2006), and MFA (Wang &
Lin, 2020, with the number of factors fixed in advance) in the presence of missing data.
These algorithms are run under the same conditions of the proposal, i.e., initialization (see
Section 2.3.1), tolerance value (see Section 2.3.2), and maximum number of iterations (equal
to 500 in our experiments) for convergence, while respecting the remaining default options
set by the authors.

Synthetic data sets are used for analyzing the proposal’s potential in clustering structure
recovery, on the one hand, and detection of hierarchical structures on variables, on the other
hand. Further comparison on benchmark data sets, where the underlying component covari-
ance structure is not necessarily ultrametric, provides insight into the behavior ofMissUGMM
outside its natural framework. Finally, additional results on synthetic data generated by con-
sidering non-hierarchical covariance structures are reported in the Supplementary Materials.

3.1 Synthetic Data

We illustrate here a simulation study on synthetic data to evaluate the performance of the
proposal when the covariance matrices of the mixture components are supposed to be ultra-
metric. In this setting, the comparison with GMM and MFA in the presence of missing
information emphasizes the need for a specific, new methodology able to detect hierarchical
relationships among variables within heterogeneous populations.

Two scenarios are designed and detailed in Table 1. In both cases, complete data sets
are generated first from the pdf in Eq. 1, with the component covariance matrices being
extended ultrametric. Specifically, each random sample is obtained by generating zi ,μg and
�g , i = 1, . . . , n, g = 1, . . . ,G, as follows. The unit-componentmembership zi results from
a multinomial distribution with probabilities corresponding to π = {πg}Gg=1 (see Table 1).
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Table 1 Design of the simulation
study

Scenario 1 Scenario 2

n 200 400

p 10 30

G 3 5

Q 3 4

π (0.25, 0.25, 0.5) (0.15, 0.15, 0.20, 0.35, 0.15)

Vgσqq [1.3, 3.3] [6.7, 10.5]

Wgσqq [0.7, 2.5] [2.8, 6.5]

Bgσqh [−0.9, 1.1] [−1.5, 4.4]

The component mean vectors μg are generated from a continuous uniform distribution in
[0, 10], ensuring that their pairwise Euclidean distance is not lower than 8. Finally, the values
of the component covariance matrices�g are derived from the four parameters in Eq. 2. Each
row of Vg is engendered from a multinomial distribution with equal probabilities, while the
diagonal values of �Vg and �Wg , and the off-diagonal values of �Bg , take values within
the intervals reported in Table 1, plus a uniformly distributed random number in the interval
[0, 0.1] and such that conditions (i)–(v) described in Section 2.1 hold.

For each scenario, the complete random samples are generated according to different
overlapping levels by considering the measure introduced by Maitra and Melnykov (2010).
They defined the overlap between two components, say g and h, i.e. ωgh , as the sum of
the two misclassification probabilities ωg|h and ωh|g , where ωg|h = P

(
πhφ(X|μh,�h) <

πgφ(X|μg,�g)|X ∼ Np(μh,�h)
)
. We set three levels of maximum overlapping ωmax =

0.01, 0.05, 0.15 between pairs of components, which correspond to the thresholds defined by
Maitra and Melnykov (2010) for well-separated, moderately separated, and poorly separated
components, respectively. It can be noticed that, in both scenarios, the average overlapping
(ω̄) between all component pairs ranges within the same thresholds by clearly differentiating
the three configurations (see Fig. 1). After generating 100 complete random samples for each
scenario and overlapping level, as illustrated above, we randomly hide 10%, 20%, and 30%
of the values in each complete matrix by altogether obtaining 1800 incomplete data sets (2
scenarios × 3 missing value percentages × 3 maximum overlapping levels × 100 data sets).

Fig. 1 Boxplot of the distribution of the average overlapping (ω̄) among components for the generated complete
data sets per level of maximum overlapping (ωmax) among components
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The classification performance of MissUGMM in comparison with GMM and MFA with
missing information is evaluated by the adjusted Rand index (ARI, Hubert & Arabie, 1985).
The latter measures the similarity between the true, i.e., generated, unit-component mem-
bership and the MAP classification estimated by the models, and equals 1 when the perfect
agreement is reached. Therefore, the higher the ARI, the better the clustering structure recov-
ery. It has to be noticed that for both MissUGMM and MFA, we set Q to the same value as
that used in data generation, as well as G for all the methodologies (see Table 1). We also
contrast the proposal with the competitors in terms of missing value imputation by comput-
ing the mean absolute error, the mean absolute relative error, and the root mean square error
between the incomplete data sets imputed by themodels and the corresponding complete data
sets, averaged over 100 random samples per percentage of missing values. For assessing the
MissUGMM performance in retrieving the model parameters and detecting the hierarchical
structure of variables, we evaluate its ability in terms of recovery of the mixing proportions,
the component mean vectors, the variable partitions in groups, and the component covariance
matrices. To evaluate the reconstruction of πg and μg , we consider the mean square error. To
assess the detection of the hierarchy of variables, we compute the mean and standard devi-
ation of ARI between the generated and the estimated variable-group membership matrices
at level Q and across the hierarchical levels from 2 to Q for each mixture component. The
partition of variables in q groups, q = Q − 1, . . . , 2, is obtained by considering the Q − 1
different values in �Bg representing the pairwise group aggregations. Regarding the last
hierarchical level, i.e., q = 1, we do not compute ARI since the resulting partition is always
a unitary vector of dimension p, whatever the partition in two groups is. The estimation of
the component covariance matrices is assessed via two indices based on those introduced
by Di Zio et al. (2007). In detail, given the true component covariance matrix �g and the
estimated one �̂g , we first compute the matrix Dg = [gd jl : j, l = 1, . . . , p] with

gd jl =
√√√√ 1

100

100∑

s=1

(gσ
(s)
jl − g σ̂ jl

(s)
)2

gσ jl
(s)2

;

then, the variance and covariance preservation indices, say DV and DC, are obtained as the
mean of the diagonal and off-diagonal entries of Dg , g = 1, . . . ,G, respectively.

Figure 2 displays the results of the simulation study concerning the clustering structure
recovery. It is worth noticing that all the outcomes in this section include the performance
of the models on complete data sets, i.e., 0% of missing values, as a baseline. Looking at
Scenario 1, it is noticeable that the results of the proposal and the competitors are comparable
when no missing values occur in the data and the generated components are well-separated.
However, the difference among the models becomes increasingly evident, and their perfor-
mance deteriorates as the level of overlapping and percentage of missing values enlarge. As a
whole, MissUGMM outperforms GMM andMFA in terms of ARI, whose variability is often
lower than that of the competitors. These results can be foreseen considering the ultrametric
nature of the component covariance matrices by stressing the potential of MissUGMMwhen
hierarchical relationships among variables and missing information occur at once in the data.
It has to be highlighted that MFA has better performance than GMM, especially with no high
percentage of missing values. This can be traced back to the fact that MFA is able to detect
a factorial structure—even if not hierarchical (ultrametric)—in a heterogeneous population.
We can draw similar conclusions for Scenario 2, where the difference between the proposed
methodology and the competitors is more exacerbated because of the high dimensionality
of the data that reflects on a higher number of hierarchical relationships among variables to
detect. Missing value imputation is evaluated in Table 2, where the three measures of error
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Fig. 2 Boxplot of ARI per scenario, model, percentage of observations with missing values, and level of
maximum overlapping

previously mentioned are reported. In all cases, GMM has the poorest results for each index,
whereas MissUGMM generally reaches the lowest error values.

Besides comparing our proposal with other methodologies in terms of classification per-
formance, Table 3 examines the reconstruction of the model parameters and hierarchical
structures on variable groups for Scenario 1. The latter is the distinctive feature of Mis-
sUGMM. We highlight that, in this context, the label switching problem has to be solved
since the parameters and the hierarchical relationships among variables differ across compo-
nents. To correctly compute the indices mentioned above, we label the estimated components
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Table 2 Evaluation of missing value imputation: mean absolute error (MAE), mean absolute relative error
(MARE), and root mean square error (RMSE) for each scenario, model, percentage of missing values, and
maximum overlapping level, averaged over 100 random samples

ωmax % missing MissUGMM GMM MFA
MAE MARE RMSE MAE MARE RMSE MAE MARE RMSE

Scenario 1

0.01 10 1.82 1.52 2.31 2.07 1.75 2.65 1.98 1.65 2.54

20 1.91 1.83 2.45 2.26 2.10 2.93 2.11 1.86 2.73

30 2.05 3.66 2.65 2.51 4.43 3.27 2.33 5.06 3.03

0.05 10 2.75 3.08 3.51 3.23 4.52 4.15 3.01 3.62 3.85

20 2.95 2.54 3.78 3.49 3.30 4.50 3.27 2.90 4.21

30 3.14 4.29 4.03 3.84 6.31 4.94 3.51 5.31 4.52

0.15 10 5.50 2.87 7.05 6.34 3.32 8.12 5.93 3.13 7.60

20 5.79 3.84 7.38 6.87 5.51 8.82 6.43 3.92 8.24

30 6.10 3.77 7.81 7.35 4.72 9.43 6.77 4.32 8.65

Scenario 2

0.01 10 3.51 7.22 4.42 5.61 10.16 7.17 3.87 5.93 4.89

20 3.60 3.88 4.53 5.90 7.55 7.47 4.08 4.33 5.17

30 3.74 5.66 4.72 5.92 9.58 7.48 4.35 9.03 5.52

0.05 10 5.75 4.95 7.25 9.01 7.51 11.47 6.43 5.14 8.13

20 5.92 3.87 7.47 9.44 7.23 11.95 6.77 4.63 8.57

30 6.21 6.25 7.85 9.37 9.83 11.82 7.12 6.70 9.02

0.15 10 16.34 5.60 20.59 24.92 11.05 31.77 18.31 6.60 23.12

20 16.99 4.22 21.44 26.22 8.17 33.17 19.15 4.87 24.23

30 17.58 6.34 22.18 26.03 10.20 32.85 19.98 10.25 25.33

via the complete likelihood-based labelling method introduced by Yao (2015). This approach
chooses the permutation of the labels 1, . . . ,G maximizing the log-likelihood of the com-
plete data. As the percentage of missing values and the overlapping level increase, the results
reported in Table 3 reveal a similar behavior to those for the classification recovery. Specifi-
cally, the mean of (hierarchical) ARI is sizable for well-separated components even when a
large amount of data entries is missing, and slowly deteriorates when the components over-
lap more since the underlying ultrametric structures become more challenging to detect. The
same trend holds at the indices for measuring the reconstruction of the mixing proportions,
component mean vectors, and extended ultrametric covariance matrices. Analogous conclu-
sions can be reached for Scenario 2 by looking at Table 10 in Appendix 1, which is thus
omitted herein.

In Appendix 2, we detail the cases where MissUGMM outperforms GMM and/or MFA
in terms of BIC on synthetic data sets. Table 11 demonstrates the optimal performance of
our proposal, highlighting the importance of employing a specific ultrametric structure to
accurately approximate a Gaussian mixture model for data characterized by hierarchical
relationships among variables within components. Moreover, by fixingG andQ to the values
used in the data generation process, the number of free parameters for estimating the com-
ponent covariance matrices of MissUGMM (see Section 2.3.2) is consistently much lower
than that of both GMM (i.e., Gp(p+1)/2), and MFA (i.e., G(pQ− Q(Q−1)/2+ p)). For
instance, in Scenario 2, where G = 5, Q = 4 and p = 30, the number of free parameters
for estimating the covariance matrices is 185 − (cV ,W + cW ,B), 2325 and 720 for the three
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Table 3 Results ofMissUGMM for Scenario 1: mean square error of the mixing proportions andmean vectors
(MSEπ and MSEμ), mean and standard deviation of ARI between the generated and the estimated variable
partitions at level Q (mARI and sdARI) and across the hierarchical levels from 2 to Q (mhARI and sdhARI),
indices of the variance and covariance structure preservation (DV and DC) per component, averaged over 100
random samples for each combination of percentage of missing values and maximum overlapping level

ωmax % Mis. Comp. MSEπ MSEμ mARI sdARI mhARI sdhARI DV DC

0.01 0 1 0.00 0.22 0.99 0.05 0.91 0.27 0.15 0.48

2 0.00 0.30 0.95 0.17 0.97 0.14 0.15 0.42

3 0.00 0.15 0.99 0.09 0.94 0.23 0.12 0.32

10 1 0.00 0.23 0.99 0.05 0.90 0.30 0.16 0.48

2 0.00 0.43 0.96 0.16 0.97 0.14 0.16 0.47

3 0.00 0.18 0.98 0.11 0.94 0.23 0.12 0.32

20 1 0.00 0.36 0.98 0.07 0.88 0.31 0.18 0.56

2 0.00 0.51 0.91 0.21 0.94 0.18 0.17 0.52

3 0.00 0.17 0.99 0.08 0.95 0.20 0.13 0.34

30 1 0.00 0.80 0.89 0.28 0.77 0.40 0.19 0.83

2 0.00 1.51 0.85 0.28 0.85 0.31 0.19 0.74

3 0.00 0.36 0.97 0.13 0.92 0.24 0.15 0.39

0.05 0 1 0.00 1.20 0.96 0.14 0.83 0.35 0.17 0.68

2 0.00 1.69 0.88 0.27 0.91 0.26 0.16 0.60

3 0.01 0.81 0.99 0.08 0.95 0.21 0.14 0.36

10 1 0.00 1.21 0.93 0.19 0.82 0.36 0.18 0.71

2 0.00 2.22 0.86 0.28 0.88 0.29 0.18 0.66

3 0.01 0.71 0.99 0.10 0.95 0.21 0.14 0.35

20 1 0.01 1.79 0.90 0.23 0.72 0.41 0.20 0.83

2 0.00 3.34 0.77 0.33 0.77 0.39 0.19 0.84

3 0.01 1.09 0.95 0.15 0.88 0.31 0.16 0.42

30 1 0.01 2.21 0.84 0.26 0.71 0.39 0.21 0.92

2 0.01 3.84 0.63 0.37 0.67 0.41 0.22 0.92

3 0.01 1.58 0.89 0.21 0.83 0.33 0.18 0.51

0.15 0 1 0.01 6.80 0.92 0.20 0.86 0.31 0.19 0.82

2 0.00 14.82 0.84 0.26 0.83 0.32 0.22 0.76

3 0.01 6.11 0.97 0.12 0.90 0.28 0.16 0.46

10 1 0.01 10.71 0.87 0.26 0.77 0.38 0.20 0.96

2 0.01 14.61 0.78 0.32 0.81 0.35 0.22 0.79

3 0.01 6.10 0.92 0.20 0.88 0.28 0.17 0.45

20 1 0.01 9.90 0.80 0.30 0.70 0.42 0.21 1.02

2 0.01 21.08 0.67 0.32 0.67 0.38 0.25 0.99

3 0.01 10.25 0.89 0.22 0.80 0.37 0.20 0.53

30 1 0.01 13.17 0.64 0.34 0.55 0.42 0.25 1.27

2 0.01 22.97 0.50 0.32 0.51 0.40 0.28 1.10

3 0.02 13.30 0.78 0.28 0.68 0.40 0.24 0.65

models, respectively. It is important to note that if (cV ,W + cW ,B) is greater than zero, this
number decreases. Conversely, the number of free parameters for the mixing proportions and
the component mean vectors remains the same across all models.
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3.2 Benchmark Data

In this section, we compare MissUGMM with GMM and MFA on three benchmark data
sets to evaluate the proposal’s classification performance when no specific assumption on
the component covariance matrices exists. The analyses presented herein give an example of
the MissUGMM potential even when there may not be necessarily hierarchical relationships
among variables. In Section 3.2.1, we generate missing values from two benchmark data sets
which are complete. Likewise, in Section 3.1, we first run themodels on complete data, where
we select Q for our proposal and MFA in the set {1, . . . , 5} according to the maximum BIC,
while fixing G to the number of clusters known in the literature for these data sets, named
G∗. Then, we obtain 100 data sets from the original one by hiding its entries at random under
each percentage of missing values, i.e., 10%, 20%, and 30%. On these, we implement our
proposal and the competitors with G corresponding to G∗ and Q chosen on the complete
data set. In Section 3.2.2, we consider a benchmark data set that already contains authentic
missing values, not artificially generated.

3.2.1 Artificial Missing Values

The first benchmark analyzed herein is wine (available in the R package gclus on CRAN),
where 13 chemical properties of three types of Italian wines (G∗ = 3) are measured on 178
observations. The results obtained by implementing the models on the complete data point
out that the three methodologies are comparable in terms of ARI, which is equal to 0.95
with 3 misclassifications for MissUGMM and GMM, and 0.93 with 4 misclassifications for
MFA. As shown in Table 4, MissUGMM exhibits the highest BIC and the lowest number of
free parameters compared to the competitors. It has to be noticed that if we let BIC choose
both G and Q—with G in {1, . . . , 5} as well—this correctly identifies G for the two models
based on a “factorial” structure, while it selectsG = 2 for GMM (BIC= −5643.64 with 209
free parameters). The distribution of ARI on the incomplete data sets is depicted in Fig. 3a,
showing a slightly better performance of the proposal than the competitors as the percentage
of missing values rises.

As the second benchmark, we illustrate the results of the three models’ implementation on
the Kidney data set (available in the R package teigen on CRAN, Andrews et al., 2018).
This examines the chronic kidney disease (ckd) through 11 characteristics of 203 patients by
classifying them into two classes (personswith andwithout ckd, that isG∗ = 2). On complete
data, ARI of MissUGMM equals 0.90 (5 misclassifications), whereas that of GMM reaches
0.85 (8 misclassifications) and that of MFA attains 0.92 (4 misclassifications), respectively.
The comparison of the models in terms of BIC reveals a similar ranking to that of ARI, with
MissUGMM consistently having a lower number of parameters. Differently from the wine
data set, for this benchmark, BIC fails to correctly chooseG for either MissUGMM or MFA.
Indeed, the former one splits the original classes into 5 groups, where two count persons with

Table 4 Number of variable groups/factorsQ, BIC, and number of free parameters of each model on complete
benchmark data sets when G = G∗

Wine data set Kidney data set
Model Q BIC # free param. Q BIC # free param.

MissUGMM 5 −5334.89 101 5 −4225.05 63

GMM – −5760.13 314 – −4566.74 155

MFA 1 −5343.65 119 1 −4195.92 67
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Fig. 3 Boxplot of ARI per model and percentage of missing values for the benchmark data sets

ckd and three those without ckd (4 misclassifications, BIC = −3741.89 and Q = 3 with 134
free parameters); instead, MFA only divides the class of persons with ckd into two groups
with 1 misclassification (BIC = −4106.19 and Q = 2 with 131 free parameters). As shown
in Fig. 3b, MissUGMM achieves similar results to the competitors, especially to MFA, when
we augment the percentage of missing information in the data.

Looking at Table 5, where the evaluation of missing value imputation is reported for both
benchmark data sets, we can come to the same conclusions illustrated above. Moreover, in
Appendix 2, we report the number of times MissUGMM outperforms GMM and/or MFA in
terms of BIC on the incomplete data sets.

3.2.2 Authentic Missing Values

The original Kidney data set (available in the UCI learning repository as “Chronic Kidney
Disease”) is collected on a bigger sample of 400 patients and contains 14.45% of missing
values. The observed features and the number of classes remain the same. In this data set,
we let the models choose G, and Q when necessary. MissUGMM selects G = 4 and Q = 4
with a BIC of −6831.38 and 113 free parameters. In this configuration, individuals with ckd
are split into 3 groups, with 48 misclassified (a misclassification rate of 12%). For GMM,

Table 5 Evaluation of missing value imputation: mean absolute error (MAE), mean absolute relative error
(MARE), and root mean square error (RMSE) for each benchmark data set, model, and percentage of missing
values, averaged over 100 random samples

% missing MissUGMM GMM MFA
MAE MARE RMSE MAE MARE RMSE MAE MARE RMSE

Wine data set

10 0.53 2.60 0.72 0.55 3.45 0.75 0.55 3.07 0.75

20 0.54 3.02 0.74 0.62 3.96 0.85 0.56 3.42 0.77

30 0.56 2.88 0.76 0.67 4.18 0.92 0.57 3.44 0.78

Kidney data set

10 0.51 2.10 0.75 0.55 2.53 0.84 0.52 2.35 0.77

20 0.52 2.13 0.78 0.57 2.71 0.89 0.53 2.27 0.79

30 0.53 2.09 0.79 0.60 2.63 0.95 0.54 2.22 0.80
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the optimal G is 3 (BIC = −7085.91 with 233 free parameters), resulting in a division of
the original class of individuals with ckd into 2 groups, with 66 misclassifications (16.5%).
Finally, MFA chooses G = 4 and Q = 2 (BIC = −6560.82 with 175 free parameters),
dividing the ckd group into 3, with 15 misclassifications for the individuals with ckd and 5
for those without ckd, resulting in a misclassification rate of 5%.

When we fix G = 2, MissUGMM achieves the best performance in terms of the misclas-
sification rate, misclassifying 88 individuals with ckd (22%), while GMM and MFA have
118 (29.5%) and 101 (25.5%) misclassifications, respectively.

4 Application: Cities’ Sustainable Development Analysis

In this section, we apply the proposed methodology to study the cities’ sustainable devel-
opment and the dimensions characterizing it. The data set1 is composed of 53 cities listed
in Table 6 from several countries (Table 7) which distinguish each other for different fea-
tures. Table 8 illustrates the 12 variables considered for the analysis that concern various
present-day aspects (called themes) of the cities’ sustainable development, such as economy,
education, energy, environment, governance, and urban planning. The latter can be inter-
preted as domains (latent concepts) defining the multidimensional phenomenon of the cities’
sustainable development, making them apt for analysis using an ultrametric model. The data
set is not complete, and the missing entries account for 3.52%.

In Table 8, we also report on the variable polarity, which refers to the relationship between
each variable and the general concept under study. It is worth highlighting that MissUGMM
builds hierarchies by identifying variable groups and their aggregations from themost concor-
dant to the least concordant. For this reason, we reverse the variables with negative polarity
({max xi j : i = 1, . . . , n} − xi j , j = 1, 2, 6, 8, in Table 8) so that to apply the proposed
methodology on variables that are all positively related to the general concept.

MissUGMM is implemented on the cities’ incomplete data set by selecting G and Q—
both in {1, . . . , 5}—according to BIC. The best model corresponds to that with G = 3 and
Q = 4. Since we use the MAP classification, we refer to groups of cities as clusters. As
shown in Table 9, Cluster 1 lumps together all the municipalities of some countries, except
for South Africa, and can be considered the cluster of cities with a low level of sustainable
development. This cluster encompasses cities that share a common sub-Saharan climate and
are located in countries where balanced and equitable growth is not evident. Moreover, it
collects almost all the Asian countries in the data set. Cluster 2 and Cluster 3 are primarily
characterized by European and North American cities. Notably, they also include the Asian
cities of Shanghai (Cluster 2), Tainan city, and Taipei (Cluster 3) which are part of the most
developed countries in their geographic area. Cluster 2 contains cities mainly from Eastern
and Mediterranean Europe, whereas Cluster 3 those considered the richest countries in the
European territory and almost all the Canadian cities. They correspond to the clusters of
cities with a medium and high level of sustainable development, respectively. MissUGMM
estimates the posterior probabilities for each municipality’s cluster membership, revealing
some interesting cases. For instance, The Hague in the Netherlands has a 73% probability
of belonging to Cluster 2 and a 27% probability of belonging to Cluster 3, while Zagreb in
Croatia has a 75% probability of belonging to Cluster 2 and a 25% probability of belonging
to Cluster 1.

1 Data were collected from http://open.dataforcities.org/ on March 15th, 2019, and are available upon request
to the corresponding author.
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Table 6 List of cities

City Country City Country City Country City Country

Ahmedabad IND Guadalajara MEX Oslo NOR Tbilisi GEO

Amman JOR Haiphong VNM Piedras Negras MEX The Hague NLD

Amsterdam NLD Helsinki FIN Portland USA Toronto CAN

Barcelona ESP Jamshedpur IND Porto PRT Torreon MEX

Boston USA Johannesburg ZAF Pune IND Tshwane ZAF

Brisbane AUS Kielce POL Quebec City CAN Valencia ESP

Buenos Aires ARG León MEX Riyadh SAU Vaughan CAN

Cambridge GBR London GBR San Diego USA Vijayawada IND

Cape Town ZAF Los Angeles USA Shanghai CHN Whitby CAN

Ciudad Juárez MEX Makati PHL Sintra PRT Zagreb HVR

Dubai ARE Makkah SAU Surat IND Zwolle NLD

Eindhoven NLD Minna NGA Surrey CAN

Gdynia POL Mississauga CAN Tainan city TWN

Greater Melbourne AUS Oakville CAN Taipei TWN

The hierarchies of variables identified by MissUGMM vary across clusters, revealing dif-
ferent importance of the dimensions in defining the cities’ sustainable development across
countries. Figure 4 depicts the hierarchical structure for each cluster, where the aggregation
levels are computed as the log-modulus transformation (John & Draper, 1980) of the covari-
ances in �g that preserves their ordering and sign. We use this transformation to appreciate
the variable group configuration and their hierarchical relationships, which would be oth-
erwise jammed differently into a small portion of the path diagram due to a singleton with
high variance for each cluster. Indeed, the three partitions of variables in Fig. 4 share one
group composed of the single variable “Green area (hectares) per 100,000 population” which
joints the others last with a negative covariance value. This shows that the urban planning
aspect concerning the increase of green areas in the cities is not yet satisfactory both in cities
with a low and high level of sustainable development; on the contrary, we can state that the

Table 7 List of countries

Country ID N. cities Country ID N. cities

Argentina ARG 1 Norway NOR 1

Australia AUS 2 Philippines PHL 1

Canada CAN 7 Poland POL 2

China CHN 1 Portugal PRT 2

Croatia HVR 1 Saudi Arabia SAU 2

Finland FIN 1 South Africa ZAF 3

Georgia GEO 1 Spain ESP 2

Jordan JOR 1 Taiwan (Republic of China) TWN 2

India IND 5 United Arab Emirates ARE 1

Mexico MEX 5 United Kingdom GBR 2

Netherlands NLD 4 United States of America USA 4

Nigeria NGA 1 Vietnam VNM 1
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Table 8 List of variables with information on polarity and % of missing values

ID Variable name Polarity % missing

1 City’s unemployment rate − 9.43

2 Percentage of city population living in poverty − 9.43

3 Percentage of students completing secondary education: Survival
rate

+ 9.43

4 Percentage of city population with authorized electrical service + 11.32

5 Percentage of total energy derived from renewable sources, as a
share of the city’s total energy consumption

+ 18.87

6 Fine Particulate Matter (PM2.5) concentration − 11.32

7 Women as a percentage of total elected to city-level office + 7.55

8 Percentage of city population living in slums − 56.60

9 Average life expectancy + 1.89

10 Percentage of the city’s solid waste that is recycled + 15.09

11 Green area (hectares) per 100,000 population + 5.66

12 Percentage of city population with potable water supply service + 5.66

Table 9 MissUGMM results: clusters of cities and countries’ representation per component

Cities Cities Cities

Cluster 1 Ahmedabad Cluster 2 Amsterdam Cluster 3 Brisbane

Amman Barcelona Cambridge

Ciudad Juárez Boston Eindhoven

Dubai Buenos Aires Greater Melbourne

Guadalajara Cape Town Helsinki

Haiphong Gdynia London

Jamshedpur Kielce Los Angeles

Johannesburg Portland Mississauga

León Porto Oakville

Makati Shanghai Oslo

Makkah Tbilisi Quebec City

Minna The Hague San Diego

Piedras Negras Valencia Sintra

Pune Whitby Surrey

Riyadh Zagreb Tainan city

Surat Taipei

Torreon Toronto

Tshwane Vaughan

Vijayawada Zwolle

Cluster 1 ARE (1/1), JOR (1/1), IND (5/5), MEX (5/5), NGA (1/1), PHL (1/1), SAU (2/2)

ZAF (2/3), VNM (1/1)

Cluster 2 ARG (1/1), CAN (1/7), CHN (1/1), ESP (2/2), GEO (1/1), HVR (1/1), NLD (2/4)

POL (2/2), PRT (1/2), USA (2/4), ZAF (1/3)

Cluster 3 AUS (2/2), CAN (6/7), FIN (1/1), GBR (2/2), NLD (2/4), NOR (1/1), PRT (1/2)

TWN (2/2), USA (2/4)
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Fig. 4 Hierarchical structures of variables per cluster of cities. The aggregation levels are expressed through
the log-modulus transformation of the covariances in �g, g = 1, . . . , 3

more the investments for advancement in other aspects toward the city’s sustainable devel-
opment the less those in green areas that remain a target to reach in the future. Concerning
the other variable groups, another interesting similarity among the hierarchies is the relation
between “Percentage of total energy derived from renewable sources, as a share of the city’s
total energy consumption” and “Percentage of the city’s solid waste that is recycled.” These
aspects denote the city’s governance attention to recycling and renewable energies, which
are merged together for all clusters.

For Cluster 1, “City’s unemployment rate” (with inverted polarity) and “Average life
expectancy” represent the highly internally consistent group since its variance and covariance
within it are similar; therefore, in the cities with a low level of sustainable development,
the average life expectancy is deeply related to the working conditions. This group is then
lumped togetherwith the onemeasuring poverty (variable 2,with inverted polarity), education
(variable 3), environment (variable 6, with inverted polarity), and governance (variable 7),
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all aspects representing primary targets for economic development with social responsibility.
Their strong relation points out the need for improvement of at least some of these aspects in
the cities, and relative countries, with a low level of sustainable development. The second to
last aggregation for this cluster merges the latter broader group with the strongly internally
consistent one related to energy (variables 4 and 5), living conditions (variable 8), waste
management (variable 10), and water supply (variable 12), on which can be done a similar
reasoning to the previous group in its improvement. All these variable groups are strongly
related to each other; to increase the development of the cities belonging to Cluster 1, it is thus
necessary to enhance at least some of these aspects. For Cluster 2, the variable groups, except
for the singleton, are highly internally consistent. Specifically, in the cities with a medium
level of sustainable development, the variables related to topics of great interest for public
debate, such as education, renewable sources, environment, and gender gap in governance,
are aggregated in the same group, as well as those associated with living conditions, such as
variables 8, 9, and 12. The last element of the partition is composed of “City’s unemployment
rate,” “Percentage of city population living in poverty,” and “Percentage of city population
with authorized electrical service.” The polarity of the former two variables is reversed, and
their aggregation points out that, in these cities, working does not necessarily guarantee a
decent living. The three groups described for Cluster 2 are lumped together at approximately
the same level, before the aggregation with the singleton previously described. Differently,
Cluster 3 identifies variable groups, except for the singleton, with levels of covariance within
them that approximate zero, as well as their aggregation levels. In the cities with a high level
of sustainable development, we can state that all the aspects illustrated in the data set, with
the exception of variable 11, represent a not interchangeable part of the general concept and
all uniquely contribute to its definition.

5 Conclusions

When studying complex phenomena in heterogeneous populations, it is crucial to consider
the hierarchical relationships among the dimensions defining them. An ultrametric Gaussian
mixture model is a potential tool for this purpose in the complete data settings. However,
incomplete data sets are often encountered in applications. In this paper, we propose Mis-
sUGMM, an ultrametric Gaussian mixture model in the incomplete data framework, that
enhances its applicability in real-world scenarios by effectively handling the presence of
missing at random information. Our proposal is estimated via an expectation-maximization
algorithm which is a proper tool to deal with different sources of missingness in the data.
We compare MissUGMM with Gaussian mixture models and mixtures of factor analyzers
via a simulation study. Our approach performs more effectively than the competitors when
analyzing synthetic data withmissing entries and increasing levels of component overlapping
that affect the identification of variable hierarchies. This highlights the advantage given by
an appropriate methodology to detect hierarchical structures of variables in heterogeneous
populations. We further demonstrate the potential of MissUGMM on benchmark data sets,
where the component covariance structure may not be ultrametric.

Afterward, we apply MissUGMM to a real-world problem to study the sustainable devel-
opment of cities across multiple countries. Themunicipalities provide information on aspects
related to their energy equipment, population living conditions, citizens’ education andhealth,
and environmental sustainability. However, data collection and harmonization worldwide
have some intricacies, resulting in a 13.52 missing value percentage in the data set. Using
MissUGMM, we identify three clusters representing cities with a low, medium, and high
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rate of sustainable growth. These clusters are characterized by diverse dimensions that have
different roles and importance in defining the cities’ sustainable development. For example,
the analysis of this data set makes evident that certain factors need improvement in cities
with slow progress towards sustainable growth, such as the unemployment rate, that could
correspond to an enhancement of other aspects, such as citizens’ average life expectancy and
population living conditions. Crosswise, the study reveals that the urban planning of green
areas is negatively related to all other determinants and has not been adequately addressed
in any cities, regardless of their sustainability level. Overall, the application of MissUGMM
provides interesting insights on this phenomenon and its configuration across cities.

Despite the advantages of MissUGMM illustrated throughout the paper, further develop-
ments can bemade in the field of ultrametric modeling. Firstly, following Boldea andMagnus
(2009), Montanari and Viroli (2011), and Wang and Lin (2016), the theoretical and inferen-
tial properties of the extended ultrametric covariance matrix estimators can be investigated,
allowing the derivation of standard errors for the parameter estimates, both in the complete
and subsequently incomplete data framework. Furthermore, real data can be influenced by
outliers, e.g., in our application, they could be municipalities with extreme entries in some
variables compared to the majority of the cities. While the detection of outliers is out of
the scope of this paper, we recognize it as a potential future development for our proposal.
In the literature, Tong and Tortora (2022) developed a framework to model mild outliers
in the presence of missing information via the mixture of multivariate contaminated nor-
mal distributions, whereas Wang (2015) and Wang and Lin (2022b) proposed the mixtures
of (common) t factor analyzers, where the factor-analytic representation of the component
covariance matrices preserves the inspection of latent structures underlying the data. To deal
with gross outliers, trimming is a powerful tool in different frameworks. It consists of remov-
ing a small proportion of the observations whose values are the most unlikely to occur when
the fitted model is true. In this direction, García-Escudero et al. (2016) introduced the robust
mixtures of factor analyzers when complete data are available. Furthermore, when data are
likely to be censored, other than contaminated, mixtures of factor and t factor analyzers can
be extended to accommodate for them, as proposed by Wang et al. (2019) and Wang and
Lin (2022a). In any case, none of these methodologies can inspect hierarchical latent rela-
tionships among dimensions defining a multidimensional concept in the presence of outliers
and/or missing data. We aim to address this gap in future studies.

Finally, all the methodologies discussed in this paper have been developed under the
MAR assumption. Only recently, a pioneering approach to handle MNAR data in GMMs
was proposed by Sportisse et al. (2024), paving the way for future research in this direc-
tion. Particularly, the authors focused on a specific MNAR model by considering its MAR
counterpart. However, verifying the MNAR mechanism from the data remains challenging
(Molenberghs et al., 2008), and further investigations would be necessary in the ultrametric
context due to the potentially different contribution of themissing variables to the hierarchical
structure.

Appendix 1

Further results on the simulation study depicted in Section 3.1 are provided in this appendix.
Specifically, Table 10 shows the results of MissUGMM in estimating the model parameters
and the hierarchical relationships among variables for Scenario 2.
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Table 10 Results of MissUGMM for Scenario 2: mean square error of the mixing proportions and mean
vectors (MSEπ and MSEμ), mean and standard deviation of ARI between the generated and the estimated
variable partitions at level Q (mARI and sdARI) and across the hierarchical levels from 2 to Q (mhARI and
sdhARI), indices of the variance and covariance structure preservation (DV and DC) per component, averaged
over 100 random samples for each combination of percentage of missing values and maximum overlapping
level

ωmax % Mis. Comp. MSEπ MSEμ mARI sdARI mhARI sdhARI DV DC

0.01 0 1 0.00 0.77 0.96 0.11 0.87 0.31 0.11 0.48

2 0.00 1.65 0.92 0.22 0.87 0.28 0.11 0.78

3 0.00 0.65 0.95 0.17 0.91 0.23 0.09 0.61

4 0.00 0.42 1.00 0.04 0.97 0.13 0.08 0.21

5 0.00 1.45 0.91 0.20 0.83 0.28 0.13 0.47

10 1 0.00 1.59 0.89 0.19 0.83 0.33 0.12 0.61

2 0.00 1.74 0.87 0.25 0.82 0.31 0.13 0.82

3 0.00 0.82 0.92 0.17 0.89 0.24 0.09 0.72

4 0.00 0.35 1.00 0.01 0.97 0.13 0.08 0.21

5 0.00 2.31 0.84 0.28 0.78 0.32 0.13 0.62

20 1 0.00 1.62 0.85 0.22 0.79 0.35 0.12 0.70

2 0.00 2.94 0.78 0.31 0.72 0.36 0.13 0.98

3 0.00 0.88 0.88 0.20 0.84 0.27 0.10 0.78

4 0.00 0.54 0.99 0.06 0.96 0.16 0.09 0.24

5 0.00 2.65 0.78 0.28 0.74 0.33 0.14 0.63

30 1 0.00 2.66 0.78 0.25 0.73 0.38 0.14 0.77

2 0.00 4.89 0.61 0.35 0.58 0.39 0.16 1.26

3 0.00 1.83 0.77 0.30 0.77 0.34 0.12 1.02

4 0.00 0.74 0.98 0.08 0.93 0.20 0.10 0.28

5 0.00 5.42 0.60 0.35 0.58 0.38 0.17 0.88

0.05 0 1 0.00 2.96 0.90 0.19 0.83 0.33 0.12 0.62

2 0.00 6.76 0.82 0.30 0.77 0.35 0.13 0.93

3 0.00 2.46 0.88 0.21 0.86 0.26 0.11 0.72

4 0.00 0.98 0.99 0.05 0.97 0.13 0.09 0.21

5 0.00 5.17 0.87 0.23 0.82 0.29 0.14 0.54

10 1 0.00 5.18 0.78 0.26 0.77 0.35 0.13 0.77

2 0.00 7.77 0.71 0.35 0.65 0.39 0.15 1.08

3 0.00 4.42 0.79 0.30 0.76 0.35 0.12 1.00

4 0.00 1.76 0.98 0.09 0.96 0.15 0.09 0.24

5 0.00 7.10 0.77 0.30 0.75 0.33 0.16 0.71

20 1 0.00 8.74 0.70 0.29 0.70 0.37 0.15 0.92

2 0.00 13.51 0.48 0.35 0.44 0.40 0.16 1.32

3 0.00 6.84 0.61 0.35 0.60 0.39 0.14 1.37

4 0.00 3.17 0.95 0.13 0.92 0.22 0.11 0.31

5 0.00 9.89 0.65 0.36 0.65 0.38 0.15 0.77

30 1 0.00 11.95 0.53 0.32 0.51 0.39 0.19 1.10

2 0.00 16.04 0.34 0.30 0.32 0.35 0.18 1.42

3 0.00 11.59 0.40 0.29 0.36 0.35 0.18 1.52

4 0.01 5.26 0.88 0.19 0.83 0.29 0.14 0.41

5 0.00 11.54 0.49 0.32 0.52 0.37 0.17 0.86

0.15 0 1 0.00 42.54 0.83 0.24 0.77 0.36 0.15 0.74

2 0.00 66.19 0.71 0.33 0.68 0.37 0.16 1.11
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Table 10 continued

ωmax % Mis. Comp. MSEπ MSEμ mARI sdARI mhARI sdhARI DV DC

3 0.00 40.88 0.72 0.32 0.72 0.37 0.13 1.19

4 0.00 13.77 0.96 0.12 0.93 0.21 0.09 0.26

5 0.00 55.17 0.79 0.29 0.75 0.34 0.14 0.62

10 1 0.00 63.05 0.76 0.27 0.73 0.37 0.17 0.83

2 0.00 83.03 0.53 0.36 0.51 0.41 0.18 1.22

3 0.00 73.81 0.58 0.35 0.55 0.40 0.15 1.49

4 0.00 28.83 0.97 0.09 0.92 0.21 0.12 0.34

5 0.00 67.53 0.68 0.35 0.67 0.37 0.17 0.73

20 1 0.00 83.08 0.60 0.30 0.58 0.39 0.20 0.98

2 0.00 118.61 0.36 0.29 0.33 0.34 0.19 1.39

3 0.00 75.62 0.42 0.33 0.43 0.37 0.17 1.67

4 0.01 55.73 0.90 0.17 0.85 0.28 0.16 0.42

5 0.00 82.50 0.51 0.31 0.53 0.38 0.19 0.80

30 1 0.00 111.94 0.47 0.27 0.46 0.37 0.22 1.06

2 0.00 114.85 0.27 0.27 0.27 0.32 0.21 1.41

3 0.00 104.81 0.27 0.23 0.25 0.31 0.20 1.78

4 0.01 96.13 0.75 0.26 0.68 0.36 0.19 0.50

5 0.00 102.28 0.38 0.29 0.41 0.35 0.20 0.92

Appendix 2

We report herein the occurrences where BIC of MissUGMM exceeds BIC of both GMM
and MFA (Case 1), BIC of GMM only (Case 2), and BIC of MFA only (Case 3) for both the
synthetic data sets described in Section 3.1 (Table 11) and benchmark data sets illustrated in
Section 3.2.1 (Table 12).

Table 11 Number of times where BIC of MissUGMM exceeds BIC of both GMM and MFA (Case 1), BIC
of GMM only (Case 2), and BIC of MFA only (Case 3) across 100 random samples per scenario, percentage
of missing values and maximum overlapping level

Scenario 1
ωmax Case 1 Case 2 Case 3

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

0.01 99 100 100 100 1 0 0 0 0 0 0 0

0.05 93 99 99 99 7 1 1 0 0 0 0 1

0.15 99 100 100 100 1 0 0 0 0 0 0 0

Scenario 2

ωmax Case 1 Case 2 Case 3

0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

0.01 100 100 100 100 0 0 0 0 0 0 0 0

0.05 100 100 100 100 0 0 0 0 0 0 0 0

0.15 100 100 100 100 0 0 0 0 0 0 0 0
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Table 12 Number of times where BIC of MissUGMM exceeds BIC of both GMM and MFA (Case 1), BIC
of GMM only (Case 2), and BIC of MFA only (Case 3) across 100 random samples per percentage of missing
values for each benchmark data set

Case 1 Case 2 Case 3
% missing 10 20 30 10 20 30 10 20 30

Wine data set 77 74 82 23 26 18 0 0 0

Kidney data set 13 21 32 87 79 68 0 0 0
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