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Abstract

We analyse super non-Abelian T-duality for principal chiral models, symmetric

space sigma models, and semi-symmetric space sigma models for general Lie

supergroups. This includes T-duality along both bosonic and fermionic dir-

ections. As an example, we perform the explicit dualisation of the OSpp1|2q

principal chiral model, and, whilst the target superspace of this model is a

three-dimensional supergravity background, we find that its super non-Abelian

T-dual falls outside the class of such backgrounds.
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1. Introduction

The original ‘radius Ñ 1/radius’ duality of string theory discovered in [1, 2] has evolved

into a more general concept of T-duality. This is based on a very simple mechanism: two

classically duality-equivalent string sigma models exist whenever we can formulate a first-

order Lagrangian which provides a set of equations of motion and Bianchi identities. Then,

on the one hand, when imposing the Bianchi identities, one recovers the original model,

while on the other hand, when imposing the equations of motion, one obtains the dual

model.

Abelian T-duality [3, 4], which is present when the string target space geometry has

an Abelian isometry, is an exact symmetry of string theory that maps string backgrounds
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into dual ones corresponding to the same conformal field theory. In other words, it relates

two world-sheet non-linear sigma models with equivalent physical properties, both at the

classical level as well as the quantum level [5, 6].

Instead, non-Abelian T-duality [7]1, which generalises the approach of [5] to string back-

grounds that exhibit a bosonic non-Abelian group of isometries, does not represent an exact

string symmetry [11]. Indeed, the non-Abelian T-dual model possesses a different, in gen-

eral smaller, set of symmetries (local as well as non-local ones). Notable examples can be

found in [7, 12–14]. If supersymmetry is part of the game, the T-dual model is, in general,

less or non-supersymmetric, as can be inferred from studying the Killing spinor equations

after dualisation [15]. Nevertheless, when starting with a string theory background with

a semi-simple group of isometries, the T-dual model usually remains a string theory back-

ground essentially because non-Abelian T-duality preserves conformal invariance in this

case.2 Therefore, non-Abelian T-duality can fruitfully be used as a string/supergravity

solution generating technique [15,14].

Abelian fermionic T-duality has been formulated in [23] as a natural generalisation of the

Abelian bosonic T-duality to sigma models which possess a superisometry generated by an

‘Abelian’ Q supercharge (Q2 “ 0). The T-self-duality [24,25] of string theory on AdS5ˆS
5

under a combination of four bosonic and eight fermionic Abelian T-duality transformations

provides a dual string explanation of the duality between maximally-helicity-violating amp-

litudes and light-like Wilson loops in N “ 4 supersymmetric Yang–Mills theory (see [26]

for a nice review). Since under T-duality ordinary superconformal invariance acting on

Wilson loops is mapped to dual superconformal invariance of scattering amplitudes, which

ultimately can be thought as being generated by some non-local current, the investigation

of T-self-duality is intimately linked to integrability. For the AdS5 ˆ S5 background this

has been discussed in [24,25].

More generally, T-self-duality under combinations of bosonic and fermionic T-dualities

has been proved for string sigma models on AdSd ˆ Sd ˆM10´2d in [27]. Furthermore,

whilst T-self-duality for the AdS4 ˆ CP
3 string sigma model is also expected to hold, its

proof remains an open problem. In particular, the existence of T-self-duality for this back-

ground is supported by the amplitudes/Wilson loops duality in three-dimensional Aharony–

Bergman–Jafferis–Maldacena theory [28–31] as well as by the integrability emerging on the

string theory sides [32–35] and on the gauge theory side [36, 37]. However, the proof of

1See also [8–10] for previous results.
2In the case of non-semi-simple groups, this is no longer true [16,17] due to the appearance of a mixed

gauge-gravitational anomaly [11, 18]. As shown in [19, 20], such backgrounds are solutions to generalised

supergravity field equations [21,22].
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T-self-duality in this case is hindered by the appearance of singularities in the T-duality

transformations of the fields [38–42], and a stringy explanation of the amplitudes/Wilson

loops duality in three dimensions remains open.

Evidently, Abelian fermionic T-duality should be generalised to a non-Abelian setting

when non-Abelian isometries form supergroups. This can be achieved by following a pre-

scription similar to the one introduced in [7] for purely bosonic non-Abelian isometries.

However, the procedure of integrating out degrees of freedom to obtain the dual action

appears more complicated because of the nilpotent nature of the fermionic coordinates in-

volved in the dualisation [43]. This is one of the reasons why the studies in this direction

have been rather limited so far. Dualisation of fermionic directions has been discussed some-

what implicitly in connection with λ-deformed sigma models [44], introduced in [45–47],

and with the construction of Yang–Baxter-deformed sigma models as non-Abelian T-duals

of deformed coset superspaces [48–50]. In particular, it was proved in [49] that for a type

II Green–Schwarz superstring, non-Abelian T-duality always produces a dual background

which again satisfies the torsion constraints. This was shown under the assumption that

one can pick the background B2-field that is invariant under the dualised isometries. This

is possible e.g. for the Ramond–Ramond backgrounds described by semi-symmetric coset

superspaces, but, in general, it is not the case for Neveu–Schwarz–Neveu–Schwarz back-

grounds. In ten-dimensional supergravity, a non-Abelian version of fermionic T-duality

has been formulated in [51] but is limited, however, to fermionic isometries whose algebra

closes on Abelian bosonic isometries. These lead to non-geometric solutions to double field

theory subject to an extra constraint whose origin remains unclear. Generalisations of T-

duality to supermanifolds and super Lie groups has also been explored in the context of

Poisson–Lie T-duality [52–56], originally introduced as an extension of standard bosonic

dualisation [57,58].

Despite these efforts, a clear picture of non-Abelian T-duality for supergroups is still

missing. We shall refer to this as super non-Abelian T-duality in the following. One of the

main open problems is to understand better the interplay between bosonic and fermionic

non-Abelian T-duality. In particular, it would be interesting to understand whether the

combination of fermionic and bosonic non-Abelian T-dualities can provide a more extensive

tool for generating new string/supergravity solutions.

Inspired by these questions, in this paper we shall carry out a systematic study of

super non-Abelian T-duality, when the dualisation is generically done along the directions

corresponding to a non-Abelian subsupergroup of the supergroup of isometries. Using the

current algebra approach, we perform in full generality the super non-Abelian T-duality

of principal chiral models on supergroup manifolds, as well as of symmetric and semi-
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symmetric supercoset models. For all these models, we construct the T-dual action and

identify the corresponding equations of motion.

A well-known feature of bosonic T-duality is that integrability is preserved. Indeed, if

the original model possesses a flat conserved current, thus allowing for the existence of a

Lax connection, the conservation equation and the flatness condition get exchanged under

dualisation, and (some of the) local charges of the original model are mapped to non-local

charges of the T-dual model, and vice versa.1 This continues to be the case under super

non-Abelian T-duality, and the T-dual Lax connection is formally of the same form as the

original one.

The three classes of models under investigation include physically relevant sigma models

describing string/supergravity backgrounds, directly formulated in superspace. In order

to address the question whether super non-Abelian T-duality always gives rise to new,

non-equivalent supergravity solutions, it is important to investigate whether the T-dual

geometry is compatible with superspace supergravity constraints.

We investigate this issue in one particular example, the OSpp1|2q principal chiral model

which describes a three-dimensional anti-de Sitter supergravity geometry. For ordinary

three-dimensional anti-de Sitter geometry realised as an SLp2,Rq principal chiral model, it

has been shown [12] that the T-dualisation of the whole SLp2,Rq isometry group leads to a

dual geometry that describes a black hole that is asymptotically anti-de Sitter, though the

three-dimensional matter-coupled gravity in which this black hole may arise as a solution is

unknown yet. Aimed at investigating whether this black hole has a conventional supersym-

metric generalisation, we study super non-Abelian T-duality of the OSpp1|2q model whose

geometry is that of the N “ 1 AdS3 superspace. Dualising either the whole OSpp1|2q super-

group or its maximal bosonic SLp2,Rq subgroup, we argue that the T-dual model does not

satisfy the three-dimensional supergravity constraints [65–68], thus falling outside the class

of supergravity backgrounds. The reason for this is the fact that the super non-Abelian-

T-duality procedure gives rise to dual supervielbeins and a B2-field with a complicated

space-time dependence that prevents them to satisfy the three-dimensional supergravity

constraints (even after any possible redefinition of supervielbeins and connection). This

seems to be a first example in which super non-Abelian T-duality does not generate super-

gravity solutions. Whether this failure is a peculiarity of this model or arises more generally

remains an open question that we plan to address in a near future. We should note that

this result does not contradict the result of [49] since, as will be explained in detail be-

low, the OSpp1|2q sigma model under consideration does not describe a (three-dimensional)

1For an earlier discussion of dualities and integrability of two-dimensional sigma models, see e.g. [59–64].
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Green–Schwarz superstring.

This paper is organised as follows. In Section 2, after a brief review of principal chiral

models and supercosets, we summarise the general procedure for dualising (part of) their

superisometries that we are going to apply in the rest of the paper. This is the direct

generalisation of the procedure for purely bosonic non-Abelian T-duality [5, 7] based on

gauging the subsupergroup involved in the dualisation. In Section 3, we focus on the

super non-Abelian T-duality of principal chiral models. After deriving the T-dual action

in general and studying its symmetries, we investigate in detail the OSpp1|2q principal

chiral model describing the super AdS3 geometry. In particular, we argue that the target

superspace of the T-dual model obtained by dualising either the whole supergroup or its

maximal bosonic subgroup does not satisfy the three-dimensional supergravity constraints.

In Section 4, we give preliminary results regarding the application of super non-Abelian

T-duality to supercosets. Since for these models the dualisation procedure can be affected

by the non-invertibility of the gauge equations of motion required to remove the original

coordinates in favor of a consistent set of dual ones, we cannot determine the T-dual action

in general. At this point, a case-by-case study would be necessary which is, however, beyond

the scope of the present paper. Finally, in Section 5, we close by collecting some comments

and a list of possible future directions. Several appendices follow, which contain some

technical details and a brief summary of three-dimensional supergravity (see Appendix D).

2. Preliminaries

We begin with a short review of the classes of two-dimensional sigma models which will be

considered in the present paper. This primarily helps us fixing notation and conventions.

We consider a generic Lie supergroup G with Lie superalgebra g. We denote the number

of bosonic and fermionic generators of g by nb and nf, respectively. In addition, we assume

that we are given an inner product x´,´y on g, that is, a non-degenerate Ad-invariant

graded-symmetric bilinear form.

Generally, to define two-dimensional sigma models involving G, we consider elements

g P C8pΣ,Gq where C8pΣ,Gq is the set of smooth maps from a two-dimensional Lorentzian

manifold Σ, the world-sheet, to G. We then introduce the (pull-back to Σ via g of the)

Maurer–Cartan form on G by

j :“ g´1dg P Ω1pΣ, gq (2.1)

and which satisfies the Maurer–Cartan equation

dj ` 1
2 rj, js “ 0 . (2.2)
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Here, ‘d’ is the exterior derivative on Σ and ΩppΣ, gq are the g-valued differential p-forms

on Σ. In addition, the Lie bracket r´,´s of g is extended to ΩppΣ, gq in the usual way.

The current in (2.1) is invariant under the global (left) G-action

g ÞÑ g´1
0 g for all g0 P G , (2.3a)

whereas under the global (right) G-action

g ÞÑ gg0 for all g0 P G , (2.3b)

it transforms adjointly j ÞÑ g´1
0 jg0.

In the following, we shall often use the notation

∇ω :“ d` rω,´s and Fω :“ dω ` 1
2 rω, ωs for ω P Ω1pΣ, gq . (2.4)

Furthermore, if ‘‹’ denotes the Hodge star operator on Σ with respect to the world-sheet

metric, we have ‹2 “ id on Ω1pΣ, gq. Therefore, we have the decomposition Ω1pΣ, gq –

Ω1
`pΣ, gq ‘ Ω1

´pΣ, gq into self-dual and anti-self-dual g-valued one-forms on Σ. We shall

make use of the projectors

P˘ : Ω1pΣ, gq Ñ Ω1
˘pΣ, gq with P˘ :“ 1

2pid ˘‹q . (2.5)

2.1. Principal chiral model

Sigma model action. The principal chiral model on G is defined by the action

S :“ 1
2

ż

Σ
xj, ‹jy , (2.6)

where j is the current in (2.1), the wedge product is understood and ‘‹’ is the Hodge star

operator on Σ with respect to the world-sheet metric. The model describes the dynamics of

nb bosonic and nf fermionic degrees of freedom. The equation of motion following from (2.6)

is

d‹j “ 0 , (2.7)

and together with the Maurer–Cartan equation (2.2), this forms what is known as the

first-order system of the model.

Noether symmetries. The action (2.6) possesses a global pG ˆ Gq-symmetry, where,

in our conventions, the first factor corresponds to the global left G-action (2.3a) and the

second factor to the global right G-action (2.3b). It is not too difficult to see that the

corresponding Noether currents are

LN :“ gjg´1 and RN :“ j . (2.8)
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Lax connection. Importantly, the first-order system, consisting of (2.7) and (2.2), is

equivalent to

dJpzq ` 1
2 rJpzq, Jpzqs “ 0 , (2.9a)

where

Jpzq :“ ´1
4pz ´ z

´1q2 j ` 1
4pz

2 ´ z´2q ‹j (2.9b)

is called the Lax connection with z a complex spectral parameter [69]. To derive the first-

order system from (2.9), we note that ‹2 “ id and ρ ^ ‹σ “ ´‹ρ ^ σ for ρ, σ P Ω1pΣ, gq.

As is well-known, a flat Lax connection always yields an infinite number of conservation

laws [60], thus ensuring the integrability of the model (for a nice recent review, see [70]).

2.2. Symmetric space sigma model

Lie algebra decomposition. We now consider sigma models defined on coset super-

spaces G{H where H is a Lie subsupergroup of G which arises as the fixed point set of an

automorphism of G of order 2. Such coset spaces are known as symmetric spaces. At the

level of the Lie superalgebras, this means that the Lie superalgebra g of G decomposes as

g – h‘m with h :“ 1
2p1` σq
looomooon

“:Ph

pgq and m :“ 1
2p1´ σq
looomooon

“:Pm

pgq , (2.10a)

where h is the Lie superalgebra of H and σ : g Ñ g is an automorphism of g with σ2 “ 1.

Then,

rh, hs Ď h , rm, hs Ď m , and rm,ms Ď h . (2.10b)

Elements of h are said to be of homogeneity 0 and elements of m of homogeneity 2, respect-

ively and we denote the homogeneity of a homogeneous element by | ´ |. Furthermore, we

assume that the inner product x´,´y is compatible with the decomposition (2.10), that is,

we take xU, V y “ 0 for |U | ` |V | ‰ 0 mod 4 for any two homogeneous elements U, V P g.

Sigma model action. In order to formulate the sigma model action, we first observe

that under the decomposition (2.10) the current j “ g´1dg decomposes as

j “ A`m ,

A :“ Phpjq P Ω1pΣ, hq and m :“ Pmpjq P Ω1pΣ,mq .
(2.11)

Under the local (right) H-action

g ÞÑ gh for all h P C8pΣ,Hq (2.12)
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the A component in (2.11) transforms as a connection one-form, A ÞÑ h´1Ah ` h´1dh,

whereas m as an endomorphism one-form, m ÞÑ h´1mh. Therefore, the sigma model

action

S :“ 1
2

ż

Σ
xm, ‹my (2.13)

is invariant under local transformations (2.12). The associated equation of motion reads

∇A‹m “ 0 , (2.14)

where ∇A has been defined in (2.4). This model describes the dynamics of nb “ nGb ´ nHb

bosonic and nf “ nGf ´ n
H
f fermionic degrees of freedom, with nGb , nHb and nGf , nHf being the

number of bosonic and fermionic generators of G and H, respectively.

Noether symmetries. The action (2.13) is invariant under the global (left) G-

action (2.3a). It is easy to check that the associated Noether current is given by

JN :“ gmg´1 . (2.15)

Lax connection. The Maurer–Cartan equation (2.2) decomposes under (2.10) as

FA `
1
2 rm,ms “ 0 and ∇Am “ 0 (2.16)

and together with the equation of motion (2.14) they constitute the first-order system of a

symmetric space sigma model. Importantly, this first-order system is equivalent to

dJpzq ` 1
2 rJpzq, Jpzqs “ 0 , (2.17a)

where

Jpzq :“ A` 1
2pz

2 ` z´2qm´ 1
2pz

2 ´ z´2q ‹m (2.17b)

is the Lax connection with z a complex spectral parameter.

Evidently, this Lax connection depends on the choice of the coset representative. How-

ever, in order to generate an infinite tower of conserved charges which are manifestly gauge

invariant, it is preferable to consider a Lax connection that is invariant under H-gauge

transformations. This requirement is satisfied by

J 1pzq :“ g
`

Jpzq ´ Jp1q
˘

g´1 “ g
`

Jpzq ´ j
˘

g´1 “ gJpzqg´1 ` gdg´1 . (2.18)

Furthermore, upon defining z1 :“ ´ logpzq and expanding this expression around z1 “ 0, we

obtain

J 1pzpz1qq “ ‹LN z
1 `Opz12q , (2.19)

where the coefficent LN is the Noether current (2.15). Thus, at order z1 the flatness of J 1

implies the conservation of the Noether current.
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2.3. Semi-symmetric space sigma model

Lie algebra decomposition. Let us now come to sigma models on semi-symmetric

spaces, that is coset superspaces G{H where H is a Lie subsupergroup of G which arises as

the fixed point set of an automorphism of G of order 4. This means that the Lie superalgebra

g of G decomposes as

g – h‘ p‘m‘ q (2.20a)

with

h :“ 1
2p1` σ ` σ

2 ` σ4q
looooooooooomooooooooooon

“:Ph

pgq , m :“ 1
2p1´ σ ` σ

2 ´ σ3q
looooooooooomooooooooooon

“:Pm

pgq ,

p :“ 1
2p1´ iσ ´ σ2 ` iσ4q
loooooooooooomoooooooooooon

“:Pp

pgq , q :“ 1
2p1` iσ ´ σ2 ´ iσ3q
loooooooooooomoooooooooooon

“:Pq

pgq ,
(2.20b)

where h is the Lie superalgebra of H and σ : g Ñ g is an automorphism of g with σ4 “ 1

and
rh, hs Ď h , rp, hs Ď p , rm, hs Ď m , rq, hs Ď q ,

rp, ps Ď m , rm, ps Ď q , rq, ps Ď h ,

rm,ms Ď h , rq,ms Ď p ,

rq, qs Ď m .

(2.20c)

Elements of h are said to be of homogeneity 0, elements of p of homogeneity 1, elements

of m of homogeneity 2, and elements of q of homogeneity 3, respectively. Furthermore, we

assume that the inner product x´,´y is compatible with the decomposition (2.20), that is,

we take xU, V y “ 0 for |U | ` |V | ‰ 0 mod 4 for any two homogeneous elements U, V P g.

Sigma model action. Under the decomposition (2.20) the current (2.1) decomposes as

j “ A` p`m` q ,

A :“ Phpjq P Ω1pΣ, hq , m :“ Pmpjq P Ω1pΣ,mq ,

p :“ Pppjq P Ω1pΣ, pq , q :“ Pqpjq P Ω1pΣ, qq .

(2.21)

To formulate the sigma model action, we consider that under the local (right) H-

action (2.12) the component A of j transforms as a connection one-form, h ÞÑ h´1Ah `

h´1dh, whereas tp,m, qu as endomorphism one-forms, tp,m, qu ÞÑ h´1tp,m, quh for all

h P C8pΣ,Hq. The associated sigma model action is then the Green–Schwarz-like ac-

tion [71–73]

S :“ 1
2

ż

Σ
xm, ‹my ` 1

2

ż

Σ
xp, qy . (2.22)
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The equations of motion following from (2.22) are

∇A‹m´
1
2 rp, ps `

1
2 rq, qs “ 0 ,

rm, p` ‹ps “ 0 ,

rm, q ´ ‹qs “ 0 .

(2.23)

As in the symmetric space case, the model describes the dynamics of nb bosonic and nf

fermionic degrees of freedom with nb “ nGb ´ n
H
b and nf “ nGf ´ n

H
f .

Noether symmetries. One can check that

JN :“ g
`

m´ 1
2‹pp´ qq

˘

g´1 (2.24)

is the Noether current associated with the global (left) G-action (2.3a).

Lax connection. The Maurer–Cartan equation (2.2) decomposes under (2.20) as

FA `
1
2 rm,ms ` rp, qs “ 0 ,

∇Ap` rm, qs “ 0 ,

∇Am`
1
2 rp, ps `

1
2 rq, qs “ 0 ,

∇Aq ` rm, ps “ 0 ,

(2.25)

and together with the equations of motion (2.23) they constitute the first-order system of

a semi-symmetric space sigma model. Importantly, this first-order system is equivalent to

dJpzq ` 1
2 rJpzq, Jpzqs “ 0 , (2.26a)

where

Jpzq :“ A` zp` 1
2pz

2 ` z´2qm` z´1q ´ 1
2pz

2 ´ z´2q ‹m (2.26b)

is the Lax connection with z being a complex spectral parameter [74].1

As before, this Lax connection depends on the choice of coset representative but again,

there is a Lax connection that is invariant under H-gauge transformations,

J 1pzq :“ g
`

Jpzq ´ Jp1q
˘

g´1 “ g
`

Jpzq ´ j
˘

g´1 “ gJpzqg´1 ` gdg´1 . (2.27)

Upon setting z1 :“ ´ logpzq and expanding this expression around z1 “ 0, we obtain

J 1pzpz1qq “ ‹LN z
1 `Opz12q , (2.28)

where now LN is the Noether current (2.24).

1Generally, such Lax connections and flatness conditions arise for coset spaces that admit a Zm-

grading [75].
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2.4. Topological deformations

We may also consider deformations of the models (2.6), (2.13), and (2.22) that do neither

alter the equations of motion nor the Noether symmetries, thus preserving integrability.

Due to these properties, such type of deformations are referred to as topological, and they

have first been studied in the literature [76, 77, 48, 49] in connection with Yang–Baxter

deformations of two-dimensional sigma models [78–81].

Two-cocycles and derivations. Let Ω P H2pgq be a Lie superalgebra two-cocycle (we

may also restrict to a Lie subsuperalgebra of g)1, that is, Ω P
Ź2 g˚ and it is subject to the

cocycle condition

ΩpU, rV,W sq ` p´1q|U |p|V |`|W |qΩpV, rW,U sq ` p´1q|W |p|U |`|V |qΩpW, rU, V sq “ 0 (2.29)

for all U, V,W P g where | ´ | denotes the Graßmann degree. By the Riesz representation

theorem, there is a unique endomorphism D : gÑ g such that

ΩpU, V q “ xDpUq, V y for all U, V P g . (2.30)

Whilst the graded anti-symmetry of Ω is equivalent to

xDpUq, V y “ ´xU,DpV qy for all U, V P g , (2.31)

the cocycle condition (2.29) is equivalent to

DprU, V sq “ rDpUq, V s ` rU,DpV qs for all U, V P g , (2.32)

that is, D is a derivation for the Lie bracket r´,´s. Furthermore, upon writing g “ eV for

g P G and V P g, we can extend D to a left-invariant vector field on G by

DpeV q :“ eV
8
ÿ

k“0

p´1qk

pk ` 1q!
adkV pDpV qq with adV :“ rV,´s . (2.33)

It then follows that

DpgUg´1q “ g
`

DpUq `
“

g´1Dpgq, U
‰˘

g´1 (2.34)

for all g P G and for all U P g. See Appendix A for details. The Ad-invariance of x´,´y

then immediately yields

ΩpgUg´1, gV g´1q “ ΩpU, V q ` xg´1Dpgq, rU, V sy (2.35)

1The Whitehead lemma says that if g is a finite-dimensional semi-simple Lie algebra, then H2
pgq “

0. However, for Lie superalgebras, the Whitehead lemma does no longer hold in general. See [82] and

references therein on the cohomology for Lie superalgebras. See also [83, 84] for some recent developments

in cohomology theory for Lie superalgebras relevant to string theory/supergravity.
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for all g P G and for all U, V P g. Moreover, we shall also make use of the notation

DA :“ D ` adA for all A P g . (2.36)

Then, (2.34) implies that

Dg´1Ag`g´1Dpgqpg
´1Ugq “ g´1DApUqg (2.37)

for all g P G and for all A,U P g. Note that to show this one uses that g´1Dpgq “ ´Dpg´1qg

for all g P G as directly follows from (2.33).

Topological deformations. Next, if we extend Ω and D in the usual fashion to ΩppΣ, gq,

we can define a deformed model by

SΩ :“ S ` ζ
2

ż

Σ
Ωpj, jq “ S ` ζ

2

ż

Σ
xDpjq, jy , (2.38)

where S is any of the actions (2.6), (2.13), or (2.22) and ζ P R is an arbitrary deforma-

tion parameter. In the case when considering coset superspaces G{H, that is, either (2.13)

or (2.22), we need to require that the restriction Ω|h of the two-cocyle Ω to the Lie super-

algebra h of H vanishes. This, in turn, ensures that the action (2.38) is invariant under the

H-gauge transformations (2.12). Note that the condition Ω|h “ 0 is equivalent to D being

of degree two, that is, D|h : h Ñ m and D|m : m Ñ h in the case of the symmetric space

sigma models, and in the case of semi-symmetric space sigma models this gets augmented

by D|p : pÑ q and D|q : qÑ p.1

Furthermore, it is not too difficult to check that the deformation is topological in the

sense that the equations of motion for (2.38) are the same as those of the undeformed

model given by S. To show this, one makes use of the derivation property (2.32) of D

and the Maurer–Cartan equation (2.2). Likewise, it also follows that (2.38) is invariant

under the same symmetry transformation as the undeformed model with the same Noether

currents. All this thus ensures that the deformed model has the same Lax connection as

the undeformed model and hence, the deformation does not spoil integrability.2

As mentioned before, we may consider the restriction Ω|k of Ω to some Lie subsuperal-

gebra k of g. If K denotes the Lie supergroup associated with k, we may consider the change

g ÞÑ k´1g for k P C8pΣ,Kq and then deform any of the sigma model actions (2.6), (2.13),

1Indeed, Ω|h “ 0 is equivalent to D|h : hÑ m, and the other conditions then follow from the derivation

property of D and the requirement of preserving the commutations relation (2.10b) and (2.20c).
2Another deformation one may consider is by using the Kac–Moody two-cocycle on the based loop

algebra L0g given by
ş

Σ

ş1

0
dt xdJ

dt
, Jy with J : ΣˆS1

Ñ g with dJ` 1
2
rJ, Js “ 0 and Jpt “ 0q “ Jpt “ 1q “ j.

Such a deformation also renders the theory integrable.
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or (2.22) by adding ζ
2

ş

Σ Ω|kpk
´1dk, k´1dkq with Ω|k P H

2pkq. In fact, under the assump-

tion that Ω|k is non-degenerate, homogeneous Yang–Baxter deformations have been shown

in [77] to be equivalent to the non-Abelian T-dual of the deformed model when T-duality

is performed, with Ω|´1
k solving the (classical) Yang–Baxter equation and the deformation

parameter given by ζ´1.

2.5. Super non-Abelian T-duality

We are now interested in studying non-Abelian T-duality of the sigma models from the

preceeding sections. The general procedure that we shall apply is a straightforward gen-

eralisation of the well-known prescription of purely bosonic non-Abelian T-duality [5, 7] to

supergroups, and we shall refer to it as super non-Abelian T-duality in the following.

Gauging. Following [5, 7], the first step to dualise one of the previously discussed sigma

models is to gauge a Lie subsupergroup K of G, corresponding to the directions that we wish

to dualise. If k denotes the Lie superalgebra of K, the gauging is obtained by introducing a

k-valued connection one-form ω P Ω1pΣ, kq. Consequently, the current (2.1) generalises to

jω :“ g´1ωg ` g´1dg for g P C8pΣ,Gq . (2.39)

Evidently, Fjω “ g´1Fωg and so, the flatness of jω is equivalent to the flatness of ω.

Furthermore, jω is invariant under the local (left) K-action

g ÞÑ k´1g and ω ÞÑ k´1ωk ` k´1dk for all k P C8pΣ,Kq . (2.40)

Adding Lagrange multipliers. To implement Fω “ 0, we introduce Lagrange multi-

pliers represented by Λ P C8pΣ, kq, and we define the master action

Sω :“ S ` 1
2

ż

Σ
xDpjωq, jωy `

ż

Σ
xΛ`Dpgqg´1, Fωy , (2.41)

where S is any of the actions (2.6), (2.13), or (2.22) with j replaced with jω, and D

is the derivation introduced in (2.30) by means of the two-cocycle Ω. Without loss of

generality, we have set the deformation parameter ζ equal to one. It should be noted that

the action (2.41) is H-gauge invariant in the case when considering coset superspaces G{H,

that is, either (2.13) or (2.22), because of our assumption that Ω|h vanishes; see Section 2.4.

Moreover, in order to have the action (2.41) also K-gauge invariant, we require that the

gauge transformations (2.40) are augmented by

Λ ÞÑ k´1Λk ` k´1Dpkq for all k P C8pΣ,Kq . (2.42)
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Finally, we can simplify (2.41) as

Sω “ S ` 1
2

ż

Σ
xDpjωq, jωy `

ż

Σ
xΛ̃, Fjωy with Λ̃ :“ g´1Λg ` g´1Dpgq (2.43)

which is manifestly K-gauge invariant. This form of the master action will be the starting

point of our T-dualisation procedure.

T-dualisation. Upon integrating out Λ in (2.41), we recover the original sigma model

action. Indeed, the equation of motion for Λ is the flatness condition Fω “ 0, and hence,

ω is locally pure gauge. Generally, however, ω might have non-trivial holonomies around

non-contractible loops which prevents us from having ω be pure gauge globally. However,

we shall ignore this technicality by assuming that the topology of Σ is suitably chosen.

Hence, we have ω pure gauge globally and so, we may fix a K-gauge in which it vanishes

identically.

On the other hand, if we integrate out ω, we obtain the T-dual model. Since the

latter will still be invariant under K-gauge transformation, we may fix a gauge to remove

dimpKq coordinates. For instance, for principal chiral models, this can be used to gauge

away dimpKq original coordinates, thus arriving at a gauge-fixed T-dual action with the

same number of degrees of freedom as the original one, with the key difference that now

the dimpKq Lagrange multipliers play the role of dual coordinates. In particular, when

taking K “ G, gauge invariance can be used to set the original group element g “ 1, and,

consequently, the T-dual model depends only on the dual coordinates Λ.

In the case of sigma models defined on coset superspaces G{H, the reasoning is similar

with the only difference being that the original model describes dimpGq ´ dimpHq degrees

of freedom. The gauge invariance inherited by the T-dual model has to be used to fix also

some of the Lagrange multipliers [85, 14], while the remaining ones provide a set of dual

coordinates.

It should be stressed that this procedure can be complicated by certain uniqueness is-

sues when trying to solve the equation of motion for ω for the projection of jω onto the

Lie superalgebra of H. While for the principal chiral model this issue does not arise, it

may arise in symmetric and semi-symmetric models, and depends on the properties of the

chosen Lie groups. In this case, the T-dualisation procedure needs to be modified accord-

ingly and requires a case-by-case discussion. There are many examples in the literature for

purely bosonic sigma models where this problem is automatically cured once the Lagrange

multipliers are turned on in the master action (2.41) and the T-dualisation is performed

before gauge fixing them [85,14,49]. Instead, for sigma models defined on supergroups the

problem is made more severe by the appearance of fermionic coordinates, which are not
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invertible by their own nature. It turns out that in general switching on the fermionic Lag-

range multipliers does not help in making the equations invertible, and more sophisticated

approaches need to be used. In the case of purely fermionic cosets, this has been largely

discussed in [43]. We shall come back to this in Section 4 and in a forthcoming paper.

In what follows, we are going to discuss the T-dualisation of the three classes of models

introduced above. Our primary focus is to identify explicitly the T-dual actions, study the

associated Lax pair and the fate of integrability. In a simple example, corresponding to the

principal chiral model describing an AdS3 supergravity background, the question whether

super non-Abelian T-duality leads to a dual background which still solves the supergravity

torsion constraints is carefully investigated.

3. Super non-Abelian T-duality of principal chiral models

3.1. General derivation of the T-dual model

We shall gauge a subsupergroup K of G so that the master action (2.43) becomes

Sω “ 1
2

ż

Σ
xjω, ‹jωy `

1
2

ż

Σ
xDpjωq, jωy `

ż

Σ
xΛ̃, Fjωy (3.1)

with jω as given in (2.39).

T-dual sigma model action. The T-dual model is obtained by integrating out the ω

field. In particular, upon varying (3.1) with respect to ω, we obtain

‹jω `∇jω Λ̃´Dpjωq “ 0 . (3.2)

Upon making use of (2.5) and (2.36), this equation can be solved for jω as

jω “ ´
1

1´DΛ̃

`

P`pdΛ̃q
˘

`
1

1`DΛ̃

`

P´pdΛ̃q
˘

. (3.3)

Therefore, with the help of the identity

B

1

1˘DU
pV q,W

F

“

B

V,
1

1¯DU
pW q

F

for all U, V,W P g , (3.4)

which is a consequence of (2.31), the T-dual action that follows from (3.1) upon substitut-

ing (3.3) is

S̃ “

ż

Σ

B

dΛ̃,
1

1´DΛ̃

`

P`pdΛ̃q
˘

F

. (3.5)

15



T-dual equation of motion and Lax connection. Using (3.4), the expansion

1

1˘ pDΛ̃ ` δDΛ̃q
“

1

1˘DΛ̃

¯
1

1˘DΛ̃

˝ δDΛ̃ ˝
1

1˘DΛ̃

` ¨ ¨ ¨ , (3.6)

and δDΛ̃ “ adδΛ̃, some algebra shows that the equation of motion following from the T-dual

action (3.5) is

dj̃ ` 1
2 rj̃, j̃s “ 0 , (3.7)

where j̃ :“ jω with jω given in (3.3). Consequently, j̃ satisfies (3.2). Upon combining this

with (3.7) and making use of the Jacobi identity and the properties of D, we obtain

d‹j̃ “ 0 . (3.8)

The equations (3.7) and (3.8) confirm that for (deformed) principal chiral models the well-

known pattern of exchanging equations of motions and Maurer–Cartan equations [11] occur

also under super non-Abelian T-duality. Moreover, it allows to identify the T-dual Lax

connection as

J̃pz̃q :“ ´1
4pz̃ ´ z̃

´1q2 j̃ ` 1
4pz̃

2 ´ z̃´2q ‹j̃ , (3.9)

thus ensuring integrability of the T-dual model.

T-dual Noether symmetries. The T-dual model is invariant under global G-

transformations induced by the right action (2.3b) and given by the transformation

Λ̃ ÞÑ g´1
0 Λ̃g0 ` g

´1
0 Dpg0q for all g0 P G , (3.10)

where Dpg0q was defined in (2.33). Indeed, this follows immediately from (2.37). The

Noether current associated with this symmetry is then given by

J̃N “ ‹DΛ̃pj̃q . (3.11)

3.2. Example: OSpp1|2q principal chiral model

As an explicit example of super non-Abelian T-duality, we shall now consider the prin-

cipal chiral model for the orthosymplectic group OSpp1|2q. The interest in this supergroup

manifold is due to its interpretation as an N “ 1 supersymmetric AdS3, and as such, it

represents an appropriate background for three-dimensional supergravity [86,66,67,87–89],

as we are going to discuss.

In the absence of supersymmetry, non-Abelian T-duality of the SLp2,Rq principal chiral

model, which describes AdS3, has been performed in [12]. There, it has been shown that

the T-dualisation of an SLp2,Rq subgroup of the isometry group SLp2,RqˆSLp2,Rq yields
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a three-dimensional metric corresponding to a black hole space-time and a non-trivial B2-

field. To the best of our knowledge, it is still unknown whether this black hole and B2-field

configuration is a solution of a matter-coupled gravity and whether it can be embedded

into a three-dimensional supergravity.

It is then interesting to investigate what happens in the case of the AdS3 supergeometry.

To this end, we shall discuss the T-dualisation of an OSpp1|2q subgroup of the group of

superisometries OSpp1|2qˆOSpp1|2q. We will also comment about the T-dualisation of the

maximal bosonic subgroup SLp2,Rq Ď OSpp1|2q. We will find that in both cases, the target

superspaces and B2-fields of the T-dual models fall outside the class of possible solutions of

a three-dimensional N “ 1 supergravity. This indicates that the black hole configuration

obtained by the non-Abelian T-dualisation of the SLp2,Rq principal chiral model in [12]

does not seem to have a conventional supergravity extension.

Orthosymplectic algebra. To begin with, we fix our conventions for the orthosymplectic

algebra ospp1|2q. In spinorial notation, it is described by a set of two fermionic generators

Qα and three bosonic generators Lαβ “ Lβα for α, β, . . . “ 1, 2 subject to the following

non-trivial commutation relations

rLαβ, Lγδs “ ´i
`

εγpαLβqδ ` εδpαLβqγ
˘

,

rQα, Qβs “ Lαβ , rLαβ, Qγs “ ´iεγpαQβq .
(3.12)

The parentheses on the right-hand sides denote normalised symmetrisation of the enclosed

indices and i is the imaginary unit. In addition, εαβ “ ´εβα with εαγεγβ “ δα
β and δαβ is

the Kronecker symbol. Furthermore, we introduce an inner product x´,´y on ospp1|2q by

xQα, Qβy :“ iεαβ , xLαβ, Lγδy :“ εαpγεδqβ , and xQα, Lβγy :“ 0 . (3.13)

Sigma model action. Since H2pospp1|2qq vanishes [82], we work with the undeformed

action (2.6). In particular, we parametrise g P G as

g :“ gbgf with gb :“ ex
αβLαβ , gf :“ e´F , and F :“ θαQα , (3.14)

with three bosonic coordinates xαβ “ xβα and two fermionic coordinates θα. The corres-

ponding current j “ g´1dg “: jαβLαβ ` j
αQα can be split as

j “ jb ` jf , (3.15a)

where (see also Appendix B)

jb :“ g´1
b dgb and jf :“ ´∇jbF ´ 1

2 adF p∇jbFq ´ 1
6 ad2

F pdFq (3.15b)
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and the covariant derivative is as defined in (2.4). Explicitly,

jb “: eαβLαβ ,

jf “ ´
“`

1´ i
8θ

2
˘

dθα ` iθαe
αβ
‰

Qβ `
1
2pθ

αdθβ ` i
2θ

2eαβqLαβ ,
(3.16)

where θ2 :“ θαθα. Consequently,

j “ ´
`

1´ i
8θ

2
˘`

dθβ ` iθαe
αβ
˘

Qβ `
`

1` i
4θ

2
˘`

eαβ ` 1
2θ
pαdθβq

˘

Lαβ . (3.17)

In order to compute eαβ explicitly, we use the Baker–Campbell–Hausdorff formula together

with the identities (C.5) specialised to U ” xαβLαβ and V ” dU . Indeed, jb “ e´UdeU “
ř8
k“0

p´1qk

pk`1q! adkU pdUq, and so

eαβ “ dxαβ ´
2x´

?
2 sinhp

?
2xq

4x3
px2dxαβ ´ 2xγ

αxδ
βdxγδq `

2i sinh2
`

x?
2

˘

x2
xγ
pαdxβqγ .

(3.18a)

where

xγ
αxβ

γ “ ´1
2δβ

αxγδx
γδ “: ´1

2δβ
αx2 ñ x2 “ xαβx

αβ . (3.18b)

Note that the series in (3.18a) are in powers of x2 only.

Upon inserting these expressions into (2.6) and using (3.13), we eventually find

S “ ´1
2

ż

Σ

!

jαβ ^ ‹jαβ ` ijα ^ ‹jα

)

“ ´1
2

ż

Σ

!

eαβ ^ ‹eαβ ´ e
αβ ^ ‹θpαdθβq ` i

`

1´ i
16θ

2
˘

dθα ^ ‹dθα

)

.

(3.19)

Furthermore, in the metric-like form, the action reads as

S “

ż

Σ

!

1
2dxγδ ^ ‹dxαβgαβ,γδ ` dxβγ^‹dθαgα,βγ `

1
2dθβ ^ ‹dθαgα,β

)

(3.20a)

with the components

gαβ,γδ :“ gγδ,αβ :“ g1εαpγεδqβ ` g2xαpγxδqβ ,

gα,βγ :“ gβγ,α :“
“

g3εαpβεγqδ ` g4xαpβxγqδ ` g5pxαpβεγqδ ` xδpβεγqαq
‰

θδ ,

gα,β :“ ´gβ,α :“ εαβ

ˆ

i`
θ2

16

˙

(3.20b)

and the coefficient functions

g1 :“ ´
1´ x2 ´ cosh p

?
2xq

2x2
, g2 :“ ´

1` x2 ´ cosh p
?

2xq

x4
,

g3 :“
2x`

?
2 sinh p

?
2xq

8x
, g4 :“

´2x`
?

2 sinh p
?

2xq

4x3
, g5 :“

i

2x2
sinh2

ˆ

x
?

2

˙

.

(3.20c)
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T-dual sigma model action. We now perform super non-Abelian T-duality along

OSpp1|2q corresponding to the left action (2.3a). The general expression for the T-dual

action of the undeformed principal chiral model is given in (3.5) with DΛ̃ replaced with

adΛ̃. Moreover, since we are gauging the whole group, we can fix a gauge in which g “ 1.

Therefore, the T-dual action becomes

S̃ “ 1
2

ż

Σ

B

dΛ,
1

1´ adΛ
pdΛ` ‹dΛq

F

. (3.21)

In order to compute it explicitly, we rearrange the integrand as outlined in Appendix C. In

particular, upon specialising the identities (C.12) to U ” Λ and V ” dΛ with Λ expanded

in terms of a set of dual coordinates x̃αβ and θ̃α as Λ “: x̃αβLαβ ` θ̃
αQα, we obtain

1

1´ adΛ
pdΛq “

1

1´ 2x̃2

“

p1´ x̃2qZαβ ´ 2x̃γ
αx̃δ

βZγδ ´ 2ix̃γ
pαZβqγ

‰

Lαβ

`
2

2´ x̃2
ζαpδα

β ´ ix̃α
βqQβ ,

(3.22a)

where

Zαβ “ dx̃αβ `
2

2´ x̃2

“

dθ̃pα ´ idθ̃γ x̃γ
pα
‰

θ̃βq

`
i

p2´ x̃2qp1´ 2x̃2q

”

`

1´ 1
2 x̃

2
˘

dx̃αβ ´ 3x̃γ
αx̃δ

βdx̃γδ ´ 3ix̃γ
pαdx̃βqγ

ı

θ̃2 ,

ζα “ dθ̃α ´
i

1´ 2x̃2

“

p1´ x̃2qdx̃αβ ´ 2x̃γ
αx̃δ

βdx̃γδ ´ 2ix̃γ
pαdx̃βqγ

‰

θ̃β

´
i

p2´ x̃2qp1´ 2x̃2q

”

3
2dθ̃α ´ i

`

7
2 ´ x̃

2
˘

dθ̃βx̃β
α
ı

θ̃2

(3.22b)

and x̃2 is as defined in (3.18b). Therefore, summing everything and using the inner

product (3.13), the explicit expression for the T-dual action (3.21) eventually reads

S̃ “ ´
1

2

ż

Σ

#

dx̃αβ ^ ‹
“

p1´ x̃2qZαβ ´ 2x̃γ
αx̃δ

βZγδ ´ 2ix̃γ
pαZβqγ

‰

1´ 2x̃2

`
dx̃αβ ^

“

p1´ x̃2qZαβ ´ 2x̃γ
αx̃δ

βZγδ ´ 2ix̃γ
pαZβqγ

‰

1´ 2x̃2

`
2idθ̃α ^ ‹ζβpεαβ ´ ix̃αβq

2´ x̃2
`

2idθ̃α ^ ζβpεαβ ´ ix̃αβq

2´ x̃2

+

.

(3.23)

In the metric-like form, the action takes the following form in which one can immediately

notice the presence of a two-form superfield B̃2 which was absent in the original OSpp1|2q

model,

S “

ż

Σ

!

1
2dx̃γδ ^ ‹dx̃αβ g̃αβ,γδ ` dx̃βγ^‹dθ̃αg̃α,βγ `

1
2dθ̃β ^ ‹dθαg̃α,β

` 1
2dx̃γδ ^ dx̃αβB̃αβ,γδ ` dx̃βγ ^ dθ̃αB̃α,βγ `

1
2dθ̃β ^ dθαB̃α,β

)

(3.24a)
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with the components

g̃αβ,γδ :“ g̃γδ,αβ :“
`

g̃1 ` g̃3θ̃
2
˘

εαpγεδqβ `
`

g̃2 ` g̃4θ̃
2
˘

x̃αpγ x̃δqβ ,

g̃α,βγ :“ g̃βγ,α :“
`

g̃5x̃αpβεγqδ ` g̃6x̃δpβεγqα
˘

θ̃δ ,

g̃α,β :“ ´g̃β,α :“ εαβ
`

g̃7 ` g̃8θ̃
2
˘

,

B̃αβ,γδ :“ ´B̃γδ,αβ :“
`

b̃1 ` b̃2θ̃
2
˘

px̃αpγεδqβ ` x̃βpγεδqαq ,

B̃α,βγ :“ ´B̃βγ,α :“
`

b̃3εαpβεγqδ ` b̃4x̃αpβx̃γqδ
˘

θ̃δ ,

B̃α,β :“ B̃β,α :“ x̃αβ
`

b̃5 ` b̃6θ̃
2
˘

(3.24b)

and the coefficient functions

g̃1 :“
1´ x̃2

1´ 2x̃2
, g̃2 :“

2

1´ 2x̃2
, g̃3 :“

ip1` 2x̃4q

p2´ x̃2qp1´ 2x̃2q2
, g̃4 :“

4i

p1´ 2x̃2q2
,

g̃5 :“
2i

1´ 2x̃2
, g̃6 :“

2ip1` x̃2q

p2´ x̃2qp1´ 2x̃2q
, g̃7 :“

2i

2´ x̃2
,

g̃8 :“
p6` 7x̃2 ´ 2x̃4q

2p2´ x̃2q2p1´ 2x̃2q
,

b̃1 :“
i

1´ 2x̃2
, b̃2 :“ ´

5` 2x̃2

2p2´ x̃2qp1´ 2x̃2q2
,

b̃3 :“
1

1´ 2x̃2
, b̃4 :“

6

p2´ x̃2qp1´ 2x̃2q
,

b̃5 :“ ´
2

2´ x̃2
, b̃6 :“

ip10´ 2x̃2q

p2´ x̃2q2p1´ 2x̃2q
,

(3.24c)

and x̃2 is as defined in (3.18b). Note that the remaining isometry group is OSpp1|2q as

follows from the general discussion around (3.11). Hence, half of the supersymmetries of

the original model are broken. As shown in Appendix E, this also happens when dualising

only the maximal bosonic subgroup SLp2,Rq. This is in agreement with what was already

established, for instance, in the cases of purely bosonic non-Abelian T-duality along the

AdS3- and S3-directions in AdS3 ˆ S3 ˆ CY2 backgrounds [15, 14, 90] (where CY2 is a

Calabi–Yau two-fold).

T-dual supervielbeins. We observe that the dual action (3.21) can be rewritten as

S̃ “ 1
2

ż

Σ

 

xẽ, ‹ẽy ` xẽ, adΛpẽqy
(

with ẽ :“ ´
1

1´ adΛ
pdΛq . (3.25)

Consequently, ẽ represents the T-dual supervielbein.1 A short calculation reveals that

dẽ “ ´
1

2
rẽ, ẽs ´

1

2

1

1´ adΛ
prẽ, ẽsq . (3.26)

1Note that 1
1`adΛ

pdΛq is an equivalent form for the supervielbeins as follows from the identity (3.4).
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Furthermore, from the action (3.25) we identify the B̃2-field as

B̃2 :“ 1
2xẽ, adΛpẽqy . (3.27)

A short calculation then leads to

H̃3 :“ dB̃2 “
1

2

B

ẽ,
1

1´ adΛ
prẽ, ẽsq

F

. (3.28)

To apply these formuæ to the OSpp1|2q case, we consider the expansions ẽ “: ẽαβLαβ`ẽ
αQα

and Λ “: x̃αβLαβ ` θ̃
αQα, and compute

rẽ, ẽs “ p2iẽγpα ^ ẽγ
βq ´ ẽα ^ ẽβqLαβ ` 2iẽαβ ^ ẽβQα “: υαβLαβ ` υ

αQα , (3.29)

the equations in (3.22) imply that

1

1´ adΛ
prẽ, ẽsq “

1

1´ 2x̃2

“

p1´ x̃2qZαβ ´ 2x̃γ
αx̃δ

βZγδ ´ 2ix̃γ
pαZβqγ

‰

Lαβ

`
2

2´ x̃2
ζαpδα

β ´ ix̃α
βqQβ

(3.30a)

with

Zαβ “ υαβ `
2

2´ x̃2

“

υpα ´ iυγ x̃γ
pα
‰

θ̃βq

`
i

p2´ x̃2qp1´ 2x̃2q

”

`

1´ 1
2 x̃

2
˘

υαβ ´ 3x̃γ
αx̃δ

βυγδ ´ 3ix̃γ
pαυβqγ

ı

θ̃2 ,

ζα “ υα ´
i

1´ 2x̃2

“

p1´ x̃2qυαβ ´ 2x̃γ
αx̃δ

βυγδ ´ 2ix̃γ
pαυβqγ

‰

θ̃β

´
i

p2´ x̃2qp1´ 2x̃2q

”

3
2υ

α ´ i
`

7
2 ´ x̃

2
˘

υβx̃β
α
ı

θ̃2 .

(3.30b)

Therefore, (3.26) becomes

dẽαβ “ ´
1

2
υαβ ´

1

2p1´ 2x̃2q

“

p1´ x̃2qZαβ ´ 2x̃γ
αx̃δ

βZγδ ´ 2ix̃γ
αZβγ

‰

(3.31a)

and

dẽα “ ´
1

2
υα ´

2

2p2´ x̃2q
ζαpδα

β ´ ix̃α
βq . (3.31b)

SLp2,Rq T-dual model. Note that upon setting θ̃α “ 0, the model (3.24) reduces to

the T-dual model found in [12] when dualising the SLp2,Rq principal chiral model. In

particular, the target space metric g̃αβ ,γδ for θ̃α “ 0 in (3.24) was interpreted in [12] as a

black hole that is asymptotically anti-de Sitter with the scalar curvature

R̃ “ ´2
4x̃4 ´ 6x̃2 ` 9

p1´ 2x̃2q2
(3.32)
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for the Levi-Civita connection. Furthermore, we observe that the B̃2-field B̃αβ ,γδ for θ̃α “ 0

in (3.24) has a non-constant field strength

H̃3 “
i

3

3´ 2x̃2

1´ 2x̃2
ẽα

β ^ ẽβ
γ ^ ẽγ

α , (3.33)

as follows from (3.28) together with (3.30a) after some algebra. Being non-constant, the

curvature (3.32) and the field strength (3.33) cannot be a solution of Einstein gravity

coupled only to a B2-field. Indeed, the equations of motion for this theory are

Rµν ´
1
2gµνR “ ´1

4

`

HµκλHν
κλ ´ 1

6gµνHκλσH
κλσ

˘

,

∇µHµνκ “ 0 ,
(3.34)

where Rµν is the Ricci tensor for the Levi-Civita connection of the metric gµν , ∇µ the

covariant derivative with respect to the Levi-Civita connection, and Hµνκ the components

of H3. The second equation implies that Hµνκ “ c
a

|g| εµνκ with εµνκ the Levi-Civita

symbol and c P R some constant. Thus, H3 must be constant. Moreover, the trace over

the first equation yields that R “ 1
4HµνκH

µνκ “ 3
2c

2 and so, also the scalar curvature must

be constant. Since neither the scalar curvature (3.32) is constant nor the three-form field

strength (3.33) is of the desired form, we conclude that the bosonic T-dual model is not a

solution of Einstein gravity coupled only to a B2-field. Therefore, the metric g̃αβ ,γδ and the

B̃2-field B̃αβ ,γδ may only be solutions in a theory in which gravity and the B2-field couple

to some other matter fields.1 It would be of interest to find this theory.

Supergravity constraints for the OSpp1|2q T-dual model. We will not elaborate on

the above issue of the bosonic SLp2,Rq model here but instead ask the question whether

the three-dimensional black hole of [12] can be part of a conventional three-dimensional

supergravity. In other words, we shall study whether the target superspace of the super non-

Abelian T-dual model obtained from the OSpp1|2q principal chiral model may be interpreted

as a supersymmetric black hole which might be a solution of a three-dimensional N “ 1

supergravity. For this to be possible, the target superspace of the T-dual model should

respect an additional key feature: it should be understood as an appropriate supergravity

background. Put differently, it should satisfy the superspace supergravity constraints, which

in three-dimensions are off-shell constraints that do not imply the on-shell supergravity

equations of motion.

1Note that the T-dualisation also yields a non-trivial dilaton φ̃ “ ´ logp1´2x̃2
q but the standard coup-

ling of the dilaton to Einstein gravity and a B2-field does not solve this issue for the scalar curvature (3.32)

and three-form field strength (3.33).
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A brief review of three-dimensional supergravity is given in Appendix D. In particular,

we are interested in the torsion constraints (D.12c) and the constraint (D.13) on the three-

form field strength H3 of the B2-field.

The target superspace of the original OSpp1|2q principal chiral model is an AdS3 solution

of three-dimensional N “ 1 supergravity. As such, it satisfies the constraints (D.12c).

Indeed, the supervielbeins can be read off the flat current j “ g´1dg given in (3.17).

In particular, expanding j “: jαβLαβ ` jαQα and using the algebra (3.12), the flatness

equation (2.2) in components reads

djαβ ` i jγα ^ jγ
β “ 1

2j
α ^ jβ and djα ` i jβ ^ jβ

α “ 0 . (3.35)

It follows that the torsion constraints (D.12c) are satisfied, provided that we identify the

supervielbeins, the connection one-form, and the non-vanishing components of the torsion

as

eαβ “ ´jαβ , eα “ ´jα , ωα
β “ ´ i

2 jα
β , and T αβ γ

δ “ ´ εγpαδβq
δ . (3.36)

Since jαβ “ jβα, the metric compatibility (D.12b) is also satisfied. Though the OSpp1|2q

principal chiral model does not include the B2-field, its field strength H3 can be a dynamical

source of the cosmological constant in the supergravity equations of motion ensuring the

existence of the AdS3 superspace solution (see e.g. [87]). For the AdS3 solution,

H3 “ eα ^ eαβ ^ eβ `
4i
3`eα

β ^ eβ
γ ^ eγ

α , (3.37)

where ` is proportional to the AdS3 radius. This H3 satisfies the constraint (D.13).

Now we would like to check whether the dual supergeometry satisfies the supergravity

constraints. Let us focus on the first torsion constraint in (D.12c), that is, the projec-

tion (3.31a) of (3.26) onto Lαβ . The torsion constraint is satisfied by the T-dual superviel-

beins if and only if the right-hand side of (3.31a) equals the expression ẽγpα^ω̃γ
βq´ 1

2 ẽ
α^ẽβ .

In particular, this implies that the terms in (3.31a) proportional to ẽα ^ ẽβ have to sum

up to a constant. From the expressions above, we see that the desired ẽα ^ ẽβ term is

contained in υαβ defined in (3.29), which in turn appears in Zαβ . Therefore, focusing only

on the υαβ terms, we obtain

dẽαβ “ ´
1

2
υαβ ´

1

2p1´ 2x̃2q

“

p1´ x̃2qυαβ ´ 2x̃γ
αx̃δ

βυγδ ´ 2ix̃γ
pαυβqγ

‰

´
i

2p2´ x̃2qp1´ 2x̃2q2

”

p1` 2x̃4qυαβ ´ 4p2´ x̃2qx̃γ
αx̃δ

βυγδ

´ ip5` 2x̃2qx̃γ
pαυβqγ

ı

θ̃2 ` ¨ ¨ ¨ ,

(3.38)
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where the ellipses denotes all the other terms that are irrelevant to the argument. Now, it

is easy to realise that in (3.38) there are non-constant terms proportional to ẽα^ ẽβ such as

ẽγ ^ ẽδx̃pγ
pαx̃δq

βq. However, such terms can never sum up to a constant. Consequently, we

may conclude that the T-dual supervielbeins ẽ do not satisfy the torsion constraints of three-

dimensional supergravity. In order to improve the situation, we could consider performing

a local OSpp1|2q-transformation of the form ẽ ÞÑ ẽg :“ g´1ẽg for g P C8pΣ,OSpp1|2qq.

Then, with Λg :“ g´1Λg and A :“ g´1dg, the structure equation (3.26) becomes

∇Aẽ
g “ ´

1

2
rẽg, ẽgs ´

1

2

1

1´ adΛg
prẽg, ẽgsq . (3.39)

However, one quickly realises that whilst such transformations can in principle remove some

of the unwanted terms in (3.38), they will never remove terms of the form ẽγ^ ẽδx̃pγ
pαx̃δq

βq

simply because A appears linearly in (3.39).

An additional confirmation of the incompatibility of the dual model with supergrav-

ity comes from considering the three-form curvature H̃3, which should have the particular

structure (D.13) in terms of an arbitrary scalar superfield. Using the formula (3.28) for H̃3

together with (3.30a), it is not too difficult to find the explicit expression of H̃3 general-

ising (3.33) to the supersetting. In particular, it turns out that it contains a non-constant

term which is cubic in the fermionic components of the supervielbein,

H̃3 “ ẽα ^ ẽβ ^ ẽγ
2

1´ 2x̃2

ˆ

ix̃pαβ θ̃γq ´
3

2´ x̃2
x̃pαβx̃γqδ θ̃

δ

˙

` ¨ ¨ ¨ . (3.40)

Such a term is not present in (D.13). This again shows that the T-dual model is incompatible

with the supergravity constraints.

One may wonder whether this result is a peculiarity of dualising all of OSpp1|2q. In

Appendix E, we comment on the maximal bosonic subgroup SLp2,Rq Ď OSpp1|2q and argue

that also in this case the dualisation is not compatible with the supergravity constraints.

The above issue may be related to the fact that our starting point was not a three-

dimensional Green–Schwarz superstring sigma model on AdS3, while the fermionic non-

Abelian T-duality of stringy sigma models was argued in [48, 49] to produce dual super-

backgrounds that satisfy supergravity constraints. The AdS3 superstring sigma model is

obtained by subtracting from the action (3.19) the term jα^‹jα and adding, instead of it,

the Wess–Zumino term associated with the worldvolume pull-back of H3 in (3.37) with a

relative coefficient k that ensures kappa-symmetry,

SGS “ ´1
2

ż

Σ
eαβ ^ ‹eαβ ` k

ż

M3

H3 with BM3 “ Σ . (3.41)

In the presence of such Wess–Zumino terms the gauging procedure is however more del-

icate [91] and the approach we took in this work would not be applicable. Note that the
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three-dimensional superstring sigma model under consideration is similar to ten-dimensional

superstrings in an Neveu–Schwarz–Neveu–Schwarz background which are not described by

sigma models on semi-symmetric Ramond–Ramond superbackgrounds. The B2-field of the

AdS3 superstring is invariant under the super non-Abelian isometry only modulo a gauge

transformation, and, as such, it falls out of the class of examples considered in [49]. For

this reason, the dualisation of the three-dimensional Green–Schwarz superstring deserves

further study. Another possibility of tackling this issue might be to generalise the above

three-dimensional superspace construction to a type IIB Green–Schwarz superstring in an

AdS3 ˆ S3 ˆ CY2 Ramond–Ramond background (where CY2 is a Calabi–Yau two-fold).

This would require the consideration of a semi-symmetric space sigma model with an iso-

metry supergroup PSUp1, 1|2q ˆ PSUp1, 1|2q rather than a higher-dimensional supergroup

of the OSp series. The non-Abelian T-dualisation of the SLp2,Rq isometry subgroup in the

bosonic string sigma model on this background was recently considered in [90], where it

was shown that a dual background AdS2 ˆ R ˆ S3 ˆ CY2 is a solution of massive type

IIA supergravity. It would certainly be of interest to generalise this example to its super-

non-Abelian T-dualised counterpart, and we postpone the study of this problem to future

work.

4. Super non-Abelian T-duality of supercoset models

We shall now move on and discuss the super non-Abelian T-duality procedure for sym-

metric and semi-symmetric spaces from Sections 2.2 and 2.3. As indicated, the dualisation

procedure for sigma models on coset superspaces G{H is affected by additional technical

complications related to certain uniqueness issues when trying to solve the equation of mo-

tion for ω for the projection of jω onto h. This is simply due to the fact that the action for

coset models does not involve the projection of j onto h. In addition, the non-invertibility

can also be brought into the game by the fermionic coordinates which are intrinsically non-

invertible. This peculiarity prevents us from presenting the super non-Abelian T-duality

procedure in complete generality, as a case-by-case analysis would be necessary. For this

reason, we shall only present the general approach, in particular pointing out where the

non-invertibility arises, and postpone to future work the study of specific models of phys-

ical relevance. Nevertheless, we can still discuss various properties of the T-dual model

such as integrability and the exchange of the equations of motion with the Maurer–Cartan

equations which is an identifier pattern of dualisation.
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4.1. Symmetric space sigma models

Gauged sigma model action. Starting point is the action (2.13). Upon gauging a

subgroup K Ď G, we decompose the covariant current (2.39) as

jω “ Aω `mω ,

Aω :“ Phpjωq “ A` Phpg
´1ωgq and mω :“ Pmpjωq “ m` Pmpg

´1ωgq ,
(4.1)

where A and m were introduced in (2.11) and the projectors Ph and Pm in (2.10), respect-

ively. Consequently, the master action (2.43) becomes

Sω “ 1
2

ż

Σ
xmω, ‹mωy `

1
2

ż

Σ
xDpjωq, jωy `

ż

Σ
xΛ̃, Fjωy . (4.2)

T-dual sigma model action. The variation of (4.2) with respect to ω yields

‹mω `∇jω Λ̃´Dpjωq “ 0 . (4.3a)

Upon decomposing Λ̃ as Λ̃ “ Λ̃h ` Λ̃m with Λ̃h P C8pΣ, hq and Λ̃m P C8pΣ,mq, renaming

Ã :“ Aω, using (2.36), and recalling that D : hØ m, we can express (4.3) as

DΛ̃m
pmωq “ ∇ÃΛ̃h and mω ´ rΛ̃h, ‹mωs “ ´‹

`

dΛ̃m ´DΛ̃m
pÃq

˘

. (4.3b)

Next, with the help of the projectors (2.5), the second equation in (4.3b) is solved for mω

as

mω “ ´
1

1´ adΛ̃h

´

P`
`

dΛ̃m ´DΛ̃m
pÃq

¯

`
1

1` adΛ̃h

´

P´
`

dΛ̃m ´DΛ̃m
pÃq

˘

¯

. (4.4)

Finally, the substitution of this expression into the action (4.2) yields

S̃ “

ż

Σ

C

`

dΛ̃m ´DΛ̃m
pÃq

˘

,
1

1´ adΛ̃h

´

P`
`

dΛ̃m ´DΛ̃m
pÃq

¯

G

`

ż

Σ
xΛ̃h, FÃy . (4.5)

Evidently, we have not yet used the first equation of (4.3b), and, as such, it is a hybrid

action. To obtain the fully T-dualised action, we would have to substitute (4.4) into this

equation to obtain a linear equation for Ã. However, generically, the resulting equation

will not admit a unique solution for Ã as the linear operator one would have to invert

may have a non-trivial kernel. This is the non-invertibility issue to which we have alluded

before. Of course, in specific situations, there will be a unique solution, and in those cases

we can substitute this solution into (4.5) to obtain the fully T-dualised action. Then, of

the original coordinates, we can gauge-fix nHb ` nKb bosonic and nHf ` nKf fermionic ones so

that the T-dual model describes the dynamics of nGb ´ nHb bosonic and nGf ´ nHf fermiomic
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degrees of freedom with nGb ´ nHb ´ nKb and nGf ´ nHf ´ nKf coming from original coordinates

and nKb and nKf from the Lagrange multipliers, respectively.

In the following, we shall ignore this non-invertibility issue and proceed with (4.5). Note

that the first equation of (4.3b) arises from varying (4.5) with respect to Ã. Note also that

an advantage of this hybrid action is that it enjoys an H-gauge invariance by means of

Ã ÞÑ h´1Ãh` h´1dh and Λ̃ ÞÑ h´1Λ̃h` h´1Dphq (4.6)

for all h P C8pΣ,Hq, and this allows us to demonstrate the exchange of Maurer–Cartan

equations and equations of motion momentarily. The transformation rule for Λ̃ follows

directly from (2.43) using (2.12). Note that h´1Dphq P m for all h P C8pΣ,Hq.

T-dual equations of motion and Lax connection. The difficulty in solving the equa-

tions of motion for the gauge connection does not prevent from studying some properties of

the T-dual model in complete generality. One of these properties is classical integrability,

that is the existence of a dual Lax connection.

In particular, the variations of the action (4.5) with respect to Λ̃h and Λ̃m yield the

equations of motion

FÃ `
1
2 rm̃, m̃s “ 0 and ∇Ãm̃ “ 0 , (4.7a)

where we have used (3.4) and (3.6) and defined m̃ :“ mω with mω as given in (4.4).

Furthermore, the variation with respect to Ã leads to

DΛ̃m
pm̃q “ ∇ÃΛ̃h . (4.7b)

Taking into account that m̃ satisfies the second equation in (4.3b) identically and using the

equations of motion above and the Jacobi identity, after a short calculation we obtain

∇Ã‹m̃ “ 0 . (4.8)

A comparison between the structure of the dual equations of motion (4.7) and the con-

straint (4.8) with the ones of the original model (2.14) and (2.16), leads to the conclusion

that also for symmetric space sigma models super non-Abelian T-duality exchanges equa-

tions of motion with the Maurer–Cartan equations. This allows to use

J̃pz̃q :“ Ã` 1
2pz̃

2 ` z̃´2q m̃´ 1
2pz̃

2 ´ z̃´2q ‹m̃ . (4.9)

as the T-dual Lax connection which ensures integrability.

27



4.2. Semi-symmetric space sigma models

Gauged sigma model action. Finally, we discuss super non-Abelian T-duality for semi-

symmetric space sigma models on G{H. Since the procedure is exactly the same as the one

for symmetric space sigma models we can be rather brief.

In the conventions of Section 2.3, upon gauging a Lie subsupergroup K Ď G, we decom-

pose the current (2.39) as

jω “ Aω ` pω `mω ` qω ,

Aω :“ PhpjBq “ A` Phpg
´1ωgq , mω :“ Pmpjωq “ m` Pmpg

´1ωgq ,

pω :“ Pppjωq “ p` Pppg
´1ωgq , qω :“ Pqpjωq “ q ` Pqpg

´1ωgq ,

(4.10)

where A, p, m, and q were introduced in (2.21) and the projectors Ph, Pp, Pm, and Pq

in (2.20), respectively. Therefore, the master action (2.43) becomes

Sω “ 1
2

ż

Σ
xmω, ‹mωy `

1
2

ż

Σ
xpω, qωy `

1
2

ż

Σ
xDpjωq, jωy `

ż

Σ
xΛ̃, Fjωy . (4.11)

T-dual sigma model action. Upon varying (4.11) with respect to ω, we obtain

‹mω ´
1
2pω `

1
2qω `∇jω Λ̃´Dpjωq “ 0 . (4.12a)

More explicitly, with Λ̃ “ Λ̃h ` Λ̃p ` Λ̃m ` Λ̃q and Λ̃h P C8pΣ, hq, Λ̃p P C8pΣ, pq, Λ̃m P

C8pΣ,mq, and Λ̃q P C8pΣ, qq, renaming Aω :“ Ã, using (2.36) and recalling thatD : hØ m

and D : pØ q, we have

´rΛ̃q, pωs ´DΛ̃m
pmωq ´ rΛ̃p, qωs “ ´∇ÃΛ̃h ,

´rΛ̃h, pωs ´ rΛ̃q,mωs ´DΛ̃m
pqωq ´

1
2pω “ ´∇ÃΛ̃p ,

mω ´ rΛ̃p, ‹pωs ´ rΛ̃h, ‹mωs ´ rΛ̃q, ‹qωs “ ´‹
`

dΛ̃m ´DΛ̃m
pÃq

˘

,

´DΛ̃m
ppωq ´ rΛ̃p,mωs ´ rΛ̃h, qωs `

1
2qω “ ´∇ÃΛ̃q .

(4.12b)

Next, we solve the second and fourth equations in (4.12b) for pω and qω in terms of mω.

Specifically, if we define

R :“

¨

˝

´ 1
1`c`˝DΛ̃m

˝ c´˝DΛ̃m

˝ c` ´ 1
1`c`˝DΛ̃m

˝ c´˝DΛ̃m

˝ c` ˝DΛ̃m
˝ c´

´ 1
1`c´˝DΛ̃m

˝ c`˝DΛ̃m

˝ c´ ˝DΛ̃m
˝ c`

1
1`c´˝DΛ̃m

˝ c`˝DΛ̃m

˝ c´

˛

‚

(4.13a)

with c˘ :“ 2
1˘2 adΛ̃h

, we can write

˜

pω

qω

¸

“ R

˜

´∇ÃΛ̃p ` adΛ̃q
pmωq

´∇ÃΛ̃q ` adΛ̃p
pmωq

¸

. (4.13b)
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Upon subsituting these expressions into the third equation of (4.12b) and using the pro-

jectors (2.5), we can solve for mω to obtain

mω “

ˆ

´
1

1´ S
˝ P` `

1

1` S
˝ P´

˙

pT q (4.13c)

with

S :“ adΛ̃h
`
`

adΛ̃p
, adΛ̃q

˘

˝R ˝

˜

0 id

id 0

¸

˝

˜

adΛ̃p

adΛ̃q

¸

,

T :“ dΛ̃m ´DΛ̃m
pÃq `

´

`

adΛ̃p
, adΛ̃q

˘

˝R
¯

˜

∇ÃΛ̃p

∇ÃΛ̃q

¸

.

(4.13d)

We should now subsitute these expressions in the first equation in (4.12b) to obtain a linear

equation for Ã. However, as in the case of symmetric space sigma models, this equation

will not, in general, admit a unique as the linear operator that needs to be inverted may

have a non-trivial kernel. This would require a case-by-case analysis and so, we proceed

with a hybrid formulation by only inserting the solutions for mω, pω, and qω into (4.11).

We find

S̃ “

ż

Σ

B

T,
1

1´ S

`

P`pT q
˘

F

`
1

2

ż

Σ

C˜

∇ÃΛ̃q

∇ÃΛ̃p

¸

, R

˜

∇ÃΛ̃p

∇ÃΛ̃q

¸G

`

ż

Σ
xΛ̃h, FÃy . (4.14)

The first equation in (4.12b) arises from varying this action with respect to Ã. Note that

this action enjoys an H-gauge invariance by means of

Ã ÞÑ h´1Ãh` h´1dh and Λ̃ ÞÑ h´1Λ̃h` h´1Dphq (4.15)

for all h P C8pΣ,Hq. As before, the transformation rule for Λ̃ follows directly from (2.43)

using (2.12). Note again that h´1Dphq P m for all h P C8pΣ,Hq.

T-dual equations of motion and Lax connection. A lengthy but straightforward

calculation reveals that the variations of the action (4.14) with respect to Λ̃h, Λ̃p, Λ̃m, and

Λ̃q yield the equations of motion1

FÃ `
1
2 rm̃, m̃s ` rp̃, q̃s “ 0 ,

∇Ãp̃` rm̃, q̃s “ 0 ,

∇Ãm̃`
1
2 rp̃, p̃s `

1
2 rq̃, q̃s “ 0 ,

∇Ãq̃ ` rm̃, p̃s “ 0 ,

(4.16a)

1For details on the derivation of these equations we refer the reader to Appendix F.
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where m̃ :“ mω, p̃ :“ pω, and q̃ :“ qω with mω, pω, and qω as given in (4.13). Additionally,

the variation with respect to Ã yields

´rΛ̃q, p̃s ´DΛ̃m
pm̃q ´ rΛ̃p, q̃s “ ´∇ÃΛ̃h . (4.16b)

Consequently, using this equation, the equations of motion (4.16) and the fact that m̃, p̃,

and q̃ satisfy the second, third, and fourth equation in (4.12b) identically, and the Jacobi

identity, some algebra shows that we also have

∇Ã‹m̃´
1
2 rp̃, p̃s `

1
2 rq̃, q̃s “ 0 ,

rm̃, p̃` ‹p̃s “ 0 ,

rm̃, q̃ ´ ‹q̃s “ 0 .

(4.17)

Hence, we again obtain the exchange of equations of motion and Maurer–Cartan equations

under super non-Abelian T-duality. Therefore, the T-dual Lax connection is given by

J̃pz̃q :“ Ã` z̃p̃` 1
2pz̃

2 ` z̃´2q m̃` z̃´1q̃ ´ 1
2pz̃

2 ´ z̃´2q ‹m̃ , (4.18)

which ensures the classical integrability of the T-dual model.

5. Conclusions

We have considered a general procedure of non-Abelian T-duality of sigma models on group

manifolds, symmetric, and semi-symmetric spaces with the emphasis on the T-dualisation of

sigma models whose target spaces are supermanifolds possessing non-Abelian superisomet-

ries. All these models are classically integrable, and since super non-Abelian T-duality

exchanges the equations of motion with Bianchi identities (i.e. Maurer–Cartan equations),

it is straightforward to write down the T-dual Lax connection. In general, super non-

Abelian T-duality encounters a problem of integrating out all the variables of the initial

model and getting the dual model described entirely with a dual set of coordinates.

We have considered in full detail the relatively simple example of the OSpp1|2q principal

chiral model in which this problem does not occur. We have, however, argued that even

though the target superspace of the initial model is an AdS3 solution of three-dimensional

N “ 1 supergravity, the dual target superspace background does not satisfy the three-

dimensional supergraity constraints. Such model cannot even be a solution of a gener-

alised supergravity [21, 22] because also in that case the torsion supergravity constraints

are the same. A reason for the breaking of such constraints may be related to the fact

that the OSpp1|2q principal chiral model does not describe the dynamics of a string in

three-dimensional N “ 1 supergravity. The N “ 1, d “ 3 superstring action is of the

30



Green–Schwarz type (see e.g. [92]) with the Wess–Zumino term which in the case of the

AdS3 superspace is a three-dimensional counterpart of an Neveu–Schwarz–Neveu–Schwarz

background of ten-dimensional superstrings. To the best of our knowledge, non-Abelian T-

duality of string sigma models in Neveu–Schwarz–Neveu–Schwarz super-backgrounds has

not been studied in the literature, and this may be an interesting problem to address in

future work.

Another point1 that deserves further investigation concerns the extension of the non-

Abelian T-duality group defined in [57, 93, 94] to our super-non-Abelian-T-duality setting.

Such a generalisation should exist as it would represent the non-Abelian analogue of the

OSppdb, db|dfq action defined in [95, 96]. The latter extends the bosonic Opdb, dbq sym-

metry [6] to backgrounds with bosonic and fermionic Abelian isometries.

Appendices

A. Cocycles and derivations

Consider the derivation D defined in (2.30) and let V P g. Then, using es adV pUq “
ř8
k“0

sk

k! adkV pUq, it is easy to see that

DpeadV pUqq “ eadV pDpUqq `
8
ÿ

k,l“0

1

pk ` l ` 1q!
padkV ˝ adDpV q ˝ adlV qpUq (A.1)

because of the derivation property of D. Next, since
ş1
0 dt p1 ´ tqktl “ k!l!

pk`l`1q! , we can

rewrite the sum as
8
ÿ

k,l“0

1

pk ` l ` 1q!
adkV ˝ adDpV q ˝ adlV “

ż 1

0
dt

8
ÿ

k,l“0

1

k!l!
p1´ tqktl adkV ˝ adDpV q ˝ adlV

“

ż 1

0
dt ep1´tq adV ˝ adDpV q ˝ et adV .

(A.2)

Consequently,

DpeadV pUqq “ eadV

ˆ

DpUq `

ż 1

0
dt

´

e´t adV ˝ adDpV q ˝ et adV
¯

pUq

˙

“ eadV

ˆ

DpUq `

„
ż 1

0
dt e´t adV pDpV qq, U

˙

“ eadV

˜

DpUq `

«

8
ÿ

k“0

p´1qk

pk ` 1q!
adkV pDpV qq, U

ff¸

“ eV
`

DpUq `
“

e´VDpeV q, U
‰˘

e´V ,

(A.3)

where we have inserted the definition (2.33). This verifies (2.34).
1We are grateful to the referee for bringing this point to our attention.
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B. Fermionic current

Let us derive (3.15b) which is a special case of a more general formula [97,98]. We consider

the one-parameter family (t P R)

jptq :“ etFjb e´tF ` etFde´tF . (B.1)

Consequently,

Btjptq “ et adF p´∇jbF q , (B.2)

where ∇jb is as defined in (2.4). Therefore,

jptq “ jb `

ż t

0
ds es adF p´∇jbFq ñ jf “

ż 1

0
ds es adF p´∇jbFq (B.3)

since jpt “ 1q “ j. Upon using es adV pUq “
ř8
k“0

sk

k! adkV pUq, we conclude that

jf “ ´

8
ÿ

k“0

1

p2k ` 1q!
ad2k

F p∇jbFq `
8
ÿ

k“0

1

p2k ` 2q!
ad2k`1

F p∇jbFq

“ ´
sinhpadF q

adF
p∇jbFq ´ 2

sinh2p1
2 adF q

adF
p∇jbFq .

(B.4)

This establishes (3.15b).

C. Useful identities for ospp1|2q

Here we derive the set of identities that have been used in Section 3.2 for the OSpp1|2q

principal chiral model. To this end, we introduce

U :“ uαβLαβ
looomooon

“:Ub

` χαQα
loomoon

“:Uf

and V :“ vαβLαβ
looomooon

“:Vb

` ηαQα
loomoon

“:Vf

. (C.1)

We wish to compute the action of the operator 1
1´adU

on V .

We start by expanding the operator 1
1´adU

in powers of adUf . Since adkUf
“ 0 for k ą 2,

we obtain

1

1´ adU
“

1

1´ adUb

`
1

1´ adUb

˝ adUf ˝
1

1´ adUb

`
1

1´ adUb

˝ adUf ˝
1

1´ adUb

˝ adUf ˝
1

1´ adUb

.

(C.2)

We then expand 1
1´adUb

in powers of adUb and apply it to Vb ` Vf,

1

1´ adUb

pVb ` Vfq “
8
ÿ

k“0

adkUb
pVb ` Vfq . (C.3)
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For the bosonic part we note that, defining u2 as in (3.18b) and using (3.12), we obtain

ad2
Ub
pVbq “ pu2vαβ ´ 2uγ

αuδ
βvγδqLαβ . (C.4)

Consequently, acting recursively with adUb , we find

ad2k
Ub
pVbq “ p2u2qk´1pu2vαβ ´ 2uγ

αuδ
βvγδqLαβ for k ě 1 ,

ad2k
Ub
pVbq “ adUbpad2k

Ub
pVbqq “ ´2ip2u2qkuγ

αvβγLαβ for k ě 0 .
(C.5)

For the fermionic part, a similar calculation leads to

ad2k
Ub
pVfq “

`

1
2u

2
˘k
ηαQα and ad2k`1

Ub
pVfq “ ´i

`

1
2u

2
˘k
uα

βηαQβ . (C.6)

We are now ready to compute 1
1´adU

pV q using the expansion (C.2) and the previous

identities. For the first term in the expansion we obtain

1

1´ adUb

pVb ` Vfq “
1

1´ 2u2

“

p1´ u2qvαβ ´ 2uγ
αuδ

βvγδ ´ 2iuγ
pαvβqγ

‰

Lαβ

`
2

2´ u2
ηαpδα

β ´ iuα
βqQβ

“: v1αβLαβ ` η
1αQα .

(C.7)

From this structure, it easily follows that
ˆ

adUf ˝
1

1´ adUb

˙

pV q “ η1pαχβqLαβ ` iv1αβχ
βQα . (C.8)

Simply repeating the same procedure a few more times, we obtain the second term in (C.2)

according to
ˆ

1

1´ adUb

˝ adUf ˝
1

1´ adUb

˙

pV q “

“
1

1´ 2u2

“

p1´ u2qη1pαχβq ´ 2uγ
αuδ

βη1pγχδq ´ 2iuγ
αη1pβχγq

‰

Lαβ

`
2

2´ u2
iv1αγχ

γpδα
β ´ iuα

βqQβ

“: v2αβLαβ ` η
2αQα ,

(C.9)

from which we easily find
ˆ

adUf ˝
1

1´ adUb

˝ adUf ˝
1

1´ adUb

˙

pV q “ η2pαχβqLαβ ` iv2αβχ
βQα , (C.10)

and the third term
ˆ

1

1´ adUb

˝ adUf ˝
1

1´ adUb

˝ adUf ˝
1

1´ adUb

˙

pV q “

“
1

1´ 2u2

“

p1´ u2qη2pαχβq ´ 2uγ
αuδ

βη2pγχδq ´ 2iuγ
αη2pβχγq

‰

Lαβ

`
2

2´ u2
iv2αγχ

γpδα
β ´ iuα

βqQβ .

(C.11)
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In summary,

1

1´ adU
pV q “

1

1´ 2u2

“

p1´ u2qZαβ ´ 2uγ
αuδ

βZγδ ´ 2iuγ
pαZβqγ

‰

Lαβ

`
2

2´ u2
ζαpδα

β ´ iuα
βqQβ

(C.12a)

with

Zαβ :“ vαβ ` pη1 ` η2qpαχβq

“ vαβ `
2

2´ u2

“

ηpα ´ iηγuγ
pα
‰

χβq

`
i

p2´ u2qp1´ 2u2q

”

`

1´ 1
2u

2
˘

vαβ ´ 3uγ
αuδ

βvγδ ´ 3iuγ
pαvβqγ

ı

χ2 ,

ζα :“ ηα ´ ipv1 ` v2qαβχβ

“ ηα ´
i

1´ 2u2

“

p1´ u2quαβ ´ 2uγ
αuδ

βvγδ ´ 2iuγ
pαvβqγ

‰

χβ

´
i

p2´ u2qp1´ 2u2q

”

3
2η

α ´ i
`

7
2 ´ u

2
˘

ηβuβ
α
ı

χ2 .

(C.12b)

D. Three-dimensional supergravity

Cartan structure equations. Consider a pp, q|2nq-dimensional supermanifold M with

metric g of Graßmann degree zero. The structure group of M is generically OSppp, q|2nq

which is the group preserving the canonical graded symmetric bilinear form on Rp,q|2n.

In particular, we let A,B, . . . the Rp,q|2n-indices, and we denote the canonical graded-

symmetric bilinear form onRp,q|2n by ηAB. We have ηAB “ p´1q|A||B|ηBA where |´| denotes

the Graßmann degree. Note that OSppp, q|2nq is generated by 1
2pp`qqpp`q´1q`np2n`1q

bosonic generators and 2pp` qqn fermionic generators.

Let now EA be the supervielbeins on M . The structure functions fABC are given by

rEA,EBs “ fAB
CEC , (D.1)

where r´,´s denotes the (graded) Lie bracket. Furthermore, we define the dual super-

vielbeins eA by EA
 eB “ δA

B where δAB is the Kronecker symbol and ‘ ’ denotes the

interior product. We set δAB “ p´1q|A||B|δA
B. Then, in the supervielbein basis we write

g “ 1
2e

B d eAηAB “ eB b eAηAB , (D.2)

where ‘d’ denotes the graded symmetric tensor product. The inverse ηAB of ηAB is given

by

ηACηCB “ δAB ô p´1q|C|ηACη
CB “ δA

B . (D.3)
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Let now ‘LX ’ be the Lie derivative along a vector field X on M and ‘d’ the exterior

derivative. Then, we have the standard Cartan formula LXω “ dpX  ωq`X  dω for any

differential form ω on M , and since LX is a graded derivation with respect to the tensor

product, these then imply that

deA “ 1
2e

C ^ eBfBC
A . (D.4)

Here, ‘^’ denotes the graded antisymmetric tensor product.

Next, we define the torsion and curvature two-forms,

TA “ 1
2e

C ^ eBTBC
A and RA

B “ 1
2e

C ^ eBRBCA
B , (D.5)

by the Cartan structure equations

deA ´ eB ^ ωB
A “: ´TA and dωA

B ´ ωA
C ^ ωC

B “: ´RA
B , (D.6)

where ωA
B “ eCωCA

B is the connection one-form.

The Ricci tensor and the scalar curvature are then given by

RAB :“ p´1q|B||C|RACB
C and R :“ ηBARAB , (D.7)

where ηAB is the inverse metric as defined in (D.3).

Connection one-form from metric compatibility. The metric compatibility is ex-

pressed by

ωAB ` p´1q|A||B|ωBA “ 0 with ωAB :“ ωA
CηCB . (D.8)

Upon defining

FAB
C :“ fAB

C ` TAB
C , (D.9)

the Cartan structure equation (D.6) together with the metric compatibility (D.8) yield the

components of the connection one-form as

ωAB
C “ 1

2

`

FC
AB ` p´1q|A||B|FC

BA ` FAB
C
˘

, (D.10)

where p´1q|C|p|A|`|B|qFC
AB “ ηCDFDA

EηEB.

Three-dimensional supergravity constraints. Let M be a three-dimensional Lorent-

zian spin manifold. In that case, we have the factorisation TCM – S d S of the tangent

bundle where S is the spin bundle. This is equivalent to picking a conformal structure on

M . In an orthonormal frame, the components of the metric onM are pηabq “ diagp´1, 1, 1q
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with a, b, . . . “ 0, 1, 2, and because of the identification TCM – SdS, we may write εαpγεδqβ
for ηab with the spinor indices α, β, . . . “ 1, 2. Here, εαβ “ ´εβα is the standard symplectic

structure on S with εαγεγβ “ δα
β and δαβ the Kronecker symbol.

We are now interested in a p1, 2|2q-dimensional supermanifold M whose tangent bundle

decomposes as TCM – S d S ‘ Sr1s where r1s denotes the Graßmann-degree shift of the

fibres. Hence, the generic structure group OSpp1, 2|2q is reduced to SLp2,Rq which is the

three-dimensional tangent space Lorentz group. This is a general assumption for the form

of supergravity geometry. Furthermore, we may decompose the index A as A “ pαβ, αq so

that ηAB is given by

pηABq “

˜

εαpγεδqβ 0

0 iεαβ

¸

. (D.11)

Then, because of the identification TCM – SdS‘Sr1s, the components of the connection

become related to each other

ωαβ
γδ “ 2ωpα

pγδβq
δq , (D.12a)

where ωα
β is the one-form spin connection on S. The metric compatibility implies that

ωαβ “ ωβα with ωαβ “ iωα
γεγβ . (D.12b)

In addition, to describe supergravity, one imposes on the supergeometry the following tor-

sion constraints [99,100,87]

deαβ ´ 2eγpα ^ ωγ
βq “ ´1

2e
α ^ eβ ,

deα ´ eβ ^ ωβ
α “ ´1

2e
δε ^ eβγ T βγ δε

α ´ eδ ^ eβγ T βγ δ
α ,

(D.12c)

with no conditions on the torsion components T αβ γδ
ε and T αβ γ

δ.

If three-dimensional N “ 1 supergravity contains a two-form superfield B2, its three-

form field strength H3 is constrained in such a way that its components are functions of a

scalar superfield L and its derivatives (see e.g. [87]),

H3 “ eα ^ eαβ ^ eβ L` eβ ^ eγ
β ^ eγαDαL´

i
6eα

β ^ eβ
γ ^ eγ

αpiD2 ` 8SqL (D.13)

where Dα is the superspace covariant derivative and S is a scalar ‘prepotential’ superfield

which appears in the solution of the torsion constraints (D.12c).

E. T-dualisation of SLp2,Rq Ď OSpp1|2q

Let us briefly discuss the dualisation of the maximal bosonic subgroup SLp2,Rq Ď OSpp1|2q

of the OSpp1|2q principal chiral model. In particular, since H2pslp2,Rqq “ 0, we consider
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the T-dual action (3.5) with Λ̃ “ g´1Λg and Λ “: x̃αβLαβ . By construction, in this

case, (3.5) possesses an SLp2,Rq gauge symmetry. Given the parametrisation (3.14) for g,

we can exploit this gauge invariance to set gb “ 1. Then, a short calculation reveals that

Λ̃ “ g´1
f Λgf “

`

1` i
4θ

2
˘

x̃αβLαβ ` iθγ x̃γ
αQα “: yαβLαβ ` χ

αQα . (E.1)

This differs from the Λ̃ used in the dualisation of OSpp1|2q in Section 3.2 by the changes

x̃αβ Ñ yαβ and θ̃α Ñ χα. Therefore, we can rephrase the procedure given there by simply

making these replacements. In particular, upon inspecting (3.38) once these replacements

are made, it is evident that we cannot satisfy the first torsion constraint in (D.12c), exactly

as in the case when dualising all of OSpp1|2q. The same argument also applies to H3

in (3.40).

F. Semi-symmetric space sigma model

Let us provide some more details on the T-dualisation of semi-symmetric space sigma

models.

T-dual action. Firstly, let us explain as how to derive the T-dual action (4.14). In

particular, using the decompositions jω “ Ã ` pω `mω ` qω and Λ̃ “ Λ̃h ` Λ̃p ` Λ̃m ` Λ̃q

together with the fact that D : hØ m and D : pØ q, we we can rewrite (4.11) as

S̃ “ 1
2

ż

Σ
xmω, ‹mωy `

1
2

ż

Σ
xpω, qωy `

ż

Σ
xΛ̃h, FÃ `

1
2 rmω,mωs ` rpω, qωsy

`

ż

Σ
xΛ̃p,∇Ãqω ` rmω, pωsy `

ż

Σ
xΛ̃q,∇Ãpω ` rmω, qωsy

`

ż

Σ
xΛ̃m,∇Ãmω `

1
2 rpω, pωs `

1
2 rqω, qωsy

`

ż

Σ
xDpÃq,mωy `

1
2

ż

Σ
xDppωq, pωy `

1
2

ż

Σ
xDpqωq, qωy .

(F.1)

Next, we replace mω by the equation of motion in (4.12a), insert the second and fourth

equations of motion in (4.12b), and successively use the explicit expressions of pω, qω, and

mω given in (4.13). Ultimately, this yields the expression (4.14) for the dualised action.

T-dual equations of motion. In order to compute the equations of motion (4.16), we

recall the definition of the matrix R “ pRijq from (4.13a) and the operator S from (4.13d),

respectively. A quick calculation shows that

xR12pUq, V y “ ´xU,R12pV qy , xR21pUq, V y “ ´xU,R21pV qy ,

xR11pUq, V y “ ´xU,R22pV qy ,
(F.2a)
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and therefore,
B

1

1˘ S
pUq, V

F

“

B

U,
1

1¯ S
pV q

F

(F.2b)

for all U, V P ΩppΣ, gq. Therefore, applying the general relation δ
`

1
1˘S

˘

“ ¯ 1
1˘S ˝ δS ˝

1
1˘S ,

the variation of the first term in (4.14) is

δ

B

T,
1

1´ S

`

P`pT q
˘

F

“ ´xδT, m̃y ´

Bˆ

δS ˝
1

1´ S

˙

pT q,
1

1` S

`

P´pT q
˘

F

, (F.3)

where m̃ :“ mω with mω given in (4.13c). Upon inspecting the definitions of S and T given

in (4.13d), the only non-trivial part when computing δS and δT is the variation of R. Some

algebra shows that the only non-vanishing variations of R are

δΛ̃h
R “ R ˝ adδΛ̃h

˝R and δΛ̃m
R “ R ˝

˜

0 id

id 0

¸

˝ adδΛ̃m
˝R . (F.4)

Using all these formulæ, it is now not too hard to derive the equations of motion (4.16).
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