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Abstract
When mentally exploring maps representing large-scale environments (e.g., countries or continents), humans are assumed 
to mainly rely on spatial information derived from direct perceptual experience (e.g., prior visual experience with the geo-
graphical map itself). In the present study, we rather tested whether also temporal and linguistic information could account 
for the way humans explore and ultimately represent this type of maps. We quantified temporal distance as the minimum time 
needed to travel by train across Italian cities, while linguistic distance was retrieved from natural language through cognitively 
plausible AI models based on non-spatial associative learning mechanisms (i.e., distributional semantic models). In a first 
experiment, we show that temporal and linguistic distances capture with high-confidence real geographical distances. Next, 
in a second behavioral experiment, we show that linguistic information can account for human performance over and above 
real spatial information (which plays the major role in explaining participants’ performance) in a task in which participants 
have to judge the distance between cities (while temporal information was found to be not relevant). These findings indicate 
that, when exploring maps representing large-scale environments, humans do take advantage of both perceptual and linguistic 
information, suggesting in turn that the formation of cognitive maps possibly relies on a strict interplay between spatial and 
non-spatial learning principles.

Introduction

It is widely assumed that humans primarily rely on special-
ized spatial mechanisms for the development and organi-
zation of mental representations (commonly defined as 
‘cognitive maps’) of the physical environment they navi-
gate (O’Keefe & Nadel, 1978a, 1978b; Tolman, 1948). The 
discovery of neurons selectively tuned to encode spatial 
information, such as place and grid cells within the hip-
pocampal-entorhinal region, has provided evidence for a 
fairly specific and mechanistic-detailed neural basis for such 
cognitive maps (O’Keefe & Dostrovsky, 1971; O’Keefe & 

Nadel, 1978a, 1978b; Derdikman & Moser, 2010). Recent 
advancements in the field have further bolstered this view, 
suggesting that the same neural system involved in spatial 
navigation would also support the development and organi-
zation of non-spatial conceptual knowledge (Bellmund et al., 
2018; Bottini & Doeller, 2020a; Stoewer et al., 2022). These 
perspectives thus prioritize the perceptual and motor origin 
of cognitive maps, aligning with embodied accounts of cog-
nition (Barsalou, 2008; Gallese & Lakoff, 2005) and positing 
dependence of mental representations on the re-activation of 
sensorimotor circuits involved in spatial navigation through 
simulation processes (e.g., Bottini & Doeller, 2020a).

However, evidence challenging the view of cognitive 
maps development as primarily relying on specialized spa-
tial computations has also been provided (Louwerse, 2009; 
Louwerse, 2018; Friedman & Brown, 2000; Friedman & 
Montello, 2006; Friedman et al., 2002; Gatti et al., 2022; 
Shrager et al., 2008). For instance, research investigating 
the origins of biases in humans’ geographical judgments 
suggest that different sources of information contribute to 
the organization of spatial knowledge and that, when making 
spatial judgments, individuals primarily rely on inferences 
through plausible reasoning (Friedman & Brown, 2000; 
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Friedman & Montello, 2006; Friedman et al., 2002). These 
inferences would involve propositional and symbolic repre-
sentations, which are non-spatial in nature. In other words, 
non-spatial processes would also serve as a key source of 
biases and distortions in humans’ spatial representations. In 
addition to this, Shrager and colleagues (2008) demonstrated 
that patients with hippocampal and entorhinal cortex lesions 
were able to accurately keep track of reference locations 
and estimate distances similarly to healthy controls. Thereby 
acknowledging that this study employed short paths allowing 
for retaining in working memory (Shrager et al., 2008), this 
evidence still contrasts the notion of spatial computations 
relying on hippocampal and entorhinal regions as the only 
neural processes responsible for the development of mental 
representation of the environment.

This view is substantiated by a growing body of research 
emphasizing the crucial interplay between perceptual and 
linguistic experiences in the formation of cognitive maps. 
In particular, studies exploiting distributional semantic 
models (DSMs) demonstrated that spatial information can 
be bootstrapped from the statistical structure of natural 
language (Avery et al., 2021; Gatti et al., 2022; Louwerse, 
2018; Rinaldi & Marelli, 2020). For instance, by exploiting 
Latent Semantic Analysis (Landauer & Dumais, 1997), a 
traditional count-based DSMs whose first processing step 
builds on the computation of word co-occurrences, Louw-
erse and colleagues showed that it is possible to reconstruct 
the spatial layout (e.g., geographical distance between cit-
ies) of maps representing large-scale environments from 
various real world regions using text corpora written in the 
corresponding languages (e.g., using American corpora to 
reproduce the maps of the USA; Louwerse & Zwaan, 2009;  
Louwerse et al., 2012), as well as fictional words such as the 
Middle Earth from J. R. R. Tolkien’s novels (Louwerse & 
Benesh, 2012). Besides computational evidence, previous 
studies additionally showed that linguistic components (as 
estimated from raw co-occurrence frequency of word pairs 
extracted from a large text corpus, Tillman et al., 2013; or as 
extracted from DSMs, Gatti et al., 2022) can also account for 
humans’ performance in spatial tasks. In particular, Tillman 
and colleagues (2013) presented participants with US cities 
pairs in their iconic (i.e., northern city above southern city) 
or reverse-iconic positions (i.e., southern city above northern 
city) and required them to indicate whether they were closely 
located or not. By examining response times, their results 
revealed that linguistic factors (as indexed by the frequency 
of word co-occurrence) influenced response latencies only in 
the reverse-iconic order (Tilman et al., 2013). This suggests 
that when perceptual simulation becomes more challenging, 
individuals may rely on alternative sources of information 
and strategies, such as non-spatial processes based on lan-
guage statistics. However, whether linguistic factors more 
generally account for human performance when producing 

distance estimates (i.e., in a spatial task not specifically rely-
ing on specific iconic or reverse-iconic spatial arrangements, 
allowing for a perceptually independent exploration of the 
influence of linguistic experience on humans’ cognitive 
maps) is still unknown.

In addition to the role of perceptual and linguistic expe-
rience outlined above, temporal information, such as the 
time required to travel between different locations, might 
be involved as well when representing spatial layouts. This 
phenomenon would be due to the interconnected nature of 
the concepts of space and time at both the cognitive and 
neural level (MacDonald et al., 2011; Jaszczolt, 2012; Past-
alkova et al., 2008; Riemer et al., 2018). Since spatially 
closer locations can require longer travel time than more spa-
tially distant locations, and vice versa, investigating whether 
spatial representations can be bootstrapped from temporal 
information is an important research question warranting 
further exploration. Critically, studies examining the inter-
play between spatial and temporal processing have primar-
ily focused on (relatively) small to medium environments 
(i.e., ranging from rooms to cities; e.g., Giraudo & Péruch, 
1988; Herman, et al., 1983, 1984; Jansen-Osmann & Ber-
endt, 2005; Kang et al., 2003; Riemer et al., 2014; Riemer 
et al., 2018; Sadalla & Staplin, 1980), while research at a 
large level (e.g., countries or continents) has been relatively 
neglected (but cfr: Maki, 1981; Säisä et al., 1986; Tversky 
& Schiano, 1989).

In the present study we thus built on this set of evidence 
as, to date, a comprehensive understanding of the inter-
play between spatial, linguistic, and temporal information 
in shaping mental representation of large environments is 
missing. In particular, we aimed at further shedding light 
on the factors subserving the processing of distance-like 
information from cognitive maps, by applying more mod-
ern prediction-based DSMs (e.g., Skip-gram and Continuous 
Bag of Words; Mikolov Chen et al., ) to quantify the role of 
linguistic experience. These recent models, indeed, rely on 
cognitively-plausible, associative learning mechanisms and 
can be thus conceived as computationally-implemented the-
oretical frameworks of the human semantic memory (Man-
dera et al., 2017; Günther et al., 2019; Jones et al., 2015). 
These models serve as a valuable proxy to quantify the role 
of linguistic experience in shaping knowledge, as they cap-
ture meanings from statistical patterns of word distributions 
in natural language (Lenci, 2018), without directly access-
ing nor computing any spatial relationships. Interestingly, 
there is evidence that these models can capture the layout 
of medium spatial environments (Anceresi et al., 2023) as 
well as humans’ behavior in the geographical domains (Gatti 
et al., 2022) and beyond, like in the case of the human body 
(Gatti et al., 2023).

However, although an increasing body of research 
emphasizes the significance of non-spatial processes in the 
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development of cognitive maps (Rinaldi & Marelli, 2020), 
the interplay between spatial and non-spatial processes in the 
function at hand is still not clear. These unsolved issues were 
tested across two experiments. First, we conducted a study 
to explore the relationship between spatial, linguistic and 
temporal distances. To do so, we exploited DSMs to retrieve 
linguistic distances, while we quantified temporal distances 
as the minimum time needed to travel by train between Ital-
ian cities, by selecting the main railway stations of Milan 
(Experiment 1A) and Rome (Experiment 1B) as depart-
ing point. Then, we conducted a second behavioral study 
to investigate whether linguistic and temporal information 
can account for human performance over and above spatial 
information in a task in which participants are required to 
produce distance estimates between cities.

Experiment 1A

Methods

Stimuli

Sixty-seven Italian cities were selected as stimuli. All the 
cities were capital of an Italian district (i.e., Capoluogo di 
Provincia). The cities were selected by indicating Milano 
Centrale (i.e., the central railway station of Milan) as depart-
ing point on the Bahn-Guru website (https:// direkt. bahn. 
guru/) and retrieving from it all the Italian cities available 
that were capital of a district. The Bahn-Guru resource uses 
a (legacy) API by Deutsche Bahn to find all direct trains 
running via a given station within the next 1–2 weeks and 
it is an open-source software provided by the OK Lab Ber-
lin (https:// codef or. de/ berlin/). In particular, for each city, 
from the Bahn-Guru website we retrieved an estimate of 
the minimum time required to travel by train from Milan. 
Additionally, for each city we also retrieved its geographi-
cal coordinates (from: https:// github. com/ Matte oHenr yChin 
aski/ Comuni- Itali ani- 2018- Sql- Json- excel) and its vector 
representation from a distributional semantic model (see 
below).

Distributional semantic model

The DSM used here was fastText (Bojanowski et al., 2017; 
Grave et al., 2018). The model was trained on Common 
Crawl and Wikipedia (around 11 billion words) using the 
Continuous Bag of Words (CBOW) method, an approach 
originally proposed by Mikolov et al. (2013a), with position-
weights across 300 dimensions, with character n-grams of 
length 5 and a window of size 5. When using CBOW, the 
obtained vector dimensions capture the extent to which a 

target word is reliably predicted by the contexts in which 
it appears.

With respect to traditional distributional models, whose 
ability to generate high quality distributed semantic repre-
sentations is limited to words that are sufficiently frequent 
in the input data, fastText is based on the idea (originally 
proposed by Schutze, 1993; and realized by Bojanowski 
et al., 2017) to take into account sub-lexical information by 
computing word vectors as the sum of the semantic vectors 
for the character n-grams embedded in each word.

From the Italian semantic space, we thus extracted the 
vector representations for the names of the 67 cities included 
and, in addition, the vector of “Milano” (Milan) which we 
used as reference point.

Computation of spatial, temporal and language‑based 
distances

Spatial distances (henceforth SpaDist) were computed on 
the basis of the cities’ geographical coordinates. Specifically, 
after retrieving longitude and latitude for each city, using 
the geosphere R package (Hijmans, 2022), we computed the 
distance between the location of each city and the location 
of Milan.

Temporal distances (henceforth TempDist) were retrieved 
from the Bahn-Guru website (https:// direkt. bahn. guru/; see 
above). This resource provides an estimate of the minimum 
time of travel by train between two stations.

Language-based distances (henceforth LingDist) between 
Milan and each city k was obtained with the following 
formula:

That is, language-based distances were computed as the 
cosine of the angle between the vector of each city and the 
vector of the word “Milano” (Milan) as subtracted from 1 
to transform them to a distance scale from a proximity scale 
(i.e., the lower the value the closer the vectors). Language-
based distances were computed using the dist function of 
the proxy R package (Meyer & Buchta, 2021). The cosine 
is generally taken as a reliable measure of (linguistic) simi-
larity between vectors (Günther et al., 2019). This meas-
ure indexes how similar—in the corpus used in the training 
phase- is the use of the two words represented by the two 
vectors included. Consider, for example, the cosine of the 
angles formed by the vector of the word “Milano” (Milan) 
and by the vectors of the words “Roma” (Rome), “Taranto” 
and “Bergamo”. We can observe that the cosine between 
“Milano” and “Roma” is higher (0.638) as compared with 
the one between “Milano” and “Taranto” (0.458), thus indi-
cating a higher linguistic similarity. Interestingly, the cosine 
between “Milano” and “Roma” is higher (0.638) even as 

LingDist = 1 − cos
(

�⃗k, �����������⃗Milano
)

https://direkt.bahn.guru/
https://direkt.bahn.guru/
https://codefor.de/berlin/
https://github.com/MatteoHenryChinaski/Comuni-Italiani-2018-Sql-Json-excel
https://github.com/MatteoHenryChinaski/Comuni-Italiani-2018-Sql-Json-excel
https://direkt.bahn.guru/
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compared with the one between “Milano” and “Bergamo” 
(0.633), which are geographically closer. This example illus-
trates how this measure can capture geographical informa-
tion [i.e., cos(Milano,Bergamo) > cos(Milano,Taranto)] but 
also clarifies that it can additionally index other components 
(e.g., Milan and Rome are two big Italian cities, as compared 
with Taranto and Bergano, and are likely used in the lan-
guage in a similar way).

Data analysis and results

All data, scripts and codes used in the analysis are available 
at: https:// osf. io/ pexqm/. All the analyses were performed 
with R-Studio (Rstudio Team, 2015). To investigate the 
relationship between SpaDist, TempDist and LingDist, we 
computed a Pearson correlation coefficient matrix. All the 
correlations were significant (all ps < 0.001), specifically the 
correlation between SpaDist and TempDist had r = 0.87, the 
correlation between SpaDist and LingDist had r = 0.46, and 
the correlation between TempDist and LingDist had r = 0.42 
(Fig. 1 and Fig. 2A).

Experiment 1B

Methods

In Experiment 1B we aimed to replicate the results of Exper-
iment 1A taking “Roma” (Rome) as reference point for the 
computation of both the linguistic and temporal index. The 
only differences between Experiment 1B and Experiment 
1A, thus, are related to the fact the starting cities (i.e., sixty-
two Italian cities) were retrieved from Bahn-Guru starting 
from Roma Termini (central Roman station).

Data analysis and results

Replicating Experiment 1A, all the correlations were sig-
nificant (all ps < 0.001), specifically the correlation between 
SpaDist and TempDist had r = 0.73, the correlation between 
SpaDist and LingDist had r = 0.34, and the correlation 
between TempDist and LingDist had r = 0.32 (Fig. 2B).

Fig. 1  Temporal (A) and linguistic (B) distance maps from the city of Milan. Warmer colors indicate closer distances. Both temporal and lin-
guistic distances approximate spatial distances

https://osf.io/pexqm/
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Experiment 2

Results of Experiment 1 showed significant correlations 
between spatial, linguistic and temporal distances, highlight-
ing their interconnected nature. However, it remains to be 
explored whether such linguistic and temporal information 
can account for human performance in spatial task over and 
above spatial information. That is, while spatial distances 
can be in principle retrieved from linguistic and temporal 
data, whether these two sources of information (language 
and time) could account for biases in spatial tasks is an open 
issue. Thus, to test for this, in Experiment 2, we conducted a 
behavioral task in which participants were required to pro-
vide distance judgements between cities. Importantly, since 
a strong correlation emerged between spatial and temporal 
distances in Experiment 1, stimuli for Experiment 2 were 
specifically selected among cities that minimized such cor-
relation for issues of multicollinearity.

Methods

Participants

Fifty-eight students participated in this experiment for 
course credits (14 males, M age = 22.72 years, SD = 2.71). 
All participants were native Italian speakers, had normal or 
corrected to normal vision and were naïve to the purpose 
of the study. Informed consent was obtained from all par-
ticipants before the experiment. The protocol was approved 
by the psychological ethical committee of the University of 

Pavia and participants were treated in accordance with the 
Declaration of Helsinki.

Sample size was determined a-priori based on Brysbaert 
and Stevens (2018) indication that, in order to achieve prop-
erly power, an experiment should have at least 1600 observa-
tions per cell of the design (i.e., per condition tested), thus 
at least 40 stimuli for 40 participants. In our specific case, 
because we included three continuous predictors in the esti-
mated models, in order to achieve a good level of statistical 
power the experiment should have had at least 4800 obser-
vations. The analysis on accuracy had 7090 observations, 
while the analysis on correct response latencies had 5984 
observations.

Stimuli and procedure

Stimuli were selected starting from the cities tested in 
Experiment 1A. Specifically, starting from the 67 cities 
included above, we chose 12 cities that were well distrib-
uted along the North–South axis and, additionally, those that 
minimized the correlation between SpaDist and TempDist 
(i.e., by selecting the ones with the higher error, that is, the 
ones further from the regression line; see below Computa-
tion of spatial, temporal and language-based predictors). The 
selected cities were: Bologna, Bolzano, Foggia, Grosseto, 
Latina, Livorno, Napoli, Perugia, Pescara, Rimini, Roma, 
Taranto. Then, cities were paired to each other, for a total 
of 132 pairs.

Participants were told that they would have been shown 
the names of two Italian cities and that they had to indicate 

Fig. 2  Results of Experiment 1A (A) and Experiment 1B (B). The two panels report the three scatterplots of the correlations tested and the rela-
tive heatmaps (note that the layout of the heatmaps mimic the layout of the scatterplots)
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which one was geographically closer to Milan. Participants 
were instructed to respond as fast and accurately as possible 
by pressing the left/right key (A and L), in order to indicate 
the city placed on the left side or the one on the right side as 
being the closer to Milan. The trials were shown in random 
order.

Each trial started with a central fixation cross (presented 
for 500 ms) followed by a city-pair (with each city being 
in either half of the screen; presented for a maximum of 
5000 ms) and then, after participants’ response or after 
5000 ms, a black screen was presented for 500 ms, which 
ended the trial. Participants’ responses were recorded only 
during the 5000-ms word-pair presentation.

Participants were tested online using Psychopy (Peirce, 
; Peirce et al., 2019) through the online platform Pavlovia: 
https:// pavlo via. org/.

Computation of spatial, temporal and language‑based 
predictors

SpaDist, TempDist and LingDist were retrieved as in Experi-
ment 1A. Then, for each city pair we computed three differ-
ent predictors, namely a spatial predictor, a temporal pre-
dictor and a language-based predictor. The spatial predictor 
(ΔSpaDist) was computed as the absolute value of the dif-
ference between the SpaDists of the two cities comprising 
the pair. Therefore, the higher the value, the higher the dif-
ference (in terms of spatial distance) between the two cities 
with respect to Milan (i.e., with one city being much closer 
to Milan compared to the other city in the pair). Similarly, 
the temporal predictor (ΔTempDist) was computed as the 
absolute value of the difference between the TempDists of 
the two cities comprising the pair. Finally, the language-
based predictor (ΔLingDist) was computed as the abso-
lute value of the difference between the LingDists of the 
two cities comprising the pair. The three predictors were 
retrieved from experiment 1A as to avoid multicollinearity 
issues. Specifically, they showed small to moderate corre-
lations: r = 0.40 for the correlation between ΔSpaDist and 
ΔTempDist; r = − 0.18 for the correlation between ΔSpaDist 
and ΔLingDists; r = 0.26 for the correlation between 
ΔTempDist and ΔLingDists.

Data analysis

All data, scripts and codes used in the analysis are available 
at: https:// osf. io/ pexqm/. All the analyses were performed 
using R-Studio (RStudio Team, 2015). Linear mixed models 
(LMMs) and generalized linear mixed models (GLMMs) 
were run using the lme4 R package (Bates et al., 2015). Our 
dependent variables were participants’ correct response 
latencies (RTs), which were analyzed using LMMs, and 
participants’ accuracy, which was analyzed using GLMMs 

fitted on a binomial family distribution (i.e., correct answers 
were computed as 1 s and wrong answers as 0 s). To obtain 
Gaussian data distributions, RTs were log-transformed as 
their distribution was positively skewed. Marginal Pseudo-
R2s are reported.

For the models estimated across both RTs and accuracy, 
the same three predictors were included in the respective 
analyses. Specifically, each model had participants and items 
as random intercepts and, additively, ΔSpaDist, ΔTempDist, 
and ΔLingDists as continuous predictors (all the three pre-
dictors were included in the models as scaled). To further 
check for multicollinearity, on both models estimated we 
inspected the variance inflation factor (VIF) of each pre-
dictor. This index has 1 as lower boundary indicating no 
collinearity and has no upper boundary, with its interpreta-
tion being: the higher the value, the higher the collinearity. 
Previous studies discussed various possible thresholds, rang-
ing from 10 (Vittinghoff, 2005), 5 (Menard, 2001), or 2.5 
(Johnston et al., 2018). Here, we adopted the latter one, that 
is the more conservative one.

Finally, to exclude the impact of overly influential outli-
ers, after having fitted the model on RTs, data points were 
removed on the basis of a threshold of 2.5 SD standardized 
residual errors (model criticism; Baayen, 2008). Results 
based on the refitted models are reported.

Results

Trials in which overall RTs were faster than 300 ms or in 
which participants did not provide an answer (2% of the tri-
als) were excluded from the analyses. Participants correctly 
answered to 84% of the trials (SD = 5%) and their mean cor-
rect response latencies was 1445 ms (SD = 263 ms).

The model criticism on the model estimated on RTs 
further removed 77 trials (1.3% of the trials): note that 
the results reported are fully compatible with the results 
obtained before model criticism. The model had Pseudo-R2 
(marginal) = 0.03 and it showed that the effect of ΔSpaDist 
was significant, t(61.41) =  − 5.97, p < 0.001, b = − 0.06, 
β = − 0.17, indicating that the higher the ΔSpaDist (the 
higher the difference between the two spatial distances; 
i.e., the more distinctively a city of the pair was geographi-
cally closer to Milan than the other), the lower participants’ 
RTs (Fig. 3A). The effect of ΔTempDist was not signifi-
cant, t(59.39) =  − 0.54, p = 0.58, b = − 0.006, β = − 0.01 
(Fig. 3B). Interestingly, the effect of ΔLingDist was sig-
nificant, t(61.84) =  − 2.15, p = 0.03, b = − 0.02, β = − 0.06, 
indicating that the higher the ΔLingDist (the higher the dif-
ference between the two linguistic distances; i.e., the more 
distinctively a city of the pair was linguistically closer to 
Milan than the other), the lower participants’ RTs (Fig. 3C). 

https://pavlovia.org/
https://osf.io/pexqm/


1596 Psychological Research (2024) 88:1590–1601

All the VIFs were < 1.4, thus excluding multicollinearity 
issues.

The model estimated on accuracy data had Pseudo-R2 
(marginal) = 0.24 and it showed that the effect of ΔSpaDist 
was significant, z = 10.61, p < 0.001, b = 1.05, indicating that 
the higher the ΔSpaDist (the higher the difference between 
the two spatial distances; i.e., the more distinctively a city of 
the pair was geographically closer to Milan than the other), 
the higher participants’ accuracy (Fig. 4A). The effect of 
ΔTempDist was not significant, z = 0.88, p = 0.38, b = 0.09 
(Fig. 4B). Interestingly, the effect of ΔLingDist was signifi-
cant, z = 2.06, p = 0.03, b = 0.18, indicating that the higher 
the ΔLingDist (the higher the difference between the two 

linguistic distances; i.e., the more distinctively a city of the 
pair was linguistically closer to Milan than the other), the 
higher participants’ accuracy (Fig. 4C). These results indi-
cate that participants relied on both spatial and linguistic 
knowledge to solve the task. All the VIFs were < 1.25, thus 
excluding multicollinearity issues.

Discussion

In the present study, we investigated the interplay between 
spatial, linguistic, and temporal information in shaping 
the mental representation of maps representing large-scale 

Fig. 3  Results of the model estimated on RTs in Experiment 2. Participants’ RTs were predicted by the spatial predictor (A), but not by the tem-
poral one (B). Interestingly, also the linguistic predictor (C) significantly predicted participants’ performance

Fig. 4  Results of the model estimated on accuracy in Experiment 2. Participants’ accuracy was predicted by the spatial predictor (A), but not by 
the temporal one (B). Interestingly, also the linguistic predictor (C) significantly predicted participants’ performance
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environments (e.g., countries or continents). In particular, 
we addressed this issue by conducting two experiments. 
In Experiment 1, we employed a computational approach 
to explore the relationship between spatial, linguistic and 
temporal distances. To accomplish this, we exploited cog-
nitively-plausible DSMs built upon non-spatial associative 
learning mechanisms to retrieve linguistic distances, while 
we quantified temporal distances by measuring the mini-
mum travel time required to reach different Italian cities, 
selecting the main stations of Milan (Experiment 1A) and 
Rome (Experiment 1B) as departure points. The results 
of Experiment 1 revealed significant correlations between 
spatial, linguistic and temporal distances, highlighting the 
interconnected nature of these dimensions. Specifically, both 
Experiment 1A and Experiment 1B revealed a strong cor-
relation between spatial and temporal distances, a moderate 
correlation between spatial and linguistic distances, as well 
as a moderate correlation between temporal and linguistic 
distances. Taken together, these findings support the notion 
that linguistic and temporal information can serve as proxies 
for estimating spatial relationships in large environments.

Building upon these findings, in Experiment 2 we 
explored whether linguistic and temporal information can 
explain human performance over and above spatial infor-
mation. In particular, participants were required to iden-
tify which city, among each pair presented, was spatially 
closer to a referent point (i.e., Milan). Across both accu-
racy and response latencies, the results of Experiment 2 
showed that, although spatial information played a major 
role in explaining participants’ performance, the effect of 
linguistic information was as well significant. By contrast, 
the temporal information did not yield significant effects. 
More precisely, results revealed that the more geographically 
and linguistically closer to Milan was one of the two cities 
composing the pairs (as compared with the other), the higher 
participants’ accuracy and the faster their response laten-
cies. These findings indicate that linguistic information can 
account for human performance over and above the effect 
of spatial information (i.e., the model including linguistic 
information explains more variance than the model with the 
spatial predictor only) and thus that participants relied not 
only on spatial, but also on linguistic knowledge to solve 
the (space-centered) task. The current findings provide sup-
port to theoretical views sustaining the joint contribution of 
spatial and linguistic information in shaping and encoding 
the mental representations of maps representing large-scale 
environments (Louwerse, 2009, 2011, 2018; Louwerse & 
Jeuniaux, 2010; Friedman & Brown, 2000; Gatti et al., 2022; 
Tillman et al., 2013).

Importantly, these results provide support and extend 
previous evidence highlighting the key role played by lin-
guistic experience in humans’ spatial cognition (Gatti et al., 
2022; Tillman et al., 2013). A previous work by Tillman 

and colleagues (2013), indeed, reported analogous findings 
at the chronometric level but employed a task in which it 
was not possible to score participants’ accuracy, potentially 
introducing confounds in their observed effects. Addition-
ally, their task involved specific iconic or reverse-iconic 
spatial arrangements of cities, which may limit the gener-
alizability of their results. In contrast, our study employed 
a paradigm that allowed for scoring participants’ accuracy 
and did not imply any specific spatial arrangements. As a 
result, our findings provide a more comprehensive evalu-
ation of the influence of linguistic experience on humans’ 
cognitive maps, suggesting a broader contribution of lin-
guistic experiences than previously thought. Adding to 
this, it is interesting to note that evidence from a previous 
study by Gatti and collegues (2022) showed that partici-
pants’ chronometric performance in a task tapping on the 
judgment of absolute spatial locations was better predicted 
by language-derived coordinates (i.e., the location of a city 
with respect of the concepts of North and South) rather than 
by the real geographical coordinates. Taken together, this 
indicates that language contributes not only to the process-
ing of absolute spatial information (i.e., location defined by 
coordinate axes), but also to distance-like information (i.e., 
location connected by paths but without specific reference 
to their orientation), further corroborating previous evidence 
demonstrating the successful reconstruction of geographical 
maps’ spatial layout from linguistic data (e.g., Louwerse & 
Zwaan, 2009; Louwerse & Benesh, 2012). Overall, these 
findings demonstrate not only that spatial information can be 
bootstrapped from natural language, but also that knowledge 
gained from purely linguistic data is not redundant in nature, 
but provide singular contributions in the organization and 
incorporation of distortions in spatial representation.

Notably, temporal information did not yield significant 
effects in the behavioral experiment. On the one hand, 
this lack of effects could be explained in light of the theo-
retical perspective of the metaphorical structuring, which 
states that space is the dominant concept influencing time 
perception, with time having a minimal impact on our per-
ception of space (Boroditsky, 2000; Casasanto & Borodit-
sky, 2008; Lakoff & Johnson, 1980). The foundation of 
this theory is based on a linguistic ground, specifically, 
from the observation that human languages often employ 
a variety of spatial concepts to describe metaphorically 
temporal experiences and events (e.g., “We are approach-
ing the deadline”). Taking an evolutionary perspective, the 
development of complex languages possibly prioritized 
the exchange of spatial information (e.g., “Which path led 
me to the food?”) over temporal ones (e.g., “At what time 
did I find it?”). Consequently, the use of spatial metaphors 
to describe temporal information could be attributed to 
the sequential integration of spatial and temporal con-
cepts within language (Riemer et al., 2018; Srinivasan & 
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Carey, 2010). Indeed, most languages exhibit a greater 
prevalence of metaphorical expressions that relate time 
to space compared to the reverse (Sinha & Gärdenfors, 
2014). Additionally, a metaphorical link between time 
and space is also evident in gestures, as both children and 
adults often employ hand movement to describe temporal 
information as if they were physical location. For example, 
when indicating the past, people may gesture backwards, 
as if retracing steps along a path (Burns et al., 2019). How-
ever, it is also worth considering that while we quantified 
temporal distance as the minimum time needed to travel 
by train across Italian cities, alternative measures of tem-
poral information could offer insightful perspectives as 
well as potential variations in results and interpretations. 
Note nevertheless that our decision to use train travel time 
than other ways of transportation is based on the relatively 
standardized nature of train schedules. Other ways, such as 
travel by car, are susceptible to significant individual vari-
ations (such as driving speed preferences) that can affect 
the accuracy of the temporal estimates.

Interestingly, our study provides valuable insights that 
complement the findings discussed by Friedman and col-
leagues (Friedman & Brown, 2000; Friedman & Montello, 
2006; Friedman et al., 2002) in challenging the notion of 
cognitive map development primarily relying on spatial 
computations. However, while the works by Friedman and 
colleagues emphasize the crucial role of inferences through 
plausible reasoning, here our results highlight that the dis-
tributional structure of language is a further key source of 
spatial knowledge. Inferential accounts indeed suggest that, 
when individuals have to express judgments and make deci-
sions about complex domains for which their knowledge is 
limited, as might often be the case for geographical knowl-
edge (Friedman & Montello, 2006), they could resort to 
their partial information and engage in inferential processes 
(Friedman & Brown, 2000; Friedman & Montello, 2006; 
McNamara, 1986). While on the one hand we agree that 
inferential processes might play a crucial role in perform-
ing geographical judgments and in structuring geographical 
knowledge, our findings also indicate a pivotal role of the 
(non-inferential) distributional history of words in natural 
language as a primary source of information. Notably, previ-
ous studies have shown that DSMs, despite their non-infer-
ential architecture, exhibit the ability to generate reliable 
inferences about the world and its entities (e.g., Berlin: Ger-
many = Rome: x, where x = Italy; see: Marelli, 2017). Con-
sequently, our findings should not be interpreted as suggest-
ing that inferential and associative-learning processes are 
mutually exclusive sources of cognitive map development 
and organization. Instead, we believe that the distributional 
history of words in natural language can be conceived as one 
of the fundamental bases for the development of higher-level 
cognitive inferential processes.

In summary, these findings contribute to ongoing 
discussions about the development and organization of 
cognitive maps in humans by providing a more compre-
hensive understanding of the factors that contribute to 
mental representations of maps representing large-scale 
environments. In particular, this is the first study explor-
ing whether distortions encoded in cognitive maps can be 
explained in light of prior knowledge about both linguis-
tic and temporal information, as assessed by participants’ 
accuracy and chronometric performance in a computer-
ized task. Future research could apply the methods used 
here (as well as other recent computational models: e.g., 
Günther et al., 2023) to investigate the influence of spa-
tial, linguistic and temporal factors on cognitive mapping 
across different environmental scales, including small 
(e.g., rooms or short pathways) and medium scale (e.g., 
neighborhoods or cities) environments, as well as inves-
tigating individual differences as potentially contributing 
factors in the development and organization of cognitive 
maps. That is, while within this topic a large body of evi-
dence is available for temporal information (Clayton et al., 
1991; Hanyu et al., 1995; MacEachren, 1980; McNamara 
et al., 1984, 1992), no evidence is available regarding 
linguistic information. The evidence presented here chal-
lenges prevailing views aligned with embodied accounts 
of cognition (Barsalou, 2008; Gallese & Lakoff, 2005) 
that prioritize specialized spatial computations (Bellmund 
et al., 2018; Bottini & Doeller, 2020a, b; Derdikman & 
Moser, 2010). In contrast, our findings provide support for 
theoretical positions that argue for the importance of non-
spatial processes in shaping spatial knowledge (Louwerse, 
2009, Louwerse, 2018; Friedman & Brown, 2000; Gatti 
et al., 2022; Shrager et al., 2008).
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