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Abstract

Public health and environmental challenges, including air pollution, climate change, and natural
disasters, pose significant threats to global well-being. Addressing these issues requires a deep under-
standing of the underlying data to inform effective policy and mitigation strategies. This thesis applies
advanced Bayesian modeling techniques to three key areas within public health and environmental
risk assessment: Bayesian clustering methods for environmental data, spatial disease mapping, and
earthquake parameter estimation using smartphone accelerometer data. Bayesian models are particu-
larly suited for these domains due to their ability to manage uncertainty, incorporate prior knowledge,
and handle complex relationships within high-dimensional, noisy, or sparse datasets. The first project
in this thesis explores Bayesian clustering techniques for environmental data, providing insights into
hidden structures and patterns in spatio-temporal datasets. The second project introduces a Bayesian
nonparametric approach to spatial disease mapping, enhancing flexibility and precision in capturing
disease dynamics. This method incorporates key covariates such as population demographics and
socioeconomic factors and accounts for complex spatial dependencies. The third project focuses on
earthquake detection. It develops a Bayesian survival model to analyze crowd-sourced data from
smartphone accelerometers, enhancing the accuracy of earthquake parameter estimation. This thesis
underscores the potential to improve decision-making and policy implementation in public health and
environmental risk management by demonstrating the versatility of Bayesian methods across these
diverse applications. The work highlights how Bayesian techniques can overcome the limitations of
traditional statistical methods, offering more reliable estimates and insights in fields where uncertainty
and data limitations are prevalent.
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Introduction

Public health and environmental issues are deeply interconnected. Factors such as air pollution,
climate change, and natural disasters significantly contribute to the global burden of disease. These
challenges affect millions of lives each year, highlighting the need to understand the underlying data
for policymaking and mitigation strategies.

Air pollution is one of the most pressing environmental health hazards globally. According to
the World Health Organization (WHO), approximately 7 million premature deaths occur annually
due to exposure to indoor and outdoor air pollution (World Health Assembly, 2015). Key sources
include vehicular emissions, industrial activities, agricultural practices, wildfires, and the burning
of solid fuels. The European Environment Agency (EEA) estimates that over 238,000 premature
deaths occur annually in the European Union due to air pollution, primarily from respiratory and
cardiovascular diseases (European Environment Agency, 2022). In the United States, despite a long-
term downward trend in emissions, around 6,343 million metric tons of carbon dioxide equivalents were
emitted in 2022 (U.S. Environmental Protection Agency, 2024). Regions with high industrial activity
and vehicular traffic continue to suffer from poor air quality, resulting in severe health outcomes such
as lung cancer, asthma, chronic obstructive pulmonary disease, and cardiovascular conditions.

Natural disasters, particularly earthquakes, have become more frequent in recent decades. Be-
tween 1970 and 2000, medium- and large-scale disasters averaged around 90-100 reports per year,
escalating to 350-500 reports annually between 2001 and 2020 (United Nations Office for Disaster
Risk Reduction, 2024). While disaster peaks were more common from 2000 to 2009, the overall
frequency remains high. This increase highlights the urgent need for real-time analysis and risk
mitigation strategies to minimize the impact of such events.

In the face of these growing challenges, statistical modeling has become indispensable in public
health and environmental risk assessment (Brookmeyer and Stroup, 2004; Waller and Gotway, 2004;
Covello and Merkhoher, 1993; Suter II, 2016). Data-driven decision-making increasingly relies on
models that can manage uncertainty, capture complex relationships, and handle heterogeneous data
sources. Traditional statistical methods, however, often struggle with the high-dimensional, noisy,
and sparse datasets typical in these fields. Bayesian modeling offers a powerful alternative by incor-
porating prior knowledge, accounting for uncertainty (Lindley, 2013), and providing robust predictive
frameworks (for a comprehensive overview of Bayesian analysis, see Gelman et al., 2013). These
methods offer valuable insights into the complex relationships between environmental factors and
health outcomes, enhancing the effectiveness of policy and intervention strategies.

Bayesian approaches are particularly advantageous in public health (Diggle and Giorgi, 2019) and
environmental applications (Piegorsch and Bailer, 2005) because they allow for the formal inclusion
of expert knowledge, historical data, and other external information. This is especially important
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in situations where data is limited or unreliable, as often occurs in early-stage disease outbreaks or
real-time natural disaster monitoring. The flexibility of Bayesian models makes them well-suited for
capturing complex dependencies between variables, such as those present in disease transmission,
environmental pollution, and seismic activity.

This thesis comprises three interrelated research projects, each showcasing the strength and
versatility of Bayesian methods in addressing critical challenges across public health and environmental
risk management. These projects, i.e., Bayesian clustering methods for environmental data, spatial
disease mapping, and earthquake parameter estimation using smartphone accelerometer data—are
strongly connected by their shared reliance on advanced Bayesian techniques. Together, they highlight
the unifying power of these methods to extract meaningful insights from complex and noisy data,
providing solutions in high-stakes contexts.

Each application addresses phenomena that are inherently spatial, temporal, or both, requiring
methods capable of accounting for dependencies and uncertainties in the data. In Bayesian clustering
for environmental data, these methods are used to identify patterns and groupings in air quality met-
rics, helping to understand the underlying drivers of pollution and their spatial distribution. Similarly,
spatial disease mapping employs Bayesian frameworks to quantify and visualize health disparities,
identify areas of heightened risk, and guide interventions, often relying on shared principles of spatial
correlation and smoothing.

The connection extends to earthquake parameter estimation, where Bayesian methods enable
the integration of sparse, noisy, and irregular accelerometer data to detect and characterize seismic
events. This task, like the others, depends on the ability of Bayesian models to incorporate prior
knowledge, handle uncertainty, and balance complexity with interpretability.

By employing Bayesian techniques across these diverse fields, this thesis highlights their adaptabil-
ity and power to model complex systems, account for uncertainty, and produce actionable insights.
Furthermore, it underscores a unifying theme: the capacity of Bayesian methods to address challenges
in understanding, predicting, and mitigating risks, whether they arise from environmental pollution,
public health threats, or natural disasters. Together, these projects push the boundaries of Bayesian
applications, demonstrating their relevance to a wide range of societal challenges.

Bayesian models stand out because of their ability to coherently model uncertainty, a key limitation
in frequentist approaches. They allow for the integration of prior knowledge into the analysis (Bayarri
and Berger, 2004), making them highly adaptable to situations with sparse, uncertain, or incomplete
data. This is particularly relevant in public health and environmental contexts, where datasets often
suffer from these limitations (Chiolero et al., 2023; Ahkola et al., 2024). Bayesian techniques enable
the combination of available data with expert knowledge, historical trends, or external information,
leading to more reliable estimates and predictions.

For example, Bayesian models are particularly effective for analyzing environmental data, which
is often high-dimensional, characterized by non-linear relationships, and involves unknown clustering
patterns. In public health, spatial models (Banerjee et al., 2014; Cressie and Wikle, 2015) benefit from
Bayesian nonparametric methods (Hjort et al., 2010; Ghosal and van der Vaart, 2017), which allow
for modeling complex disease spread without imposing rigid assumptions. Furthermore, Bayesian
survival models (Ibrahim et al., 2005; Klein and Moeschberger, 2006) are continuously updated with
new data, which is crucial in dynamic, real-time scenarios such as earthquake monitoring.
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The three projects in this thesis highlight different strengths of Bayesian methods: clustering
(Wade, 2023), spatial modeling (Banerjee et al., 2014), and survival analysis (Ibrahim et al., 2005).
The first project (Chapter 1) provides a comprehensive review of Bayesian nonparametric clustering
methods, focusing on their application to spatio-temporal environmental data. It begins by presenting
the most common models for point-referenced spatio-temporal data, followed by a synthesis of recent
advancements in Bayesian clustering, with particular emphasis on nonparametric models for spatio-
temporal data. These methods are demonstrated through their application to an air quality dataset,
and the chapter concludes by discussing potential directions for future research. This chapter extends
the work presented in Aiello, Legramanti and Paci (2024).

The second project (Chapter 2) illustrates the model developed in Aiello and Banerjee (2023). The
work introduces a Bayesian nonparametric model for spatial disease mapping, a crucial tool for public
health authorities in tracking disease outbreaks and planning interventions (Rao, 2023). Traditional
models often assume static spatial relationships, but disease spread is influenced by various factors
such as environmental conditions and socioeconomic status (see Lawson, 2018). This model employs
a graphical approach (Lauritzen, 1996) to capture complex, disease-varying spatial dependencies,
improving the flexibility and accuracy of disease mapping. Covariates such as population age, poverty,
and smoking rates are incorporated to enhance interpretability, and uncertainty in disease counts is
explicitly modeled, which is crucial in areas prone to under-reporting.

The third project (Chapter 3) illustrates the approach proposed by Aiello, Argiento, Finazzi and
Paci (2023). The work develops a Bayesian survival model to estimate earthquake parameters using
smartphone accelerometer data. Earthquake modeling demands real-time analysis of parameters such
as location, depth, and origin time. While traditional seismic networks provide accurate data, they
are limited by geographic coverage and costs (Given et al., 2014). The rise of smartphones with built-
in accelerometers offers a new source of real-time crowd-sourced data (Finazzi, 2016; Kong et al.,
2016). By framing this as a survival modeling problem, the Bayesian approach can incorporate prior
knowledge and account for the noisy and variable nature of smartphone data. This method enhances
the accuracy and timeliness of earthquake parameter estimation, representing a novel application of
survival modeling in seismology.

In conclusion, this thesis demonstrates the wide-ranging applicability of Bayesian methods to
diverse challenges in public health and environmental risk assessment. The three projects collectively
showcase the adaptability and power of Bayesian techniques, whether through clustering, spatial
modeling, or survival analysis. By leveraging the flexibility of Bayesian models, this work opens up
new possibilities for research and practical applications in these critical areas.





Chapter 1

Bayesian nonparametric clustering
for spatio-temporal data

In the last three decades, the increasing availability of datasets indexed by both space and time has
driven the development of stochastic models that account for both spatial and temporal dependencies.
From a methodological perspective, analyzing such spatio-temporal data requires accounting for
spatial correlation, temporal correlation, and how space and time interact. For instance, in air
pollution studies, we are not only concerned with the spatial distribution of a pollutant but also with
how this distribution changes over time.

Spatial data are conventionally classified into three types: point-referenced (geostatistical) data,
which consist of measurements taken at specific locations (e.g., air quality levels at different moni-
toring stations); areal (lattice) data where measurements are aggregated over defined spatial regions
(e.g., disease rates by administrative areas); and point-pattern data, which refer to the spatial oc-
currence of events (e.g., the locations of earthquakes or disease outbreaks). For a comprehensive
overview of spatial data, refer to Banerjee et al. (2014) and Cressie and Wikle (2015). A similar
distinction can be made for the temporal scale, where time can be treated either as continuous (over
R+ or a subinterval) or discrete (e.g., hourly, daily, etc.). In the continuous case, measurements
are considered to occur at every moment. In the discrete case, we must determine whether each
measurement represents an average over a time interval or whether it corresponds to a single mea-
surement, such as a count within a specific time interval, analogous to areal unit measurements in
spatial data.

This work focuses on models for point-referenced data recorded at specific times. In this context,
each observation corresponds to specific coordinates (e.g., latitude and longitude) and time points,
and the data represents a sample observed at fixed times on a continuous spatial domain. Denote
with D ⊆ R2 such a continuous domain, and let s ∈ D be a point within it. We denote with
{Yt(s) : s ∈ D; t = 1, ... ,T} a spatio-temporal process that can be seen as a process generating a
time series indexed by t = 1, ... ,T at each location s ∈ D. For other ways of defining a spatio-
temporal process, see Banerjee et al. (2014). Measurements at each location can be continuous,
binary, or counts, such as pollution levels, the presence/absence of a species, or its abundance at
each location.
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A customary model for continuous data is

yt(s) = xt(s)
⊤βt(s) + wt(s) + ϵt(s), (1.1)

where xt(s)⊤βt(s) represents the mean structure depending on spatio-temporal covariates, wt(s) is
a mean-zero spatio-temporal process capturing the spatio-temporal dependence not explained by the
covariates, and ϵt(s) is an error term – typically a Gaussian white noise process – accounting for the
residual spatio-temporal variability in the data.

In principle, the regression coefficient βt(s) may depend on both space and time. However, it can
be simplified to βt(s) = β (Arima et al., 2015; Hefley et al., 2017; Laurini, 2019; Wang et al., 2024),
or at least to βt(s) = βt (Kottas et al., 2008; Berrocal, 2016; Lee et al., 2021) or βt(s) = β(s)

(Torabi, 2014; Li et al., 2016; Peluso et al., 2020). More details on the representation of βt(s) can
be found in Banerjee et al. (2014).

As for the spatio-temporal process wt(s), different modeling choices are available in the literature,
including an additive form wt(s) = αt + ψ(s) (Waller et al., 1997; Knorr-Held and Besag, 1998;
Cameletti et al., 2011), a multiplicative form wt(s) = αtψ(s) (Paci et al., 2013) or a nested form
with spatial effects nested within time, i.e., independent spatial processes over time (Arima et al.,
2012). In all cases, a popular approach to model ψ(s) is via a Gaussian process (Rasmussen and
Williams, 2005) equipped with a spatial covariance structure. Another popular choice for wt(s), is
to assume a dynamic evolution of the spatial process over time, namely

wt(s) = ϕwt−1(s) + νt(s), (1.2)

where the νt(s) are independent spatial processes over time. Altogether, (1.1) and (1.2) constitute
the well known dynamic linear model (Harrison and Stevens, 1976; West and Harrison, 2006), often
referred to as the state-space model in the time-series literature. This approach allows for modeling
temporal components such as trends, seasonal effects, and autoregressive behavior. For instance,
Stroud et al. (2001) applied this model to two large-scale environmental datasets, specifically tropical
rainfall levels and sea surface temperatures in the Atlantic Ocean.

This chapter is structured as follows: Section 1.1 provides an overview of Bayesian clustering
methods and their application to spatio-temporal data, with a special focus on mixture models under
a nonparametric approach. Section 1.2 explores the Exchangeable Product Partition Model and the
spatial Product Partition Model. In Section 1.3, we illustrate the Bayesian clustering methods using
air quality data. Section 1.4 offers some concluding remarks.

1.1 Bayesian cluster analysis

Cluster analysis refers to grouping a set of observations so that those belonging to the same cluster
are more similar to each other than those belonging to different clusters. Clustering is widely used
across various fields, including environmental sciences. Recent applications to environmental data
include air quality monitoring (Cheam et al., 2017), identifying minefields or seismic faults (Dasgupta
and Raftery, 1998), food-searching behaviour of sandhoppers (Ranalli and Maruotti, 2020), coastal
rainfall patterns (Paton and McNicholas, 2020), and fish biodiversity (Vanhatalo et al., 2021), just
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to name a few. In many applications, the focus is on the cluster allocation of the observations, as
well as the patterns within each cluster.

One possible classification of clustering methods is into heuristic (or algorithmic) and model-
based (or probabilistic) strategies. Heuristic methods include, e.g., the popular k-means algorithm
(Macqueen, 1967), which partitions the data into k clusters by iteratively assigning each data point to
the cluster with the closest mean. For a detailed discussion on this and other distance-based clustering
algorithms, see Sarang (2023). Heuristic strategies have the advantage of being fast and able to tackle
big data. On the other hand, they return a single partition without quantifying the uncertainty in the
clustering structure, that is, the uncertainty about any observation’s group membership. In contrast,
model-based approaches (Fraley and Raftery, 2002) allow quantifying the uncertainty associated with
the clustering structure by postulating a statistical model for the population from which the data
are sampled. This also brings the advantage of answering questions such as how many clusters are
present, and how to detect and treat outliers. See Bouveyron et al. (2019) for a comprehensive
overview of model-based clustering, and Wade (2023) for a review of Bayesian approaches to it.

To be more specific, let us introduce some of the notation that will be used in this paper.
First, note that grouping n objects into K clusters is equivalent to specifying the allocation vector
c = (c1, ... , cn)

⊤, where each ci ∈ {1, ... ,K} and ci = k means that the i-th object is assigned to
the k-th cluster. Such a vector induces a partition of the n considered objects (or equivalently of the
first n integers), denoted with ρn := {S1, ... , SK}, where Sk = {i : ci = k}. Note that, while each
allocation vector induces a unique partition, the viceversa does not hold. In fact, the same partition
can be induced by different allocation vectors. As a simple example, let n be even and consider the
case where the first half of the objects are assigned to cluster 1 and the second half to cluster 2.
This obviously induces the same partition as the allocation assigning the first half of the objects to
cluster 2, and the second half to cluster 1. This phenomenon – known as label switching – must be
accounted for in many clustering methods.

While the typical output of clustering algorithms is a single value of the allocation vector c, i.e.,
a single partition ρn, the actual object of interest in cluster analysis is in evaluating the uncertainty
of the partition ρn. Model-based clustering enables inference on ρn by postulating a model for the
observable data y = {y1, ... , yn} that depends on the partition ρn. We will denote such a model with
p(y | ρn). In particular, Bayesian approaches allow to quantify uncertainty on ρn a posteriori – i.e.,
after observing the data – by first posing a prior distribution on ρn, and then computing its posterior
distribution through the Bayes theorem p(ρn | y) ∝ p(y | ρn) p(ρn). The prior p(ρn) encodes what
the analyst knows or expects about the partition (e.g., about the cardinality of each cluster) before
observing the data y. The prior for ρn is customary assigned via an Exchangeable Partition Probability
Function (EPPF). For a comprehensive review of possible models for ρn, we refer to Quintana (2006).
However, before going into details about the prior, let us focus on the model p(y | ρn).

Typically, instead of directly assigning the model as p(y | ρn), one first assigns a mixture model
p(y | P), where P is a random measure, almost surely discrete. Thus, given c, the law of y conditioned
on ρn is obtained by integrating out, i.e., marginalizing, P from the law of y, with P conditioned
on c. Further details on this procedure will follow. A popular class of p(y | ρn) is represented by
mixture models, where observations are assumed to belong to one of the possible groups, which
could even be infinitely many in the big data limit. Each group is suitably modeled by a density,
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referred to as a component of the mixture, which is weighted by the relative frequency of the group
in the population. For instance, in a (multivariate) Gaussian mixture model, each component is a
(multivariate) Gaussian density. For a review of mixture models see Bouveyron et al. (2019), Grün
(2019), McLachlan et al. (2019) and Frühwirth-Schnatter et al. (2019).

In finite mixture modeling, each observation is assumed to come from one of the M <∞ mixture
components. Namely, the model is given by

f (y | P) =
∫
Θ
f (y | θ)P(dθ) =

M∑
m=1

πmf (y | γm), (1.3)

where {f (y | θ) : θ ∈ Θ} is a parametric family of densities on Y, referred to as the mixture kernel,
while P is an a.s.-discrete measure on Θ, supported on {γm ∈ Θ : m = 1, ... ,M}, referred to
as the mixing measure. The choice of the kernel depends on the nature of the data and on the
analysis goals. For continuous data, while Gaussian kernels stand out as the most popular choice,
skewness or outlier robustness can be achieved using, e.g., multivariate skew-normals or Student’s
t-distributions (Frühwirth-Schnatter and Pyne, 2010; Lee and McLachlan, 2014), shifted asymmetric
Laplace distributions (Franczak et al., 2013), or normal-inverse Gaussian distributions (O’Hagan et al.,
2016). For categorical data, one may employ latent class models, which rely on mixtures of Bernoulli
or multinomial distributions (Goodman, 1974; Argiento et al., 2024). For count data, mixtures of
Poisson (Karlis and Xekalaki, 2005; Krnjajić et al., 2008), negative binomial (Liu et al., 2024), or
zero-inflated Poisson and negative-binomial distributions are useful for handling sparse counts (Wu
and Luo, 2022).

In equation (1.3), each component is weighted by πm, the relative frequency of the m-th group
in the population, for m = 1, ... ,M. Note that M denotes the total number of components at a
population level, i.e., the maximum number of possible clusters as n → ∞. In contrast, K ≤ M

refers to the number of non-empty clusters, i.e., those clusters that contain at least one of the n <∞
observations (see, e.g., Argiento and De Iorio, 2022). Obviously, K is also upper bounded by n, while
M can be larger than n and even infinite, as we will see.

In Bayesian model-based clustering, two primary approaches are prevalent: (i) fixing M (either
finite or infinite), (ii) treating M as a random parameter and inferring it from the data; see, e.g.,
Wade (2023) and Grazian (2023). In the second scenario, Nobile (2004) emphasizes the distinction
between K and M, observing that the posterior distribution of M might concentrate on higher values
with respect to the posterior of K . In contrast, when M is set to infinity, K is the parameter of
interest in posterior inference. However, even when M is fixed and finite, we still need to estimate K

(Rousseau and Mengersen, 2011).

As customary in mixture modeling, a hierarchical parametrization can be employed to facil-
itate the computation. To this end, we assume that the allocation variables ci are condition-
ally independent given π = (π1, ... ,πM), where πm = Pr(ci = m | π), and that ci | π,M

iid∼
MultinomialM(π1, ... ,πM). The complete specification becomes
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yi | ci ,γ
ind∼ f (y | γci ), i = 1, ... , n,

ci | π,M ∼ MultinomialM(1,π1, ... ,πM), i = 1, ... , n,

π | M ∼ DirichletM(α/M, ... ,α/M),

M ∼ qM ,

γm
iid∼ P0, m = 1, ... ,M,

(1.4)

where f (y | γ) is a parametric density on Y, depending on a vector of parameters γ. For each
component m = 1, ... ,M, the corresponding vector of parameters γm ∈ Θ ⊂ Rd is assigned a
non-atomic prior P0.

For computational convenience, a common choice for P0 is a conjugate prior to the kernel f (y | γ).
The hyperparameters of the base measure P0 can be specified based on prior knowledge, set em-
pirically, or inferred through additional hyperpriors. Alternatively, data-dependent or non-informative
priors can be used for P0 (Rousseau et al., 2019). To encourage well-separated components, the
independence assumption on the atoms γm can be relaxed by employing repulsive priors (Petralia
et al., 2012; Xie and Xu, 2020; Beraha et al., 2022), determinantal point processes (Xu et al., 2016),
or non-local priors (Fúquene et al., 2019).

Conditionally on M, the vector of weights π, which represents the probability of belonging to
each mixture component, is given a Dirichlet prior. Typically, all the M parameters of the Dirichlet
prior are set to the same value, say α/M, thus obtaining a symmetric Dirichlet distribution. A
small value of α/M encourages sparsity in the weights. In other words, as α/M → 0, all the prior
mass is concentrated at the vertices of the simplex, resulting in all weight being assigned to a single
component.

Beyond the Dirichlet distribution, other distributions may also be considered, such as the gener-
alized Dirichlet distribution (Connor and Mosimann, 1969), non-informative Jeffreys priors (Bernardo
and Girón, 1988), the Pitman–Yor (PY) process (Perman et al., 1992; Pitman and Yor, 1997), the
multinomial PY process (Lijoi et al., 2020), the Gibbs-type priors (De Blasi et al., 2015), Bertoin,
Fujita, Roynette, and Yor (BFRY) priors (Lee et al., 2016), or normalized jumps of a finite point
process (Argiento and De Iorio, 2022). A recent work by Ascari et al. (2024) explores additional
distributions, presenting a novel multivariate regression model for constrained responses, which is
grounded in the extended flexible Dirichlet distribution introduced by Ongaro et al. (2020). Finally,
the number of components is given a prior qM whose typical choices include a discrete uniform on
some finite space, a Negative Binomial (Grazian et al., 2020), a Poisson (Stephens, 2000; Nobile,
2004) or a Uniform distribution over {1, ... ,Kmax} (Miller and Harrison, 2018).

The mixture model in (1.4) induces a clustering among the observations. Namely, when an
observation is sampled from a component, it will be assigned to the corresponding cluster. Naturally,
when sampling n < ∞ observations, not all of the M components will be necessarily sampled from.
This is obvious when M = ∞, but is absolutely possible even when M is finite, especially if large.
As observed before p(y | ρn) = p(y | c) is derived by integrating out the parameter P ≡ (γ,M,π)

from the joint distribution of model (1.4), see Argiento and De Iorio (2022) for mathematical details.
We also note that the marginalization just described is achieved since model (1.4) belongs to the
wider class of species sampling mixture models Pitman (1996), which are largely adopted in Bayesian
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nonparametric frameworks; see, among others, Ishwaran and James (2003); Miller and Harrison
(2018); Argiento and De Iorio (2022).

1.1.1 Posterior inference for Bayesian clustering

Over the years, computational methods for finite mixtures, mainly based on Markov chain Monte Carlo
(MCMC) algorithms, have significantly advanced. In particular, posterior inference for finite mixture
models with random M needs a transdimensional algorithm that accommodates jumps between
parameter spaces of different dimensions (according to the number of mixing components). An
early breakthrough was made by Green (1995); Richardson and Green (1997), who introduced the
Reversible Jump MCMC algorithm for univariate Gaussian mixtures. The algorithm is quite popular,
but it requires the design of good reversible jump moves, posing challenges in applications, particularly
with high-dimensional parameter spaces.

On the other hand, posterior inference for infinite mixture models has evolved through key algo-
rithmic developments, which can be classified into two groups: (i) conditional algorithms, providing
full Bayesian inference on both mixing parameters and the clustering structure (Papaspiliopoulos
and Roberts, 2008; Kalli et al., 2011); and (ii) marginal algorithms, which simplify computation
by integrating out the mixture parameters, focusing solely on clustering (MacEachern and Müller,
1998). Early progress was marked by the introduction of the Pólya urn Gibbs sampler (Escobar, 1994;
MacEachern, 1994; Escobar and West, 1995; MacEachern, 1998), followed by the application of the
stick-breaking representation of the Dirichlet process by Ishwaran and James (2001), which enabled
posterior inference via Gibbs sampling.

Recently, exploiting the link between finite and infinite mixture models, algorithms developed
for Bayesian nonparametric models have been adapted to finite mixture models. Examples are the
Chinese restaurant process sampler in Miller and Harrison (2018), the telescoping sampling developed
by Frühwirth-Schnatter et al. (2021), and the two augmented Gibbs samplers proposed by Argiento
and De Iorio (2022). These advances have enhanced the computational efficiency and applicability
of finite mixture models in practice.

Bayesian mixture models deliver a posterior distribution over the entire space of partitions, re-
vealing the uncertainty of the clustering structure given the data. All the MCMC sampling schemes
mentioned above provide an approximation of such posterior. However, a natural issue in this set-
ting is how to summarize the posterior distribution, e.g., how to provide an appropriate posterior
point estimate of the clustering structure and of the cluster-specific parameters based on the MCMC
output. The problem is twofold; first, to estimate the clustering and the group-specific parameters,
the mixture model must be identified to avoid label switching (Jasra et al., 2005). Second, the high
dimension of the partition space and the fact that many of these partitions are usually quite similar
(e.g., differing only in a few data points) make the posterior spread out across a large number of
partitions.

A possible solution to get a point estimate of the partition from its posterior samples is to assign
data points to the cluster with maximum posterior probability. More generally, from a decision-
theoretic perspective, the goal is to find the partition minimizing the expected loss under the posterior.
In this framework, the Maximum a Posteriori (MAP) described above is optimal under a binary loss,
but may not fully explore the partition space or account for partial similarities between partitions.
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An alternative approach is the Binder loss (Binder, 1978), which imposes a penalty when pairs
of observations that should be grouped together are placed in different clusters, and when pairs that
should be separated are incorrectly clustered together. Wade and Ghahramani (2018) instead propose
using the Variation of Information (VI) loss (Meilă, 2007), which compares the information shared
between two partitions. Although the VI loss is more computationally demanding and is sensitive to
the cluster initialization, it provides a more nuanced comparison. To obtain a posterior point estimate
of the partition, the posterior distribution of the cluster assignments can be derived using a greedy,
stochastic search approach Dahl et al. (2022). This method minimizes a chosen loss function, such
as Binder loss or VI, as previously discussed.

1.1.2 Clustering spatio-temporal data

This work focuses on Bayesian nonparametric clustering for spatio-temporal data, with an emphasis
on environmental applications. The class of finite mixture models discussed in Section 1.1 appears
particularly useful for clustering complex objects like spatio-temporal series.

In the Bayesian nonparametric context, one prominent method is the spatial Dirichlet process
(Gelfand et al., 2005), which poses a distribution on the atoms that takes into account the spatial
dependence. This model was extended by Gelfand et al. (2007) and Duan et al. (2007), whose
main contribution was incorporating spatially dependent mixture weights. Another approach is the
spatial stick-breaking process (Reich and Fuentes, 2007; Rodrıguez and Dunson, 2011), which enables
spatially varying allocation probabilities without requiring the presence of replications. Additionally,
the Dirichlet labeling process (Nguyen and Gelfand, 2011) has been proposed as a flexible model for
spatial clustering. While these methods are highly appealing, their performance can be limited when
covariates are available to aid in cluster identification.

A Bayesian semiparametric mixture model within a state-space framework was proposed by Nieto-
Barajas and Contreras-Cristán (2014) for clustering of time series data. Several research challenges
have emerged from finite mixture models for time series, including detecting dynamic changes in
spatio-temporal patterns, identifying anomalies, monitoring environmental changes, real-time spatial
process control, and recognizing complex geospatial patterns over time.

Notable examples of this approach include Fernández and Green (2002), who developed a spatial
mixture model for areal data with a variable number of mixing components and spatially dependent
mixing weights. Frühwirth-Schnatter and Kaufmann (2008) proposed a clustering method using finite
mixtures of dynamic regression models, allowing for information pooling within clusters. Similarly,
Viroli (2011) applied a finite mixture model to analyze three-way data structures, including spatio-
temporal features. Neelon et al. (2014) introduced a finite mixture model with spatial random effects
for each component, specifically designed to analyze multivariate areal-referenced data. Additionally,
Hossain et al. (2014) employed a space-time mixture of Poisson regression models to tackle relabeling
algorithms and model selection challenges, while Paci and Finazzi (2018) proposed a dynamic space-
time mixture model to identify level-based clusters in spatio-temporal data and track their temporal
evolution.

When clustering spatio-temporal data, the focus is typically on the spatio-temporal component
wt(s) in equation (1.1). It can be seen either as n time series w(si ) = (w1(si ), ... ,wT (si ))

⊤ for i =
1, ... , n, one for each location, or as T spatial surfaces wt = (wt(s1), ... ,wt(sn))⊤, one for each time
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point. A first option would be to cluster together locations si and sj if the corresponding time series
take the same values over the whole time interval, i.e., wt(si ) = wt(sj) for each t = 1, ... ,T ; see,
e.g., Berrocal (2016) and Nieto-Barajas and Contreras-Cristán (2014). Alternatively, one may want
to cluster together two time points t and t ′ if the corresponding surfaces coincide at all considered
locations, i.e. wt(si ) = wt′(si ) for each i = 1, ... , n; see, e.g.,Gelfand et al. (2005) and Page et al.
(2022). A third option consists of clustering both over time and space meaning that the pairs (si , t)
and (sj , t

′) are assigned to the same cluster if wt(si ) = wt′(sj); see, e.g., Duan et al. (2007), Nguyen
and Gelfand (2011), and Mastrantonio et al. (2022).

Finally, clustering can be based on the parameters governing the spatio-temporal random effect
wt(s); see, e.g., Mastrantonio et al. (2019), Bucci et al. (2022) and Musau et al. (2022). For
instance, if we assume that wt(si ) = ϕiwt−1(si )+νt(si ) with νt(si ) ∼ N(0, τ2i ) as in equation (1.2),
we can cluster the locations si based on the parameters γi = (ϕi , τ

2
i ). Indeed, this is the approach

that we follow next.

1.2 Product Partition Models

1.2.1 Exchangeable Product Partition Models

Our Bayesian clustering framework aims at making inference on the partition ρn given the data. In
this context, a key role is played by the prior on ρn, for which a common choice is represented by
Gibbs-type priors. Such priors can be seen as generalizations of the popular Dirichlet process (De Blasi
et al., 2015), and offer analytical and computational tractability (Lijoi et al., 2007a). In particular,
such processes can be seen as “seating mechanisms”, similar to the Chinese restaurant metaphor for
the Dirichlet Process. For examples of tractable Gibbs-type priors, see De Blasi et al. (2013), Lijoi
et al. (2007a,b), and Miller and Harrison (2018).

As shown in Lijoi et al. (2007b), the Gibbs-type priors are a sub-class of Product Partition
Models (PPM, Hartigan, 1990). In particular, they coincide with exchangeable PPMs. The latter are
characterized by the following general structure

p (ρn) ∝
K∏

k=1

C (Sk) , (1.5)

which factorizes over clusters and incorporates the cohesion function C (·), which gauges the degree
of “closeness” among the elements in each cluster. Each Gibbs type prior is then characterized by a
specific choice for the cohesion function. There are some options for defining the cohesion function.
For example, the Dirichlet Process is induced by the cohesion function C (Sk) = α × Γ (|Sk |) =

α× (|Sk |−1)! with |Sk | denoting the cardinality of Sk and α the total mass parameter of the process
(Quintana and Iglesias, 2003). For details on the cohesion functions of other Gibbs-type priors such
as the Pitman-Yor process, see Gnedin and Pitman (2006), Lijoi et al. (2008), Gnedin (2010) and
De Blasi et al. (2015).

Gibbs sampling for PPMs is a widely used approach for clustering data into distinct groups
based on an underlying similarity structure. The process begins with the initialization of the model
parameters, which may include variables such as variance components, autoregressive parameters
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(if time-series data is involved), and parameters related to the cohesion function that defines how
clusters are formed. These initial values are typically chosen based on prior distributions or some
reasonable initial guesses.

The core of Gibbs sampling in the PPM context involves updating the partition structure, which
defines how observations are grouped into clusters. At each iteration, the algorithm samples the
group membership of each observation from the posterior distribution of possible clusterings. This
probability is informed by the likelihood of the data, the cohesion between observations, and the prior
imposed by the Product Partition Model. As part of this process, a co-clustering matrix is often
calculated to measure how frequently observations are assigned to the same cluster.

Once the partition is updated, the next step involves updating the parameters associated with
each cluster and the overall likelihood function. These parameters, which may include the mean,
variance, and autoregressive coefficients for each cluster, are sampled from their full conditional
distributions. The sampling is performed based on the data assigned to each cluster, reflecting the
local information captured by the partition. Additionally, hyperparameters, such as those governing
the overall variance or the concentration parameter of the Dirichlet Process (if used), are updated
based on the current partition and data. These updates ensure that the model parameters reflect the
latest partition structure and adapt to the clustering patterns discovered during the iteration.

Once the sampling is complete, the Gibbs sampler provides a set of posterior samples that reflect
the distribution of clustering configurations and model parameters. As mentioned in Section 1.1.1
the final clustering configuration can be selected by minimizing a posterior loss function, such as the
VI, or by choosing the configuration that best fits the data according to the posterior samples. In
this way, Gibbs sampling for PPM yields a flexible clustering framework that accounts for uncertainty
in both the partitions and the underlying model parameters, offering a rich framework for posterior
inference.

1.2.2 Spatial Product Partition Model

PPMs can be extended to directly incorporate covariate information into the clustering process. This
extension, known as the PPM with covariates (PPMx), was introduced by Müller et al. (2011). PPMx
is defined by augmenting the PPM with an additional factor – referred to as similarity function –
that induces the desired dependence on the covariates; see function g(·) in equation (1.6) below.
When the covariates are spatial locations, this model is referred to as spatial PPM (sPPM, Page
and Quintana, 2016). More specifically, let s∗k = {si : i ∈ Sk} and y∗k = {yi : i ∈ Sk} be the
covariates (i.e., the spatial coordinates) and the data for the individuals in cluster k , and denote with
g(·) a non-negative function taking higher values on sets of covariates judged to be more similar.
The model on the partition ρn is then conditioned on the value taken by all the locations {s1, ... , sn}.
Specifically, model (1.5) becomes

p (ρn | s1, ... , sn) ∝
K∏

k=1

g(s∗k )C (Sk) . (1.6)

In the context of the sPPM, the specification of a similarity function plays a critical role in how
data points are grouped into clusters. Several alternative formulations of the similarity function are
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proposed, as outlined by Müller et al. (2011) and Page and Quintana (2016). These formulations,
though distinct in their construction, all aim to reflect the spatial proximity and relatedness of data
points within a cluster.

Following Page and Quintana (2016), the first similarity function, g1(s∗k ), includes an indicator
function for singleton clusters (|Sk | = 1) and a term that depends on the sum of distances Dk

between points within a cluster and its centroid. Namely,

g1 (s
∗
k ) =

1 if |Sk | = 1

1
Γ(ωDk )1[Dk≥1]+Dk1[Dk<1] if |Sk | > 1

This formulation makes intuitive sense in spatial modeling since a smaller Dk implies that the points in
the cluster are tightly packed, leading to a higher similarity. The term ω serves as a tuning parameter,
giving flexibility in how sensitive the model is to spatial spread.

The second function, g2(s
∗
k ), is based on pairwise distances within a cluster, with a threshold

parameter a. Specifically,
g2 (s

∗
k ) =

∏
i ,j∈Sk

1 [d(si , sj) ≤ a] .

This approach sets a stricter condition for similarity, only considering pairs of points that are suf-
ficiently close. It emphasizes strong spatial cohesion within clusters by discarding any relationships
where points are too distant from one another.

For g3(s∗k ) and g4(s
∗
k ), the similarity function becomes more probabilistic, incorporating a density

function q(si | ξk), where ξk represents hyperparameters specific to the cluster. To be more precise,

g3 (s
∗
k ) =

∫ ∏
i∈Sk

q (si | ξk) q (ξk) dξk ,

g4 (s
∗
k ) =

∫ ∏
i∈Sk

q (si | ξk) q (ξk | s∗k ) dξk .
(1.7)

The use of a probability density function enables a more flexible representation of spatial clusters.
By integrating over the hyperparameters, we introduce a measure of correlation within the cluster,
meaning that clusters with more spatially similar points will yield higher values for g(s∗k ). This
approach is especially valuable in spatial modeling, as it accounts not only for the distances between
points but also for the underlying spatial distribution patterns that emerge. Although these two
similarity measures appear to have the same form, g4(s∗k ) differs by employing a posterior predictive
conjugate model, in contrast to the prior predictive conjugate model used by g3(s

∗
k ).

The probabilistic framework underlying g3(s
∗
k ) and g4(s

∗
k ) has significant implications. It intro-

duces a natural clustering behavior where data points are grouped together based on their spatial
similarity, with clusters exhibiting higher internal coherence receiving greater likelihoods. This aligns
well with the goals of spatial partitioning in models like the sPPM, where spatial dependencies and
proximities need to be accounted for in a mathematically rigorous way. Typically the choice for
q(si | ξk) in equation (1.7) is a multivariate normal with hyperparameters ξk = (mk ,Vk), repre-
senting the mean and covariance of the spatial locations, and a conjugate normal-inverse-Wishart
distribution for q (ξk). The closed form of g3(·), resulting from this choice, is detailed in Appendix A.1.
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The similarity function leverages these parameters to finely tune the clustering process, ensuring that
the spatial correlation within clusters is adequately captured.

In summary, the choice of a similarity function in the sPPM has profound implications for how
spatial clusters are formed and interpreted. By carefully specifying this function, we can ensure
that clusters reflect meaningful spatial patterns, accounting for both proximity and underlying spatial
dependencies. This ultimately leads to a more nuanced understanding of spatial structures, which
is essential in fields like environmental science and public health, where spatial relationships play a
crucial role in the phenomena being studied.

1.3 Analysis of air quality data

1.3.1 Data description

Particulate matter (PM) consists of a variety of solid and liquid particles that remain suspended in
the atmosphere for extended periods, enabling them to undergo diffusion and transport processes.
These particles originate from both natural sources, such as soil erosion, volcanic activity, and pollen
dispersal, and human activities, including industrial production, heating, and vehicular traffic. Unlike
other pollutants, PM is not a single chemical substance but a complex mixture of particles with
varying properties, and has significant environmental impact, contributing to climate change, soil and
water contamination, and posing serious health risks to living organisms. Continuous monitoring of
PM levels is therefore essential to prevent concentrations from exceeding critical thresholds that are
deemed harmful to health. This is achieved by using monitoring stations distributed across the region.
Previous Bayesian approaches to PM data include Sahu et al. (2006), which introduced two random
effects components for rural and urban PM levels, Cameletti et al. (2011), where a comparison
method was proposed to select a model for PM10 data based on goodness of fit, interpretability, and
parsimony, and Hamm et al. (2015), which presented a spatially varying coefficients model, allowing
the regression coefficients to vary spatially according to an estimated covariance function.

Our dataset consists of daily PM10 measurements (concentration of PM with a diameter smaller
than 10µm) collected from 162 monitoring stations located in Northern Italy during the period from
January 1 to April 10, 2019. The dataset comes from the European Environmental Agency (EEA)
and is freely available at https://eeadmz1-downloads-webapp.azurewebsites.net/. Northern
Italy is characterized by poor air quality. For instance, Figure 1.1 shows that, during 2019, 77 out
of the 162 stations in Northern Italy exceeded the daily limit established by the EEA (European
Commission, 2008), i.e., 50 µg/m3 on more than the 35 days per year. In some particularly affected
areas, stations registered up to 80 days above the threshold. This underscores the unevenness of air
quality across the study region.

Figure 1.2 presents the time series of the PM10 concentrations median and interquantile ranges
for the study period, illustrating both the overall levels of pollution and the variability across the sta-
tions. The plot reveals notable temporal variation in PM10 concentrations, with peaks during colder
months where levels often exceed 50 µg/m3. This pattern aligns with well-known winter factors,
including increased heating emissions, reduced atmospheric dispersion, and stagnant air conditions
(Pietrogrande et al., 2022). In contrast, during the warmer period, PM10 concentrations are generally
lower, frequently falling below 50 µg/m3. Additionally, the time series shows substantial variability

https://eeadmz1-downloads-webapp.azurewebsites.net/
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Figure 1.1: Number of stations above the daily limit in 2019.

across monitoring stations, with some stations experiencing higher peaks and deeper troughs.
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Figure 1.2: PM10 concentration station-wise median (red), 50% interquartile (orange) and 90%
interquartile range (yellow) over the study period.

Figure 1.3 illustrates the spatial distribution of the mean and standard deviation of the PM10
concentration over the time period. In particular, panel (a) presents the mean PM10 concentrations
recorded across different stations, showing the highest values – often exceeding 50 µg/m3 – in urban
and industrial areas like Turin, Milan, Brescia, Verona, and Venice. In contrast, lower concentrations
(below 20 µg/m3) are found in northern and coastal regions, such as Bolzano and Genoa. The
southern Po Valley exhibits moderate concentrations, generally between 20 and 50 µg/m3. Panel (b)

(a) (b)

Figure 1.3: Maps with mean (a) and standard deviation (b) of PM10 concentration time series.
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shows the standard deviation, highlighting the spatial pattern of the temporal variance. Regions with
higher mean concentrations, particularly urban and industrial areas, also tend to experience greater
temporal fluctuations, while areas with lower mean concentrations show less temporal variability.

Finally, to gain a better understanding of the data and identify which parameters may be useful
for clustering, we fit an AR(1) model, independently for each time series of PM10 concentrations.
In particular, the AR(1) model assumes that each day’s PM10 level can be predicted based on the
previous day’s level, capturing short-term persistence in air quality at each monitoring station. The
results are shown in Appendix A.2 and reveal a clear spatial pattern of the estimated autoregressive
coefficients and residual variances, with similar spatial evidence in the mean levels. These findings
support our decision to focus the clustering structure on temporal persistence and residual variability
of the time series.

1.3.2 Data analysis

In order to cluster monitoring stations, we adopt a model similar to the one described in Nieto-Barajas
and Contreras-Cristán (2014). Specifically, the PM10 concentration recorded at the i-th monitoring
station on day t, for i = 1, ... , n and t = 1, ... ,T , is modeled as

yt(si ) = z⊤t βi + wt(si ) + ϵt(si ), with ϵt(si )
ind∼ N

(
0,σ2i

)
,

wt(si ) = ϕiwt−1(si ) + νt(si ), with νt(si )
ind∼ N

(
0, τ2i

)
,

(1.8)

zt is a vector containing dummy variables that account for the seasonality of the data, and βi is
the vector of location-specific regression parameters. Specifically, the vector zt includes an intercept
term and additional terms that indicate the season corresponding to the time point t. For example,
if there are four seasons, zt will consist of four components: the intercept, an indicator for spring, an
indicator for summer, and an indicator for autumn. If all seasonal indicators are zero, the time point
corresponds to winter. Unlike the formulation presented in equation (1.1), the model in equation
(1.8) does not include station-specific covariates. From the second line of (1.8), it follows that the
joint distribution of the spatio-temporal random effects w(si ) = (w1(si ), ... ,wT (si ))

⊤ is

w(si ) ∼ NT (0,R (γi )) with [R (γi )]t,t′ =
τ2i

1− ϕ2i
ϕ
|t−t′|
i

where γi =
(
ϕi , τ

2
i

)
. The clustering of the monitoring stations is then based on the parameters

driving the autoregressive process of the random effect wt(s). Specifically, we employ the sPPM
(Page and Quintana, 2016), as described in Section 1.2.2, to group stations according to the values
of the parameters γi . In particular, we use the similarity function g3(·) in equation (1.7) to account for
the spatial dependence. Clustering based on the autoregressive coefficient ϕi and variance τ2i involves
grouping observations whose spatio-temporal random effects are driven by temporal processes with
the same persistence and variability. This approach differs from clustering the entire time series, as
discussed in Section 1.1.2. Here, we allow different time series to belong to the same cluster if they
share the same temporal process parameters.
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Before proceeding with posterior inference, we need to set the remaining prior distributions:

βi ∼ Np (0,Σβ) for i = 1, ... , n with Σβ = diag
(
ζ21 , ... , ζ

2
p

)
ζ2k

iid∼ IG (aβ, bβ) for l = 1, ... , p

σ2i
iid∼ IG (aϵ, bϵ) for i = 1, ... , n

γ∗
k

iid∼ G0 for k = 1, ... ,K with G0 = IG (aτ , bτ )× Beta (aϕ, bϕ)

(1.9)

where IG (a, b) denotes an inverse gamma distribution with mean b/(a − 1), Beta (a, b) denotes a
beta distribution with mean a/(a+ b), and γ∗

1 , ... ,γ
∗
K denote the cluster specific parameters so that

γi = γ∗
ci
.

For our model specification, we selected hyperparameters to balance incorporating prior informa-
tion and allowing the data to dominate the posterior inference. Specifically, for the inverse gamma
prior on the variance of the regression coefficients, ζ2k , we set aβ = 2 and bβ = 1, i.e., a rather vague
prior distribution with mean 1 and infinite variance. Similarly, for the residual variance σ2i , we chose
aϵ = 2 and bϵ = 1, using a prior structure comparable to that of ζ2k . This is a reasonable assumption
in many practical applications where the variance of the residuals is expected to be of the same order
of magnitude as that of the regression coefficients. The hyperparameters of the base measure G0

are set as follows. We selected aτ = 0.5 and bτ = 0.5; this choice corresponds to an undefined prior
mean and a non-informative prior that allows for potentially large variances in the autoregressive pro-
cess. Given that wt(si ) captures temporal dependence in the model, we allow substantial flexibility
to account for strong dynamics where necessary. In fact, by not constraining the prior mean, the
model is free to accommodate varying levels of temporal variability across spatial locations, which
is especially useful in situations where temporal correlations may differ significantly. Finally, we set
aϕ = 1 and bϕ = 1, corresponding to a Uniform distribution between 0 and 1. This reflects the
assumption of stationarity in the univariate temporal process and excludes negative autocorrelation,
which is consistent with our prior belief.

The full posterior inference is provided through an MCMC sampling scheme. In particular, we
adapted the Gibbs sampler outlined in Section 1.2.1 to approximate the joint posterior distribution
under model (1.8)-(1.9), see Algorithm 1. We then employ the greedy stochastic search approach of
Dahl et al. (2022) to obtain a posterior point estimate of the partition from the posterior distribution
of the cluster assignment of each station.

Results

Algorithm 1 was run for 5,000 iterations, with the first 2,000 discarded as burn-in, achieving a
computational speed of 8.78 iterations per second. The code to reproduce the results in this section
is available at https://github.com/lucaaiello/time_series_clustering/tree/main.

Panel (a) of Figure 1.4 presents the clustering results for the 162 PM10 monitoring stations across
Northern Italy, based on their station-specific time series parameters. In particular, the estimated
partition in four clusters is obtained using the VI loss function. Each cluster corresponds to a color,
and the median values of the autoregressive coefficient and the variance of each cluster are indicated
in the legend. In particular, we used the final MCMC iteration to estimate the cluster-specific
parameters, calculating the mean parameters for each cluster based on the assigned observations.

https://github.com/lucaaiello/time_series_clustering/tree/main
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Algorithm 1 Gibbs Sampling step for the sPPM model on time-series parameters.

1: update, for i = 1, ... , n, βi | σ2i ,γi ,Σβ,Z, yi from

Np

(
Vβi

Z⊤Q−1
i yi ,Vβi

)
where Qi = σ2i I+ R(γi ) and Vβi

=
(
Z⊤Q−1

i Z+Σ−1
β

)−1

2: update, for i = 1, ... , n, wi | σ2i ,γi ,βi ,Z, yi from

NT

(
σ−2
i Vwi (yi − Zβi ),Vwi

)
where Vwi =

(
σ−2
i I+ R(γi )

−1
)−1

3: update, for i = 1, ... , n, σ2i | aϵ, bϵ,βi ,wi ,Z, yi

IG
(
aϵ +

T

2
, bϵ +

1

2
(yi − Zβi −wi )

⊤(yi − Zβi −wi )

)
4: update, for l = 1, ... , p, ζ2l | aβ, bβ,β1, ... ,βn

IG

(
aβ +

n

2
, bβ +

1

2

n∑
i=1

α2
il

)

5: for i = 1, ... , n do
6: update (γ∗

1 , ... ,γ
∗
K (−i)) with the K (−i) unique values in γ(−i)

7: update (γ∗
K (−i)+1

, ... ,γ∗
K (−i)+Kaux

) from

G0 = IG (aτ , bτ )× Beta (aϕ, bϕ)

8: update ci with the following probability

Pr (ci = k | −) ∝

f (wi | γ∗
k ,−)

C
(
S
(−i)
k ∪{i}

)
g
(
s
∗(−i)
k ∪si

)
C
(
S
(−i)
k

)
g
(
s
∗(−i)
k

) k = 1, ... ,K (−i)

f (wi | γ∗
k ,−)C ({i}) g (si ) k = K (−i) + 1, ... ,K (−i) + Kaux

where f (wi | γ∗
k ,−) is the probability density function of wi evaluated at the k-th cluster specific

parameters, and Kaux is the additional number of clusters, see Neal (2000) for details.
9: set γi = γ∗

ci
10: end for
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The blue cluster has the lowest autocorrelation (0.10) and a variance of 1.05, while the green cluster
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Figure 1.4: Estimated partition of the monitoring stations (a); posterior co-clustering matrix (b).

shows slightly higher autocorrelation (0.33) with a variance of 0.64. The red cluster presents an
autocorrelation of 0.5 and a higher variance of 1.13, indicating stations with more fluctuating PM10
levels. The black cluster, instead, shows the highest autocorrelation (0.84) and variance (1.45). The
numerical values in each cluster provide insights into PM10 temporal behavior across the region.
Stations with higher autocorrelation, often in urban and industrial areas, likely experience much more
variability in the pollution levels, while some of those with lower variances also have lower levels of
persistence.

Beyond providing a point estimate of the partition, panel (b) of Figure 1.4 shows the heatmap of
the co-clustering matrix, where each entry represents the proportion of MCMC iterations in which two
individuals (monitoring stations) were clustered together based on posterior samples. The stations
are ordered according to the estimated partition. The heatmap clearly shows a block structure for the
green and blue clusters, indicating a strong alignment between such clusters and their co-clustering
probabilities. In contrast, the red and black clusters show more uncertainty, with relatively high prob-
abilities also appearing off the block diagonal. Darker cells correspond to pairs of stations frequently
clustered together, often located in geographically contiguous areas, highlighting the influence of
spatial proximity on air quality trends.

1.4 Summary

In this work, we provided an overview of Bayesian nonparametric clustering for spatio-temporal en-
vironmental data. We first review models for spatio-temporal data, followed by a detailed discussion
on cluster analysis, focusing on Bayesian nonparametric methods. We then summarized posterior
inference for Bayesian clustering and explored the literature on Bayesian nonparametric clustering for
spatio-temporal data, covering relevant models and applications. Finally, we discussed the PPM and
its spatial extensions, which are later used in our case study.

Clustering is a fundamental problem in statistics, particularly in the context of environmental and
spatio-temporal data, where the clustering of both space and time must be accounted for. Model-
based clustering offers the advantage of providing probabilistic allocations of observations to clusters
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and probabilistic definitions of the number of clusters. In a Bayesian framework, a popular approach
for model-based clustering is to use a mixture model with an unknown number of clusters, often
incorporating either a finite or infinite number of components. This results in a random partitioning
of observations, making it suitable for modeling environmental data that exhibits both spatial and
temporal variation.

However, classic models have been shown to be inconsistent for estimating the number of clusters,
especially in spatio-temporal settings where environmental factors can influence cluster structure.
Moreover, in finite mixture models, the prior on the number of components strongly affects cluster
estimation. This can be problematic when modeling environmental data with complex spatial and
temporal dependencies, such as pollution levels that change across regions and seasons.

Recent developments in Bayesian clustering have also extended to clustering populations or spatial
regions, addressing the need for population-based or region-based clustering in environmental risk as-
sessment. For this, Gibbs-type priors have gained attention as they extend traditional mixture models
to better handle spatial clusters across populations of observations, such as air quality measurements
across different regions.

An alternative is to directly model the PPM, which is particularly suited to environmental data.
Although PPMs offer flexibility in modeling partitions, they do not take into account spatial depen-
dence, which is particularly pivotal when dealing with spatio-temporal datasets.

Finally, summarizing the posterior distribution of the partition is a crucial aspect of Bayesian
clustering, particularly for spatio-temporal data, where environmental and geographical factors play a
key role. Various decision-theoretic approaches have been proposed to achieve optimal summarization,
comparing different methods for obtaining a representative partition from the posterior distribution.

The application presented in this work demonstrates a Bayesian model-based clustering algorithm
applied to environmental data. We employed a multi-level hierarchical linear mixture model, incorpo-
rating a first-order autoregressive process to account for temporal effects, while clustering was driven
by the discreteness of the nonparametric prior. Given the relatively heterogeneous pollution levels
across Northern Italy, we developed a model emphasizing persistence and variability. A sPPM was
used as a prior for the autoregressive process parameters, enabling spatial clustering of monitoring
stations. The results indicated that persistence was higher in urban areas and lower in vegetated or
coastal regions with frequent breezes.

Future research in Bayesian nonparametric clustering for spatio-temporal environmental data
could focus on exploring alternative cohesion and similarity functions within the sPPM framework.
Additionally, extending the sPPM approach to handle areal data would represent a novel contribu-
tion. Another important avenue is refining hyperparameters selection to enhance model performance.
Lastly, there appears to be a gap in the literature concerning the predictive capabilities of these
models. While they have demonstrated strong inferential properties – each with its own limitations
and requirements – there is limited work addressing their predictive performance in both spatial and
temporal contexts.





Chapter 2

Detecting spatial health disparities
using disease maps

Health disparities, or inequities, broadly refer to sections of the population being deprived of fair and
equal opportunities to seek healthcare or exhibiting different disease incidences and risks (see, e.g., the
recent text by Rao, 2023). Spatial disparities in health manifest as variations in health outcomes over
geographic regions and are often visually represented using disease maps (Koch, 2005). Spatial data
analysis in epidemiological investigations is extensively documented (see, e.g., Waller and Gotway,
2004; Waller and Carlin, 2010; Lawson, 2013; Lawson et al., 2016, and further references therein).

Detecting “boundaries” on disease maps is a specialized exercise directly relevant to assessing
health disparities. In public health, such difference boundaries, or wombling boundaries (so called
after Womble, 1951), indicate significantly different disease mortality and incidence between neighbors
and assists in decision-making for disease prevention and control, geographic allocation of resources,
and so on (see Jacquez and Greiling, 2003b,a; Lu and Carlin, 2005; Li et al., 2011; Ma and Carlin,
2007; Fitzpatrick et al., 2010, for some algorithmic approaches with applications). Model-based
approaches aiming for full probabilistic uncertainty quantification have also received attention and
include, but are not limited to, developments in Lu et al. (2007); Ma et al. (2010); Li et al. (2015,
2012); Hanson et al. (2015); Corpas-Burgos and Martinez-Beneito (2020); Gianella et al. (2023);
Gao et al. (2023), and Pavani and Quintana (2024).

This chapter builds on the above developments in what may be described as still a fledgling
area. We devise a probabilistic learning mechanism for adjacency boundaries on a map when such
information may become available. An administrative or political boundary separating two adjacent
regions need not delineate them in terms of the health outcomes measured there. In fact, in spatial
smoothing the customary approach is to assume that neighboring regions are similar to each other.
This assumption runs counter to detecting health disparities, where we seek out differences and not
similarities. Therefore, modeling spatial disparities needs to balance underlying processes generating
similarities based upon geographic proximity with processes generating significant differences between
neighbors. We specifically pursue an effective manner of modeling the adjacency relations on a map.

Our contribution is summarized in the context of the two broad themes. The first builds stochastic
models for the adjacency matrices (Lu et al., 2007; Ma et al., 2010; Lee and Mitchell, 2012; Liang,
2019; Corpas-Burgos and Martinez-Beneito, 2020) that, in principle, can accommodate information
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from explanatory variables in ascertaining the presence of edges. Based upon the complexity of the
resulting models and numerical difficulties in estimating such edges, a different approach forgoes
introducing variables in the adjacency, but detects edges using multiple comparisons by estimating
the spatial random effects and, subsequently, testing how many such pairs are significantly different.
A Bayesian approach (Li et al., 2015, 2012; Gao et al., 2023) holds appeal as the posterior distribution
of spatial effects produce an exact Bayesian false discovery rate (FDR) (Müller et al., 2004) without
recourse to asymptotic assumptions that are inappropriate in areal settings.

We offer a framework that melds the two themes. We build upon Gao et al. (2023) by embedding
directed acyclic graphical autoregression (DAGAR) models (Datta et al., 2019) within a hierarchical
Bayesian nonparametrics framework. This nonparametrics specification is critical as it introduces
discrete probability masses on the spatial random effects and allows us to meaningfully calculate the
posterior probabilities of two neighboring spatial effects being equal. This sets up boundary detection
using Bayesian FDR. We further enrich the model by allowing the DAGAR adjacency matrix to learn
from explanatory variables that may carry information regarding whether two neighboring regions are
similar. Thus, each element of a binary adjacency matrix is modeled using an exponential threshold
devised by Lee and Mitchell (2012). We develop joint models for multiple diseases (cancers), where
the diseases are dependent and accommodate disease-specific learning of adjacency relationships.
We allow difference boundaries to vary by health outcomes and explain the impact of explanatory
variables on such boundaries. Here, we consider unstructured disease dependencies and those posited
by conditional dependencies in graphical models.

The data analytic innovation and merits of our approach are best appreciated in comparison to
approaches that adhere to one, but not both, of the boundary detection themes discussed above.
Methods that allow uncertainty through purely parametric adjacency relations (including regression
models for adjacency matrices) within widely used conditional autoregression models often encounter
numerical difficulties in convergence of iterative estimation algorithms, such as Markov chain Monte
Carlo (MCMC). On the other hand, methods offering FDR based boundary detection without allowing
adjacency learning from explanatory variables can lead to inflated detection rates of boundaries by fail-
ing to account for additional uncertainties in adjacency relations. We demonstrate this phenomenon
in the cancer boundary detection rates reported recently by Gao et al. (2023).

The remainder of this chapter is organized as follows. Section 2.1 provides a detailed description
of the dataset, which is sourced from the National Cancer Institute’s (NCI) Surveillance, Epidemi-
ology, and End Results (SEER) database. This dataset includes records of four cancer types across
California counties, along with explanatory variables for modeling outcomes and geographic bound-
aries. Section 2.2 introduces the likelihood model used to describe the response variable, incorporating
an areal stick-breaking process. Section 2.3 details the DAGAR model used to account for spatial
dependencies, explaining how the adjacency structure is modeled. In Section 2.4, we extend the
framework by developing a multivariate Bayesian model using the MDAGAR approach to capture
disease dependencies. Section 2.5 outlines the full model specification, including the prior distribu-
tions for all model parameters. Section 2.6 explains the FDR procedure for detecting boundaries.
Section 2.7 discusses the computational aspects of our method, highlighting its computational advan-
tages. In Section 2.8, we present simulation experiments that assess the performance of the proposed
model using various metrics. Section 2.9 applies the spatial boundary detection method to the SEER
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dataset. Finally, Section 2.10 provides concluding remarks. Additional details on the MCMC scheme
and supplementary results from the simulation experiments and real data analysis are presented in
Appendix B.

2.1 Data

We explore an areal data set extracted from the SEER*Stat database using the SEER*Stat statistical
software (National Cancer Institute, 2019). The data records the occurrence of four potentially
interrelated types of cancers: lung, esophageal, larynx, and colorectal. The occurrences of these
cancers are aggregated from January 2012 through December 2016 and presented as counts in each
of the 58 counties of California. Previous research has shown that lung and esophageal cancers
share common risk factors (Agrawal et al., 2018) and metabolic mechanisms (Shi and Chen, 2004).
Furthermore, it has been found that lung cancer is one of the most frequent second primary cancers
in patients with colon cancer (Kurishima et al., 2018). Patients with laryngeal cancer are also at a
high risk of developing second primary lung cancer (Akhtar et al., 2010). Hence, we seek to account
for the dependence between the cancers due to non-spatial factors.

Let (yid) be the observed counts for cancer type d (d = 1, 2, 3, 4) in county i (i = 1, 2, ... , 58).
Our model, developed in Section 2.2, accounts for the expected number of cases (Eid) by adjusting
for age-sex demographics in each county. Specifically, we calculate the expected age-sex adjusted
number of cases in county i for cancer d as Eid =

∑m
k=1 c

k
dN

k
i (Jin et al., 2005), where ckd =

(
∑58

i=1 y
k
id)/(

∑58
i=1N

k
i ) is the age-sex specific incidence rate in age-sex group k for cancer d across

all California counties; ykid represents the incidence count in age-sex group k of county i for cancer
d , and Nk

i represents the population in age-sex group k of county i . The age groups have been
determined based on 5-year intervals up to 85 years or older. These age intervals are as follows: less
than 1 year, 1–4 years, 5–9 years, 10–14 years, and so on, up to 80–84 years and 85+ years. This
results in a total of m = 19× 2 = 38 age-sex groups.

Figure 2.1 displays a map of California’s counties, illustrating the age-sex adjusted standardized
incidence ratios (SIRid = yid/Eid) for different types of cancer. The map reveals a notable pattern,
where regions exhibiting comparable SIRs tend to cluster together geographically, forming distinct
groups. This clustering is evident in the group of regions with the highest incidence rates for each
cancer. The high SIR values for all of the cancer types are concentrated in northern counties, with the
only exception being that of a high SIR for colorectal cancer in a southern county (San Bernardino).
Additionally, in northern counties, we notice that several counties with high SIRs are situated next to
areas with low SIRs. Our proposed model, which detects boundaries, provides a robust, adaptable,
interpretable and clear analytical tool for identifying these geographical clusters.

We used Pearson’s correlation coefficient as an exploratory tool to evaluate the relationships
between various types of cancers. In a preliminary analysis, we treated the SIRs from different
counties as independent samples. Our findings indicate a significant association in the incidence
of lung cancer with each of esophageal (correlation coefficient 0.58), larynx (0.40), and colorectal
(0.50) cancers. We also measured a correlation coefficient of 0.42 between esophageal and larynx
cancer. Moreover, to assess the spatial relationships of each cancer type, we employed the Moran’s I
statistic, which was computed based on the r -th order neighbors for each cancer. These calculations
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Figure 2.1: Maps of age-sex adjusted standardized incidence ratios (SIR) for lung, esophageal,
larynx, and colorectal cancer in counties of California, 2012–2016.

were then used to generate an areal correlogram, as described by Banerjee et al. (2014). Here, we
construct 11 distance intervals or bins (0, d1], (d1, d2], (d2, d3], ... using by setting each dr = 0.01× r

for r = 1, ... , 11. We compute Euclidean distances between the county centroids from an Albers map
projection of California and define r -th order neighbors as regions that fall within the bin (dr−1, dr ] of
each other, i.e., they are separated by a distance greater than dr−1 but within a distance of dr . These
neighbors are then used to calculate Moran’s I statistic. Figure 2.2 shows the spatial associations for
lung, esophageal, colorectal, and larynx cancers. As the order of neighbors (r) increases, the spatial
associations diminish notably for lung, esophageal, and colorectal cancers, but the observed pattern
is less pronounced and clear for larynx cancer.
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Figure 2.2: Moran’s I statistic using r -th order neighbors for four cancers.
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We introduce explanatory variables into our model to capture the mean structure, account for
risk factors and identify neighboring areas with significant differences in rates. A detailed analysis
is presented in Section 2.9. Figure 2.3 presents rates (in percentage scale) for smoking; population
over 65; and below poverty threshold rates for each county, arranged from left to right. These
plots reveal notable patterns: the northern counties exhibit a higher concentration of smoking rates,
with a few exceptions in the central counties; both northern and eastern counties have higher rates
of individuals over 65; and the northern and central counties have higher rates below the poverty
threshold. Conversely, the coastal regions demonstrate relatively lower rates across all the covariates,
indicating a distinct contrast between different geographical areas (see Doll et al., 2005, for similar
findings). Interestingly, central and southern counties exhibit lower rates specifically in the over 65
variable. The significance and implications of these findings will be discussed in greater detail in
Section 2.9.
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Figure 2.3: California’s county-level rates (as percentages of population) for smokers, elderly popu-
lation (over 65) and individuals below poverty line in terms of annualized income.

2.2 Likelihood model

We construct a generalized linear mixed model for the disease outcome, yid , using a distribution from
the exponential family with a canonical link,

g(E (yid)) = x⊤idβd + ϕid , (2.1)

for each areal unit i = 1, ... , n and disease d = 1, ... , q. The large scale trend is modeled using
a regression, where xid is a vector of explanatory variables and βd is the corresponding vector of
slopes, while ϕid is the spatial random effect for disease d in region i . For detecting difference
boundaries, we seek P(ϕid ̸= ϕjd | y, i ∼ j), which offers a fully model-based stochastic mechanism
to calibrate difference boundaries, as in Li et al. (2015), where y is the collection of observed yid ’s
and i ∼ j means that regions i and j are neighbors. While risks tend to fluctuate continuously across
space, neighboring regions may exhibit discontinuities attributable to disparities arising from vastly
different underlying factors (e.g., socioeconomic characteristics). This raises an issue about the prior
distribution for the ϕid ’s. A continuous probability distribution is inappropriate because the resulting
posterior probability is P(ϕid ̸= ϕjd | y, i ∼ j) = 1, which classifies all possible geographic boundaries
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as difference boundaries. This limitation highlights the need for a model that accounts for spatial
dependence while assigning discrete probability masses on spatial random effects. Such a model
enables including non-zero probabilities for the random effects being equal. Indeed, our approach will
ensure non-null probabilities of equality between the random effects, resulting in a smaller number of
boundaries detected compared to n. The Dirichlet Process (DP) offers a natural way to cluster regions
by endowing possibly positive mass on P(ϕid = ϕjd | y, i ∼ j). The DP is especially appealing here
as it still captures spatial associations in ϕid through the baseline covariance (or precision) matrix.
The model we develop here belongs to a subclass of stick-breaking process priors and includes the
DP as a special instance.

Let ϕ = (ϕ⊤
1 , ... ,ϕ

⊤
q )

⊤ be the N × 1 vector, where N = nq and ϕd = (ϕ1d , ... ,ϕnd)
⊤ for each

d = 1, ... , q. Following Gao et al. (2023) we let {1, ... , n, ... , (q− 1)n+1, ... ,N} be an enumeration
of the pairwise (i , d) indices corresponding to the ordering of ϕ, thereby dealing with a unique
N × 1 vector ϕ. We let ϕ ∼ GN , where GN is an unknown distribution further specified by GN =∑

u1,...,uN
πu1,...,uN δ(θu1 ,...,θuN ), where u1, ... , uN ∈ {1, ... ,K}, θk | τ

iid∼ N (0, 1/τ) for k = 1, ... ,K ,
δ(θu1 ,...,θuN ) is the Dirac measure located at (θu1 , ... , θuN ) and

πu1,...,uN = P

(
u1−1∑
k=1

pk < F (1)(γ1) <

u1∑
k=1

pk , ... ,

uN−1∑
k=1

pk < F (N)(γN) <

uN∑
k=1

pk

)
(2.2)

with γ ∼ NN(0,Σγ). To clarify, the weights in equation (2.2) are constructed using the marginal cu-
mulative distribution function of the elements of γ. This construction integrates two approaches: the
hybrid Dirichlet process (Petrone et al., 2009), which leverages point-referenced continuous spatial
copulas to model dependencies among the weights, and the latent stick-breaking process (Rodríguez
et al., 2010), which employs ordered atoms. Within the probability operator, there are N elements,
each corresponding to a specific component of γ. Changes in these components influence the value of
πu1,...,uN , which subsequently determines the realization of the process GN . Marginally, each F (·)(γ·)

follows a U(0, 1) distribution, but the components are dependent through the joint distribution of γ.
Moreover, the distribution of each spatial random effect ϕ· is governed by a univariate Dirichlet Pro-
cess (DP), with spatial dependence between these DPs introduced via a copula representation for the
weights. Priors for model parameters are specified as βd

ind∼ Np(0,Σβd
), while the precision (inverse

variance) 1/τ ∼ IG(a, b), where a is shape and b is scale. We specify the stick-breaking weights by
p1 = V1 and pj = Vj

∏
k<j(1−Vk) for j = 2, ... ,K , where Vk

iid∼ Beta(1,α) and F (1)(·), ... ,F (N)(·)
are cumulative distribution functions of the marginal distribution of the corresponding γ elements
indexed in accordance with the elements of ϕ.

The marginal covariance between spatial random effects ϕg and ϕh can then be expressed as

Cov(ϕg ,ϕh) =
b

a− 1

K∑
k=1

π
(g ,h)
kk , (2.3)

where g , h = 1, ... ,N and

π
(g ,h)
kk = P

(
k−1∑
t=1

pt < F (g)(γi ) <
k∑

t=1

pt ,
k−1∑
t=1

pt < F (h)(γj) <
k∑

t=1

pt

)
(2.4)
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Equation (2.3) and (2.4) evinces how the spatially dependent elements of γ induce associations
among the elements of ϕ. The covariance of ϕ also depends on the hyperparameters of the precision
parameter prior of the base distribution. Higher values of the probabilities, i.e., π(g ,h)kk , produce higher
correlation between the random effects. Unsurprisingly, a higher likelihood of ϕg and ϕh exhibiting
similar values implies a higher covariance in (2.3). We next attend to modeling the spatial covariance
matrix Σγ .

The choice of the independent and identically distributions for the atoms base distribution stems
from the necessity of establishing ties across both regions and cancers. For example, if we were
to assign different means to different cancers, we could still accommodate ties within each cancer,
wherein different regions’ random effects assume the same value. However, we would be unable to
establish ties across cancers as the underlying distribution from which the atoms are sampled would
differ.

In theory, K = ∞ yields a fully non-parametric model, but we follow the standard practice of
replacing the infinite sum with the sum of the initial K (K ≤ n) terms, as the probability masses
diminish rapidly. Should concerns about truncation bias arise, an alternative method called slice-
sampling (described in Kalli et al., 2011) is available for exact sampling. In particular, for areal
data the value of K is naturally constrained by the number of areal units rendering the infinite
representation redundant. See Müller et al. (2015) for further details on nonparametrics models and
their scope of inference.

2.3 Spatial dependence

This section outlines how spatial dependence is incorporated into our model, and is structured as
follows. Section 2.3.1 provides an overview of the DAGAR model, detailing its theoretical basis
and emphasizing its advantages over traditional spatial models. In Section 2.3.2, we discuss how
adjacency relationships between spatial units are integrated into the DAGAR framework, highlighting
its flexibility in capturing spatial structures. Lastly, Section 2.3.3 offers a computational comparison
between the DAGAR and CAR models, focusing on their respective efficiencies and computational
benefits.

2.3.1 DAGAR review

We briefly review the univariate DAGAR which uses a fixed set of arbitrarily ordered regions yielding
a topologically ordered set of vertices, V = {1, ... , n}, and a set E of directed edges that encode
“neighbors” of every region. Rather than defining all geographically adjacent regions as neighbors,
DAGAR defines neighbors of a given region i as regions that (i) are geographically adjacent to i

and (ii) precede i in the topological order. The directed graph G = (V, E) is constructed from this
definition. The precision matrix of a DAGAR random variable is Q(ρ) = (I − B)⊤Λ(I − B), where
B = (bij) is n × n with elements bij =

ρ
1+(n<i−1)ρ2

if there is a directed edge (i , j) ∈ E for i ≥ 2,
where n<i is the number of neighboring regions preceding i , and bij = 0 if (i , j) /∈ E . In DAGAR,
(i , j) ∈ E if j < i in the topological order and regions i and j are geographically adjacent. This implies
that bii = 0 and bij = 0 for all i ≤ j so B is strictly lower triangular. The n × n diagonal matrix
Λ = diag(λi ) has elements λi = 1+(n<i−1)ρ2

1−ρ2
along its diagonal for i = 1, ... , n, where n<1 = 0.
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Datta et al. (2019) showed that ρ can be interpreted as a spatial autocorrelation parameter and that
the ordering is irrelevant or not impacting the analysis in most applications.

The construction of the DAGAR precision matrix is particularly appealing due to its exclusive
dependence on the ρ parameter and its ability to account for all edges without any omissions, while
still maintaining computational efficiency. To illustrate the advantages of the DAGAR structure, we
explicitly present its precision matrix below:

Q(ρ) = (I− B)⊤Λ(I− B)

=


1 −b12 · · · −b1n

0 1 · · · −b2n
...

...
. . .

...
0 0 · · · 1



λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




1 0 · · · 0

−b12 1 · · · 0
...

...
. . .

...
−b1n −b2n · · · 1



=


λ1 +

∑n
i=2 λib

2
1i −λ2b12 +

∑n
i=3 λib1ib2i · · · −λnb1n

−λ2b12 +
∑n

i=3 λib1ib2i λ2 +
∑n

i=3 λib
2
2i · · · −λnb2n

...
...

. . .
...

−λnb1n −λnb2n · · · λn


One of the main advantages of the DAGAR formulation is the computation of the determinant and
the quadratic form in the multivariate normal probability density function. Specifically:

|Q(ρ)| = |I− B||Λ||I− B| =
n∏

i=1

λi

γ⊤Q(ρ)γ = γ⊤ (I− B)⊤ Λ (I− B)γ = λ1γ
2
1 +

n∑
i=1

λi (γi −
∑
j<i

γjbij)
2

which are way less heavy to compute from a computational perspective. In particular the determinant
computation reduces to computing a product of n terms while the quadratic form is lighter since it
takes into account the sparsity of the structure and the strictly lower triangularity of the B matrix.

Two extensions to the DAGAR are relevant to our current data analytic aims. First, we intend to
model the adjacency matrix rather than specify it purely from the map. Geographic adjacency, by it-
self, is not enough to infer similarities or disparities and we accommodate learning about the adjacency
relations using risk factors or other explanatory variables. We adopt one possible fully model-based
approach for inferring about spatial disparities by statistically estimating difference boundaries. We
avail of spatially oriented risk factors and explanatory variables to drive inference on difference bound-
aries. Second, while extending to joint models for dependent cancer occurrences, we allow the impact
of the factors informing about the edges to vary by the diseases under considerations. This synthesizes
the approaches in Lee and Mitchell (2012) and Gao et al. (2023).

2.3.2 DAGAR adjacency modeling

An appealing feature of the DAGAR is that the parameter ρ represents spatial autocorrelation, unlike
in traditional spatial autoregression models such as simultaneous and conditional autoregression (SAR
and CAR, respectively). However, it is unclear how information from explanatory variables, predictors
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or risk factors can be introduced in the adjacency. We achieve this by constructing a strictly lower
triangular n × n adjacency matrix, W̃ = (wij) based upon the fixed topological order of regions
to assimilate information from preceding neighboring regions. This results in wij = 0 for i ≤ j or
i ̸∼ j (i and j not neighbors). The neighbor set for region i in DAGAR are defined as geographically
adjacent regions preceding i in V. Introducing a lower triangular adjacency matrix W̃ facilitates the
subsequent exposition. For each region i , its neighbors are {j : j < i , j ∼ i} ≡ {j : wij = 1}. We now
introduce W̃ into the DAGAR precision matrix as

Q(ρ, W̃) = (I− B)⊤Λ(I− B)

where B = B̃ ◦ W̃, B̃ = (b̃ij) with elements b̃ij =
ρ

1+(n<i−1)ρ2
, λi =

1+(n<i−1)ρ2

1−ρ2
, n<i =

∑n
j=1 wij

and ◦ denotes the Hadamard (or elementwise) product.

The matrix B̃ is dense with all its elements being possibly non-zero. However, B̃ ◦ W̃ retains
the sparse lower-triangular structure characteristic of DAGAR. Instead of directly setting the non-null
elements of W̃ to fixed values, one possibility is to model each element of W̃ as a separate random
quantity. For instance, Lu et al. (2007) employed a logistic model for the elements of a symmetric
adjacency matrix in a CAR model while considering boundary-specific risk factors. In our DAGAR
setting, a parallel approach would be to model the lower triangular elements w̃ij | pij

ind∼ Bernoulli(pij)
and introducing a regression model in, for example, a logistic link log(pij/(1− pij)).

Other possible approaches include adapting random adjacency models, such as in Ma et al. (2010),
to DAGAR by leveraging an Ising model for elements of the adjacency. However, the information
needed to estimate such models is rarely available and require informative prior distributions resulting
in excessively parametrized covariance models for γ that inaccurately estimate uncertainties and
produce biased inference for spatial boundaries (also see Li et al., 2011, who argue that effectively
modeling geographical adjacency would require a separate parameter for every pair of neighbors
resulting in overparametrized models).

In what follows, we adopt a simpler and more effective approach based on Lee and Mitchell
(2012), who propose modeling the adjacency matrix as

w̃ij(η) =

1 if exp
(
−z⊤ij η

)
≥ 0.5 and i ∼ j

0 otherwise ,
(2.5)

where zij consist of explanatory variables specific to pairs of regions i and j and are assumed to be
non-negative in each element. In practice, they could represent an absolute measure of discrepancy
between the two regions with η being the vector of corresponding coefficients. Equation (2.5)
encodes geographic neighbors so as to not represent disparities whenever z⊤ij η ≤ log 2. Furthermore,
zij excludes an intercept so regions with homogeneous populations, i.e., zij = 0, are deemed adjacent.
The coefficients in η act as disparity parameters and restricted to be nonnegative so the greater the
dissimilarity between two regions, the more likely there is a difference boundary between them. Each
element in η is assigned a Uniform prior distribution between 0 and a fixed positive constant such
that at most 50% of geographic neighbors in the study region are classified as non-adjacent. This
maintains some degree of smoothing; see Lee and Mitchell (2012) for further details. Higher values
in η assist in staying below the threshold, which results in a loss of a geographical boundary in the
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adjacencies to be smoothed over and, hence, indicates a spatial disparity.

A salient feature of the preceding development is assimilating information from explanatory vari-
ables xid in (2.1) and zij in (2.5). The former informs about the observed values of the health
outcomes and captures large scale trends through the mean structure, while the latter provides infor-
mation on disparities among geographic neighbors. The vectors xid and zij can share variables, but
need to be indexed differently. For example, one could include smoking rate for a region i in xid and
the difference in smoking rates between regions i and j in zij . The coefficients in η indicate if the
corresponding variable in zij signifies disparity. They can be map-based such as the distance between
the centroids of regions i and j or the discrepancies in the percentage of common boundaries shared
by the two regions compared to their total geographical boundaries. Topographical data, such as
the presence of challenging natural features like mountain ranges or rivers that hinder travel between
the regions, can be included. Other examples include socio-demographic information comparing the
percentages of urban area between the two regions or the standardized absolute difference in a spe-
cific regional characteristic, such as the proportion of residents who smoke or even the expected
age-adjusted disease count for the region. By including these covariates in zij , the model accounts
for factors that influence the neighboring relationship between regions i and j .

2.3.3 DAGAR vs CAR

When dealing with spatial random effects, the computations involving covariance matrices can be
cumbersome and impracticable for large datasets. Specifically, calculating the determinant and the
quadratic form in the multivariate Gaussian density are computationally expensive. In the CAR
model, where the precision matrix is Q = (D − ρW), with D diagonal comprising the number of
neighbors for each region as its elements and W is the full (geographic) adjacency matrix, a common
trick is to compute the eigenvalues ωi of D−1/2WD−1/2. The determinant |Q| is expressed as
|Q| ∝

∏n
i=1(1− ρωi ), which significantly simplifies computing the quadratic form. If the adjacency

matrix is fixed, this is efficient because the eigenvalues are computed only once and only ρ needs
to be updated at each iteration of the MCMC. However, if the adjacency structure changes at
each iteration, the spectral decomposition must be recomputed in every iteration of the estimation
algorithm. The computational complexity for the determinant of Q would then be O(n3) since it
would involve the D−1/2WD−1/2 spectral decomposition.

On the other hand, in the DAGAR model, the precision matrix is defined as Q = (I−B)⊤Λ(I−
B) and |Q| is the product of the diagonal elements of Λ. The computational complexity of the
determinant reduces to O(n). Although B and Λ need to be updated at each iteration using the
current value of W̃, the spectral decomposition is not required, which yields very efficient density
evaluation. These advantages become even more substantial when addressing multiple diseases (see
Section 2.7).

2.4 Disease dependence

Recalling that our current data analytic goals involve accounting for dependence among multiple
diseases and spatial dependence for each cancer, we build upon a rich literature on multivariate areal
models (Mardia, 1988; Gelfand and Vounatsou, 2003; Carlin and Banerjee, 2003; Jin et al., 2005,
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2007; Zhang et al., 2009; Banerjee, 2016; MacNab, 2018; Gao et al., 2022). Given the computational
benefits accrued by DAGAR detailed in Section 2.7, we build multivariate DAGAR (MDAGAR) models
for γ using three different inter-disease association graphs for disease dependence.

2.4.1 Unstructured graph

We introduce dependence among outcomes using linearly transformed latent variables resulting in
an unstructured graph (left panel of Figure 2.4). Therefore, γ1 = a11f1, γd = ad1f1 + · · · + add fd

for each d = 2, ... , q, where adh, h = 1, ... , d , are unknown coefficients that associate spatial
components for different diseases and each fd

ind∼ Nn(0,Q(ρd , W̃d)
−1), where ρd and W̃d are the

spatial autocorrelation parameter and the lower triangular spatial adjacency matrix, respectively, for
disease d . Each γd is a linear combination of independent DAGAR random variables. As demonstrated
by Jin et al. (2007) for the MCAR model and extended by Gao et al. (2022) to the MDAGAR
framework, this construction ensures independence from the ordering of diseases. The association
among diseases is captured by AA⊤, where A is a lower-triangular matrix with elements adh. The
prior distribution for AA⊤ is given below in equation (??). The precision matrix of γ is

Σ−1
γ = (A−⊤ ⊗ In)

[
q⊕

d=1

Q(ρd , W̃d)

]
(A−1 ⊗ In) (2.6)

where ⊗ is the Kronecker product and W̃d is specified through (2.5) with a different ηd for each
disease d and

⊕q
d=1 defines a block diagonal matrix. Therefore, we are incorporating a random

adjacency matrix into the model for each type of cancer. We evaluate the model’s performance by
accounting for the particular cancer under consideration, as well as the explanatory variables utilized
in model (2.5) that informs the adjacency structure, potentially varying for each cancer type. Finally,
we model AA⊤ using an inverse-Wishart distribution with A identifying as the unique lower-triangular
Cholesky factor.

Alternatively, we introduce a graphical model for multivariate dependencies across diseases (see,
e.g., Cox and Wermuth, 1993, 1996). Such models distinguish between “directed” and “undirected”
graphs (central and right panels in Figure 2.4, respectively). The lack of edges in the undirected
graph immediately reveals conditional independence γ2 ⊥ γ4 | {γ1,γ3} and γ1 ⊥ γ3 | {γ2,γ4}. The
directed acyclic graph, however, only imposes the first relation and not the second because γ2 and
γ4 share a common parent (γ1).

2.4.2 Directed graph

Let Gdis = {Vdis , Edis} be a directed acyclic disease graph (the suffix dis distinguishes this from the
graph of the spatial map), where Vdis consists of q nodes and Edis comprises directed edges from
parents to children (center panel of Figure 2.4 with q = 4). Let

γ1 = f1, γd = Ad1γ1 + · · ·+ Add−1γd−1 + fd , for d = 2, ... , q , (2.7)

where each fd
ind∼ Nn(0,Q(ρd , W̃d)

−1) and Add ′ is n × n with Add ′ = O, the matrix with all null
entries, whenever d ′ ≥ d . The equations in (2.7) encode conditional distributions p(γd |γ1, ... ,γd−1)
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Figure 2.4: Unstructured graph (a), directed acyclic graph (b), undirected graph (c).

for d = 2, ... , q. Setting Add ′ = O whenever node d ′ is not a parent of d , i.e., there is no directed
edge from d ′ to d , ensures that the model conforms to the conditional independence among diseases
posited in Gdis . If A = (Add ′) is the N ×N block matrix with the n× n matrix Add ′ occupying block
(d , d ′), then A is strictly lower triangular, hence IN − A is nonsingular and

Σ−1
γ = (IN − A⊤)

[
q⊕

d=1

Q(ρd , W̃d)

]
(IN − A) (2.8)

is positive definite no matter how we specify Add ′ for all (d , d ′) ∈ Edis (d ′ is a parent of d).

Setting Add ′ = α0dd ′In + α1dd ′W, where W is the fixed geographic map, introduces parameters
α0dd ′ and α1dd ′ that allow dependence between diseases d and d ′ to vary across space. This flexibility
is desirable because inter-disease dependencies, or lack thereof, are often manifestations of lurking
shared risk factors that remain unaccounted for. Finally, inference from inter-disease DAGAR without
depending upon disease ordering is possible by using Bayesian model averaging over all topological
orders (Gao et al., 2022), but the method is computationally demanding and not our current focus.

2.4.3 Undirected graph

In contrast to directed acyclic graphs, “undirected” graphs model relationships among nodes using
conditional dependencies. An edge signifies conditional dependence given remaining nodes, while the
absence of an edge indicates conditional independence given all other nodes (right panel in Figure 2.4
with q = 4). We specify a Markov random field using full conditional distributions,

γd |γ(−d) ∼ Nn

(
q∑

h=1

Adhγh,Q(ρd , W̃d)
−1

)
, (2.9)

where γ(−d) is the collection of all random effects except for the d-th disease type. Each Adh is n×n

and encodes the relationships between various diseases, while Q(ρd , W̃d) refers to the univariate
precision matrix of the DAGAR model applied to the d-th cancer, capturing the spatial correlation
for each cancer. By exploiting a multivariate extension of Brook’s Lemma (see, e.g., Mardia, 1988;
Banerjee et al., 2014), the collection of distributions in (2.9) yield a possible joint Gaussian distribution
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with zero mean and precision matrix

Σ−1
γ =

[
q⊕

d=1

Q(ρd , W̃d)

]
(IN − A)

provided this matrix is symmetric and positive definite. This is achieved by carefully specifying the
N × N block matrix A = (Adh).

Let Λdis = (Ddis − ρdisWdis) be q × q, where Wdis is the q × q binary adjacency matrix of the
inter-disease graph, Ddis is diagonal with the number of edges incident on each node as its diagonal
element, and ρdis ∈ (1/ζmin, ζmax) with ζmin < 0 and ζmax = 1 denoting the smallest and largest
eigenvalues of D−1/2

dis WdisD
−1/2
dis , respectively; all eigenvalues are real, ζmax = 1 since D−1

disWdis is
row-stochastic and ζmin < 0 since the trace of D−1/2

dis WdisD
−1/2
dis is zero. The interval for ρdis ensures

that Λdis is positive definite. Setting Ud = (I− Bd)
⊤ Λ

1/2
d and Adh = −λdis,dhU−⊤

d U⊤
h yields

Σ−1
γ =

[
q⊕

d=1

Ud

]
(Λdis ⊗ In)

[
q⊕

d=1

U⊤
d

]
, (2.10)

which is symmetric and positive definite. Since UdU
⊤
d = Q(ρd , W̃d), we are using the square-

root of the DAGAR precision Q(ρd , W̃d) for each disease. This avoids the Cholesky decomposition.
Constructing precision matrices avoids matrix inversion. The joint distribution γ ∼ Nn (0,Σγ) serves
as a proper prior for the spatial effects conforming to the conditional independence posited by the
undirected disease-graph.

2.4.4 Remarks on multivariate models

The constructions of Σ−1
γ in (2.6), (2.8) and (2.10) offer some appealing features for analyzing

multivariate spatial data. All three introduce spatial dependence and the latter two conform to
dependencies posited by graphs. They retain DAGAR’s computationally efficient structure and ac-
commodate further modeling of the spatial adjacency matrix as in (2.5). The structure affords
parsimony in storage and computation. To the practicing spatial analyst, these structures offer an
inferential tool to aid them in understanding localized spatial disease patterns. This tool becomes
particularly valuable when adjacencies are identified despite visible disparities. In such cases, investi-
gators can delve deeper into these regions to explore additional contributing factors to the observed
disparity.

Notably, our implementation minimizes computational burden compared to the MCAR model, by
avoiding the need to invert matrices, except in the case of the unstructured graph where only a q×q

lower triangular matrix inversion is required, and by simplifying a lot the computation of determinants.
In most applications, typically, the value of q is not an issue for computational efficiency. Section 2.7
offer further details on computational benefits of these approaches.

2.5 Model implementation

Letting η = (η⊤
1 , ... ,η

⊤
q )

⊤ and β = (β⊤
1 , ... ,β

⊤
q )

⊤ for the unstructured disease graph we evaluate
the following joint posterior distribution,
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p(θ,β, τ ,V,γ,ρ,η,A | y) ∝ p(θ,β, τ ,V,γ,ρ,η,A)×
n∏

i=1

q∏
d=1

p(yid |βd ,ϕid) , (2.11)

where y = (y⊤1 , ... , y
⊤
q )

⊤ is N × 1 with N = nq, n is the number of geographic regions, and
yd = (y1d , ... , ynd)

⊤ and each yid being modeled independently conditional on the spatial random
effects using a member from the exponential family. For example, in our simulation experiments in
Section 2.8 we assume yid |βd ,ϕid , τd

ind∼ N (x⊤idβd+ϕid , 1/τd) and specify the joint prior distribution,
p(β, τd ,θ,V, τ ,γ,ρ,η,A) proportional to

Nqp(β | 0, 1/τβIqp)×
q∏

d=1

IG(1/τd | aϵ, bϵ)×
K∏

k=1

{N (θk | 0, 1/τ)× Beta(Vk | 1,α)}

× IG(1/τ | a, b)×NN(γ | 0,Σγ)×W−1(AA⊤ | ν,Ψ)×

∣∣∣∣∣∂AA⊤

∂adh

∣∣∣∣∣
×

q∏
d=1

{
Rd∏
r=1

U(ηdr | 0,Mr )× U(ρd | 0, 1)

}
,

(2.12)

where
∣∣∣∂AA⊤

∂adh

∣∣∣ = 2q
∏q

d=1 a
q−d+1
dd is the Jacobian transformation for the prior on AA⊤ in terms of

the Cholesky factor A (Olkin and Sampson, 1972), and Rd is the dimension of ηd . We employ
Markov Chain Monte Carlo (MCMC) with Gibbs sampling and random walk Metropolis implemented
in RcppArmadillo (Eddelbuettel and Sanderson, 2014) statistical computing environment, to draw
samples from the posterior distribution, as defined in (2.11).

The different graphical models discussed above provide parametric structures for A. Therefore,
the W(AA⊤ | ·, ·) in (2.12) is replaced with priors on the parameters in A. In the directed graph,
we further model Adh in terms of parameters {α0dd ′} and α1dd ′ . These parameters are assigned
independent Gaussian prior distributions α0dd ′

ind∼ N (·, ·) and α1dd ′
ind∼ N (·, ·), respectively, resulting

in a joint prior distribution for α = (α0dd ′ ,α1dd ′)dd ′ , i.e., α ∼ N (0, 100I). In the undirected model,
the unknown parameter ρdis

ind∼ U(·, ·) completely specifies A. Further insights and computational
details are supplied in Section B.1 in the Appendices.

2.6 Difference boundaries through FDR

We treat spatial boundary analysis as an exercise in multiple hypothesis testing, although a formal null
hypothesis is not required in Bayesian inference. Instead, we pursue full stochastic quantification to
derive a threshold for detecting cancer-specific spatial disparities. For each pair of adjacent regions,
i.e., i ∼ j , and each cancer d , we seek the posterior probability of ϕid = ϕjd ′ and its complement
ϕid ′ ̸= ϕjd ′ for region-disease pairs (i , d) and (j , d ′). We designate edge (i , j) as a difference boundary
if the posterior probability of ϕid ̸= ϕjd ′ given y surpasses a predefined threshold t.

The most general difference boundary we report is the cross-difference boundary based upon
v(i ,d)(j ,d ′) = P(ϕid ̸= ϕjd ′ ,ϕid ′ ̸= ϕjd | y). We derive a threshold t that controls the false discovery
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rate (FDR) below a level ζ = 0.05. To this end, we define

FDRd ,d ′(t) =

∑
i∼j I (ϕid = ϕjd ′)I (v(i ,d)(j ,d ′) > t)∑

i∼j I (v(i ,d)(j ,d ′) > t)
(2.13)

every disease pair d and d ′. The quantity in (2.13) is evaluated as

F̂DRd ,d ′(t) = E[FDRd ,d ′ | y] =
∑

i∼j(1− v(i ,d)(j ,d ′))I (v(i ,d)(j ,d ′) > t)∑
i∼j I (v(i ,d)(j ,d ′) > t)

. (2.14)

Following Müller et al. (2004), we define

t∗ = sup
{
t : F̂DRd ,d ′(t) ≤ ζ

}
, (2.15)

which is based upon the optimal decision that minimizes the estimated false negative rate (FNR),
F̂NRd ,d ′(t) =

∑
i∼j v(i ,d)(j ,d′)(1−I (v(i ,d)(j ,d′)>t))

m−
∑

i∼j I (v(i ,d)(j ,d′)>t) , where m is the total number of geographic boundaries,

subject to F̂DR ≤ ζ (also see Sun et al., 2015, who proffer a similar approach). This estimation
is based on a bivariate loss function L2R = (F̂DR, F̂NR). The single disease setting is obtained by
substituting v

(d)
i ,j = P(ϕid ̸= ϕjd ′ ,ϕid ′ ̸= ϕjd | y) in the above expressions. This is analogous to Li

et al. (2015), but with the added flexibility of modeling the adjacency matrices and inter-disease
dependence models.

2.7 Computational details

In this section, we provide the computational details of the MDAGAR model, specifically within the
context of the multiple-disease framework. Our model allows for the following evaluation of the
multivariate Gaussian log-density:

log (p(γ |Σγ)) ∝ log

(
|Σγ |−1/2 exp

(
−1

2
γ⊤Σ−1

γ γ

))
∝ log |Σ−1

γ | − γ⊤Σ−1
γ γ

To simplify this expression, we leverage the structure of the MDAGAR model in three different cases:
the unstructured disease graph (Section 2.7.1), the directed disease graph (Section 2.7.2), and the
undirected disease graph (Section 2.7.3). For each case, we derive the simplified forms of the log-
density and highlight the computational advantages of the proposed approaches (Section 2.7.4).

2.7.1 Unstructured graph

We first need to compute |Σ−1
γ |:

|Σ−1
γ | = |A⊤ ⊗ I|−1

q∏
d=1

|Qd ||A⊗ I|−1 = |A|−2n
q∏

d=1

|Qd | =

(
q∏

d=1

Add

)−2n q∏
d=1

n∏
i=1

(Λd)ii

where |Qd | = |I − Bd |2|Λd | = |Λd | is motivated by the strictly lower-triangularity of Bd and |A| =∏q
d=1Add by the lower-triangularity of A. Then we need to compute γ⊤Σ−1

γ γ:
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γ⊤Σ−1
γ γ = γ⊤ (A−1 ⊗ I

)⊤ [ q⊕
d

Qd

] (
A−1 ⊗ I

)
γ =

[(
A−1 ⊗ I

)
γ
]⊤ [ q⊕

d

Qd

] [(
A−1 ⊗ I

)
γ
]

Here we need some algebra to simplify the expression. Let’s start by defining Γ = [γ1 | · · · | γq] and
by exploiting some properties of the Kronecker product:

(
A−1 ⊗ I

)
γ =

(
A−1 ⊗ I

)
vec (Γ) = vec

(
IΓA−⊤

)
= vec

(
ΓA−⊤

)
= vec (C)

Here, matrix C is computed as:

C = [γ1 | γ2 | · · · | γq]


ã11 ã21 · · · ãq1

0 ã22 · · · ãq2
...

...
. . .

...
0 0 · · · ãqq

 =

[
ã11γ1 | ã21γ1 + ã22γ2 | · · · |

q∑
d=1

ãqdγd

]

= [c1 | c2 | · · · | cq]

where ãdh are the elements of the lower triangular matrix A−1. Hence,

γ⊤Σ−1
γ γ =

[
c⊤1 , c

⊤
2 , ... , c

⊤
q

]

Q1 O · · · O

O Q2 · · · O
...

...
. . .

...
O O · · · Qq



c1

c2
...
cq


=

q∑
d=1

c⊤d Qdcd

The log-density of γ finally results in:

log (p(γ |Σγ)) ∝ −n

q∑
d=1

log (Add) +
1

2

q∑
d=1

n∑
i=1

log ((Λd)ii )−
1

2

q∑
d=1

c⊤d Qdcd (2.16)

This log-density evaluation is computationally efficient because it requires only one matrix inversion,
which pertains to A. In applications similar to this work, the dimensions of A are typically small
(q ≤ 10).

2.7.2 Directed graph

In this case the determinant of Σ−1
γ is very simple:

|Σ−1
γ | = |IN − A|

q∏
d=1

|Qd ||IN − A| =
q∏

d=1

|Qd | =
q∏

d=1

n∏
i=1

(Λd)ii
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where we have exploited the strictly lower triangularity of the N × N block matrix A. Now we need
to compute γ⊤Σ−1

γ γ:

γ⊤Σ−1
γ γ = γ⊤ (IN − A)⊤

[
q⊕

d=1

Qd

]
(IN − A)γ

where

(IN − A)γ =


In O · · · O

−A21 In · · · O
...

...
. . .

...
−Aq1 −Aq2 · · · In



γ1

γ2

...
γq

 =


γ1

γ2 − A21γ1

...
γq −

∑q−1
h=1 Aqhγh


Hence

γ⊤Σ−1
γ γ =


γ1

γ2 − A21γ1

...
γq −

∑q−1
h=1 Aqhγh


⊤ 

Q1 O · · · O

O Q2 · · · O
...

...
. . .

...
O O · · · Qq




γ1

γ2 − A21γ1

...
γq −

∑q−1
h=1 Aqhγh


=

q∑
d=1

(γd −
d−1∑
h=1

Adhγh

)⊤

Qd

(
γd −

d−1∑
h=1

Adhγh

)
In this case the log-density is defined as

log (p(γ |Σγ)) ∝
q∑

d=1

n∑
i=1

log ((Λd)ii )−
q∑

d=1

(γd −
d−1∑
h=1

Adhγh

)⊤

Qd

(
γd −

d−1∑
h=1

Adhγh

) (2.17)

where, it is clear that there is no need to invert any matrices.

2.7.3 Undirected graph

Again, the first thing we need to compute is |Σ−1
γ |:

|Σ−1
γ | =

∣∣∣∣∣
q⊕

d=1

Ud

∣∣∣∣∣ |Λdis ⊗ In|

∣∣∣∣∣
q⊕

d=1

U⊤
d

∣∣∣∣∣ = |Λdis |n
(

q∏
d=1

|Ud |

)2

= |Λdis |n
q∏

d=1

n∏
i=1

(Λd)ii

where for the computation of |Ud | we have exploited Ud = (I− Bd)
⊤ Λ

1/2
d and consequently |Ud | =

|I− Bd ||Λ
1/2
d | =

∏n
i=1

√
(Λd)ii . Then, it is the turn of γ⊤Σ−1

γ γ:

γ⊤Σ−1
γ γ = γ⊤

[
q⊕

d=1

Ud

]
(Λdis ⊗ In)

[
q⊕

d=1

U⊤
d

]
γ =

([
q⊕

d=1

U⊤
d

]
γ

)⊤

(Λdis ⊗ In)

([
q⊕

d=1

U⊤
d

]
γ

)

In this case, to simplify the expression we need to develop the computations regarding
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[
q⊕

d=1

U⊤
d

]
γ =


U⊤

1 O · · · O

O U⊤
2 · · · O

...
...

. . .
...

O O · · · U⊤
q



γ1

γ2

...
γq

 =


U⊤

1 γ1

U⊤
2 γ2

...
U⊤

q γq


Hence,

γ⊤Σ−1
γ γ =

[
γ⊤
1 U1,γ

⊤
2 U2, ... ,γ

⊤
q Uq

]

λdis,11I λdis,12I · · · λdis,1qI

λdis,21I λdis,22I · · · λdis,2qI
...

...
. . .

...
λdis,q1I λdis,q2I · · · λdis,qqI



U⊤

1 γ1

U⊤
2 γ2

...
U⊤

q γq


=

q∑
d=1

q∑
h=1

λdis,dhγ
⊤
d UdU

⊤
h γh

Finally, also in this case we exploit the DAGAR construction of each spatial precision matrix, so no
matrix inversion is required since the log-density results in:

log (p(γ |Σγ)) ∝
q∑

d=1

n∑
i=1

log ((Λd)ii ) + n log |Λdis | −
q∑

d=1

q∑
h=1

λdis,dhγ
⊤
d UdU

⊤
h γh (2.18)

2.7.4 Advantages with respect to the MCAR specification

In all the aforementioned log-density specifications (2.16), (2.17) and (2.18), the log-determinant of
the spatial precision matrix, |Qd |, was simplified to the summation of the diagonal elements of the
diagonal matrix |Λd |, resulting, for all the d , in a computational complexity of O(qn), due to the
DAGAR construction. However, this simplification does not apply to an MCAR specification, i.e.,
Qd = (Dd − ρdWd), where Dd is a diagonal matrix with elements equal to the number of neighbors
for each region. For MCAR, the precision matrix determinant cannot be simplified without computing
the eigenvalues ωdi of D−1/2

d WdD
−1/2
d , from which |Qd | ∝

∏n
i=1 (1− ρdωdi ).

In a framework with a fixed adjacency structure, this is not problematic because the eigenvalues
can be precomputed. At each iteration of the MCMC, only ρd would need to be updated. However,
if the adjacency structure changes at every iteration, the eigendecomposition would need to be
recomputed each time, negating the computational advantage of precomputation. In this case, for
all the d , the computational complexity is O(qn3).

Only in the case of the undirected graph, the computational complexity associated with the
quadratic form differs. Specifically, for the MDAGAR, we can leverage the construction method
of each Qd , leading to a computational complexity of O(q2n2). However, for the MCAR vari-
ant, Cholesky factorization of each Qd is necessary, resulting in a computational complexity of
O(qn3+q2n2), where the first term represents the additional complexity introduced by the Cholesky
decomposition. In all the other cases also the computational complexity associated to the MCAR
construction of Qd is O(q2n2).
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2.8 Simulation experiments

We generate Gaussian data for q = 4 diseases using (2.1) with yid
ind∼ N (x⊤i βd + ϕid , 1/τ

2
d ) over

N = 58 counties in California. At each replicate the data are generated after simulating spatial
effects ϕ = (ϕ⊤

1 ,ϕ
⊤
2 ,ϕ

⊤
3 ,ϕ

⊤
4 )

⊤ ∼ GN with parameters fixed as K = 15, α = 1, β1 = (2, 1)⊤,
β2 = (1, 2)⊤, β3 = (2, 2)⊤, β4 = (1, 2)⊤, τ2d = 10 for every d and τ = 0.25. Each xi is 2 × 1

consisting of a 1 and a value generated from a standard normal distribution. We generate 100 different
replicates of data using the above parameters and generating the spatial effects ϕid using distributions
corresponding to each of the 3 graphs illustrated in Figure 2.4: (i) unstructured, (ii) directed, and (iii)
undirected. These correspond to the three specifications for Σγ in (2.6), (2.8) and (2.10). For each
of the above models, Σγ depends upon the DAGAR parameters and the inter-disease covariances.
Spatial correlation parameters for the different cancers are fixed as ρ = (0.2, 0.8, 0.4, 0.6)⊤. For
the lower triangular adjacency matrices, W̃d , the elements zij of the Z matrix are computed as the
standardized absolute difference of a generated covariate |xi − xj |/σ where σ represents the standard
deviation of all the absolute differences between the xi values across all pairs of contiguous areas.
The unknown parameters associated with these variables were fixed at η = (0.4, 0.2, 0.3, 0.5)⊤. In
addition to specifying the DAGAR parameters for each disease, for (i) we specify A as lower triangular
with all elements set to 1. For (ii) we fix (α021,α121)

⊤ = (0.3, 0.5)⊤, (α041,α141)
⊤ = (0.5, 0.4)⊤,

(α032,α132)
⊤ = (0.4, 0.4)⊤, and (α043,α143)

⊤ = (0.8, 0.1)⊤, and for (iii) we fix ρdis = 0.25. For
each of these specifications, we produce a single instance of Σγ , which is used to generate a different
instance of γ at every replication. This yields the 100 sets of random effects used to generate the
100 datasets.

For data analysis, we specify the prior using τβ = 0.001, a = 2, b = 0.1, aϵ = 2, bϵ = 0.1,
α = 1, and M = − log(0.5)/Z0.5, where Z0.5 represents the 0.5th quantile of the Z matrix. For
the unstructured or unconstrained inter-disease graph (left panel in Figure 2.4) we use the Wishart
distribution in (2.12) with ν = 2 and Ψ = diag(0.1, 0.1, 0.1, 0.1). For the directed graph (center
panel in Figure 2.4), A is determined through α ∼ N (0, 100I), while for the undirected graph (right
panel in Figure 2.4) we specify ρdis ∼ U(−1, 1). We fit all three models to each of the 3×100 = 300

datasets and present inference based on 10,000 posterior samples using MCMC algorithms after
discarding the initial 20,000 iterations as burn-in.

Each data is analyzed by one correctly specified model and two misspecified models. We eval-
uate these models under correct and incorrect specifications by computing the Widely Applicable
Information Criterion (Watanabe and Opper, 2010; Vehtari et al., 2017) for each model using the
loo R package (Vehtari et al., 2024). This score measures the extent of information loss in a model
with lower values indicating better performance by effectively addressing the risks of both overfitting
and underfitting. Table 2.1 presents the relative differences in WAIC scores. For each disease graph
model, we compute the standardized relative difference between the mean WAIC of the misspecified
models and the true model, normalized by the mean WAIC of the true model. Not surprisingly, the
model corresponding to the true data generating scheme has the lowest WAIC scores (denoted as
0% in standardized relative difference). However, Table 2.1 reveals substantially worse performance
(higher WAIC) by the graphical models when analyzing data from the unstructured model. The scores
for the two graphical models are very comparable to one another when fitted to the unstructured
data. On the other hand, for data generated from a graphical model, the unstructured model excels
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Table 2.1: WAIC relative differences for the 3× 3 simulation grid.

True/Fit Unstructured Directed Undirected
Unstructured 0.00 +6.12 +6.63

Directed +1.28 0.00 +21.25
Undirected +1.65 +25.62 0.00

Table 2.2: Boundary detection results in the simulation study under the three disease graph models
using the unstructured graph to fit.

Disease 1 Disease 2 Disease 3 Disease 4
True Disease graph T Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

85 0.553 0.868 0.513 0.891 0.538 0.885 0.544 0.880
90 0.503 0.882 0.454 0.906 0.482 0.900 0.490 0.893

Unstructured 95 0.433 0.906 0.402 0.921 0.428 0.913 0.434 0.904
100 0.383 0.921 0.342 0.932 0.359 0.930 0.379 0.918
105 0.329 0.931 0.297 0.940 0.296 0.942 0.330 0.929
85 0.575 0.863 0.461 0.918 0.382 0.936 0.434 0.928
90 0.511 0.885 0.414 0.926 0.334 0.942 0.391 0.937

Directed 95 0.452 0.904 0.360 0.941 0.297 0.949 0.336 0.946
100 0.399 0.916 0.300 0.952 0.252 0.959 0.289 0.953
105 0.338 0.933 0.243 0.964 0.215 0.967 0.241 0.964
85 0.574 0.848 0.590 0.849 0.603 0.854 0.620 0.848
90 0.508 0.863 0.531 0.870 0.542 0.875 0.567 0.869

Undirected 95 0.450 0.883 0.463 0.888 0.477 0.896 0.499 0.888
100 0.401 0.899 0.405 0.904 0.420 0.910 0.431 0.902
105 0.339 0.913 0.345 0.918 0.364 0.925 0.365 0.923

over the misspecified graphical model.
Turning to boundary detection, we compute the conditional probability, P(ϕid ̸= ϕjd ′ | y), for

diseases d and d ′ and geographically neighboring regions i and j . We use these posterior probabilities
to obtain sensitivity and specificity for all pairs of regions and for all the disease graph models. In
each simulation, sensitivity and specificity are determined by selecting a fixed number of edges with
the highest T posterior probabilities, where T ∈ {85, 90, 95, 100, 105}. This method accounts for
false positives across all other T values for the diseases. Table 2.2 presents the corresponding results
for the unstructured model fitted with data generated from the true model (the unstructured model)
and the misspecified models (the directed and undirected models). The values in Table 2.2 represent
average sensitivity and specificity over 100 simulated data sets using the unstructured disease graph
for model fitting under three different choices of the true disease graph.

With T set to 105, we achieve sensitivities of approximately 90% for all diseases. Despite intro-
ducing uncertainty into the adjacency matrix and adopting a much more complex simulation setting
compared to Gao et al. (2023), we attain similar levels of sensitivity. This added uncertainty in the
adjacency structure propagates through the model leading to a notably broader posterior distribution
for spatial random effects. A wider posterior distribution indicates a greater incidence of ties be-
tween random effects across different cancers and regions. Consequently, with the detection of more
boundaries, specificity decreases.

With regard to the adjacency model in (2.5), Table 2.3 presents specificity and sensitivity values
for detecting adjacencies. Here, sensitivity and specificity are evaluated by comparing the adjacencies
determined by the true value of η with estimated adjacencies using the posterior mean of η in (2.5).
It appears that higher sensitivity values are achieved across all diseases and disease graph models,
while specificity values, though slightly lower, remain at satisfactory levels. The high sensitivity
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Table 2.3: Adjacencies detection for the three disease graph models using the unstructured graph
to fit.

Disease 1 Disease 2 Disease 3 Disease 4
True Disease graph Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

Unstructured 0.386 0.986 0.598 0.928 0.600 0.959 0.261 1.000
Directed 0.340 0.988 0.604 0.919 0.645 0.957 0.264 0.999

Undirected 0.287 0.985 0.671 0.913 0.576 0.975 0.258 1.000

coupled with lower specificity suggests that our model excels in identifying true positives, but may
occasionally incorrectly classify negative cases as positive (false positives). While false positives are
undesirable, they do not pose a significant issue for our application, particularly considering the fact
that specificity levels are not unreasonably low. This is especially relevant in the context of spatial
health disparities, where policy decisions are predominantly influenced by true positives.

We conclude this section with a brief remark. For analyzing our data over the map of California,
computational costs for the MDAGAR model averaged approximately 0.006 seconds per iteration for
the unstructured disease graph, 0.013 for the directed and 0.009 for the unstructured. In comparison,
the MCAR took about 0.043 iterations per seconds for the unstructured disease graph, 0.049 for the
directed and 0.045 for the undirected graph. In summary, MDAGAR is substantially more efficient
(gains of 86%, 73% and 80% for the unstructured, directed and undirected, respectively) than MCAR
while offering very similar inference for boundary detection. Section B.2 in the Appendices offers
additional results from the simulations including root median squared error, sensitivity and specificity
tables for models fitted under the true model and their WAIC values.

2.9 SEER cancers analysis

We analyze the data set introduced in Section 2.1 using a Poisson spatial regression model. Specifi-
cally, we model the observed counts of incidence for each county and for each cancer as yid |βd ,ϕid

ind∼
Pois(Eid exp (βd + ϕid)) for i = 1, ... , 58 and d = 1, ... , 4. Following the joint prior distribution in
(2.12) (excluding τd as we use a Poisson likelihood) with hyper-parameter values set as described in
Section 2.8, we employ the unstructured model with Σ−1

γ in (2.6) since a graphical model prior for
cancer dependence is lacking. Inference is conducted using 300,000 total iterations of the MCMC al-
gorithm. After discarding the initial 50,000 iterations as burn-in, we retain every 5th sample from the
remaining 250,000 iterations for analysis. Throughout this Section, it is worth noting, we comment
on the results by directly referring to specific counties by their names. For a visual reference of the
corresponding county names, we refer the reader to Appendix B and the map shown in Figure B.7.
Moreover, Section B.3 in the Appendices includes plots for the 95% credible intervals.

We employ a threshold to control for FDR as specified in (2.15) for detecting difference boundaries
for each cancer. Figure 2.5 plots estimated FDR against varying numbers of selected edges as differ-
ence boundaries for the four cancers individually. We observe analogous FDR curves for esophageal
and larynx cancers leading us to select a similar number of boundaries for these two cancers with a
threshold of ζ = 0.05. We detect a much larger number of boundaries for lung cancer and a much
smaller number for colorectal cancer using the same threshold indicating considerable variation in
spatial disparities among these cancers.

Setting ζ = 0.05 in (2.15), Figure 2.6 illustrates the identified difference boundaries (highlighted
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Figure 2.5: Estimated FDR curves plotted against the number of selected difference boundaries for
four cancers

in blue) in the California maps for the four types of cancers, colored according to the posterior
means of the corresponding ϕid . The width of the lines on the boundaries signify higher probabilities
of detection. Notably, lung cancer exhibits the highest number of detected boundaries, i.e., 100,
with colorectal cancer demonstrating a much higher number of boundaries, i.e., 63, compared to
esophageal and larynx cancer with 21 and 33 boundaries respectively. It is worth noting that the
detected boundaries for the different cancers tend to form geographical groups, which include regions
with similar random effects. This was made possible by the random effect specification described
in Section 2.2, which explains how the chosen discrete distribution for the random effects accounts
for ties and facilitates spatial aggregation through the weights in equation (2.2). In contrast, using
a continuous distribution with spatial dependence for the random effects would introduce greater
smoothness, making the evaluation of boundaries more challenging and less direct.

In northern California, for example, we observe that 10 counties (Tehama, Glenn, Butte, Yuba,
Lake, Colusa, Shasta, Trinity, Humboldt and Del Norte) form a “group” with high posterior medians of
spatial effects for lung cancer, where “group” indicates that these counties do not exhibit disparities
(or difference boundaries) among themselves but do so with other neighbors. A similar grouping
appears in the central regions for Solano (Bay Area), Sacramento and San Joaquin, with elevated
posterior random effect estimates for lung cancer. Moving to central California, we find Stanislaus,
Merced, Tuolumne, Mariposa, Madera and Fresno counties forming a group with moderately elevated
spatial effects while not exhibiting disparities among them. Colorectal cancer offers a similar story in
the central counties. In contrast, maps for esophageal and larynx cancers reveal different patterns.
Identifying spatial patterns for larynx and esophageal cancer is more challenging and the detected
boundaries are less pronounced compared to lung cancer. However, the model identifies boundaries in
Santa Clara County based on posterior means of random effects for esophageal cancer and similarly for
Los Angeles County, which depicts the lowest posterior mean for the random effects and is surrounded
by counties with higher values. These disparities are likely due to the inclusion of smoking-standardized
differences in our adjacency model, which significantly influences lung, esophageal, and larynx cancers
(Doll et al., 2005).

For distinguishing boundaries among cancers, we examine shared difference boundaries and mutual
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Figure 2.6: Estimated difference boundaries (numbers in parenthesis) in blue for 4 cancers among
counties in California based on posterior mean of ϕid when ζ = 0.05.

cross-cancer boundaries. The shared difference boundaries refer to those detected in common across
different cancers. Figure 2.7 illustrates the shared boundaries for each cancer pair, denoted as
P(ϕid ̸= ϕjd ,ϕid ′ ̸= ϕjd ′ | y) where d ̸= d ′. We have observed consistent detection of specific
boundaries whenever lung is affected. For example, Los Angeles reveals disparities with Ventura,
Kern and San Bernardino. Similarly, when examining all cancers, disparities are evinced between
Santa Clara and Stanislaus. Notably, all the Los Angeles geographic neighbors are consistently
identified.

We introduce mutual cross-cancer boundaries by evaluating P(ϕid ̸= ϕjd ′ ,ϕid ′ ̸= ϕjd | y), where
i ∼ j and i < j , to ascertain boundaries for cross-cancer differences. This boundary effectively
segregates the effects pertaining to distinct cancers across adjacent counties (see Figure 2.8). We
observe analogous detection between counties for lung-esophageal and lung-larynx differences. It is
clear that the number of detected borders is significantly higher for lung-esophageal, lung-larynx and
lung-colorectal cancers compared to other types. Moreover, Stanislaus is clearly separated from Santa
Clara and Los Angeles from Ventura, indicating notable differences when these cancer relations are
taken into account.

Including explanatory variables affect difference boundary detection, leading to either larger or
smaller numbers of such boundaries. This depends on whether a covariate intensifies the disparity
in residual spatial effects between two adjacent counties, whence a difference boundary is more
likely to be observed between them. Conversely, if a covariate explains or absorbs the disparity in
residual spatial effects between two neighboring counties, then the presence of a difference boundary
diminishes. The former occurs, for example, for lung, esophageal and larynx boundary detection
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Lung, Esophageal (T = 17) Lung, Layrnx (T = 22) Lung, Colorectal (T = 37)

Esophageal, Layrnx (T = 9) Esophageal, Colorectal (T = 13) Larynx, Colorectal (T = 16)

Figure 2.7: Shared difference boundaries in red detected for each pair of cancers in California map
when ζ = 0.05. The numbers in parenthesis indicate the difference boundaries detected.

Lung, Esophageal (T = 40) Lung, Layrnx (T = 36) Lung, Colorectal (T = 64)

Esophageal, Layrnx (T = 9) Esophageal, Colorectal (T = 12) Larynx, Colorectal (T = 21)

Figure 2.8: Mutual cross-difference boundaries (highlighted in red) detected by the model for each
pair of cancers in California map when ζ = 0.05. The values in brackets are the number of difference
boundaries detected.
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individually, while the latter is seen for colorectal for which we detect fewer boundaries. The impact
of covariates on the number of difference boundaries depends on how they affect the variation in
rates across neighboring counties. We note that while covariates always absorb some spatial effects,
relationships among cancers, regions and covariates are intricate and a definitive pattern can remain
elusive.

Turning to adjacency models, non-adjacency is detected based on the following:

P(wd ,ij = 0 | y, i ∼ j) (2.19)

where wd ,ij represents the (i , j)-th element of the adjacency matrix corresponding to the d-th cancer.
Figure 2.9 presents a map of California where the thickness of the boundaries indicates the associated
probabilities. County boundaries highlighted in blue signify that (2.19) is not negligible and are
identified as “non-adjacenct”. Northern and central counties exhibit higher values of (2.19). Figure 2.9
suggests that this phenomenon likely reflects the greater differences in covariates between neighboring
counties in these regions than in the south. Considering all four cancers, the number of adjacencies
having probability (2.19) under 0.1 are 67 for lung, 5 for esophageal, 79 for larynx and 67 for colorectal.
These correspond to approximately 48%, 4%, 57% and 48% of the total number of county boundaries,
respectively.

Lung non-adjacencies Esophageal non-adjacencies

Larynx non-adjacencies Colorectal non-adjacencies

Figure 2.9: Non-adjacencies (shown in blue) over the California map. The thickness of the lines is
proportional to the probability of being considered as a non-adjacency

In general, non-adjacencies with the highest probabilities are predominantly between counties with
large differences in covariates, especially in smoking rates, while esophageal cancer seems to exhibit
lower probabilities. Conversely, counties with lower differences in covariates exhibit zero detected
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non-adjacencies. This strongly suggests that smoking, more than the other covariates, serves as a
dissimilarity metric for identifying disparities as the estimated boundaries closely align with significant
variations in smoking rates.

We discover strong dependence among lung, esophageal, and larynx cancers, which implicates
shared risk factors at play. A compelling aspect of such associations is revealed through the visual
representations in Figure 2.6. We evince similar spatial clusters for lung, esophageal, and larynx
cancers, which imply similar values for the corresponding random effects. This corroborates the notion
that these cancers are closely related and potentially influenced by shared factors. The spatial clusters
observed in our analysis indicate that the incidence and prevalence of lung, esophageal, and larynx
cancers tend to occur in close proximity to one another. This spatial pattern may be influenced by a
multitude of factors including, but not limited to, geographical characteristics, socioeconomic factors,
or cultural and lifestyle factors specific to certain regions. Understanding these spatial relationships
provide valuable insights into the complex interplay between environmental and individual risk factors.

Sections B.4.1 and B.4.2 in the Appendices present results from two additional settings. The
former introduces covariates as fixed effects and in the adjacencies, while the latter does so only
in the regression while fixing the adjacencies. The difference boundary maps evince the impact of
differences among covariates on defining the adjacency rather than fix it as a geographic neighbor.
Introducing covariates as fixed effects and in the adjacency explains how specific factors contribute
to the mean and the spatial patterns. Similarly, including covariates solely in the mean structure,
with fixed adjacencies, enables assessing the influence of these variables on the overall mean values
of the observed phenomena.

2.9.1 Monte Carlo parameter estimates and standard error

Monte Carlo estimates, whether for Markov chain Monte Carlo output or any other purpose, should
be accompanied by Monte Carlo standard error as a measure of reliability of posterior inference
based on the estimates from the Monte Carlo samples. If the central limit theorem applies, then
the corresponding covariance matrices’ estimates must be reported, either directly or indirectly. Due
to the correlation between the obtained samples, these quantities necessitate more advanced tools
compared to typical sample estimators. The validity of a central limit theorem is not guaranteed in
all cases because it depends on the convergence rate of the underlying Markov chain. Nonetheless,
this assumption is also made when employing various convergence diagnostics. We use the mcmcse

R package (Flegal et al., 2021) to compute Monte Carlo standard errors and the effective sample
size, based on Gong and Flegal (2016) to demonstrate that we can maintain control over the Monte
Carlo error by applying a predefined threshold Vats et al. (2019).

Table 2.4 presents the estimates of the model described in Section 2.9 including only cancer-
specific intercepts in the regression model and the 3 covariates described in Section 2.1 in the
adjacency model. While none of the intercepts are significant, we note that lung and esophageal
cancers reveal positive estimates indicating higher expected counts than the standardized rates, Eid

defined in Section 2.1 and introduced in the model in Section 2.9, while larynx and colorectal exhibit
negative estimates indicating lower expected counts than their standardized rates. The last column
of Table 2.4 presents Monte Carlo standard errors with the only value higher than 0.05, the usual
threshold, being 0.061. We compute the multivariate effective sample size of the chain to be 1,847
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Table 2.4: Posterior estimates, posterior standard deviations and Monte Carlo standard errors for
the regression coefficients, atoms and their precision in the hierarchical model described in (2.11)
using the Poisson regression model described in Section 2.9.

Variable Estimate SD MC SE
β1 0.022 0.027 0.006
β2 0.075 0.033 0.005
β3 -0.026 0.037 0.005
β4 -0.045 0.030 0.007
θ1 0.072 0.030 0.007
θ2 -0.283 0.043 0.007
θ3 -0.098 0.029 0.006
θ4 -0.020 0.031 0.007
θ5 0.156 0.162 0.027
θ6 -0.072 0.175 0.061
θ7 0.365 0.041 0.009
θ8 -0.115 0.085 0.020
θ9 0.312 0.086 0.023
θ10 0.178 0.062 0.019
θ11 -0.149 0.170 0.029
θ12 -0.158 0.028 0.006
θ13 0.184 0.037 0.007
θ14 0.095 0.139 0.032
θ15 0.010 0.029 0.006
τ 7.246 2.368 0.024

using the formula B |Λ|1/p
|Σ|1/p . Here, B is the total number of iterations post burn-in, Λ represents the

sample covariance matrix, and Σ is an estimate of the Monte Carlo standard error. This computation
accounts for the multivariate dependence structure of the process. Comparing our effective sample
size to the minimum requirement of 7,619 for achieving a precision level relative to the variability in
the target distribution of 0.05, we observe that ours is significantly lower. However, it is important to
note that we computed the precision level of our estimate, obtained with an estimated effective sample
size of 1,847.068, which amounts approximately to 0.01 and, while higher than precision levels used in
simpler models, is still deemed acceptable for the inference we draw using these complex hierarchical
models.

2.10 Discussion

We address statistical methods for detecting spatial disparities based upon mapping disease rates and
modeling difference boundaries. The need for formal modeling in ascertaining health disparities has
been articulated in the literature (see, e.g., Rao, 2023, and references therein), but formal model-based
approaches for detecting geographic disparities remain relatively scarce. The inferential framework
developed here achieves full probabilistic uncertainty quantification using a flexible (nonparametrics)
prior on the spatial effects that endows random effects with discrete masses to detect disparities
among neighbors while also allowing spatial smoothing across neighbors as is customary in disease
mapping.

As in Gao et al. (2023), we also deal with multiple diseases, possibly associated among themselves,
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but now explicitly address multivariate dependencies flexibly using posited graphical models. Second,
we address a possible limitation of Gao et al. (2023) where factors informing about disparities need to
be evaluated using their inclusion and exclusion in models with subsequent model assessment. Instead,
we introduce such factors in the adjacency model. This enriches earlier statistical frameworks for “areal
wombling” that have attempted similar adjacency models with limited effectiveness since statistical
significance of boundary effects is difficult to establish with such hierarchically embedded information.
Our framework, on the other hand, enables flexible modeling of boundaries (as in “wombling”), but
uses a Bayesian FDR approach to ascertain spatial difference boundaries.

Our application to the SEER database leads to data-based discoveries with regard to detecting spa-
tial disparities while accounting for inter-disease dependence. Associations among lung, esophageal,
and larynx cancers carry significant implications for public health and cancer prevention initiatives.
These associations suggest that interventions targeting one of these malignancies could potentially
have a positive impact on reducing the incidence and burden of the others. By recognizing shared
patterns and risk factors, healthcare professionals and policymakers can develop more targeted and
effective interventions. In response to our findings, a multifaceted approach can be employed to
reduce the overall burden of these cancers. Such an approach would encompass public awareness
campaigns to educate individuals about the shared risk factors and promote healthy lifestyle choices.

Finally, we note future avenues for research. We do not claim our inferential framework to be
unique in detecting spatial disparities. We noted a substantial relevant literature in areal “wombling”
that offers ample scope for developing alternate inferential methods based upon an explicit threshold
on the difference of neighboring outcomes (referred to as “boundary likelihood values” in “wombling”).
Wu and Banerjee (2024) offer a rigorous Bayesian linear regression framework that calibrates the
threshold using Shannon entropy. Extending such approaches to multivariate and non-Gaussian
outcomes and comparing with our current approach, while beyond the scope of the current chapter,
will comprise future investigations.



Chapter 3

Survival modeling of smartphone
trigger data in crowdsourced seismic
monitoring

Earthquake early warning systems (EEWSs) (Gasparini et al., 2007) are deployed in seismic-prone
areas to mitigate the earthquake risk. Dense networks of instruments are used to detect earthquakes
in real-time, to stop critical processes, and to send alerts to people who will experience strong ground
shaking (see Figure 3.1 for a symplified visualization). Construction and operating costs of classic
EEWSs are in the order of the millions of euros (Given et al., 2014). This limited their widespread,
especially in low-income seismic countries that could largely benefit from EEWSs.

Figure 3.1: EEWS functioning scheme.

In the last two decades, researchers have proposed low-cost alternatives (Cochran et al., 2009;
Clayton et al., 2011). Only with the smartphone revolution, however, new solutions (Finazzi, 2016;
Kong et al., 2016) became truly accessible to the global population. The Earthquake Network (EQN)
citizen science initiative (Finazzi, 2020) was the first to implement a smartphone-based EEWS able
to send real-time alerts on people’s smartphones. Since 2013, more than 25 million people have taken
part in the initiative, and the system has contributed to sending nearly 7,600 alerts. During the 2023
Pazarcik (Turkey) earthquake, EQN provided a forewarning for up to 58 seconds to people exposed
to very high levels of ground shaking (Finazzi et al., 2024), proving its efficiency in earthquake risk
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mitigation.

Smartphones are less reliable than the scientific instruments used in traditional EEWS because
they are subject to anthropic noise, and earthquake monitoring is based on a low-cost accelerometer.
Thus, specific statistical methodologies have been developed for the real-time detection of earthquakes
(Finazzi and Fassò, 2017; Massoda Tchoussi and Finazzi, 2023) and for assessing the detection
performance of the smartphone-based monitoring network (Finazzi et al., 2022).

An open problem in smartphone-based earthquake monitoring is the estimation of earthquake
parameters (e.g., epicenter, depth, origin time and magnitude) from noisy smartphone measurements.
For each earthquake detection, EQN provides rough and often biased estimates of these quantities.
In this work, we develop a statistical methodology to improve the EQN estimates of epicenter, depth
and origin time. The methodology takes into account the specificities of smartphones as seismic
sensors, namely the possibility of detecting non-seismic accelerations, the possibility of missing an
earthquake, and the uncertainty of which seismic wave is detected by the smartphone.

We embed the estimation problem into the framework of survival data analysis by exploiting the
analogy between right censored clinical data, which are naturally analyzed with survival models, and
smartphone-based earthquake data. In particular, smartphones are seen as patients of a clinical study.
A smartphone that detects acceleration (triggering smartphone) is considered a patient dying from a
particular disease. In contrast, a smartphone that does not detect acceleration is considered a patient
surviving. The earthquake plays the same role as a disease, while smartphones that fail to detect
the seismic waves (faulty smartphones) are interpreted as cured patients. The earthquake detection
by the EQN system is then the censoring event. In fact, the triggering times of (uncured/faultless)
smartphones, which will eventually trigger after the earthquake detection, will not be observed.

Finally, mortality due to other causes relates to triggers unrelated to the seismic waves. In
population-based clinical studies, mortality due to other causes is generally incorporated using relative
survival methods (Cutler and Axtell, 1963). In this setting, cure occurs when the hazard rate in the
diseased group of individuals returns to the same level as that expected in the general population
(Peng and Taylor, 2014). In other words, a certain proportion of subjects in the population is
not expected to experience the events of interest, so the relative survival curve appears to plateau
after a given time. Mixture survival modeling has been widely employed to incorporate this plateau
and estimate the cure fraction in clinical studies. For instance, De Angelis et al. (1999) applied a
mixture survival model to analyze individual data on colon cancer and estimate both the proportion
of cured patients and the failure time distribution for fatal patients. Lambert et al. (2007) compared
relative survival and cure fraction estimates between mixture and non-mixture cure fraction models.
Lambert et al. (2010) extended the mixture cure model by incorporating a finite mixture of parametric
distributions to provide flexibility in the shape of the relative survival or excess mortality functions. A
Bayesian mixture cure model with spatial random effects has been proposed by Yu and Tiwari (2012)
to model county-level cancer survival data using Markov chain Monte Carlo (MCMC) methods, while
Lázaro et al. (2020) implemented a Bayesian mixture cure model using the integrated nested Laplace
approximation.

Summing up, the contribution of this work is to propose a Bayesian mixture model for analyzing
smartphone-based early warning data in order to estimate relevant earthquake parameters, uncertainty
included. The model leverages information from spatial locations and times of triggering smartphones
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as well as from spatial locations of non-triggering smartphones. As a key feature, the mortality
function (i.e., the smartphone triggering function) is assumed to be a mixture of two parametric
densities describing the earthquake waves that may be detected by a smartphone in a given time
interval. On the computational side, an efficient sampling strategy has been designed to provide a
full posterior inference of the earthquake parameters. Specifically, we develop an adaptive parallel
tempering MCMC algorithm to address the computational challenges associated with the multi-
modality of the posterior distribution.

We illustrate the soundness and good performance through a simulation study and a set of relevant
case studies. Specifically, the approach is applied to the EQN detections of the magnitude 7.8 2023
Pazarcik earthquake, of the magnitude 7.1 2019 Ridgecrest (US) earthquake and of a relatively small
magnitude earthquake that occurred in Mexico with epicenter offshore, thus more challenging in
terms of epicenter estimation.

The remainder of this chapter is structured as follows. Section 3.1 outlines the EQN system’s op-
eration and the dataset generated during earthquake detection, including the three datasets analyzed
in this study. Section 3.2 introduces key concepts in survival analysis. Section 3.3 presents the de-
velopment of the Bayesian mixture cure model and explains how earthquake physics are incorporated
into the model. Section 3.4 delves deeper into how the physics of earthquakes is incorporated into
the model’s construction. Section 3.5 finalizes the model specification by detailing the prior distribu-
tions for all parameters. Computational aspects are discussed in Section 3.6. Section 3.7 reports the
results of a simulation study. Section 3.8 demonstrates the methodology through three case studies.
Finally, Section 3.9 summarizes the findings, outlines potential future work, and Appendix C includes
additional results from simulation experiments and real data analyses.

3.1 EQN functioning and data generation

This section provides an overview of the functioning of the EQN system and the dataset generated
every time an earthquake is detected. EQN deploys a global smartphone network for seismic mon-
itoring. To join the EQN initiative, smartphone users must install the EQN app, which is available
for Android, iOS and Huawei operating systems. Seismic monitoring starts when the smartphone is
charging and not used. This implies that the network is highly dynamic, with smartphones entering
and leaving the network anytime. A central server collects the monitoring data from the smartphones,
and it knows the state of the network, namely which smartphones are monitoring and where they
are located. On each smartphone, seismic monitoring is done through the smartphone accelerome-
ter, which continuously measures and provides the smartphone acceleration in space. A monitoring
smartphone possibly detects a seismic wave and any other acceleration induced by a local force (e.g.,
someone moving the smartphone or the object above which the smartphone is located). To better
understand how EQN works, Figure 3.2 depicts a simplified representation of its functioning.

Earthquakes are characterized by primary (P) and secondary (S) waves. The P wave is faster than
the S wave and usually produces mild ground shaking. Most of the earthquake damage is caused by
the S wave. When an earthquake hits, the monitoring smartphone may detect the P or the S wave
depending on the earthquake magnitude, the distance between the smartphone and the epicenter,
where the smartphone is located (e.g., on which floor of the building and above which object) and
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Figure 3.2: EQN functioning scheme.

on the specific accelerometer sensitivity (which may differ from a smartphone to another). The
monitoring smartphone may also not detect the earthquake, either because the epicenter is too far
or because the smartphone is not able to send the information to the server.

For a given region, the EQN detection algorithm Finazzi and Fassò (2017) compares the number
of monitoring smartphones with the number of triggering smartphones in the last 120 seconds (with
respect to the last trigger received by the server). If the number of triggers exceeds a threshold
(fraction of the monitoring smartphones), an earthquake is claimed to be detected.

When the detection occurs, two lists of data are stored: the list of triggering smartphones during
the last 120 seconds and the list of smartphones which were known to be monitoring at the detection
time but did not trigger (active smartphones). Triggering smartphones are described by their spatial
coordinates and by their triggering times, while active smartphones are only described by their spatial
coordinates. Both lists cover an area of 300 km in a radius centered on the EQN detection location,
provided by the detection algorithm as a rough estimate of the earthquake epicenter. This estimate,
however, assumes that all smartphones are triggered because of the earthquake; it does not take into
account the information of the non-triggering smartphones, and it does not consider the dynamic of
the P and S waves. It follows that the EQN epicenter estimate is usually largely biased.

3.1.1 EQN datasets

To better understand their complexity and before entering into modeling details, we describe here the
three EQN datasets analyzed in Section 3.8. Table 3.1 provides, for the three earthquakes, the number
of triggering smartphones, the number of active smartphones that did not trigger, the hypocenter
coordinates, the origin time and the earthquake magnitude retrieved by the European-Mediterranean
Seismological Centre (EMSC; https://www.emsc-csem.org).

The first dataset is related to the recent magnitude 7.8 Pazarcik earthquake of February 6, 2023.
The event was the deadliest and strongest earthquake in Turkey since 1939 and the second most
powerful after the 1668 North Anatolia earthquake. Additionally, it was the deadliest earthquake in
modern-day Syria. EQN detected the event with a delay of 10 seconds with respect to the earthquake
origin time, allowing people living far away from the epicenter to receive a forewarning. Panel (a)
of Figure 3.7 depicts the EQN dataset generated when the earthquake was detected. From a visual

https://www.emsc-csem.org
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Table 3.1: EQN datasets summaries and parameters of the three earthquakes analysed in this work.
Earthquake parameters were retrieved from the EMSC on February 16, 2023.

Pazarcik Ridgecrest Mexico
EQN triggers 16 80 150
EQN active smartphones 158 241 1115
Latitude [deg] 37.17 35.76 15.64
Longitude [deg] 37.08 -117.62 -94.97
Depth [km] 20.0 8.0 27.9
Origin time [UTC] 2023-02-06 01:17:36 2019-07-06 03:19:52 2019-07-17 06:25:48
Magnitude [MW] 7.8 7.1 4.8

analysis of the triggers and active smartphones, it is easy to delimit the area not yet impacted by the
earthquake.

The second dataset concerns the magnitude of the 7.1 Ridgecrest (US) July 6, 2019 earthquake.
This was the most powerful earthquake in California in 20 years and was largely felt across the state
and in Nevada. Due to the small number of smartphones in the epicentral area at the time of the
event, the EQN detection occurred in Los Angeles at around 190 km from the epicenter and 41
seconds of delay (see Bossu et al. 2022 for details), limiting the EQN early warning capabilities but
still providing real-time information to citizens. Panel (a) of Figure 3.8 shows the EQN dataset.
Smartphones are mainly located around the biggest cities of the study region, i.e., Los Angeles and
San Diego. Moreover, triggering times are noisy and do not necessarily increase with the distance
from the earthquake’s epicenter.

The third dataset concerns a magnitude 4.8 earthquake on July 17, 2019, offshore the Mexican
coast. The event did not impact people, but assessing our methodology when the epicenter is
“outside" and far from the smartphone network is useful. EQN detected the earthquake after 29
seconds at around 90 km from the epicenter, thanks to the smartphones located in Salina Cruz and
Juchitán de Zaragoza (the two cities along the coast closest to the epicenter). Again, panel (a) of
Figure 3.9 shows the EQN dataset. Despite the earthquake being detected on the coast, the dataset
includes many triggers from areas not yet reached by the seismic waves. EQN is very popular in
Mexico, and each city is a source of spurious triggers that tend to bias the epicenter estimate.

The features of the three datasets call for a statistical model that exploits all the available infor-
mation (including the information of the non-triggering smartphones), and that takes into account
the dynamic of seismic waves.

3.2 Survival analysis

Survival analysis, the study of time-to-event data, is widely used across various disciplines such as
medicine, biology, engineering, public health, epidemiology, and economics. This type of analysis
typically involves tracking a set of “individuals” and recording the time until a specific event, often
referred to as failure time or lifetime. Notably, the term “individuals” can refer to people or entities like
electronic components, depending on the context. Examples of survival analysis applications include
estimating the time to failure of electronic devices such as refrigerators or pacemakers in industrial
reliability studies, tracking the duration of unemployment periods in social sciences, measuring the
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lifespan of machine parts, monitoring the time until a patient achieves remission or recovery, observing
the time taken to complete a task, and evaluating the duration of economic cycles.

In all cases, the time-to-event variable is non-negative and often subject to censoring. For instance,
in medical studies, a patient may be lost to follow-up for reasons unrelated to the disease being
studied, making it impossible to determine whether the patient succumbed to the illness. Recent
advancements in computational techniques and modeling approaches have significantly enhanced the
appeal of Bayesian methods for survival analysis. As a result, Bayesian frameworks have become
increasingly popular and are now widely applied in various research fields.

Let T be a continuous, nonnegative random variable representing the survival time of individuals
in a population. Denote the probability density function of T by f (t), with t ∈ [0,∞) . The
cumulative distribution function is given by:

F (t) = P(T ≤ t) =

∫ t

0
f (u) du.

The probability that an individual survives beyond time t is described by the survivor function:

S(t) = P(T > t) = 1− F (t)

= 1−
∫ t

0
f (u) du =

∫ ∞

t
f (u) du.

Note that S(t) is a monotonically decreasing function with S(0) = 1 and S(∞) = limt→∞ S(t) = 0.
The hazard function, h(t), represents the instantaneous failure rate at time t and is defined as:

h(t) = lim
∆t→0

P(t < T ≤ t +∆t | T > t)

∆t

=
1

P(T > t)
lim

∆t→0

P(t < T ≤ t +∆t)

∆t
=

f (t)

S(t)
.

Specifically, h(t)∆t approximates the probability of failure in the interval (t, t+∆t], given survival up
to time t. The functions f (t), F (t), S(t), and h(t) provide mathematically equivalent descriptions
of the distribution of T . For instance, since f (t) = − d

dtS(t), it follows that:

h(t) = − d

dt
log(S(t)).

Integrating both sides of this expression and then exponentiating, we obtain:

S(t) = exp

(
−
∫ t

0
h(u) du

)
.

The exponent argument, i.e., the cumulative hazard function H(t), is defined as:

H(t) =

∫ t

0
h(u) du,

and it is hence related to the survivor function by the relationship:

S(t) = exp(−H(t)).
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Given that S(∞) = 0, it follows that H(∞) = limt→∞H(t) = ∞. Thus, the hazard function h(t)

has the properties:

h(t) ≥ 0 and
∫ ∞

0
h(t) dt = ∞.

Finally, it follows that the pdf f (t) can be expressed exclusively in terms of the hazard function as:

f (t) = h(t)S(t) = h(t) exp(−H(t)) = h(t) exp

(
−
∫ t

0
h(u) du

)
. (3.1)

For a comprehensive overview of survival analysis, see Klein et al. (2016), and for a detailed discussion
within a Bayesian framework, refer to Ibrahim et al. (2005).

3.2.1 Right censoring

A key feature often present in time-to-event data is censoring, which occurs when the exact lifetimes
of some individuals are unknown but are constrained within certain intervals, while others are known
exactly. Censoring can be categorized into three types: right censoring, left censoring, and interval
censoring. Right censoring is the most common form, where the exact event time for some individuals
is unknown but is known to exceed a certain value. Specifically, an observation is right-censored at
time t∗2 if the event time is unknown but occurs after t∗2 . Conversely, left censoring occurs when the
event time is only known to be less than or equal to a certain time t∗1 . Interval censoring applies
when the event time is known to fall within a specific interval (t∗1 , t

∗
2 ). While right-censored and

interval-censored data are frequent in survival studies, left-censored data are relatively rare. Here, we
focus exclusively on right-censored survival data.

In Type I censoring, the event is only observed if it occurs before a specified time, which may
vary for each individual. For example, in clinical trials or animal studies, a fixed number of subjects
receive treatment, but due to time or budget constraints, the study ends before all subjects experience
the event. In this case, if no subjects are lost or withdrawn, the censoring time equals the study’s
duration for all censored observations.

Type II censoring occurs when a study continues until the failure of the first k individuals, where
k is a predetermined number less than the total sample size n. This method is common in equipment
life testing, where all items are tested simultaneously, and the experiment concludes once k of the n

items have failed. Type II censoring is often more time-efficient and cost-effective since not all items
need to fail. Statistically, it simplifies analysis because it focuses on the k smallest lifetimes in the
sample, enabling the use of order statistics to derive likelihoods and apply inferential techniques. In
this case, k is the number of failures, n−k is the number of censored observations, and the censoring
time, the k-th ordered lifetime, is random. For a comprehensive review of censoring mechanisms and
related topics, refer to Klein and Moeschberger (2006). As will become clear in Section 3.3.1, we
leverage this framework to derive the likelihood used in our analysis.

3.2.2 Cure models

Cure rate models, which incorporate a cure fraction, are becoming increasingly important in the
analysis of clinical trial data and other applications. These models are specifically designed for
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censored survival data, where a subset of subjects will never experience the event of interest, regardless
of the observation period. Such individuals are often referred to as “cured” or “long-term survivors”.
Cure rate models provide simultaneous estimates of both the proportion of individuals cured of a
disease and the distribution of survival times for those who are not cured. For a comprehensive
review of these models, see Peng and Taylor (2014). They are particularly valuable in contexts where
a significant proportion of individuals are considered “cured”, making them well-suited for modeling
time-to-event data.

One challenge in analyzing survival data from subjects with the possibility of being cured is how
to handle censoring. Censoring occurs either because a subject is cured or because a subject has not
been followed long enough for the event to occur. In many cases, these two scenarios cannot be
easily distinguished. Given that some subjects may never experience the event of interest, it is logical
to consider a mixture model that accounts for two groups: the cured and the uncured. Additionally,
in some population studies, only death times are available. While the length of follow-up and the
nature of the disease may suggest that most deaths are due to the disease, deaths from other causes
can occur and may be indistinguishable. In such cases, it is useful to define “cure” as the point at
which the mortality rate for those diagnosed with the disease returns to the level expected in the
general population.

In the next subsection, we will illustrate how we incorporate cure rate models and right censoring
into our modeling framework.

3.3 Mixture model for relative survival

Our inferential problem is formalized within the setting of survival data analysis with the right cen-
soring and cure. Recall that the observation period is from EQN detection back two minutes. Let
T be the smartphone triggering time over the two-minute frame, and let T ∗ be the censoring time,
equal to the time EQN detects the earthquake. Hence, the censoring corresponds to the end of the
study period for all smartphones, also known as administrative censoring (Cox and Oakes, 1984). We
denote Y = min (T ,T ∗) and ∆ = I (T ≤ T ∗) the triggering (censoring) indicator; in other words,
∆ = 1 when the smartphone triggered.

As usual in survival analysis, the survival function gives the probability that a subject (a smart-
phone) will survive (will not trigger) past time t, i.e., S(t) = P(Y > t) = 1 − F (t). In particular,
in relative survival models (De Angelis et al., 1999; Lambert et al., 2010), the overall (all-cause)
survival function S(t) is given by the product of the expected survival function S0(t) and the relative
survival function R(t), that is

S(t) = S0(t)R(t). (3.2)

The relative survival function R(t) can be interpreted as the net survival probability, i.e., the survival
probability, when the disease (earthquake) is the only cause of death (triggering), and all other causes
could be eliminated. In our setting, S0(t) represents the expected probability that a smartphone will
not trigger until time t for any other causes than the earthquake.

Given Equation (3.2), the overall hazard function h(t) is obtained as the sum of two components:
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the expected hazard function h0(t) and the excess hazard function r(t), that is

h(t) = h0(t) + r(t). (3.3)

The assumption behind Equations (3.2) and (3.3) is that the triggering associated with the earthquake
is independent of triggering related to other causes, i.e., there are independent competing risks (Gamel
and Vogel, 2001). Both S0(t) and h0(t) in Equation (3.2) and (3.3) are assumed to be known and
equal, respectively, to the survival and hazard function of an exponential distribution with parameter
λ seconds−1.

As previously mentioned, as time goes to infinity, the survival curve goes to 0, i.e. S(∞) = 0.
In our context, however, this assumption is unrealistic since, in practice, a smartphone could never
be triggered by an earthquake. This is where cure models come in. Cure models refer to a class of
models for censored survival data from subjects where some will not develop the event of interest,
no matter how long they are followed. The subjects who will not develop the event of interest are
often referred to as cured subjects or long-term survivors. See Peng and Taylor (2014) for a review
of these models.

In our setting, a smartphone that does not trigger because of the earthquake is interpreted as a
faulty smartphone because it is not functioning properly within the EEWS, i.e. it is not detecting
seismic waves. Therefore, since some smartphones will never trigger, it is natural to consider a mixture
model where the population is a mixture of two groups: (i) a proportion π of cured cases with respect
to the specific cause (faulty smartphones that will never trigger because of the earthquake) and thus
have a mortality rate similar to that expected in the general population (i.e., smartphones that will
eventually trigger due to other causes), and (ii) a fraction (1 − π) of uncured cases, i.e., faultless
smartphones that will eventually trigger due to the earthquake and whose survival function will tend
to zero.

Let W be the faulty indicator with W = 1 if the smartphone is faulty, where P(W = 1) = π.
Define SQ(t) = P(T > t | W = 0) the survival function of the faultless population, i.e., the survival
function of smartphones that will eventually trigger because of the earthquake. The following survival
function then defines the mixture model

S(t) = S0(t){π + (1− π)SQ(t)},

where the survival function regarding the π component is equal to one, since a faulty smartphone has
probability one to not triggering up to t, i.e., it will never trigger due to the earthquake. Note that
the faulty smartphone definition encoded in the π parameter is from a population perspective and
does not provide any information about individual smartphones. The corresponding hazard rate can
be expressed as the sum of the background triggering rate and the triggering rate associated with
the earthquake, that is

h(t) = h0(t) +
(1− π)fQ(t)

π + (1− π)SQ(t)
, (3.4)

where fQ(t) is the probability density function associated with SQ(t). Hence, the relative survival
function has an asymptote at the faulty fraction π or, equivalently, the excess hazard function r(t)

has an asymptote at zero.
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The density fQ(t) in Equation (3.4) is modeled to capture earthquakes dynamic. In particular, we
express the density fQ(t) as a mixture of two densities corresponding to the P and S waves, that is
fQ(t) = αfP(t)+(1−α)fS(t), where the choice of fP(t) and fS(t) is detailed in the next Section 3.4.
Hence, the survival function becomes

S(t) = S0(t){π + (1− π)(αSP(t) + (1− α)SS(t))}, (3.5)

with hazard function

h(t) = h0(t) +
(1− π)(αfP(t) + (1− α)fS(t))

π + (1− π)(αSP(t) + (1− α)SS(t))
. (3.6)

Similar to Lambert et al. (2010), this model can be thought of as a three-component mixture: (i) a
proportion π of faulty smartphones, i.e., smartphones will never trigger because of the earthquake, (ii)
a proportion (1 − π)α of faultless smartphones with survival distribution SP(t), i.e., the proportion
of smartphones detecting the P wave and (iii) the remaining proportion (1 − π)(1 − α) of faultless
smartphones with survival distribution SS(t), i.e., the proportion of smartphones detecting the S
wave.

3.3.1 Likelihood function

In this section, we derive the likelihood function, taking into account that the censoring time is depen-
dent on the observed data. Furthermore, since the censoring time coincides with one of the triggering
events, the remaining triggering times are no longer mutually independent. This dependency arises
because EQN uses only a subset of the triggering times to detect earthquakes, making the censoring
time inherently dependent on the triggering times. Neglecting this dependence can lead to biased
and inconsistent inferences, as noted by Davison (2003). Various strategies have been proposed to
address issues of dependent censoring and cure modeling (Li et al., 2007; Megan Othus and Tiwari,
2009). In response, we derive a likelihood function that explicitly incorporates these dependencies.

Let n be the number of active smartphones in the study area over the observational window. Let
T1, ... ,Tn be the survival times and T ∗ a common censoring time, i.e., all smartphones share the
same censoring time. This setting is also referred to as administrative censoring, (see, for instance,
Ibrahim et al., 2005). Let Yi = min {Ti ,T

∗} and ∆i = I (Ti ≤ T ∗) for i = 1, ... , n. The observed
data consists of the times (observed or censored) and of the triggering/censoring indicators, and is
denoted by (yi , δi ) for i = 1, ... , n. The likelihood function is then P(A), where the A is the set

A = {Y1 ∈ dy1, ... ,Yn ∈ dyn, ∆1 = δ1, ... , ∆n = δn} .

In the setting of EQN detection, T ∗ = T(k) is the k-th order statistics of T1, ... ,Tn over a 120-second
time window. Hence it coincides with one of the Ti ’s, and event A is equivalent to

A′ =

{⋂
i∈B

(Ti ∈ dyi , ∆i = 1) ,
⋂
i∈C

(Ti > yi , ∆i = 0) ,T(k) ∈ dy(k)

}
.

where B = {i : ∆i = 1} \
{
i : Ti = T(k)

}
and C = {i : ∆i = 0}. Then, the likelihood function
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becomes

P(A′) = P

(⋂
i∈B

(Ti ∈ dyi , ∆i = 1) ,
⋂
i∈C

(Ti > yi , ∆i = 0) ,T(k) ∈ dy(k)

)

= P

(⋂
i∈B

(Ti ∈ dyi , ∆i = 1) ,
⋂
i∈C

(Ti > yi , ∆i = 0) | T(k) ∈ dy(k)

)
P
(
T(k) ∈ dy(k)

)
= P

(⋂
i∈B

(Ti ∈ dyi , ∆i = 1) ,
⋂
i∈C

(Ti > yi , ∆i = 0) | T(k) ∈ dy(k)

)
P
(
T(k) ∈ dy(k)

)
(3.7)

Using Lemma 5 in Ahmadi and Nagaraja (2020) we obtain:

P

(⋂
i∈B

(Ti ∈ dyi , ∆i = 1) ,
⋂
i∈C

(Ti ∈ dyi , ∆i = 0) | T(k) ∈ dy(k)

)

=
1

n

∏
i∈B

f (yi )

1− S(y(k))

∏
i∈C

f (yi )

S(y(k))
(3.8)

where maxi∈B (yi ) < y(k) < mini∈C (yi ), f (yi ) is the density function in yi and S(yi ) is the survival
function in yi . Through a straightforward integration of (3.8), we get

P

(⋂
i∈B

(Ti ∈ dyi , ∆i = 1) ,
⋂
i∈C

(Ti > yi , ∆i = 0) | T(k) ∈ dy(k)

)

=

∫
i∈C

{(yi ,∞)}

1

n

∏
i∈B

f (yi )

1− S(y(k))

∏
i∈C

f (ti )

S(y(k))

∏
i∈C

dti

=
1

n

∏
i∈B

f (yi )

1− S(y(k))

∏
i∈C

∫
(yi ,∞)

f (ti )

S(y(k))
dti

=
1

n

∏
i∈B

f (yi )

1− S(y(k))

∏
i∈C

S(yi )

S(y(k))
(3.9)

where
i∈C

{(yi ,∞)} is the Cartesian product of the (yi ,∞) over the indices i ∈ C and maxi∈B (yi ) <

y(k) < mini∈C (yi ).

The other term in equation (3.7) is the density of T(k), which is well known to be given by

P
(
T(k) ∈ dy(k)

)
=

n!

(k − 1)!(n − k)!
f (y(k))

[
1− S(y(k))

]k−1
S(y(k))

n−k . (3.10)

Noting that |B| = k − 1, |C | = n − k and by combining (3.9) and (3.10) we get

P(A) =
1

n

∏
i∈B

f (yi )

1− S(y(k))

∏
i∈C

S(yi )

S(y(k))

n!

(k − 1)!(n − k)!
f (y(k))

[
1− S(y(k))

]k−1
S(y(k))

n−k

=
(n − 1)!

(k − 1)!(n − k)!

∏
i∈B f (yi )[

1− S(y(k))
]k−1

∏
i∈C S(yi )

S(y(k))n−k
f (y(k))

[
1− S(y(k))

]k−1
S(y(k))

n−k

=
(n − 1)!

(k − 1)!(n − k)!

∏
i∈B

f (yi )
∏
i∈C

S(yi )f (y(k))
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∝
∏
i∈B

f (yi )
∏
i∈C

S(yi )f (y(k)),

=
n∏

i=1

f (yi )
δiS(yi )

1−δi

where the last line equality is motivated by the fact that y(k) is one of the yi ’s, i,e., the k-th one.

Let θ = (z0, d0, t0) be the vector of earthquake parameters to be estimated, i.e. the coordinates
of the epicenter, z0 = (lon0, lat0), the earthquake depth, d0, and the event origin time, t0. Let
zi = (loni , lati ) represent the spatial coordinates of the i-th device. If the observation is uncensored,
it contributes f (yi | θ, zi ) to the likelihood. Conversely, if it is censored, the contribution to the
likelihood is S(yi | θ, zi ). Specifically

L(θ,π,α; y,Z, δ) ∝
n∏

i=1

f (yi | θ, zi )δiS(yi | θ, zi )1−δi =
n∏

i=1

h(yi | θ, zi )δiS(yi | θ, zi ), (3.11)

where Equation (3.1) has been exploited, y = (y1, ... , yn), Z = (z1, ... , zn) and δ = (δ1, ... , δn).
Moreover, h(yi | θ, zi ) and S(yi | θ, zi ) are the hazard and survival functions defined in Equa-
tions (3.5) and (3.6) where we explicitly denote the dependence on θ and zi .

3.4 P- and S-waves density functions

As mentioned above, earthquakes are characterized by primary and secondary waves. A higher velocity
characterizes the P-wave and typically causes minimal damage, whereas the S-wave, which travels
at a slower velocity, is powerful and damaging. In our analysis, we introduce the unknown velocities
of the P- and S-waves, denoted vP and vS respectively, whose ratio in crustal rocks is assumed to
be vP/vS =

√
3 (Suslick, 2001). Smartphones may detect the P- or the S-wave depending on the

ground shaking intensity caused by each wave at the smartphone location.

Given the earthquake origin time t0, the hypocenter (z0, d0) and the coordinates of the smart-
phone, the expected times at which the P- and S-waves reach the device can be easily calculated.
Due to the operation of the detection algorithm implemented on the smartphone and the latency of
the internet, the triggering can occur within 3.5 seconds of the wave arrival. Hence, a possible choice
for fP(yi | θ, zi ) and fS(yi | θ, zi ) are uniform distributions over the 3.5 seconds of time support
where the trigger can occur. The left bounds of the supports for the P- and S-waves are defined as
follows

aP =
distH(zi , z0, d0)

vP
+ t0 aS =

distH(zi , z0, d0)

vS
+ t0,

where vP and vS are the P- and S-wave velocities, respectively, and distH(zi , z0, d0) is the Euclidean
distance between smartphone i and the hypocenter (z0, d0), which is an approximation of the distance
traveled by the seismic waves.

Unfortunately, uniform densities pose numerical challenges since the likelihood function in Equa-
tion (3.11) becomes discontinuous. Thus, any algorithm to explore the posterior parameter space will
struggle to find sharp and reliable solutions. For this reason, we assume fP(yi | θ, zi ) and fS(yi | θ, zi )
as the densities of a normal distribution with mean µP(θ, zi ) and µS(θ, zi ), respectively, and standard
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deviation τ , where

µP(θ, zi ) =
distH(zi , z0, d0)

vP
+ t0 + µ µS(θ, zi ) =

distH(zi , z0, d0)

vS
+ t0 + µ.

The parameter µ is selected to locate the mean of each component at the center of the 3.5-second
interval defined by the uniform mixture. On the other hand, the parameter τ is assumed unknown and
estimated from the data. To clarify, Figure 3.3 depicts both the uniform mixture and the Gaussian
mixture, with weights 0.6 and 0.4 for the P- and S-waves, respectively. In the figure, different values
of τ are considered, i.e., τ = {0.67, 1.75, 3.5}, corresponding to situations where each component
has approximately 99%, 68%, and 38% of the probability to fall within the 3.5 second interval.
The density functions are displayed in panel (a), while panel (b) presents the corresponding survival
functions.

(a) (b)
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Figure 3.3: Uniform (black) vs Gaussian (red, orange and yellow) mixture with 0.6 and 0.4 weights
of the P and S waves, respectively, for a smartphone located at the epicenter z0.

We refer to the survival model (3.5)-(3.6) together with the P- and S-waves mixture density as
the Survival EarthQuake Model (SEQM).

3.5 Prior distributions

The Bayesian hierarchy of the SEQM is completed by specifying the prior distributions for all of the
model parameters. Let z∗ = (lon∗, lat∗) be the EQN detection location, which is a rough estimate
of the earthquake epicenter computed as the center of mass of the triggers that contributed to the
earthquake detection. For the epicenter coordinates z0, we place a bivariate normal distribution
centered on z∗ with diagonal covariance matrix, i.e., z0 ∼ N2

(
z∗,σ2I2

)
, where σ = 1. We model a

priori the depth parameter d0 using a Gamma distribution whose shape and rate parameters are chosen
to yield 95% of the prior probability laying between 5 and 40 kilometers, i.e., d0 ∼ Gamma(3.94, 0.24).
For the origin time t0, a uniform distribution with support between 0 and 120 is assumed, i.e.,
the earthquake can occur at any moment between two minutes before the EQN detection and the
detection time of the seismic event. As for the wave mixing weight α, we set a Beta(1/2, 1/2)
distribution to assume a priori that only one wave is detected by the smartphone network. We model
the P-wave velocity vP using a Gamma prior distribution. We select shape and rate parameters
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to yield a prior mean velocity of 6.5 km/s and ensure that approximately 95% of the distribution
falls within 5 to 8 km/s. This translates to a prior vP ∼ Gamma(69.95, 10.94). For the standard
deviation of the mixture components, we assume a uniform distribution, as in Gelman (2006), with
values ranging from 0 to 3.5, i.e., τ ∼ U(0, 3.5), see Figure 3.3. Additionally, we place a Uniform
distribution on the faulty fraction π with values between zero and one, i.e., π ∼ U(0, 1). Finally, for
the average triggering time unrelated to earthquakes λ−1, we place a Uniform distribution over the
range from 800 to 80,000 seconds, i.e., λ−1 ∼ U(800, 80000). This choice allows for smartphone
networks with different background noise levels (i.e., different rates of non-seismic triggering).

3.6 Computational details

To approximate the joint posterior distribution under the SEQM with the prior described in Sec-
tion 3.5, we develop an MCMC sampling strategy utilizing an adaptive parallel tempering Metropolis-
within-Gibbs sampler. The general concept of this approach is outlined in Section 3.6.1, while the
algorithm’s specific implementation for our case is detailed in Section B.1.

We denote ϕ = (ϕ1,ϕ2,ϕ3,ϕ5,ϕ5,ϕ6) = (θ,α, vP , τ ,π,λ) the vector of model parameters,
where, we recall that θ = (z0, d0, t0). The six blocks of parameters are a priori independent so that
the posterior results in

p(ϕ | y,Z, δ) ∝ L(ϕ; y,Z, δ)p(ϕ) = L(ϕ; y,Z, δ)
6∏

k=1

pk(ϕk), (3.12)

where pk(ϕk) is the prior of the k-th parameter block. Moreover, to simplify the Metropolis step
implementation, we map each parameter from its support to the real line and propose a new state
from a Gaussian distribution in the mapped space. More details about the single transformations and
how to modify the acceptance-rejection ratio are given in Section 3.6.2 of the Appendices. Finally,
the adaptive strategy by Miasojedow et al. (2013) is adopted to tune the variance of the proposal
distribution. For details about the adaptive MCMC schemes, we refer to Andrieu and Thoms (2008);
Roberts and Rosenthal (2001); Atchadé and Rosenthal (2005).

3.6.1 Parallel tempering MCMC

A preliminary study showed how the posterior distribution, under our model, has numerous well-
separated modes. Indeed, starting from different initial states, the classical random-walk Metropolis-
within-Gibbs became trapped, each time, in a different mode, failing to recover the whole posterior
distribution. To deal with this issue, we adopted a parallel tempering MCMC (Woodard et al., 2009),
also known as Metropolis Coupled Markov Chain Monte Carlo (Altekar et al., 2004).

The algorithm tackles the multi-modality issue by performing – in parallel – several MCMC steps
at various inverse temperatures. The latter constitute a set of L parameters βl ∈ (0, 1], l = 1, ... , L

such that 1 = β0 > β1 > · · · > βL > 0. In particular, each of the MCMC algorithms running in
parallel is designed to draw values from a modified version of the posterior, given by

p(ϕ | y,Z, δ)βl ∝ [L(ϕ; y,Z, δ)p(ϕ)]βl .
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In this way, as βl → 0, i.e., the temperature gets hotter, the multi-modal posterior flattens, and the
corresponding chain better explores the posterior’s support. Conversely, the coldest chain, i.e., the
one with β0 = 1, coincides with the posterior of interest. Notably, the states at various temperatures
are continuously proposed to be switched during the run. A Metropolis step is employed to accept
or reject the switch so that information coming from the flattest chain (βL) is allowed to reach the
original one (β0 = 1). The parameter L, representing the number of distinct temperatures, is selected
to attain an asymptotic rate of approximately 44% swaps between adjacent chains (Miasojedow et al.,
2013). The coldest chain is facilitated in exploring all the modes of the posterior distribution. More
precisely, at any iteration g , after the Metropolis-within-Gibbs step, for each block of the parameters,
given the L current values of the chains

[
ϕ
(g)
1 , ... ,ϕ

(g)
L

]
, the swap is proposed by uniformly sampling

l̄ from {1, ... , L}, and swapping the current states at temperature levels l̄ and l̄ + 1 with probability
given by

ω
(
ϕ
(g)

l̄
,ϕ

(g)

l̄+1
| y,Z, δ

)
= min

1,

p
(
ϕ
(g)

l̄+1
| y,Z, δ

)
p
(
ϕ
(g)

l̄
| y,Z, δ

)
βl̄−βl̄+1

 .

When implementing a tempering MCMC, choosing the inverse temperature parameters βl , l = 1, ... , L

is crucial. Indeed, selecting temperatures that are too similar can lead to inadequate exploration of
the parameter space. On the contrary, selecting temperatures that are too far apart from one another
may lead to significantly low acceptance rates for swaps. To avoid this issues, following Miasojedow
et al. (2013), we opt for an adaptive strategy to tune a function of the temperatures spacing, i.e.,
ρl = log(1/βl+1 − 1/βl). Specifically, we fix the number of temperature levels L and target a
specific mean acceptance rate of the swaps between the chains in nearby temperatures. Following
the guidelines by (Atchadé and Rosenthal, 2005), we set this value to 0.41. More in detail, at each
iteration g , we update ρl̄ by adding a function of the difference between the current accept/reject
probability ω and the targeted one. In this way, if the swap acceptance probability is too high, the
log distance between l̄ and l̄ + 1 temperatures increases, and if it is too low, it decreases.

We point out that Miasojedow et al. (2013) provide theoretical guarantees that the adaptive
tempered algorithm eventually expresses the fixed acceptance rate for both the Metropolis acceptance
rate within each block and the adjacent states swap. The same paper shows that the L chains drawn
in parallel by the algorithm are geometrically ergodic, so both the strong law of large numbers
and the central limit theorem hold for these chains. Section 3.6.2 of the Appendices provides a
detailed description of the algorithm. The R code implementing the algorithm is available at https:
//github.com/lucaaiello/SEQM. All analyses were performed on an Intel(R) Core(TM) i7-10750H
CPU processor with a base frequency of 2.60 GHz. The computational cost for running the MCMC
algorithm, in seconds for iteration, is reported in Tables C.1 - C.2 and Table 3.4 for the simulation
study and the real data analysis, respectively.

As a final note, it is important to consider that traditional methods to summarize multi-modal
posterior densities, such as the posterior mean, median, or quantile-based credible intervals, may not
be suitable. In this study, we use the highest posterior mode as a point estimate of the parameter of
interest, including the epicenter. At the same time, uncertainty is evaluated using the highest posterior
density regions (HPDRs). HPDRs are particularly useful in the case of multi-modal distributions,
as they can include multiple disjoint subsets, one for each local mode, providing a more accurate

https://github.com/lucaaiello/SEQM
https://github.com/lucaaiello/SEQM
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representation of the underlying posterior framework.

3.6.2 MCMC scheme

Recall that we have defined ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5,ϕ6) = (θ,α,π, vP , τ ,λ
−1). From Equa-

tion (3.12), we define pk(ϕk | y,Z, δ) ∝ L(ϕ; y,Z, δ)pk(ϕk) the full conditional distribution of
each block of ϕ. Let Jk

(
ϕ̃k

)
be the Jacobian of the transformation function mk : Rdk → Sk ,

where Sk = [lb1k , ub1k ] × · · · × [lbdk , ubdk ], lbik and ubik are the bounds of the support of the ik -
th parameter within the k-th block, dk is the dimension of the k-th block and ϕ̃k = m−1

k (ϕk).
We generalize here the notation by referring to ϕ

(g)
k,l as the value at iteration g of the k-th sub-

vector of ϕ(g)
l =

(
ϕ
(g)
1,l , ... ,ϕ

(g)
K ,l

)
regarding the chain targeting the l-th version of the posterior, i.e.,

p (ϕl | y,Z, δ)βl , with l = 1, ... , L.

Algorithm 2 provides the details of the MCMC scheme we designed to approximate the joint
posterior distribution under the SEQM. In our application, we assumed K = 6 blocks with dimen-
sion d = (d1, d2, d3, d4, d5, d6) = (4, 1, 1, 1, 1, 1) and L = 10. Regarding the transformations, the
parameter supports are [lb11 , ub11 ] = [−90, 90], [lb21 , ub21 ] = [−180, 180], [lb31 , ub31 ] = [0,∞),
[lb41 , ub41 ] = [0, 120], [lb12 , ub12 ] = [0, 1], [lb13 , ub13 ] = [0, 1], [lb14 , ub14 ] = [0,∞), [lb15 , ub15 ] =
[0, 3.5] and [lb16 , ub16 ] = [800, 80000]. Hence, defining ϕ̃1 =

(
l̃at0, l̃on0, d̃0, t̃0

)
, ϕ̃2 = α̃, ϕ̃3 = π̃,

ϕ̃4 = ṽP , ϕ̃5 = τ̃ and ϕ̃6 = λ̃−1 transformation functions are defined as:

m1

(
ϕ̃1

)
=
(
g
(
l̃at0;−90, 90

)
, g
(
l̃on0;−180, 180

)
, e d̃0 , g

(
t̃0; 0, 120

))⊤
m2

(
ϕ̃2

)
= g (α̃; 0, 1)

m3

(
ϕ̃3

)
= g (π̃; 0, 1)

m4

(
ϕ̃4

)
= e ṽP

m5

(
ϕ̃5

)
= g (τ̃ ; 0, 3.5)

m6

(
ϕ̃6

)
= g

(
λ̃−1; 800, 80000

)
where

g(x̃ ; lb, ub) =
lb + ub e x̃

1 + e x̃
.

For each block and for l = 1, ... , 10 we set the starting values of the model parameters as l̃at
(0)

0 =

g−1
(
lat

(0)
0 ;−90, 90

)
, l̃on

(0)

0 = g−1
(
lon

(0)
0 ;−180, 180

)
, d̃ (0)

0 = log
(
d
(0)
0

)
, t̃(0)0 = g−1

(
t
(0)
0 ; 0, 120

)
and set ϕ̃(0)

1,l =

(
l̃at

(0)

0 , l̃on
(0)

0 , d̃
(0)
0 , t̃

(0)
0

)
. In particular z(0)0 =

(
lat

(0)
0 , lon

(0)
0

)
is sampled from a uni-

form centered on z∗ with a two degree wide support, d
(0)
0 is sampled from a uniform between 5

and 100 km and t
(0)
0 is sampled from a uniform between 0 and 120s. For ϕ̃

(0)
2,l = g−1

(
α(0); 0, 1

)
,

ϕ̃
(0)
3,l = g−1

(
π(0); 0, 1

)
we sample α(0) and π(0) from a uniform distribution between 0 and 1, while

for ϕ̃
(0)
4,l = log

(
v
(0)
P

)
, ϕ̃

(0)
5,l = g−1

(
τ (0); 0, 3.5

)
and ϕ̃

(0)
6,l = g−1

(
λ−1(0); 800, 80000

)
we sample

v
(0)
P , τ (0) and λ−1(0) from a uniform distributions with support between 3 and 8, 0 and 3.5, 800

and 80000, respectively. Moreover, we fix the target acceptance rates ξ̄ =
(
ξ̄1, ξ̄2, ξ̄3, ξ̄4, ξ̄5, ξ̄6

)
=
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(0.23, 0.41, 0.41, 0.41, 0.41, 0.41), the adaptation step size sequences ν = 0.6, and the target ad-
jacent state swapping rate ω̄ = 0.41. Finally, regarding the initial values of the adaptation pa-
rameters, we set chain means µ

(0)
k,l = ϕ̃

(0)
k,l , scaling parameters s

(0)
k,l = 0.1, covariance estimates

R
(0)
1,l = diag(0.1, 0.1, 10, 1), R(0)

2,l = 0.1, R(0)
3,l = 0.1, R(0)

4,l = 0.1, R(0)
5,l = 0.1, R(0)

6,l = 0.1 proposal

covariances ζ
(0)
k,l = exp

(
s
(0)
k,l

)
R
(0)
k,l , and the temperatures spacing logarithm ρ

(0)
l = 1.

3.7 Simulation study

The simulation study aims to evaluate the performance of our modeling approach in estimating the
earthquake parameters under different scenarios that mimic real cases. The key parameters of the
simulation study are: the number of active smartphones, the location of the epicenter with respect to
the smartphone network, and the detection threshold of the EQN detection algorithm (i.e., the ratio
of triggering smartphones to active smartphones required to trigger an earthquake detection). To
simulate realistic smartphone networks, we adopted a dataset of nearly 181,000 smartphone locations
observed by the EQN in the Marmara region of Turkey (see Figure 3.6). From the dataset, random
networks of n = {250, 500, 1000, 2000} smartphone are generated. For the earthquake epicenter,
two locations were considered: one inside the smartphone network and one offshore outside the
smartphone network. In addition, three detection thresholds for the EQN algorithm (Finazzi and
Fassò, 2017) were adopted, namely r = {0.10, 0.15, 0.20}, which determine the order statistics on
the triggering times and thus the EQN detection time. This brings the total number of scenarios to
24.

For each scenario, 100 simulation runs are performed with fixed model parameters (α = 0.8,
π = 0.3, λ−1 = 4800 and vP = 7.8). In each run, triggers are first simulated for the n smartphones.
Two triggering times are simulated independently: a triggering time due to the arrival of the seismic
wave and a triggering time due to causes unrelated to the earthquake. The first triggering time
is generated from the mixture of uniform distributions shown in Figure 3.3, assuming a maximum
triggering delay of 3.5 seconds. The second triggering time is instead simulated from an exponential
distribution with parameter λ and support starting 120 seconds before the origin time. Only the
minimum between the two triggering times is retained. Also, a fraction π of smartphones that
triggered because of the earthquake are randomly selected as faulty, so their triggering times are
discarded. All simulated triggers are ordered by their triggering time, and the EQN detection algorithm
is then applied to the list of ordered triggers. This simulates earthquake detection by the EQN server
as if the triggers were received one at a time. If the earthquake is detected, future triggering times
are censored (with respect to EQN detection). Finally, the observational time window is shifted to
start from 120 seconds before the EQN detection time, and all the triggering times and the origin
time are shifted accordingly.

To illustrate how this trigger list is defined, Figure 3.4 presents an example of the observational
time window within which the triggering time (t) is measured. This window extends from 120 seconds
before the EQN detection to EQN time, which serves as the censoring time t∗. For reference, the
figure also includes the earthquake origin time t0.

In each simulation run, randomness affects the locations of smartphones, their trigger times (since
the epicenter locations and model parameters remain fixed), and the EQN detection. For example,
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Algorithm 2 Adaptive Tempered Metropolis within Gibbs algorithm
1: Initialization: the number of blocks K , their dimensions d, the number of temperatures L, the required

MCMC sample size G , burn-in period g0, the starting values ϕ̃
(0)
k,l , µ

(0)
k,l , ζ

(0)
k,l , s

(0)
k,l , R

(0)
k,l and ρ

(0)
l for

k = 1, ... ,K , l = 1, ... , L, the acceptance probability rates ξ̄, the adaptation step size sequences ν, and
the adjacent state swapping rate ω̄.

2: for g = 1, 2, ... ,G do
3: for k = 1, ... ,K do
4: for l = 1, ... , L do
5: Sample ϕ̃′

k,l = ϕ̃
(g−1)
k,l + ϵg ,k,l where ϵg ,k,l ∼ Ndk

(
0, ζ

(g−1)
k,l

)
6: Let the next iterate be

ϕ̃
(g)
k,l =

ϕ̃′
k,l with probability ξ(g)k,l

(
ϕ

(g−1)
k,l , ϕ̃

(g−1)
k,l ,ϕ′

k,l , ϕ̃
′
k,l | y,Z, δ,β

(g−1)
l

)
ϕ̃

(g−1)
k,l with probability 1− ξ

(g)
k,l

(
ϕ

(g−1)
k,l , ϕ̃

(g−1)
k,l ,ϕ′

k,l , ϕ̃
′
k,l | y,Z, δ,β

(g−1)
l

)
where

ϕ′
k,l = mk

(
ϕ̃′

k,l

)

ξ
(g)
k,l

(
ϕ

(g−1)
k,l , ϕ̃

(g−1)
k,l ,ϕ′

k,l , ϕ̃
′
k,l | y,Z, δ,β

(g−1)
l

)
= min

1,

 pk
(
ϕ′

k,l | y,Z, δ
)
|Jk
(
ϕ̃′

k,l

)
|

pk
(
ϕ

(g−1)
k,l | y,Z, δ

)
|Jk
(
ϕ̃

(g−1)
k,l

)
|

β
(g−1)
l


7: Compute

s
(g)
k,l = s

(g−1)
k,l + (g + 1)−ν

(
ξ
(g)
k,l

(
ϕ

(g−1)
k,l , ϕ̃

(g−1)
k,l ,ϕ′

k,l , ϕ̃
′
k,l | y,Z, δ,β

(g−1)
l

)
− ξ̄k

)
R

(g)
k.l =

(
1− (g + 1)−ν

)
R

(g−1)
k,l + (g + 1)−ν

(
ϕ̃

(g)
k,l − µ

(g−1)
k,l

)(
ϕ̃

(g)
k,l − µ

(g−1)
k,l

)⊤
µ

(g)
k,l =

(
1− (g + 1)−ν

)
µ

(g−1)
k,l + (g + 1)−νϕ̃

(g)
k,l

8: and
ζ
(g)
k,l = exp

(
s
(g)
k,l

)
R

(g)
k,l

9: end for
10: end for
11: Sample l̄ ∈ {1, ... , L− 1} uniformly and swap states l̄ and l̄ + 1 with probability

ω
(g)

l̄

(
ϕ

(g)

l̄
, ϕ̃

(g)

l̄
,ϕ

(g)

l̄+1
, ϕ̃

(g)

l̄+1
| y,Z, δ,β(g−1)

l̄
,β

(g−1)

l̄+1

)
= min

1,

p
(
ϕ

(g)

l̄+1
| y,Z, δ

)
|J
(
ϕ̃

(g)

l̄+1

)
|

p
(
ϕ

(g)

l̄
| y,Z, δ

)
|J
(
ϕ̃

(g)

l̄

)
|

β
(g−1)

l̄
−β

(g−1)

l̄+1


12: Compute

ρ
(g)

l̄
= ρ

(g−1)

l̄
+ (g + 1)−ν

(
ω
(g)

l̄

(
ϕ

(g)

l̄
, ϕ̃

(g)

l̄
,ϕ

(g)

l̄+1
, ϕ̃

(g)

l̄+1
| y,Z, δ,β(g−1)

l̄
,β

(g−1)

l̄+1

)
− ω̄

)
13: Set β(g)

0 = 1 and
14: for l = 1, ... , L− 1 do

1

β
(g)
l+1

=
1

β
(g)
l

+ exp
(
ρ
(g)
l

)
15: end for
16: end for
17: Return for l = 1, ... , L draws ϕ

(g0+1)
l , ... ,ϕ

(G)
l
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Figure 3.4: Example of the observational time window.

Table 3.2: Modes of the true origin time over the 100 simulated datasets for all scenarios with the
epicenter inside and outside the network.

n = 250 n = 500 n = 1000 n = 2000

r = 0.10
Inside 115 115 115 116
Outside 105 106 106 106

r = 0.15
Inside 114 115 115 115
Outside 105 105 105 105

r = 0.20
Inside 113 113 113 114
Outside 104 104 104 104

Figure 3.5 presents two simulated datasets: one with the true epicenter located inside the network
and the other with the epicenter outside the network. Both figures show the EQN detection and
the epicenter estimated by SEQM. As discussed in Section 3.1, the distribution of trigger times
demonstrates significant variability and noise, which is also evident in Figure 3.5. Additionally,
Table 3.2 highlights the modes of the simulated origin times across different scenarios. When the
epicenter is inside the network, EQN detection typically occurs 4 to 5 seconds after the true origin
time. In contrast, for external epicenters, detection occurs between 15 and 16 seconds after the origin
time.

Model estimation is finally performed considering the list of triggers and the list of active smart-
phones. Specifically, the prior distributions described in section 3.5 were used. The burn-in period
was set to 5,000 iterations, followed by 25,000 post-burn-in iterations. We retained one every five
iterations, resulting in 5,000 effective iterations for the subsequent analysis.

The boxplots in Figure 3.6 show the distribution of the geodetic distance (error) between the
estimated and simulated epicenter for EQN and SEQM for different values of n under the scenarios
with EQN detection threshold set to r = 0.20 and when the real epicenter is inside and outside
the network, respectively. As expected, both the median and the error variability tend to decrease
when n increases, enlarging the benefit of SEQM over EQN. Moreover, the results show that the
improvement of SEQM over EQN is much higher in the scenario where the epicenter is located outside
the network, which is indeed the situation where the EQN struggles to recover the true epicenter using
only the triggered smartphones. Rather, SEQM also exploits spatial locations of the non-triggering
smartphones to improve the earthquake parameter estimation. Similar conclusions hold for the other
scenarios with varying EQN detection thresholds, whose results are postponed to the Supporting
material, see Section C.1.

Table 3.3 illustrates, for the scenario where r = 0.20, the median and 95% interval of the origin
time error, i.e., the difference between the true and the estimated origin time. When the true epicenter
is located within the network, the median origin time error typically ranges between 1.23 and 1.64
seconds, with the 95% interval encompassing zero in cases where n = 250 or 500. In contrast, when



70 CHAPTER 3. SURVIVAL MODELING OF SMARTPHONE TRIGGER DATA

(a)

(b)

Figure 3.5: Examples of summary map of analysis performed on simulated data with epicenter
enclosed in the network (a) and outside of the network (b).
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Figure 3.6: Boxplots for the epicenter error for EQN and SEQM in the case of r = 0.20, when the
real epicenter is inside the network (a) and outside the network (b).

Table 3.3: Median and 95% interval of the origin time error (t0 − t̂0) [s] over the 100 simulated
datasets for r = 0.20.

Epicenter location n = 250 n = 500 n = 1000 n = 2000

Inside the network 1.64 1.32 1.30 1.23
[-0.37, 6.43] [-0.05, 2.72] [0.13, 2.76] [0.30, 2.69]

Outside the network 2.01 1.90 1.79 1.70
[-7.84, 7.19] [-2.20, 7.23] [-2.35, 5.39] [-0.59, 4.95]

the true epicenter lies outside the network, the 95% intervals are wider and consistently include zero,
but the median origin time error tends to be higher, ranging from 1.70 to 2 seconds. The bias on the
origin time results directly from the simulation procedure. In fact, the triggering times are simulated
from uniform distributions that induce an average delay of 1.75 seconds with respect to the arrival of
the P- or S-wave. Section C.1 of the Supporting Material provides additional results of the simulation
study for all scenarios, including the median and 95% interval of the estimated parameters over the
simulated datasets, the empirical posterior coverage of the parameters along with their average HPDR
length, and the average number of modes for each parameter.

3.8 Analysis of EQN datasets

For each dataset described in Section 3.1.1, earthquake parameters are estimated employing the
survival model outlined in Equation (3.11), with the prior defined in Section 3.5 and running the
algorithm detailed in Section 3.6 for 100,000 iterations with a 50,000 burn-in period.
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Table 3.4: EQN and SEQM earthquake parameter estimates for the three events. For SEQM, also
the 95% HPDR is provided.

Pazarcik Ridgecrest Mexico

EQN
lat∗ [deg] 37.48 34.08 16.47
lon∗ [deg] 37.00 -117.57 -95.05
t∗ [hh:mm:ss] 01:17:46 03:20:33 06:26:17

SEQM

lat0 [deg] 37.26 35.86 15.16
[37.18, 37.36] [35.63, 35.99] [14.86, 15.32]

lon0 [deg] 37.06 -117.52 -95.01
[36.92, 37.21] [-117.65, -117.42] [-95.66, -95.38] [-95.27, -94.83]

d0 [km] 12.99 12.83 13.94
[2.28, 28.08] [3.13, 39.07] [2.85, 34.92]

t0 [hh:mm:ss] 01:17:36 03:19:48 06:25:46
[01:17:29, 01:17:38] [03:19:43, 03:19:52] [06:25:42,06:25:48]

α 0.01 0.02 0.34
[0.00, 0.13] [0.32, 1.00] [0.00, 0.07] [0.84, 1.00] [0.22, 0.46]

π 0.64 0.12 0.78
[0.09 0.79] [0.00, 0.29] [0.72, 0.83]

vP [km/s] 6.07 7.73 8.80
[4.65, 7.64] [4.69, 5.25] [6.76, 8.66] [7.95, 10.61]

τ [s] 0.66 2.26 2.53
[0.37, 1.95] [1.77, 3.34] [2.04, 3.46]

λ−1 [s] 20174.69 1462.04 2030.59
[7998.62, 77702.18] [947.66, 2442.56] [1617.72, 2725.68]

Runtime [s/iteration] 0.015 0.024 0.057

The MCMC output is provided in Section C.2 of the Supporting material. Here, we summarize
the results in Table 3.4 that includes the highest posterior mode and the associated 95% HPDRs
of all model parameters for the three case studies. The table also reports the EQN estimates of
the earthquake parameters. While EQN only provides point estimates, SEQM also offers uncertainty
quantification through the HPDRs. The summary maps for the three earthquakes are presented in
the left panel of Figures 3.7 - 3.9, which show the epicenter retrieved by the EMSC and the epicenter
estimates provided by EQN and SEQM, where the latter is computed as the highest posterior mode.
The right panel of the figures displays the posterior distribution of the epicenter together with its
estimated posterior density and the EMSC epicenter along with its 95% confidence ellipse. Notice
that, for the Pazarcik and Ridgecrest earthquakes, the marginal posterior distribution of the epicenter
encompasses the EMSC ones; see also Table 3.4. In particular, for the Ridgecrest event, the EMSC
epicenter is included in the highest bivariate posterior region, as highlighted in Figure 3.8. In the
Mexican event, instead, the posterior density exhibits bimodality and is close to the EMSC epicenter,
which is far away from the EQN estimate. In the SEQM section of the table, the computational cost
for each case is reported, expressed in seconds per MCMC iteration. For instance, in the Pazarcik
case, completing 100,000 iterations takes approximately 25 minutes. However, based on our tests,
the algorithm demonstrated convergence with as few as 10,000 iterations, requiring only 2.5 minutes.

In Table 3.5, we assess the accuracy of the estimates by measuring the distance between the
EMSC and the estimated epicenter, the distance between the EMSC and the estimated depth (only
provided by SEQM), and the distance between the EMSC and the estimated origin time. Overall,
SEQM is characterized by a lower error, thus improving EQN estimates.

In particular, for the Pazarcik event, epicenter and depth are estimated with an error of around 11
and 7km, respectively. In contrast, the error on the origin time is less than one second. The epicenter
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(a)

(b)

Figure 3.7: Summary map (a) and posterior distribution of the epicenter (blue dots) together with
its estimated posterior density (b) for the 2023 Pazarcik earthquake.
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(a)

(b)

Figure 3.8: Summary map (a) and posterior distribution of the epicenter (blue dots) together with
its estimated posterior density (b) for the 2019 Ridgecrest earthquake.
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(a)

(b)

Figure 3.9: Summary map (a) and posterior distribution of the epicenter (blue dots) together with
its estimated posterior density (b) for the 2019 Mexican earthquake.
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Table 3.5: Comparison between EQN and SEQM earthquake parameter estimates. Errors are
computed with respect to the EMSC earthquake parameters in Table 3.1.

Pazarcik Ridgecrest Mexico

EQN error
epicenter [km] 35.40 187.43 92.86
origin time [s] -10.00 -41.00 -29.00

SEQM error
epicenter [km] 10.71 14.82 53.43
depth [km] 7.01 -4.83 13.94
origin time [s] -0.15 3.45 1.77

estimation error is around 15 km for the Ridgecrest event, which is notable considering that the EQN
detection occurred at a high distance. The error on the depth is around 5 km, while the estimated
origin time is around 3 seconds earlier than the EMSC origin time. For the Mexican event, the error
on the epicenter location is around 503 km, smaller than the 93 km error given by EQN. The error
on depth is around 14 km, while the error on origin time is around 2 seconds.

The model parameters α, π, vP and λ are more subtle to interpret as their estimation is affected
by the relatively short time frame over which the data are observed. For instance, the posterior
distribution on α is bi-modal for the Pazarcik event. This happens because all smartphones are
triggered on the P-wave. This implies that P- and S-waves can be switched by switching velocities
vP and vS . Only a longer time frame extended after the EQN detection (the censoring event) could
have provided the opportunity to observe triggers caused by the S-wave. Similarly, λ tends to have
a large HPDR because non-seismic triggers are rare events, and the time frame (which is only 120
seconds into the past from the EQN detection) is not long enough to obtain an accurate estimate
of the parameter. On the other hand, the parameter π (fraction of faulty smartphones) tends to
be overestimated if the EQN detection time is close to the origin time. This is because most of
the non-triggering smartphones were actually censored, and they (likely) triggered soon after EQN
detection. For the Ridgecrest event, π is small because the EQN detection occurred far from the
epicenter many seconds after the origin time, and the seismic waves propagated far enough to observe
many triggers. This effect can be seen in Table 3.1, where the ratio of triggers to active smartphones
is higher for the Ridgecrest event.

Finally, the estimated τ is close to the expected value (0.67) for the Pazarcik event and much
larger for the Ridgecrest and Mexican events. Again, this is probably a consequence of the fast
EQN detection in the Pazarcik event. In the other two cases, assuming that vP and vS are constant
across space is less suitable for describing seismic wave propagation at large distances from the
epicenter. Consequently, τ increases to accommodate triggering times that are more variable around
the expected arrival time of the seismic wave.

3.9 Discussion

Smartphone networks employed in earthquake early warning are complex stochastic objects charac-
terized by a random geometry and by nodes (the smartphones) that exhibit non-predictable behavior
during an earthquake. In this paper, we developed a modeling approach for estimating relevant earth-
quake parameters, uncertainty included, starting from the data provided by the smartphone network
when an earthquake is detected. The approach, primarily inspired by survival analysis, allows us
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to handle the uncertainty of the smartphone data and fully exploit the information content of the
dataset. More precisely, earthquake parameter estimation is not only affected by the trigger spatial
locations and times but also by the spatial locations of the non-triggering smartphones. This helps to
constrain the epicenter location and origin time, especially when the number of triggers is relatively
small and/or all the triggers are clustered within a small area. Such benefit comes from the cure rate
model, which finds a novel application in this context.

A simulation study showed that the model can recover the true earthquake parameters even
when the epicenter is outside the smartphone network. Notably, our modeling approach significantly
improves the EQN estimates for both epicenter and origin time while also offering a measure of
uncertainty. This consideration holds also when applied to real earthquake datasets. In particular,
the posterior density of the epicenter exhibits spatial variability that covers the EMSC epicenter for
the Ridgecrest event and is spatially close to the EMSC epicenter for the Pazarcik and Mexican
earthquakes.

Future developments may include implementing a dependent data prior approach. In this work,
we defined a diffuse prior on the hypocenter location so that the smartphone data strongly informs its
estimate through the likelihood. However, hypocenters are more likely to be located near known faults.
Earthquake catalogs may thus be exploited to define more informative priors to better constraint
estimates, for instance, following the work of Argiento and Guglielmi (2014) on Bayesian principal
curves to specify the prior on the hypocenters around the faults.

As a final remark, we argue that the approach outlined in this paper is not intended for real-time
applications. Rather, the approach provides reliable estimates of the earthquake parameters within
a few minutes after the EQN detection and the release of the preliminary EQN estimates. In areas
well covered by the seismic networks of national and international seismological institutes, a delay of
a few minutes may not be competitive. On the other hand, it is a relatively short delay for poorly
covered areas (especially in low-income developing countries). Since the computational cost depends
mainly on the number of active devices in the EQN network, optimizing the computational efficiency
of the algorithm is a crucial future development for the implementation of real-time capabilities.





Conclusions

In conclusion, this thesis has demonstrated the broad applicability and adaptability of Bayesian meth-
ods across diverse challenges in public health and environmental risk assessment. By focusing on three
distinct yet interconnected areas – Bayesian nonparametric clustering for environmental data, spatial
disease boundary detection, and earthquake parameter estimation using smartphone accelerometer
data – this work highlights the versatility of Bayesian approaches in managing uncertainty, handling
complex datasets, and providing practical insights.

The first project provided a comprehensive review of Bayesian nonparametric clustering methods,
specifically within the context of environmental data analysis. Environmental datasets are often
high-dimensional, noisy, and sparse, which makes traditional clustering approaches ineffective. By
synthesizing recent advancements in Bayesian nonparametrics, this review laid the groundwork for
future innovations in spatio-temporal clustering, helping to uncover hidden patterns in environmental
factors such as pollution. These methods are essential for policymakers and researchers looking to
address environmental risks in a more informed, data-driven manner (Wade, 2023; Piegorsch and
Bailer, 2005). This review underscores the need for flexible and adaptive models that can reveal
complex structures in environmental data, providing a strong foundation for subsequent research in
this critical field.

The second project tackled the challenge of detecting spatial disparities in disease rates, a key
concern for public health authorities. Traditional spatial models often fail to capture the intricate
relationships between multiple diseases and geographic regions, which limits the ability to inform
effective interventions. By introducing a flexible Bayesian nonparametric model, this work advanced
the understanding of disease boundaries and their spatial dependencies. The inclusion of graphical
models allowed for the explicit modeling of multivariate dependencies, which is particularly useful in
public health contexts where diseases may share common risk factors. This application to the SEER
cancer database uncovered associations between lung, esophageal, and larynx cancers, suggesting
that targeted interventions could yield broader public health benefits (Rao, 2023; Lawson, 2018;
Gao et al., 2023). The framework developed here also advances the methodological landscape by
offering more rigorous uncertainty quantification in the detection of spatial disparities, opening up
new directions for research on health disparities and policy planning.

The third project applied Bayesian survival modeling to the real-time estimation of earthquake
parameters using smartphone accelerometer data. This innovative approach offers a novel way to
harness crowd-sourced smartphone data for seismic monitoring, providing real-time estimates of earth-
quake parameters such as the epicenter and origin time. Traditional seismic networks are often limited
by geographic coverage, particularly in low-income or rural areas. By integrating smartphone data,
the model developed in this project expands the potential for rapid and accurate earthquake detection,
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especially in regions that are not well-covered by conventional seismic networks (Finazzi, 2016; Kong
et al., 2016; Argiento and Guglielmi, 2014). The Bayesian survival model’s ability to incorporate non-
triggering smartphones into the analysis enhances the precision of earthquake parameter estimates,
even when the epicenter lies outside the smartphone network. This work not only represents a novel
application of survival analysis but also provides a path forward for improving early warning systems
in earthquake-prone areas.

Together, these projects showcase the critical role of Bayesian methods in addressing the complex-
ities inherent in public health and environmental challenges. The review of Bayesian nonparametric
clustering methods highlights their capacity to manage high-dimensional environmental data, while
the spatial disease mapping project advances the understanding of geographic health disparities, and
the earthquake modeling project demonstrates the power of Bayesian survival models in real-time
disaster monitoring. These contributions collectively push the boundaries of Bayesian modeling,
demonstrating its effectiveness in managing uncertainty, integrating diverse data sources, and driving
actionable insights.

While each project encountered challenges and limitations, they also opened new avenues for
further research. For example, the review of Bayesian clustering methods provides a foundation for
future work in high-dimensional environmental data analysis, while the spatial disease mapping model
could be extended to explore alternative boundary detection techniques such as those proposed by Wu
and Banerjee (2024). The earthquake parameter estimation model, on the other hand, could benefit
from incorporating more informative priors based on known fault lines, as discussed by Argiento and
Guglielmi (2014). These potential future directions promise to advance both methodological devel-
opment and practical applications in the field of public health and environmental risk management.

In conclusion, this thesis illustrates that Bayesian methods are indispensable for navigating the
complexities of modern public health and environmental risk challenges. From improving the detection
of disease boundaries to developing more accurate real-time earthquake monitoring systems, Bayesian
models provide powerful tools for researchers and policymakers alike. By effectively managing un-
certainty and integrating complex datasets, these approaches offer robust frameworks for mitigating
risks and informing timely interventions. The innovations and methodologies presented here ensure
that data-driven decision-making remains at the forefront of efforts to address evolving public health
and environmental crises, providing a foundation for future advancements in these critical areas.
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A.1 Similarity function

Here we provide the computations through which we obtained the closed form of the similarity function
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Simplifying the notation:
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A.2 Additional details on data

Figure A.1 illustrates the spatial distribution of the estimated AR(1) model parameters. Panel (a)
presents the mean PM10 concentrations recorded across different stations, showing the highest values
– often exceeding 40 µg/m3 – in urban and industrial areas like Turin, Milan, Brescia, Verona, and
Venice. In contrast, lower concentrations (below 20 µg/m3) are found in northern and coastal
regions, such as Bolzano and Genoa. The Po Valley exhibits moderate concentrations, generally
between 20 and 40 µg/m3. Panel (b) displays the estimated autocorrelation, which reveals strong
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(a)

(b)

(c)

Figure A.1: Maps with mean (a) autocorrelation (b) and standard deviation (c) of AR(1) model
applied to each PM10 concentration time series.
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persistence in eastern Po Valley, the Turin area, and southern Liguria, while moderate values are
observed around Milan and lower values appear in mountainous regions. Panel (c) shows the residual
standard deviation, highlighting how much PM10 levels fluctuate over time. Regions with higher mean
concentrations, particularly urban and industrial areas, tend to experience greater fluctuations, while
areas with lower mean concentrations and persistence show less variability. These spatial patterns
motivate our decision to focus the clustering on persistence and residual variability. Panels (b) and (c)
suggest that stations tend to group spatially based on autocorrelation and variability, with a similar
grouping also reflected in the mean levels.

A.3 Additional results

In the spatial clustering obtained using the Binder loss, shown in panel (a) Figure A.2, four distinct
clusters are identified. The blue cluster has a median autocorrelation of 0.16 and a variance of
0.76, while the green cluster shows higher values, with an autocorrelation of 0.46 and variance of
1.00. The red cluster has even stronger autocorrelation (0.61) and higher variance (1.57), and the
black cluster displays intermediate values, with an autocorrelation of 0.87 and a variance of 1.23.
Unlike the clustering derived from the VI loss, the characteristics of the clusters here are less clearly
interpretable.

(a) (b)

Co−clustering 
probability

0.00

0.25

0.50

0.75

1.00

Figure A.2: Estimated partition of the monitoring stations (a); posterior co-clustering matrix (b).

Panel (b) shows a heatmap of the co-clustering matrix, where each entry represents the proportion
of MCMC iterations in which two individuals (monitoring stations) were clustered together based on
posterior samples. The stations are ordered according to the point estimate of the partition obtained
using the Binder loss function. Unlike the heatmap obtained with the VI loss function, shown in
Figure 1.4 this one does not reveal a clear block diagonal structure, indicating that the four identified
clusters do not align well with the co-clustering probabilities.
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B.1 MCMC algorithm

Our models rely on posterior inference, which is achieved through MCMC posterior simulations.
To accomplish this, we employ the blocked Gibbs Sampler with some adaptive and some classic
Metropolis-Hastings steps, based on the work by Gamerman and Lopes (2006) and Miasojedow et al.
(2013). This approach allows us to achieve the desired acceptance rates while updating all random
parameters in our model. It is important to note that ϕi corresponds to θui , and we update ϕi by
updating both θ and ui , and, ultimately, that η is constrained to be between 0 and a positive constant
M. The MCMC algorithm proceeds through the following steps, with a noteworthy observation that
step 8 is further subdivided into three parts, depending on the selected model used to represent disease
dependence. Here, we present the algorithm used for the data analysis described in Section 2.9. In
the simulation setting, there would be an additional step to calculate the error variances, along with
the closed-form full conditionals for the error variances, as well as for β and θ.

B.2 Further results on simulations

Table B.1: Root median squared error for all the model parameters under all the simulation settings.

True graph Unstructured Directed Undirected
Fitted graph Unstructured Directed Undirected Unstructured Directed Undirected Unstructured Directed Undirected

β 1.585 1.475 1.107 0.993 0.869 0.793 0.642 0.548 0.466
ϕ1 7.364 7.286 6.541 15.345 6.862 15.915 16.559 16.478 6.052
ϕ2 7.937 7.088 7.033 14.943 6.491 16.339 16.226 16.431 6.447
ϕ3 7.971 7.126 6.832 15.386 6.875 15.549 16.440 15.226 6.265
ϕ4 7.908 6.924 6.923 15.254 6.805 15.488 16.566 15.638 6.345
γ1 8.160 8.215 7.995 8.727 8.623 8.342 7.995 8.004 7.487
γ2 12.448 14.472 4.419 14.008 16.880 5.140 10.869 13.610 4.031
γ3 14.770 29.796 7.681 16.414 33.943 7.792 13.457 29.285 6.770
γ4 18.784 45.308 9.233 23.094 72.170 9.337 15.280 44.172 6.264
θ 7.783 7.579 7.892 8.675 8.196 9.208 8.782 8.418 8.479
τdis 7.869 7.864 8.931 15.854 12.490 21.795 21.822 17.967 26.407
V 1.739 1.716 1.762 1.888 1.830 1.882 1.851 1.865 1.876
τ 0.311 0.348 0.253 0.305 0.404 0.261 0.387 0.512 0.351
ρ 0.763 0.784 0.798 0.817 0.750 0.707 0.726 0.695 0.666
η 0.332 0.359 0.360 0.368 0.329 0.344 0.332 0.340 0.301
A 7.625 - - - - - - - -
α - - - - 7.789 - - - -
ρdis - - - - - - - - 0.250
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Algorithm 3: Posterior inference of θ, β, τs , V, γ, ρ, η and A or α or ρdis based on our models

1: update β |θ
(a) sample candidate β∗ from N (β, ξβ)

(b) accept β∗ with probability

min
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exp
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2: update θ |β, τs

(a) sample candidate θ∗ from N (θ, ξθ)

(b) accept θ∗ with probability
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(c) adapt ξθ
3: update γid |β,θ,ρ,η,A, i = 1, ... , n, d = 1, ... , q

(a) sample candidate γ∗id from N (γid , ξγid
)

(b) compute the corresponding candidate u∗id =
∑K

k=1 kI
(∑k−1

t=1 pt < F (id)(γ∗id) <
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(c) accept γ∗id with probability
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(d) adapt ξγid

4: update V |β,θ

(a) let Ṽ = logit(V) and sample Ṽ
∗

from N (Ṽ, ξṼ) then V∗ = exp (Ṽ
∗
)/
(
1 + exp (Ṽ

∗
)
)

(b) compute the corresponding candidate p∗ = (p∗1 , ... , p
∗
K ) and u = {u∗id}
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}

(d) adapt ξṼ
5: update ρ |γ,η,A

(a) let ρ̃ = logit(ρ) and sample ρ̃∗ from N (ρ̃, ξρ̃) then ρ∗ = exp (ρ̃∗)/ (1 + exp (ρ̃∗))

(b) update Σ∗
γ with the proposed ρ∗

(c) accept ρ̃∗ with probability

min
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(d) adapt ξρ̃
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6: sample τs |θ,β0 from
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2
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2
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2

)
7: update η |γ,ρ,A

(a) let η̃ = log
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η
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)
and sample η̃∗ from N (η̃, ξη̃) then η∗ = M exp (η̃∗)

1+exp (η̃∗)

(b) update Σ∗
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8: Unstructured update A |γ,ρ,η
(a) let diagonal elements ãdd = log (add) and off-diagonal elements ãdh = adh for h < d . Then, sample

candidates ã∗ (lower triangular elements of A) from N (ã, ξã) and set a∗dd = exp (ã∗dd) and for h < d ,
a∗dh = ã∗dh

(b) construct the proposed A∗ and update Σ∗
γ accordingly

(c) accept A∗ with probability
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Undirected update ρdis |γ,ρ,η
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Table B.2: Boundary detection results in the simulation study with DAGAR spatial dependence for
the three disease graph models with data generated under the corresponding true model.

Disease 1 Disease 2 Disease 3 Disease 4
Disease graph T Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity
Unstructured 85 0.553 0.868 0.513 0.891 0.538 0.885 0.544 0.880

90 0.503 0.882 0.454 0.906 0.482 0.900 0.490 0.893
95 0.433 0.906 0.402 0.921 0.428 0.913 0.434 0.904
100 0.383 0.921 0.342 0.932 0.359 0.930 0.379 0.918
105 0.329 0.931 0.297 0.940 0.296 0.942 0.330 0.929

Directed 85 0.563 0.822 0.527 0.867 0.491 0.877 0.480 0.872
90 0.528 0.838 0.482 0.881 0.450 0.893 0.437 0.881
95 0.487 0.854 0.436 0.896 0.405 0.903 0.395 0.892
100 0.441 0.871 0.386 0.906 0.359 0.915 0.351 0.903
105 0.390 0.890 0.333 0.921 0.310 0.924 0.305 0.914

Undirected 85 0.645 0.838 0.516 0.864 0.589 0.861 0.596 0.857
90 0.593 0.856 0.470 0.881 0.539 0.875 0.548 0.876
95 0.534 0.871 0.424 0.892 0.487 0.888 0.494 0.889
100 0.476 0.887 0.377 0.906 0.437 0.904 0.434 0.902
105 0.419 0.905 0.330 0.917 0.379 0.918 0.381 0.916

Table B.3: Boundary detection results in the simulation study with CAR spatial dependence for the
three disease graph models with data generated under the corresponding true model.

Disease 1 Disease 2 Disease 3 Disease 4
Disease graph T Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity
Unstructured 85 0.652 0.859 0.630 0.869 0.650 0.873 0.655 0.871

90 0.601 0.875 0.581 0.883 0.599 0.886 0.604 0.888
95 0.544 0.890 0.527 0.897 0.542 0.903 0.545 0.900
100 0.480 0.904 0.463 0.913 0.485 0.918 0.487 0.913
105 0.418 0.920 0.408 0.926 0.425 0.932 0.426 0.926

Directed 85 0.669 0.860 0.637 0.895 0.551 0.896 0.537 0.896
90 0.618 0.877 0.584 0.909 0.501 0.907 0.485 0.907
95 0.561 0.893 0.527 0.919 0.452 0.919 0.437 0.918
100 0.503 0.908 0.469 0.929 0.400 0.930 0.387 0.928
105 0.445 0.924 0.410 0.938 0.350 0.941 0.323 0.941

Undirected 85 0.666 0.871 0.618 0.885 0.643 0.871 0.648 0.879
90 0.611 0.887 0.567 0.900 0.589 0.883 0.596 0.894
95 0.553 0.899 0.514 0.915 0.535 0.898 0.538 0.907
100 0.498 0.915 0.459 0.926 0.480 0.911 0.480 0.921
105 0.440 0.929 0.405 0.939 0.423 0.924 0.422 0.933

Table B.4: Adjacencies detection with DAGAR spatial dependence for the three disease graph models
with data generated under the corresponding true model.

Disease 1 Disease 2 Disease 3 Disease 4
Disease graph Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity
Unstructured 0.386 0.986 0.598 0.928 0.600 0.959 0.261 1.000

Directed 0.406 0.985 0.786 0.939 0.668 0.954 0.213 1.000
Undirected 0.415 0.981 0.753 0.927 0.571 0.969 0.225 0.990

Table B.5: Adjacencies detection with CAR spatial dependence for the three disease graph models
with data generated under the corresponding true model.

Disease 1 Disease 2 Disease 3 Disease 4
Disease graph Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity
Unstructured 0.084 1.000 0.305 0.998 0.142 1.000 0.045 1.000

Directed 0.160 0.995 0.445 0.963 0.306 0.973 0.211 1.000
Undirected 0.846 0.776 0.834 0.632 0.888 0.672 0.848 0.947
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Figure B.1: WAIC densities along with the median values (dotted lines) in the DAGAR spatial
dependence case for different choices of the disease graph with data generated under the corresponding
true model.
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Figure B.2: WAIC densities along with the median values (dotted lines) in the CAR spatial depen-
dence case for different choices of the disease graph with data generated under the corresponding
true model.
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B.3 Posterior summaries for SEER data analysis

We present further analysis for the model used in Section 2.9. In this section the regression model
x⊤ij βj consists of only cancer-specific intercepts while zij in the adjacency model is built from the
absolute differences between geographic neighbors for the three covariates described in Section 2.1.
We present credible intervals in Figure B.3, B.4, B.5 and B.6.

Regarding Figure B.3 We see β1 (lung) and β2 (esophageal) having positive posterior medians
with substantial mass greater than 0, while β3 (larynx) and β4 (colorectal) having negative posterior
medians with substantial mass less than 0. The 90% interval for colorectal cancer is almost entirely
to the left of 0. Turning to the right panel, we see about 4 atoms (θ2, θ12, θ3 and θ8) to have
their HPD intervals almost entirely to the left of 0, while 5 atoms (θ1, θ13, θ10, θ9 and θ7) have
intervals situated entirely to the right of 0. The remaining 6 atoms (out of a total of K = 15) are
not significantly different from 0. The variation in the posterior distribution of these atoms reflect
substantial posterior learning and information from the data that propagates to the spatial random
effects.

It is expected that the intervals for the γ random effects, shown in Figure B.4, will mostly not be
significantly different from 0, but they reveal substantial variation indicating enough information in
the data to discern spatial patterns. It is worth pointing out that the dispersion varies substantially
among the cancers with the intervals for lung and colorectal spanning a range much smaller than
esophageal and larynx.

The variations among the posterior intervals in Figure B.5 indicate substantial learning from the
data that informs the joint distribution of the spatial effects through the stick-breaking probabilities
and the baseline MDAGAR distribution in the DP.

Coming to Figure B.6, the 12 coefficients in η include 3 slopes for each of the 4 cancer types
corresponding to the covariates shown in Figure 2.3. For each of the 4 cancers, the parameters in
the left panel appear in (2.5) as coefficients of the 3 × 1 vector zij , where the elements of zij are
|zki −zkj | for k = 1, 2, 3 corresponding to the 3 covariates. The four slopes corresponding to smoking
are denoted as η1, η4, η7, and η10. For the variable population over 65, the corresponding slopes are
η2, η5, η8, and η11. The slopes related to “poverty"" levels are η3, η6, η9, and η12. For all cancers
considered, these coefficients correspond respectively to lung, esophageal, laryngeal, and colorectal
cancers. Here, the greater the η’s, the more likely two regions are not considered to be adjacent by
the model. For instance, the smoking covariate plays a significant role in determining adjacencies for
larynx cancer (η7), while the over 65 covariate has a similar impact for both esophageal and larynx
cancers (η5 and η8). Additionally, the below poverty covariate appears to have a notable effect on
the adjacencies related to esophageal cancer (η6). In the right panel, the HPD intervals for the
elements of AA⊤ are shown, representing the non-spatial covariance among the cancers. Lung and
larynx cancers exhibit the highest variances (AA⊤)11 and (AA⊤)44, with larynx showing the widest
interval. The non-spatial association between lung and larynx captured by (AA⊤)41 and that between
lung and colorectal captured by (AA⊤)31 are negative with the 95% intervals situated entirely below
0. It is important to interpret the non-spatial component of these associations with caution. What
can, perhaps, be gleaned from these negative non-spatial associations is a phenomenon of spatial
confounding at the residual scale, where much of the positive associations among these aggregated
data are absorbed by the spatial associations arising from geographic proximity.
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Figure B.3: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for β (a) and θ (b).
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Figure B.4: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for the elements of the disease-specific spatial effects
in γ using the MDAGAR specification in Section 2.4.1 and the precision matrix given in Equation 2.6.
The four panels correspond to the 4 cancers: lung (a), esophageal (b), larynx (c) and colorectal (d).
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Figure B.5: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for V (a), which consists of the 15 stick-breaking
weights used in Equation (2.2), and for ρ (b), which consists of the 4 spatial autocorrelation param-
eters (one for each disease) in the MDAGAR model.
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Figure B.6: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for η (a) and A (b).
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B.4 Additional figures and tables
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Figure B.7: California map with county names. This will be helpful in detecting the boundaries.

B.4.1 Analysis with covariates in the mean and adjacency model

We present inference from the model used in Section 2.9, where we include cancer-specific intercepts
and slopes for the three covariates described in Section 2.1 and also include the covariates in the
adjacency model. Table B.6 presents the estimates of the model described in Section 2.9 including only
cancer-specific intercepts in the regression model and the 3 covariates described in Section 2.1 in the
adjacency model. The last column of Table B.6 presents Monte Carlo standard errors corresponding
to the parameter estimates.
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Table B.6: Posterior estimates, standard deviations and their Monte Carlo standard errors for the
regression coefficients, atoms and their precision in the hierarchical model in (2.11) using the Poisson
regression model described in Section 2.9.

Variable Estimate SD MC SE
β1 -0.068 0.037 0.003
β2 0.029 0.002 < 10-3

β3 -0.011 0.002 < 10-3

β4 -0.009 0.002 < 10-3

β5 -0.361 0.109 0.009
β6 0.034 0.007 < 10-3

β7 0.010 0.007 < 10-3

β8 -0.010 0.006 < 10-3

β9 -0.394 0.132 0.008
β10 0.032 0.008 0.001
β11 0.000 0.009 < 10-3

β12 0.004 0.007 < 10-3

β13 0.156 0.052 0.007
β14 0.013 0.002 < 10-3

β15 -0.018 0.004 < 10-3

β16 -0.006 0.002 < 10-3

θ1 0.021 0.024 0.005
θ2 0.190 0.077 0.011
θ3 -0.223 0.060 0.010
θ4 0.168 0.198 0.029
θ5 -0.082 0.234 0.030
θ6 0.209 0.136 0.018
θ7 -0.081 0.290 0.030
θ8 0.259 0.139 0.015
θ9 0.061 0.307 0.036
θ10 -0.071 0.241 0.034
θ11 0.115 0.034 0.007
θ12 -0.144 0.029 0.007
θ13 0.175 0.048 0.008
θ14 0.132 0.145 0.018
θ15 -0.082 0.025 0.005
τ 6.979 2.336 0.026
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Figure B.8: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for β (a) and θ (b).
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Figure B.9: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for the elements of the disease-specific spatial effects
in γ using the MDAGAR specification in Section 2.4.1 and the precision matrix given in Equation 2.6.
The four panels correspond to the 4 cancers: lung (a), esophageal (b), larynx (c) and colorectal (d).
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Figure B.10: Highest posterior density (HPD) intervals, ordered according to their posterior medi-
ans, at 90% (thick lines) and 95% (thin lines) levels for V (a), which consists of the 15 stick-breaking
weights used in Equation (2.2), and for ρ (b), which consists of the 4 spatial autocorrelation param-
eters (one for each disease) in the MDAGAR model.
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Figure B.11: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for η (a) and A (b).
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Figure B.12: Estimated FDR curves plotted against the number of selected difference boundaries
for the four cancers
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Figure B.13: Difference boundaries (highlighted in red) detected by the model in the California
map, colored according to the posterior mean of the corresponding ϕid , for four cancers individually
when ζ = 0.05. The values in brackets are the number of difference boundaries detected.
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Lung, Esophageal (T = 27) Lung, Layrnx (T = 24) Lung, Colorectal (T = 21)

Esophageal, Layrnx (T = 36) Esophageal, Colorectal (T = 11) Larynx, Colorectal (T = 8)

Figure B.14: Shared difference boundaries (highlighted in red) detected by the model for each pair
of cancers in California map when ζ = 0.05. The values in brackets are the number of difference
boundaries detected.
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Figure B.15: Mutual cross-difference boundaries (highlighted in red) detected by the model for each
pair of cancers in California map when ζ = 0.05. The values in brackets are the number of difference
boundaries detected.
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Figure B.16: Non-adjacencies (shown in blue) over the California map. The thickness of the lines
is proportional to the probability of being considered as a non-adjacency
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B.4.2 Analysis with covariates in the mean with fixed adjacencies

We present inference from the model used in Section 2.9 of the main article, where we include cancer-
specific intercepts and slopes for the three covariates described in Section 2.1 of the main article in
the regression x⊤ij βj , but exclude modeling adjacencies and keep them fixed. Table B.7 presents
the estimates of the model described in Section 2.9 including only cancer-specific intercepts in the
regression model and the 3 covariates described in Section 2.1 of the main article in the adjacency
model. The last column of Table B.7 presents Monte Carlo standard errors corresponding to the
parameter estimates.

Table B.7: Posterior estimates and standard deviations for the regression coefficients, atoms and
their precision in the hierarchical model in (2.11) using the Poisson regression model described in
Section 2.9.

Variable Estimate SD MC SE
β1 -0.060 0.040 0.005
β2 0.031 0.003 < 10-3

β3 -0.009 0.003 < 10-3

β4 -0.010 0.003 < 10-3

β5 -0.304 0.104 0.009
β6 0.028 0.010 0.001
β7 0.014 0.008 0.001
β8 -0.009 0.008 0.001
β9 -0.407 0.150 0.011
β10 0.026 0.010 0.001
β11 0.005 0.010 0.001
β12 0.008 0.008 0.001
β13 0.236 0.061 0.009
β14 0.011 0.004 < 10-3

β15 -0.019 0.004 < 10-3

β16 -0.005 0.002 < 10-3

θ1 -0.122 0.038 0.014
θ2 -0.019 0.045 0.013
θ3 0.001 0.036 0.009
θ4 -0.016 0.067 0.012
θ5 -0.033 0.061 0.013
θ6 -0.026 0.046 0.016
θ7 -0.089 0.294 0.046
θ8 -0.087 0.120 0.029
θ9 -0.231 0.104 0.023
θ10 0.038 0.137 0.054
θ11 0.054 0.125 0.036
θ12 -0.181 0.043 0.017
θ13 -0.034 0.095 0.030
θ14 -0.042 0.241 0.082
θ15 0.082 0.052 0.021
τ 8.042 2.676 0.028
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Figure B.17: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for β (a) and θ (b).
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Figure B.18: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for the elements of the disease-specific spatial effects
in γ using the MDAGAR specification in Section 2.4.1 and the precision matrix given in Equation 2.6.
The four panels correspond to the 4 cancers: lung (a), esophageal (b), larynx (c) and colorectal (d).
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Figure B.19: Highest posterior density (HPD) intervals, ordered according to their posterior medi-
ans, at 90% (thick lines) and 95% (thin lines) levels for V (a), which consists of the 15 stick-breaking
weights used in Equation (2.2), and for ρ (b), which consists of the 4 spatial autocorrelation param-
eters (one for each disease) in the MDAGAR model.
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Figure B.20: Highest posterior density (HPD) intervals, ordered according to their posterior medians,
at 90% (thick lines) and 95% (thin lines) levels for A.
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Figure B.21: Estimated FDR curves plotted against the number of selected difference boundaries
for four cancers
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Figure B.22: Difference boundaries (highlighted in red) detected by the model in the California
map, colored according to the posterior mean of the corresponding ϕid , for four cancers individually
when ζ = 0.05. The values in brackets are the number of difference boundaries detected.
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Figure B.23: Shared difference boundaries (highlighted in red) detected by the model for each pair
of cancers in California map when ζ = 0.05. The values in brackets are the number of difference
boundaries detected.
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Figure B.24: Mutual cross-difference boundaries (highlighted in red) detected by the model for each
pair of cancers in California map when ζ = 0.05. The values in brackets are the number of difference
boundaries detected.





Appendix C

Chapter 3 supplementary materials

C.1 Additional results of the simulation study

Figures C.1 and C.2 show a comparison of the accuracy of the epicentre estimation performed by
EQN and SEQM when the real epicentre is located within and outside the network, respectively. In
particular, the figures display the distribution of the geodetic distance (error) between the estimated
and simulated epicentre for EQN and SEQM for different values of n under all scenarios. Overall,
SEQM is characterized by a lower error, thus improving EQN estimates. In particular, the error
decreases as the number of active smartphones increases, with small differences for varying EQN
thresholds. Rather, when the epicentre is located far from the network, the improvement of SEQM
over EQN is much more evident.

In Tables C.1 and C.2, we present the median point estimates and 95% interval for each parameter
over the 100 simulation datasets, where the point estimates are computed as the highest posterior
modes. Notably, for the earthquake parameters, the true value consistently falls within the 95%
interval. Since the true origin time differs over the 100 simulated datasets, we present the time
origin error in Tables C.1 and C.2, i.e., the difference between the true and the estimated origin
time. The 95% interval of such error always includes zero when the epicentre is located outside
the network while it remains close to zero for the scenarios with the epicentre located inside the
network. The median estimate approaches 1.76; this is not surprising since the triggering times are
simulated from uniform distributions that induce, on average, a delay of 1.75 seconds with respect
to the arrival of the P- or S-wave. For parameters α and π, the true values are always within the
95% interval, albeit with relatively large interval lengths. Similar conclusions can be drawn for the
seismic velocity parameter vP when the epicentre is distant from the network. Estimating the cure
fraction is challenging when the plateau phase has not yet been reached, e.g., in the presence of
administrative censoring, like in our setting (Peng and Taylor, 2014). Hence, the high posterior
value of π is likely due to the fact that the cure fraction encodes both the faulty smartphones and
the late triggers (censored uncured smartphones), and these two possibilities cannot be, eventually,
distinguished. However, the proportion of faulty smartphones is not relevant in studying earthquake
dynamics. Finally, for parameter λ−1, the 95% intervals always include the true value, with increasing
precision as n and r increase.

To clarify the uncertainty quantification of the approach, Tables C.3 and C.5 present the empirical
coverages for the parameters across all the simulation scenarios, i.e., the percentage of times that
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each parameter belongs to its 95% HPDRs over the 100 simulated datasets. The average lengths
of the 95% HPDRs are reported in Tables C.4 and C.6. The empirical coverages of the earthquake
parameters are close to the nominal level of 95%, showing that the SEQM is able to recover the
true parameter, except for the origin time t0. Again, triggering times are simulated using uniform
distributions, leading to an average delay of 1.75 seconds compared to the arrival of either the P-
or S-wave. Likely, the consequence is that the empirical coverage of vp also tends to decrease with
respect to its nominal value as n increases.

Finally, Tables C.7 and C.8 display the average number of posterior modes for each parameter
over the 100 generated datasets. Notably, the number of modes when the real epicentre lies within
the network is somehow greater compared to the alternative scenario.
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Figure C.1: Boxplots of the epicentre estimation error for EQN and SEQM in all the simulation
scenarios in the case of the real epicentre located within the network.
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Figure C.2: Boxplots of the epicentre estimation error for EQN and SEQM in all the simulation
scenarios in the case of the real epicentre located outside the network.
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1.08
1.20

1.15
1.12

1.14

[0.63,2.84]
[0.57,1.87]

[0.66,1.54]
[0.63,1.16]

[0.75,2.30]
[0.73,1.63]

[0.79,1.43]
[0.89,1.34]

[0.85,2.63]
[0.95,1.65]

[0.96,1.45]
[0.94,1.41]

λ
−
1

4974.19
4875.66

4775.89
4819.85

4861.18
5054.31

4682.67
4916.37

4885.66
4650.62

4975.41
4723.76

4800.00
[2437.38,16633.83]

[2882.09,12616.28]
[3310.62,6921.19]

[3709.72,6293.17]
[2323.98,30033.98]

[2838.54,8228.65]
[3122.52,7149.67]

[3780.09,5904.47]
[2727.43,15875.64]

[3172.08,8127.89]
[3304.38,7351.58]

[3618.18,6341.63]

seconds/iteration
0.0148

0.0246
0.0450

0.0784
0.0152

0.0250
0.0485

0.0871
0.0157

0.0279
0.0492

0.0883
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Table C.3: Empirical coverage of the true parameter being in the 95% HPDR over the 100 datasets,
for all simulation scenarios with the epicentre located within the network.

r=0.10 r=0.15 r=0.20
n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000

lat0 0.93 0.91 0.92 0.96 0.94 0.94 0.90 0.93 0.96 0.95 0.89 0.96
lon0 0.98 0.90 0.93 0.92 0.96 0.96 0.91 0.87 0.98 0.96 0.93 0.91
d0 1.00 0.98 1.00 0.90 1.00 1.00 1.00 0.87 1.00 1.00 1.00 0.90
t0 0.98 0.93 0.82 0.57 0.94 0.90 0.84 0.51 0.94 0.83 0.76 0.56
α 0.99 0.97 0.96 0.85 0.98 0.98 0.96 0.68 0.98 0.95 0.91 0.75
π 1.00 1.00 0.90 0.87 0.87 0.86 0.75 0.84 0.62 0.51 0.44 0.38
vP 0.84 0.82 0.79 0.73 0.83 0.79 0.68 0.59 0.75 0.76 0.77 0.69
λ−1 0.96 0.93 0.97 0.98 0.94 0.99 0.97 0.95 0.96 0.99 0.97 0.94

Table C.4: Average 95% HPDR length for each parameter over the 100 datasets, for each simulation
scenario in the case of the real epicentre located within the network.

r=0.10 r=0.15 r=0.20
n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000

lat0 0.78 0.40 0.27 0.16 0.78 0.41 0.25 0.14 0.67 0.34 0.24 0.21
lon0 0.50 0.29 0.21 0.14 0.47 0.28 0.19 0.13 0.43 0.23 0.16 0.17
d0 28.18 27.83 26.78 26.23 28.92 27.57 26.74 20.82 28.07 27.41 26.38 22.51
t0 12.26 7.04 5.71 4.60 11.64 6.60 5.12 3.61 9.91 5.34 4.43 5.06
α 1.01 0.94 0.91 0.80 0.92 0.89 0.81 0.69 0.82 0.69 0.63 0.56
π 0.77 0.76 0.74 0.69 0.69 0.67 0.61 0.61 0.55 0.45 0.41 0.37
vP 2.95 2.90 2.85 2.75 2.86 2.82 2.75 2.53 2.77 2.66 2.56 2.41
τ 2.25 1.72 1.35 0.82 2.00 1.66 1.17 0.77 1.77 1.17 0.84 0.60
λ−1 21152.38 10417.93 4421.46 2938.45 22252.14 8687.46 4271.39 2880.40 20406.07 7917.56 4685.36 2852.58

Table C.5: Empirical coverage of the true parameter being in the 95% HPDR over the 100 datasets,
for all simulation scenarios with the epicentre located outside the network.

r=0.10 r=0.15 r=0.20
n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000

lat0 0.94 0.93 0.91 0.91 0.98 0.93 0.96 0.96 0.94 0.96 0.92 0.93
lon0 0.92 0.88 0.97 0.89 0.92 0.95 0.97 0.96 0.93 0.92 0.92 0.92
d0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
t0 0.95 0.95 0.86 0.85 0.95 0.95 0.91 0.91 0.95 0.83 0.85 0.83
α 1.00 1.00 1.00 0.98 1.00 0.97 0.99 0.95 0.99 0.96 0.96 0.95
π 1.00 1.00 1.00 0.99 0.99 1.00 0.99 0.97 0.97 0.92 0.92 0.84
vP 0.90 0.75 0.71 0.90 0.74 0.83 0.83 0.84 0.85 0.75 0.84 0.78
λ−1 0.94 0.96 0.97 0.96 0.93 0.97 0.95 0.98 0.98 0.99 0.97 0.92

Table C.6: Average 95% HPDR length for each parameter over the 100 datasets, for each simulation
scenario in the case of the real epicentre outside the network.

r=0.10 r=0.15 r=0.20
n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000

lat0 1.01 0.73 0.47 0.31 0.97 0.66 0.43 0.30 0.89 0.54 0.37 0.28
lon0 0.61 0.45 0.26 0.17 0.54 0.38 0.23 0.16 0.51 0.28 0.19 0.14
d0 30.09 30.34 31.37 33.06 30.35 30.56 31.67 32.63 30.69 30.48 31.84 37.36
t0 19.75 14.83 9.88 6.60 18.70 13.33 9.09 6.73 17.19 11.02 8.00 7.53
α 0.87 0.84 0.80 0.80 0.84 0.80 0.79 0.76 0.82 0.75 0.75 0.75
π 0.78 0.78 0.76 0.75 0.76 0.75 0.74 0.71 0.74 0.69 0.68 0.64
vP 2.84 2.75 2.56 2.29 2.79 2.65 2.41 2.13 2.67 2.32 2.11 1.92
τ 1.92 1.36 0.85 0.49 1.65 1.18 0.70 0.48 1.31 0.83 0.51 0.36
λ−1 21103.66 10978.15 4549.48 3015.55 21738.94 8803.28 4323.14 2943.74 20731.20 8048.77 4768.53 2924.67
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Table C.7: Average number of modes for each parameter over the 100 generated datasets with the
real epicentre located within the network.

r=0.10 r=0.15 r=0.20
n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000

lat0 1.21 1.09 1.07 1.00 1.19 1.06 1.02 1.00 1.22 1.03 1.02 1.28
lon0 1.14 1.06 1.04 1.03 1.13 1.03 1.01 1.03 1.19 1.02 1.00 1.23
d0 1.04 1.05 1.01 1.06 1.00 1.00 1.00 1.08 1.00 1.01 1.03 1.22
t0 1.32 1.06 1.12 1.08 1.22 1.06 1.03 1.14 1.26 1.08 1.08 1.36
α 1.57 1.39 1.38 1.39 1.51 1.36 1.32 1.52 1.48 1.25 1.24 1.48
π 1.02 1.02 1.19 1.18 1.06 1.10 1.17 1.12 1.20 1.15 1.25 1.48
vP 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.04
τ 1.06 1.07 1.05 1.20 1.03 1.04 1.06 1.17 1.05 1.03 1.02 1.04
λ−1 1.10 1.03 1.00 1.00 1.09 1.01 1.01 1.00 1.03 1.00 1.00 1.00

Table C.8: Average number of modes for each parameter over the 100 generated datasets with the
real epicentre located outside the network.

r=0.10 r=0.15 r=0.20
n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000 n=250 n=500 n=1000 n=2000

lat0 1.03 1.05 1.05 1.02 1.07 1.06 1.00 1.01 1.04 1.04 1.01 1.03
lon0 1.10 1.08 1.05 1.01 1.05 1.08 1.00 1.01 1.03 1.01 1.00 1.03
d0 1.00 1.01 1.01 1.04 1.01 1.01 1.02 1.02 1.02 1.00 1.02 1.10
t0 1.09 1.05 1.07 1.00 1.06 1.03 1.01 1.01 1.15 1.02 1.03 1.08
α 1.22 1.17 1.13 1.11 1.26 1.12 1.05 1.08 1.19 1.08 1.06 1.06
π 1.00 1.02 1.05 1.05 1.02 1.02 1.03 1.07 1.02 1.01 1.07 1.13
vP 1.01 1.01 1.00 1.04 1.00 1.01 1.01 1.03 1.01 1.01 1.04 1.07
τ 1.00 1.04 1.01 1.00 1.03 1.00 1.00 1.00 1.06 1.00 1.00 1.00
λ−1 1.06 1.02 1.00 1.00 1.06 1.01 1.00 1.00 1.06 1.00 1.00 1.00

C.2 Additional empirical results

Figures C.3, C.4 and C.5 present diagnostic plots for the real data analysis. In each case, there are
no apparent convergence issues observed in the chains of every parameter. Additionally, the marginal
posterior densities reveal that the EMCS earthquake parameters consistently fall within the posterior
intervals, with the exception of the latitude parameter in the Mexican event.

In Figure C.6, for each data analysis, both the Kaplan-Meier estimator (Kaplan and Meier, 1958)
and the posterior standardized survival function (Brilleman et al., 2020) are illustrated. Specifically,
each plot showcases the average posterior survival function across the considered smartphones, ac-
companied by their 95% credible bands. Notably, following the earthquakes (highlighted in green), the
trajectories of all curves closely emulate those of the empirical Kaplan-Meier curves. This indicates
that our model captures and describes well the data at hand.
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Figure C.3: Diagnostics plot for the Pazarcik case. Traceplots (a), densities (b) and autocorrelations
(c). Red lines represent the EMSC earthquake parameters.
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Figure C.4: Diagnostics plot for the Californian case. Traceplots (a), densities (b) and autocorrela-
tions (c). Red lines represent the EMSC earthquake parameters.
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Figure C.5: Diagnostics plot for the Mexican case. Traceplots (a), densities (b) and autocorrelations
(c). Red lines represent the EMSC earthquake parameters.
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Figure C.6: Comparison between the Kaplan-Meier estimator (black line), the standardized survival
function estimated by SEQM (red interval) and the true earthquake origin time (green line) for the
three cases: Pazarcik (a), Californian (b) and Mexican (c).
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