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Abstract: Since its discovery in the 1960s, the violation of CP symmetry has intrigued scientists and
stimulated the advancement of knowledge in particle physics. Numerous experiments were designed
and built to study it in increasingly deeper detail. Nowadays, the phenomenon is well framed within
the Standard Model of Particle Physics. Nevertheless, new results are being produced by modern
experiments at colliders that challenge the current understanding of the model. In this article, the
current status of CP violation studies and the role of CP violation in the search for effects beyond the
Standard Model are described together with the prospects for ongoing and future experiments.
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1. Introduction

The Standard Model of Particle Physics (SM) describes the interaction of quarks and
leptons with utmost precision. Developed over the course of the 20th century, the SM has
been tested in a wide range of experiments showing remarkable predictive power. While
extremely successful in describing the interaction of elementary particles, the SM is not
able to explain some of the most fundamental questions in physics. For instance, limiting
ourselves to the energy scale for which the SM is best suited, it does not explain the size of
the asymmetry between matter and antimatter in the Universe, why there are exactly three
generations of fermions, and the origin of the masses of neutrinos.

These compelling questions indicate that the SM is not the ultimate theory of particle
physics, rather an excellent approximation of a more fundamental theory. The SM is,
therefore, considered as an effective theory, valid up to a certain energy scale, Λ, where
new physics is expected to appear. Probing higher energy scales is, therefore, a key aspect
in the search for new physics. There are two main approaches to this problem: direct and
indirect searches. The former consists in looking for new particles directly by producing
them in a particle collider, while the latter consists in looking for deviations from the
SM predictions in precision measurements. At the Large Hadron Collider (LHC) both
these approaches are pursued thanks to the unprecedented energy and luminosity of the
proton–proton collisions.

In this review, we will focus on the indirect searches for new physics in the flavor
sector, in particular, those concerning the study of the matter–antimatter (CP) asymmetry
in hadron decays.

2. CP Violation in the Standard Model

The charge–parity (CP) symmetry is a fundamental symmetry of the SM of parti-
cle physics, being the combination of two fundamental symmetry operations, charge-
conjugation (C) and parity (P). Before the discovery of CP violation in the neutral kaon
system [1], it was believed that the CP symmetry was an exact symmetry of nature. The
necessity to describe this phenomenon in the SM led to the introduction of an irreducible
complex phase in the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix [2], a
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complex matrix representing the probability of each up-type quark (u, c, t) to interact with a
down-type quark (d, s, b) by means of a W boson emission or absorption.

This phase appears in the CKM matrix predominantly in the elements Vub and Vtd that
in the Wolfenstein parametrization [3] are expressed as

Vub ≈ Aλ3(ρ − iη),

Vtd ≈ Aλ3(1 − ρ − iη), (1)

which leads to an intuitive way to show CP violation by drawing unitarity triangles in
the complex plane. The unitarity (VV† = I) of the CKM matrix implies column and
row orthogonality

∑
i

VijV∗
ik = δjk and ∑

j
VijV∗

kj = δik,

and each of these conditions can be represented as a triangle in the complex plane. The
most common triangle is built from the unitarity relation

VudV∗
ub + VcdV∗

cb + VtdV∗
tb = 0 (2)

that can be rewritten as

1 −
|Vud|

|Vcd||V
∗
cb|

V∗
ub −

|V∗
tb|

|Vcd||V
∗
cb|

Vtd = 0 (3)

when isolating the complex terms. The sum of three complex numbers can be drawn as
a triangle in the complex plane with the three sides of the triangle corresponding to the
three terms in the sum, as shown in Figure 1. The angles of the triangle are related to the
CP-violating complex phase. In this case, they are defined as

α = arg
(
−

VtdV∗
tb

VudV∗
ub

)
β = arg

(
−

VcdV∗
cb

VtdV∗
tb

)
γ = arg

(
−

VudV∗
ub

VcdV∗
cb

)
. (4)

Figure 1. Plot of the CKM unitarity triangle in the complex plane from the CKMFitter group [4] made
in the summer of 2023. The labels superimposed on the plots and the corresponding shaded areas
show the various measurements of CP violation and the constraints they pose on the triangle.

A fundamental ingredient for observing CP violation is the presence of at least
two amplitudes that can interfere. These amplitudes can be of a different nature; for
example, in the neutral meson system, the two amplitudes are the direct decay and the
decay after oscillation. With charged particles, these amplitudes are represented by the
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different resonant decay paths that lead to the same final state. Different amplitudes show
not only a difference in the weak (CP-violating) phase, but also in the strong (CP-conserving)
phase. The non-zero difference between these two phases is what allows for the interference
between the two amplitudes and the observation of CP violation [5,6].

CP violation first manifested itself in the decays of neutral kaons, but has become
widely studied in the decays of B mesons. In Figure 1, there are many labels superimposed
on the plot, each corresponding to a different measurement of CP violation. ϵK is the
sole constraint imposed by measurements in the neutral kaons system, while all the other
measurements are related to B mesons decays.

The aforementioned unitarity triangle is the most commonly drawn since it is the one
that shows the largest CP violation effects and is also the most constrained one. Alternative
triangles can be drawn when focusing on the transitions involving B0

s and D decays but
they are not as clear as the B one, since they are characterized by smaller CP violation effects
that lead to triangles flattened on the real axis. Nevertheless, observations of CP violation
in the B0

s and D systems have been made. In the upcoming section, we will discuss the
measurements of CP violation in the B and D systems.

3. Experimental Status of CP Violation

Measurements of CP violation were first made in the 1960s by studying neutral kaon
decays [1], but it was not until the discovery of the b quark that an extensive experimental
program could start. Once B mesons were discovered and the technology was ready to
produce them in large quantities, an extensive research program was undertaken by two
competing experiments, BaBar [7] and Belle [8], that ran in the early 2000s at the asymmetric
e+e− colliders PEP-II and KEKB, respectively.

3.1. CP Violation in B0 Decays

The first observation of CP violation in the B meson system was made by two collabo-
rations in 2001 [9,10] by measuring

sin(2β) = 0.59 ± 0.14 ± 0.05 and sin(2β) = 0.99 ± 0.14 ± 0.06, (5)

respectively. They combined the analyses of B0 → (cc)K0
S (cc = J/ψ, ψ(2S), χc1) and

B0→ J/ψK0
L decays in this result.

CP violation is observed as an asymmetry in the decay time distribution of the B0

mesons decaying to J/ψK0
S and J/ψK0

L, as shown in Figure 2

ACP(∆t) ≡
NB0(∆t)− NB0(∆t)
NB0(∆t) + NB0(∆t)

= η f sin(2β) sin(∆md∆t), (6)

with η f being the CP eigenvalue of the final state and ∆t = tCP − ttag the decay time
difference between the reconstructed and tagging B mesons. It is interesting to note that CP
violation at the B Factories is measured through the measurement of the difference in the
decay time of the two B mesons in the event. Such a measurement is possible thanks to the
entanglement of the B mesons, i.e., being produced from the same e+e−→ bb interaction,
the large acceptance of the detectors covering almost the whole solid angle, and to the
spatial separation between the two B mesons decay vertices, which is achieved by the
asymmetric energy of the beams that boosts the B mesons in the laboratory frame.

At hadron colliders, such as the LHC, the B mesons are still produced in pairs with
a large boost, but most of the time, one of them is not reconstructed due to the detector’s
acceptances. In this case, CP violation is measured by studying the decay time distribution
of the B meson that is reconstructed, and the rest of the event is used to infer the flavor of
the B meson (tagging [11]). Larger yields have been collected since the first observation
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of CP violation in B0 decays, improving the precision of the measurements and requiring
Equation (6) to be extended to account for second-order effects

ACP(t) ≡ Γ(B0(t) → f )− Γ(B0(t) → f )
Γ(B0(t) → f ) + Γ(B0(t) → f )

=
S sin(∆mdt)− C cos(∆mdt)

cosh
(

1
2 ∆Γdt

)
+A∆Γ sinh

(
1
2 ∆Γdt

) . (7)
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Figure 2. First observation of CP violation in B0 decays as obtained by the BaBar (left) [9] and
Belle (right) [10] collaborations. In the left plots, the cumulative decay time distributions of B
mesons decaying to J/ψK0

S, ψ(2S)K0
S, and χc1K0

S are shown when identified as B0 mesons (a) and B0

mesons (b). A shaded area represents the contribution of background events. The asymmetry in the
decay time distributions of the signal candidates, which is a measure of CP violation, is shown in (c).
Similar plots are made for B→ J/ψK0

L decays in (d–f). In the right plots, (a) shows the asymmetry in
the decay time distributions of B mesons decaying to J/ψK0

S, ψ(2S)K0
S, χc1K0

S, ηcK0
S, and J/ψK0

L, which
is separated for B mesons decaying to ccK0

S final states (b) and J/ψK0
L final states (c), and (d) shows

the asymmetry of the control samples. The black dots in the plots represent the data, while the solid
lines represent the fit to the data. Shaded area represent the contribution of background events.

Here S, C, and A∆Γ are the CP violation parameters, ∆md and ∆Γd are the difference
between the mass and the decay width of the two B0 mass eigenstates, respectively. It
is useful to note that the parameter S is related to the CP violation parameter sin(2β)
by the relation S = sin(2β + ∆Φd + ∆ΦNP

d ), where ∆Φd is a contribution from loop (or
penguin [12], see Appendix A) diagrams (suppressed in the SM), and ∆ΦNP

d is a contribution
of the same type arising from phenomena beyond the SM. The B Factories have measured
the CP violation parameters S and C in various B0→ ccK0 decays, obtaining

S = 0.687 ± 0.028(stat)± 0.012(syst) C = 0.024 ± 0.020(stat)± 0.016(syst), (8)

S = 0.667 ± 0.023(stat)± 0.012(syst) C = 0.006 ± 0.016(stat)± 0.012(syst), (9)
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where the first set of values (Equation (8)) are measured by the BaBar experiment [13],
and the second (Equation (9)) by Belle [14]. These results represents the legacy of the
B Factories and were quite recently superseded by the LHCb experiment [15], whose latest
measurement of this parameter is

S(ψK0
S) = 0.717 ± 0.013(stat)± 0.008(syst),

C(ψK0
S) = 0.008 ± 0.012(stat)± 0.003(syst), (10)

which is the most precise measurement of CP violation in B0 decays to date [16].
Despite being the most precise, the measurement of CP violation in B0 decays through

the angle β is not the only one. The other two angles of the unitarity triangle, α and γ, can
be measured through the study of other B0 decays.

In particular, the angle α can be measured through the study of b→ u transitions, like
B0 → ππ and B0 → ρρ decays. In these decays, the interference between the tree-level
b→ u and the box diagram of the B0–B0 mixing result in the CP asymmetry parameters
S = sin 2α and C = 0. In reality, the penguin b→ d diagrams also contribute and introduce
theoretical uncertainties that need to be corrected (penguin pollution). A seminal paper
by Gronau and London [17] provided the strategy to measure α in a model-independent
way by combining measurements of CP asymmetries in the isospin-related B0 → π+π−,
B0 → π0π0, and B+ → π+π0 decays. In this context, the experiments measure the CP
asymmetry and the combination of the measurements allows to extract the angle α. The
most precise measurement of CP violation in B0 decays to π+π−, performed by the LHCb
experiment [18] with a dataset of 4.7 fb−1 luminosity, is

Cππ = −0.311 ± 0.045,

Sππ = −0.706 ± 0.042, (11)

while BaBar and Belle studied the decays B0 → π0π0 and B+→ π+π0 with a sensitivity
smaller than anticipated [19,20]. These results led the B Factories to pursue alternative av-
enues to measure the angle α by performing a time-dependent CP violation measurement in
B0→ ρρ and B0→ ρ0(→ π+π−)π0 decays [21–26]. It is interesting to note that nowadays
the most stringent constraints to the determination of α come from the measurements of
the B0 → ρρ decays, as shown in Figure 3, which were not considered at the beginning
of the B Factories program. It was at the time thought that the B0 → ρρ were theoreti-
cally challenging due to the need of performing three isospin analyses for longitudinal
and transverse polarizations of the ρ mesons. In reality, the longitudinal polarization
dominates the decay [21,22,27]. Together with the relatively small branching ratio of the
penguin-dominated B0→ ρ0ρ0 decay, the B0→ ρ+ρ− decays provide a theoretically clean
determination of the angle α.

The last angle of the unitarity triangle, γ, can be measured through the study of
B → DX decays, in which the interference between the b → c and the b → u transitions
gives access to γ ≡ arg

[
−VudV∗

ub/VcdV∗
cb
]
. Since it is measured through the study of

tree-level decays, it has a very small irreducible theoretical uncertainty δγ/γ ≤ 10−7 [28],
which also makes it a promising ground for searches of physics beyond the SM effects. The
experimental uncertainty on γ saw a significant reduction in recent years thanks to the
efforts of the LHCb collaboration. Typically, measurements of γ are made by studying the
B± →

( )

DK± decays. They proceed through the b → cus and b → ucs transitions, whose
ratio is rBei(δB±γ), where rB is the absolute ratio of the two amplitudes and δB is the strong
phase difference between the two amplitudes. This ratio can be measured experimentally
by studying the rate of B+ mesons

Γ(B±→
( )

D [→ f ]K±) =
∣∣∣rDe−iδD + rBei(δB±γ)

∣∣∣2
= r2

D + r2
B + 2κrDrB cos(δD − δB ± γ), (12)
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where no CP violation is assumed in the D meson decays; therefore, the only nuisance
parameters are the absolute ratio (rD) and the strong phase difference (δD) between the
D→ f and the D→ f̄ decays. To account for the dilution of the interference in multibody
B and D decays, the “coherence factor” κ is present in the formula, being 1 for two-body
decays and κ < 1 for multibody decays. Since the measurement of γ reduces to the
measurement of the decay rates of charged-conjugate decays, it is important to have a
good control of the systematic uncertainties, especially the charged-particles detection
asymmetries.

Figure 3. Constraints on the angle α from the measurements of CP violation in B0 → ππ, B0 → (ρπ)0,
and B0 → ρρ decays [16].

The simplest topology for the measurement of γ is the B±→ D0K± decay, where the
D0 meson is reconstructed in two-body final states. Two methods are used to measure γ
in these decays: the GLW method [29] and the ADS method [30]. In the former method,
D0→ π+π−, K+K− decays are used, offering rhh

D = 1 and δhh
D = 0, while in the latter, D0→

K+π−, K−π+ decays are used, which have rKπ
D = 0.06, and make best use of the similarity

of rKπ
D and rD0K

B (rD0K
B ≈ c f |VcsV∗

ub/VusV∗
cb| ≈ 0.1, where c f ≈ 0.3 is a color suppression

factor), giving large interference effects and high sensitivity to the phase information.
Another class of measurements involves multibody D0 decays, such as D0→ K0

Sπ+π−,
D0→ K0

SK+K−, and D0→ K0
Sπ+π−π0 decays. The technique used in this case is commonly

referred to as GGSZ [31], and takes advantage of the resonant structure of the D0 decay
to acquire sensitivity to γ. As shown before, the strong phase difference between the D0

and D0 decays to the same final state is an important ingredient to the sensitivity on γ.
By studying multibody D0 decays, one gets access to regions in which the strong phase
difference is large, therefore enhancing the sensitivity. The price to pay is the need of a
model to describe the resonant structure of the D0 decays, which introduces a theoretical
uncertainty in the measurement. Alternatively, external input is needed to constrain the
strong phase difference in the regions of the Dalitz plot. This model-independent approach
is becoming more and more popular, thanks to the synergy between the LHCb and the
BESIII experiments. The large sample of quantum-correlated D0–D0 pairs produced at the
e+e− colliders allows to measure the strong phase difference in the D0 decays, and detailed
measurements across the Dalitz plot of various D0 decays are performed [32].

Finally, the angle γ can also be measured through the study of B0→ D(∗)∓π± decays.
In the SM, these decays proceed through the b → cud and b → ucd transitions, and the
interference between the two amplitudes gives access to the angle γ. The same final states
can also be reached after B0–B0 mixing though, and the asymmetry between the decay
rates gives access to 2β + γ. The measurement of γ in these decays, therefore, relies on the
knowledge of β from the B0→ ccK0

S decays. In this case, a time-dependent measurement of
the CP asymmetries allows to measure the angle γ [33–35]. Mesons initially produced as
B0 decay to the final states f = D(∗)−π+ and f̄ = D(∗)+π− as
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Γ(B0(t) → f ) = e−Γdt
[
1 + C f cos(∆mdt)− S f sin(∆mdt)

]
,

Γ(B0(t) → f̄ ) = e−Γdt
[
1 + C f̄ cos(∆mdt)− S f̄ sin(∆mdt)

]
. (13)

The time evolution of initially produced B0 mesons is the same except for the flipped
sign of the C and S coefficients. These coefficients are related to the theoretical observables
rDπ , δ, β, and γ by the relations

C f =
1 − r2

Dπ

1 + r2
Dπ

= −C f̄ ,

S f = −2rDπ sin[δ − (2β + γ)]

1 + r2
Dπ

,

S f̄ =
2rDπ sin[δ + (2β + γ)]

1 + r2
Dπ

, (14)

where rDπ is the ratio of the B0 → D(∗)−π+ and B0 → D(∗)+π− decay amplitudes and
δ their strong phase difference. By constraining the values of rDπ and β from external
measurements, the angle γ can be extracted from the measurement of the S coefficients,
since they only differ by a phase 2(2β + γ). Measurements of γ with this approach were
made by the B Factories using B0 → D(∗)∓π± and B0 → D∓ρ± decays [36–39]. The first
measurement of this kind at a hadron collider was made by LHCb using B0 → D∓π±

decays [40].
The LHCb and BaBar experiments have produced a compendium of all their mea-

surements of γ and provided their own averages. Up to 2013, BaBar was the leader in
the measurement of γ [41], with an average of γ = (69+17

−16)
◦. This was outclassed by

the LHCb experiment, whose latest average is γ = (67 ± 4)◦ [42], clearly dominating
the world average of γ = (66.2+3.4

−3.6)
◦ [16]. A summary of the sensitivity to γ from the

various measurements is shown in Figure 4. So far, the average is mostly constrained by
the measurement of γ using B+→ D0K+ decays, with the GGSZ method.

Figure 4. Constraints on the angle γ from the measurements of CP violation using various methods
(left) and decay modes (right) [16].

To summarize the status of CP violation in B0 decays, the combination of all the
measurements of the angles α, β, and γ gives [16]

α = (85.2+4.8
−4.3)

◦,

β = (22.2 ± 0.7)◦,

γ = (66.2+3.4
−3.6)

◦. (15)
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When summing the angles of the unitarity triangle, the sum is [6]

α + β + γ = (173 ± 6)◦, (16)

consistent with the SM expectations.

3.2. CP Violation in B0
s Decays

When discussing the measurement of γ, the possibility was omitted of measuring the
angle by studying B0

s → D±
s K∓ [43] and B0

s → D±
s K∓π+π− [44] decays.

In these decays, the sensitivity to CP violation arises from the interference of
the mixing and decay amplitudes [33–35,45], and the CP-violating parameters are a
function of γ and βs ≡ arg[−(VtsV

∗
tb)/(VcsV∗

cb)], the weak phase of the B0
s –B0

s mixing.
Equations (13) and (14) can be adapted to the B0

s system by replacing the B0 with B0
s , the

D(∗) with D+
s mesons, ∆m with ∆ms, and the angle β with βs.

The weak phase βs is of particular interest since it is a sensitive probe of physics
beyond the SM [46]. It is usually measured as ϕs = −2βs and its value is predicted to
be ϕs = −0.0368+0.0009

−0.0006 [47] using the known values of the CKM matrix elements. The
most sensitive measurement of CP violation in B0

s decays is obtained through the study
of B0

s → ψhh decays (h = π, K). Since their final state particles may exhibit various
polarizations depending on the hh resonances involved (e.g., ϕ(1020), ρ(770)), the decay
amplitudes are studied on the transversity basis, where they are decomposed in terms of
the helicity amplitudes, to disentangle the CP-odd and the CP-even contributions [48–50].

The specific topology of the B0
s → J/ψϕ decay allows to measure ϕs with good precision

at hadron colliders. The J/ψ and ϕ resonances have very small widths, which makes their
identification easier even without a specific particle identification sub-system. Therefore,
many experiments have measured the ϕs parameter using this decay mode [51–55]. The
latest combination of these measurements is shown in Figure 5. As shown in the figure, the
combination of the independent measurements from different experiments is consistent
with the SM prediction.

-0.5 -0.3 -0.1 0.1 0.3
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Figure 5. Constraints on the weak phase ϕs from the measurements of CP violation in B0
s decays from

various experiments [16]. Please note that the latest CMS (preliminary) result [56] is not included in
the combination.

3.3. CP Violation in Λ0
b Decays

Since the Λ0
b baryon is the lightest baryon containing a b quark, it is a good candidate to

study CP violation in the baryon sector. Similar approaches as those developed for charged
B mesons can be used to study CP violation in Λ0

b decays. In particular, the angle α can be
measured by studying charmless Λ0

b decays, and the angle γ with final states involving
charm mesons. Mixing does not happen in baryon decays; therefore, measurements of CP
violation in the interference between decay and mixing (β) are not possible.
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No measurements of CP violation in Λ0
b decays have been made so far, but the LHCb

experiment is aiming at it with many searches on various decay modes. Evidence of CP
violation in the decays of multibody Λ0

b → pπ−π+π−(K+K−) decays was reported by
the LHCb experiment [57], but further data collected in Run2 of the LHC have not led
to observation of the effect [58] yet. The technique used in this analysis searches for CP
violation by measuring triple-product asymmetries [59–61]. In this case, asymmetries of
kinematical distributions are measured separately on particle and anti-particle decays.
These distributions are built to be odd under CP transformation, but may exhibit an
asymmetry due to strong-phase differences. These strong-phase effects are canceled out by
measuring the difference between the asymmetries of the two charged-conjugate states,
which is a direct probe of CP violation.

Another class of measurements of CP violation in Λ0
b decays is the study of the Λ0

b →
pK− and Λ0

b → pπ− decays. These decays follow the same quark-level transitions of
charmless B0 and B0

s two-body decays, in which CP violation is established. Nevertheless,
the LHCb experiment has not yet reported any measurement of CP violation in these decays
with sensitivities as low as 2% [62]. A challenging aspect of this analysis is the effect of the
Λ0

b production asymmetry in the LHC, which is known with comparable precision to the
statistical precision of the CP asymmetry measurement [63].

3.4. CP Violation in Charm Decays

The study of CP violation in charm decays is a challenging task, since the CP violation
effects in the charm sector are expected to be very small in the SM. Nevertheless the charm
sector is unique in the SM, as it is the only up-type quark allowing a thorough study of
flavor-changing neutral currents (FCNC) and searches for physics beyond the SM (top
quarks undergo decay before they change to hadronize [64,65], and the lighter hadrons
built with u and u are their own antiparticle).

Since the quarks involved in the box diagram for D0 mixing are mu, ms, mb ≪ mW , the
process is highly suppressed in the SM. This results in a similar size of the difference of the
mass and width eigenvalues [66].

Direct CP violation in charm decays arises from the interference of the tree-level and
penguin c → uss diagrams, and is expected to be of the order of 10−3 or less [67–69].
Only recently, the LHCb experiment reported the first observation of CP violation in the
decays of D0 mesons [70]. This measurement showed a difference in the CP asymmetries
of D0 → K+K− and D0 → π+π− decays of (−15.4 ± 2.9)× 10−4. Since D0 mesons can
mix into D0 before decaying, and given the size of expected CP violation and mixing,
the experimental asymmetry is a combination of the direct CP violation (adir

CP ( f )) and the
mixing-induced CP violation

ACP( f ) ≈ adir
CP ( f )− ⟨t( f )⟩

τ(D0)
AΓ( f ), (17)

where ⟨t( f )⟩ is the mean decay time of D0→ f decays in the reconstructed sample, τ(D0)
is the lifetime of the D0 meson, and AΓ( f ) is the the asymmetry between the effective D0

and D0 decay widths [71]. In the limit of U-spin symmetry adir
CP (K

+K−) = −adir
CP (π

+π−),
and by assuming AΓ to be the same for the two decays, the difference between the CP
asymmetries in the two decays is

∆ACP ≡ ACP(K+K−)− ACP(π
+π−) ≈ ∆adir

CP − ∆⟨t⟩
τ(D0)

AΓ, (18)

where ∆⟨t⟩ is the difference in the mean decay times of the two decays. The experimen-
tal advantage of measuring the difference in the CP asymmetries is the cancellation of
experimental asymmetries arising from the production and detection of the D0 mesons.
Furthermore, while AΓ is of the same order of magnitude as ∆ACP, the correction fac-
tor ∆⟨t⟩/τ(D0) < 0.1 since the experimental acceptance is typically similar between the
two decay modes. Studies are ongoing to measure CP violation separately for D0→ K+K−
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and D0→ π+π− decays, which involves removal of the nuisance production and detection
asymmetries by means of control samples. The latest result, based on 4.7 fb−1 data collected
by the LHCb experiment [72], reported

adir
CP (K

+K−) = (7.7 ± 5.7)× 10−4,

adir
CP (π

+π−) = (23.2 ± 6.1)× 10−4.

While the quest to measure direct CP violation from a single decay mode is ongoing, it
is not the only challenge in the study of CP violation in charm decays. The mixing-induced
CP violation in the charm sector is expected to be even smaller than the direct CP violation,
and still escapes being measured. In the literature, CP-violating observables in charm
decays are expressed in terms of the mixing parameters x and y, which are defined as

x =
(m1 − m2)

Γ
,

y =
Γ1 − Γ2

Γ
, (19)

where m1,2 and Γ1,2 are the mass and decay width of the two mass eigenstates D1,2, respec-
tively, and Γ is the average decay width. The two mass eigenstates can be written as a linear
combination of the flavor eigenstates

|D1,2⟩ = p|D0⟩ ± q|D0⟩, (20)

with the complex coefficients satisfying the condition |p|2 + |q|2 = 1. In this formalism, CP
violation in mixing can manifest itself as a deviation of |q/p| from unity, while interference
of mixing and decay can give rise to a non-zero phase difference ϕ f ≡ arg(qĀ f /pA f )

between the D0 (A f ) and D0 (Ā f ) decay amplitudes. In the case of decays to the same final
state, ϕ f = ϕ. The time evolution of the decay rates of D0 and D0 mesons can, therefore,
be studied in terms of the mixing parameters x and y measured separately in D0 and D0

decays. For convenience, these parameters are expressed in terms of the CP-averaged
mixing parameters

xCP =
1
2

[
x cos ϕ

(∣∣∣∣ q
p

∣∣∣∣+ ∣∣∣∣ p
q

∣∣∣∣)+ y sin ϕ

(∣∣∣∣ q
p

∣∣∣∣− ∣∣∣∣ p
q

∣∣∣∣)], (21)

yCP =
1
2

[
y cos ϕ

(∣∣∣∣ q
p

∣∣∣∣+ ∣∣∣∣ p
q

∣∣∣∣)− x sin ϕ

(∣∣∣∣ q
p

∣∣∣∣− ∣∣∣∣ p
q

∣∣∣∣)], (22)

and the CP-violating differences

∆x =
1
2

[
x cos ϕ

(∣∣∣∣ q
p

∣∣∣∣− ∣∣∣∣ p
q

∣∣∣∣)+ y sin ϕ

(∣∣∣∣ q
p

∣∣∣∣+ ∣∣∣∣ p
q

∣∣∣∣)], (23)

∆y =
1
2

[
y cos ϕ

(∣∣∣∣ q
p

∣∣∣∣− ∣∣∣∣ p
q

∣∣∣∣)− x sin ϕ

(∣∣∣∣ q
p

∣∣∣∣+ ∣∣∣∣ p
q

∣∣∣∣)]. (24)

In the absence of CP violation (ϕ = 0, |q/p| = 1), the mixing parameters xCP = x and
yCP = y and the CP-violating differences ∆x and ∆y are zero. The latest average of the
mixing and CP violation parameters in the charm sector is [16]

x = (4.07 ± 0.44)× 10−3,

y = (6.45+0.24
−0.23)× 10−3,

|q/p| = 0.994+0.016
−0.015,

ϕ = −2.6+1.1
−1.2,
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and the CP violation parameters are graphically shown in Figure 6. The data are so far
compatible with the absence of CP violation in the charm sector up to 2.1 σ.
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Figure 6. Constraints on the mixing and CP violation parameters in the charm sector [16].

The golden channel to measure mixing-induced CP violation in the charm sector is the
D0→ K0

Sπ+π− decay. It gives access to all the aforementioned observables at once, and has
a relatively large branching ratio. Seminal studies performed at the B Factories were made
through a time-dependent amplitude analysis of the decay [73,74]. Such analyses require
an excellent understanding of the decay amplitude of the D0 meson and especially of the
time-dependent reconstruction efficiency of the experiment. This has not been possible at
LHCb so far, given the limited amount of simulated data available. Therefore, the LHCb
experiment has pursued an alternative method [75] to study D0→ K0

Sπ+π− decays, which
relies on the measurement of the strong phase differences from BESIII [32]. This model-
independent approach avoids the need of a time-dependent amplitude analysis, at the cost
of limited sensitivity to the parameters associated to the width difference (yCP and ∆y). By
applying this technique, the LHCb experiment obtained the first observation of the mixing
parameter x and the most precise determination of CP violation parameters in mixing at
the time [76].

Complementarily to D0→ K0
Sπ+π− decays, there are ways of measuring the difference

in the decay widths of D0 and D0 mesons. By studying the evolution of the ratio of
D0 → K+K−(π+π−) over D0 → K−π+ decays over time, it is possible to measure the
mixing-induced CP violation parameter yCP

Γ̂(D0 → f ) + Γ̂(D0 → f )
Γ̂(D0 → K−π+) + Γ̂(D0 → K+π−)

− 1 = y f
CP − yKπ

CP (25)

The best measurement to date of this parameter is performed by the LHCb experi-
ment [77] and gives

yππ
CP − yKπ

CP = (6.57 ± 0.53 ± 0.16)× 10−3,

yKK
CP − yKπ

CP = (7.08 ± 0.30 ± 0.14)× 10−3,

which is consistent with the world average of y reported above; therefore, no evidence of
CP violation in mixing is found.
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4. Experimental Status of Quark-Mixing Matrix Unitarity

An important aspect of the CKM matrix is that it is unitary, i.e., the sum of the
squares of the elements in each row and column is equal to one. This indicates that there
are only three families of quarks, and the total strength of the charged current couplings
between each up-type (down-type) quark and all down-type (up-type) quarks is universally
consistent. Within the SM, this is a consequence of the universality of non-abelian gauge
couplings [5]. As such, it deserves experimental investigation that is achieved by measuring
the strength of the couplings as the magnitude of the CKM matrix elements. The latest
averages of the experimental measurements of the magnitudes of the CKM matrix elements
are summarized in Table 1.

Table 1. The latest averages of the magnitudes of the CKM elements [6]. Each element is given as
|Vij| with i, j being the row and column indices of the table.

d s b

u 0.97373 ± 0.00031 0.2243 ± 0.0008 (3.82 ± 0.20)× 10−3

c 0.221 ± 0.004 0.975 ± 0.006 (40.8 ± 1.4)× 10−3

t (8.6 ± 0.2)× 10−3 (41.5 ± 0.9)× 10−3 1.014 ± 0.029

A brief description of the most sensitive measurements of the CKM matrix elements is
given below.

The most precise determination of |Vud| comes from the superallowed 0+→ 0+ nuclear
β-decay transitions, which are mediated by the weak interaction. A complete review of the
experimental and theoretical aspects of superallowed β-decays can be found in Ref. [78].

The value of |Vus| is obtained from the study of semileptonic kaon decays of the type
K→ πℓ+ν (ℓ = e, µ), whose amplitude can be expressed as

M = −i
GF√

2
VusLµHµ (26)

where GF is the Fermi constant, Lµ is the leptonic current, and Hµ is the hadronic current:

Lµ = ℓ+γµ(1 − γ5)νℓ, (27)

Hµ = ⟨π(p′)|uγµ(1 − γ5)s|K(p)⟩, (28)

where p and p′ are the momenta of K and π, respectively. Their product leads to an effective
Hamiltonian that can be expressed as

Heff =
GF√

2
Vus
[
uγµs − uγµγ5s

]
ℓ+γµ(1 − γ5)νℓ. (29)

Since K→ πℓ+ν is a pseudoscalar meson transition (K and π have JP = 0−), the axial-
vector component of Hµ is zero due to constraints on the spin of the outgoing u quark. The
vector component of Hµ can be expressed in terms of the form factors f+(q2) and f0(q2) as

⟨π(p′)|uγµs|K(p)⟩ = f+(q2)

(
pµ + p′µ −

m2
K − m2

π

q2 qµ

)
+ f0(q2)

m2
K − m2

π

q2 qµ, (30)

where q = p − p′ is the momentum transfer. Analyses of K→ πℓ+ν decays often assume
a linear dependence of the form factors f+,0(q2) = f+(0)

[
1 + λ+,0(q2/m2

π)
]

[6,79] and the
decay rate can be expressed in terms of |Vus| f+(0). By averaging the results of K0

L→ πeν,
K0

L → πµν, K± → π0ℓ±ν, K± → π0µ±ν, and K0
S → πeν, the Particle Data Group (PDG)

obtained the value of |Vus| f+(0) = 0.21635 ± 0.00038 [6]. For the form factor, the PDG used
the value f+(0) = 0.9698 ± 0.0017 [80], to obtain the value of |Vus| reported in Table 1.
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To complete the first row of the CKM matrix, the value of |Vub| is obtained from the
study of the inclusive and exclusive semileptonic decays of the type b→ uℓ+ν (ℓ = e, µ).
The inclusive determination of |Vub| is based on the measurement of the total rate of
B→ Xuℓ+ν decays, where Xu is a hadronic system that contains a u quark. This measure-
ment is challenging due to the presence of the large background from the B → Xcℓ+ν
decays, where Xc are charm hadrons. The theoretical estimate of this effect is crucial
to extract the value of |Vub| from the data. The B Factories and CLEO made significant
advancements in the inclusive determination of |Vub| by using two different approaches.
Initially they studied the inclusive electron momentum [81–83] to determine a partial decay
rate near the kinematic endpoint. Once the number of BB pairs became large enough, they
also developed a technique based on the full reconstruction of a (tagging) B meson and of
the recoiling B decaying semileptonically [84–86].

Exclusive measurements of |Vub| are possible by studying various decay modes,
B→ πℓ+ν and B → ρℓ+ν [87–91], Λ0

b → pℓ+ν [92], and B0
s → K−ℓ+ν [93]. In the case

of the B decays, the transition is described in terms of the form factors f+(q2) and f0(q2) as
in Equation (30). For the Λ0

b decays, four additional form factors are needed to account for
the polarization of the baryons [94]. Since determining the absolute branching fraction of a
decay at LHCb (and at hadron colliders in general) is quite challenging, measurements of
|Vub/Vcb| are rather made by studying the ratio of branching fractions with respect to the
B0

s → D−
s ℓ+ν (Λ0

b → Λ−
c ℓ

+ν).
The averages of the inclusive and exclusive measurements of |Vub| are [6]:

|Vub|incl = (4.13 ± 0.12(exp)+0.13
−0.14(theo)± 0.18(∆model))× 10−3,

|Vub|excl = (3.70 ± 0.10 ± 0.12)× 10−3.

A tension between the two averages is observed. This is a matter of debate within the
community; nevertheless, the two averages are combined after scaling the uncertainties to
account for the tension [6], giving the result reported in Table 1.

Moving to the second row, |Vcd| can be determined from D → πℓ+ν decays.
Experimental measurements from BaBar [95], BESIII [96,97], CLEO [98], and Belle [99]
have been combined in conjunction with input from lattice QCD calculations (needed
to estimate the form factor f Dπ

+ (0) = 0.612 ± 0.035 [80]) to extract the value of
|Vcd| = 0.2330 ± 0.0029 ± 0.0133, where the first uncertainty is experimental and the
second theoretical from the form factor determination. Alternative ways of deter-
mining |Vcd| are from the study of D+ → µ+ν and D+ → τ+ν decays [100–102], and
neutrino scattering data [103–105], yielding |Vcd| = 0.2181 ± 0.0049 ± 0.0007 [16] and
0.230 ± 0.011 [6], respectively.

The value of |Vcs| is obtained directly from the branching fraction of D+
s → µ+ν

and D+
s → τ+ν decays, using the lattice QCD calculation of the semileptonic D+

s decay
constant [80], giving |Vcs| = 0.984 ± 0.012 [6]. Another approach relies on lattice QCD
calculations of the D→ Kℓ+ν form factors [80] and the experimental measurement of the
branching fraction of D→ Kℓ+ν decays to obtain |Vcs| = 0.972 ± 0.007 [6]. The average of
these two values is reported in Table 1.

The magnitude of |Vcb| is obtained from the study of inclusive and exclusive semilep-
tonic decays of the type B → Xcℓ+ν (ℓ = e, µ). The form factors for the B decays are
calculated with lattice QCD methods by various collaborations [106–111]. Exclusive
determinations make use of the decays of B mesons to the ground states of D and D∗

charm mesons. The most recent analyses of B→ D∗ℓ+ν decays have been performed by
BaBar [112], Belle [113,114], and Belle II [115], and they all study the kinematic distribution
of the decay products in a four-dimensional space to extract the value of |Vcb|. In the
analysis of B → Dℓ+ν decays, only the product of the four momenta of the initial- and
final-state hadrons is studied to extract |Vcb|. BaBar [116] and Belle [117] obtained results
compatible with the B→ D∗ℓ+ν decays.
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Not only B± mesons can be used to determine |Vcb|, but also B0
s , B+

c , and Λ0
b hadrons.

The LHCb collaboration studied B0
s → D(∗)

s ℓ+ν [118] decays, measuring |Vcb| with a preci-
sion comparable to the theoretical uncertainties, even though not competitive yet with the B
measurements from the B Factories. In this perspective, B+

c → τ+ν decays can also be used
to determine the value of |Vcb| with small theoretical uncertainties, but they are difficult to
reconstruct at a hadron collider and they will be studied in a future e+e− facility [119].

The inclusive determination of |Vcb| has been investigated by multiple experiments
through the measurements of moments as a function of either the minimum lepton
momentum [120–128], or the squared lepton invariant mass [129,130].

The averages of the exclusive and inclusive measurements of |Vcb| are [6]:

|Vcb|excl = (42.2 ± 0.5)× 10−3,

|Vcb|incl = (39.8 ± 0.6)× 10−3.

Marginal consistency between the two averages is observed, and the uncertainties are
scaled to account for this before combining the two values [6], resulting in the reported
values in Table 1.

The measurements of the matrix elements involving the t quark is challenging due
to its large mass. Even when boosted to the energies of the LHC, the t quark does not
hadronize or form bound states because its decay length is shorter than the typical scale
of the hadronization process. Therefore, |Vtd| and |Vts| are not likely to be measured in
tree-level decay processes, rather they are determined from B–B mixing processes, where
the t quark is involved in the box diagram (see Appendix A). In particular, the mass
differences between the two mass eigenstates of the B mesons, ∆md and ∆ms, are related
to the |Vtd| and |Vts| matrix elements, respectively, enabling their determination. Many
experiments have measured ∆md, whose average 0.5065 ± 0.0019 ps−1 [6] is dominated
by the latest LHCb measurement using B0 → D(∗)−µ+νµX decays [131]. The average of
the measurements of ∆ms is 17.765 ± 0.006 ps−1 [6], with the most precise measurement
provided by the LHCb collaboration using B0

s → D−
s π+ decays [132].

The value of |Vtb| can be determined either by assuming the unitarity of the CKM
matrix or without making this assumption. In the first case, the ratio of branching frac-
tions R = B(t → Wb)/B(t → Wq) = |Vtb|

2/(∑q |Vtq|2) = |Vtb|
2, where q = b, s, d. This

measurement was made during Run II of the Tevatron by CDF [133] and D0 [134], and by
CMS [135] at LHC obtaining |Vtb| > 0.975 at the 95% confidence level. In the second case,
|Vtb| can be measured from the single top quark production cross-section. Measurements of
this cross-section have been made at Tevatron by CDF and D0 [136], and at LHC by ATLAS
and CMS [137]. The value reported in Table 1 for |Vtb| is the average of this second set of
measurements.

Tests of the unitarity of the CKM matrix are made by verifying the equality to 1 of the
sum of the squared of the matrix elements along each row and column:

|Vud|
2 + |Vus|2 + |Vub|

2 = 0.9985 ± 0.0007,

|Vcd|
2 + |Vcs|2 + |Vcb|

2 = 1.001 ± 0.012,

|Vtd|
2 + |Vts|2 + |Vtb|

2 = 1.03 ± 0.06,

|Vud|
2 + |Vcd|

2 + |Vtd|
2 = 0.9971 ± 0.0019,

|Vus|2 + |Vcs|2 + |Vts|2 = 1.003 ± 0.012,

|Vtb|
2 + |Vcb|

2 + |Vtb|
2 = 1.03 ± 0.06.

All of the unitarity relations are verified within the uncertainties, except the first row
that shows a tension of 2.2 standard deviations. A smaller tension is also observed in the
first column, but it is not statistically significant. In both cases the tension is driven by the
determination of |Vud|, and is generally called the Cabibbo angle anomaly.
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5. The High Intensity Frontier

A tremendous improvement in the precision of the measurements of CP violation in
the B and D meson systems has been achieved in the last decade. Figure 7 shows how
much the constraints on the CKM unitarity triangle have improved since 2012. In particular,
the uncertainty on the angle γ is reduced by more than a factor of 2 with the constraints
from the analysis of LHCb data.

γ

γ

α

α

dm∆

Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)

 < 0βsol. w/ cos 2

e
xc

lu
d
e
d
 a

t C
L
 >

 0
.9

5

α

βγ

ρ

­1.0 ­0.5 0.0 0.5 1.0 1.5 2.0

η

­1.5

­1.0

­0.5

0.0

0.5

1.0

1.5

excluded area has CL > 0.95

Winter 12

CKM
f i t t e r

Figure 7. Plot of the CKM unitarity triangle in the complex plane from the CKMFitter group [4] as
of 2023 (left) and 2012 (right). The labels superimposed on the plots and the corresponding shaded
areas show the various measurements of CP violation and the constraints they pose on the triangle.

The quest for ultimate precision in flavor physics studies is not over yet, and the
high intensity frontier is the next step in this direction. The LHCb experiment is already
running its first upgrade [138] and the Belle II experiment is in the process of taking data
at its design capabilities [139]. The two experiments are expected to provide a significant
improvement in the precision of the measurements of CP violation and the CKM matrix
elements in the B and D meson systems. In particular, the LHCb upgrade should further
reduce the uncertainty on the angle γ down to less than 1◦, measure ϕs with a precision of
less than 20% of the Standard Model, and have sensitivity to evidence of CP violation in
the interference between decay and mixing of D0 decays [140].

Similarly, Belle II should improve the precision on the angles α and β by a factor of
2 [141]. Improved determinations of the CKM matrix elements will provide stringent tests
of the CKM paradigm and will be sensitive to new physics effects at the loop level. Most
importantly, the physics capabilities of the two experiments are complementary: LHCb
excels in high efficiency for charged final states and benefits from larger cross-sections,
while Belle II achieves high efficiency for neutral final states and offers a larger acceptance.
Therefore, the combination of the two experiments will provide a complete picture.

Finally, the LHCb collaboration is proposing a second upgrade of the experiment,
called LHCb Upgrade II [142], which will collect an integrated luminosity of 300 fb−1 to
test the CKM paradigm with unprecedented precision by the end of 2041, when CERN will
stop the LHC operations.

6. Conclusions

Flavor physics is a fundamental part of the Standard Model of particle physics, and
the study of CP violation in the B and D meson systems is a key ingredient to test the CKM
paradigm. In the last two decades CP violation has been established in the B meson system,
and it has been observed recently also in the D meson system by the LHCb experiment.

Despite the tremendous improvement in the precision of the measurements of CP
violation in the B and D meson systems, effects beyond the Standard Model have not been
observed yet. Small inconsistencies in the measurements of CP violation in the B meson
system are present, but they are not statistically significant. The quest for ultimate precision
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in CP violation studies is not over yet, and the high intensity frontier is the next step in this
direction. The next decade will be crucial to test the CKM paradigm with unprecedented
precision, and the LHCb and Belle II experiments are expected to play a key role in this
quest, urging an update to this review. Possibly the last word will be given by the LHCb
Upgrade II that will reach ultimate precision in flavor physics for our generation.
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Appendix A. Tree, Box, and Loop Diagrams

Particle physics processes can be described in terms of Feynman diagrams. The sim-
plest diagrams are the tree-level diagrams, which represent the leading order contributions
to a process. They typically represent the exchange of a gauge boson between two particles,
as shown in Figure A1 (left).

Figure A1. Tree-level (left), box (center), and loop (right) Feynman diagrams for B0
s decays. Courtesy

of University of Zurich (accessed 7 July 2024).

Other than providing a visual representation of the decay, Feynman diagrams offer a
way to calculate the amplitude of the process, since its probability is given by the product
of the probabilities of each decay vertex. In general, the more the vertices, the less likely
the process is to happen.

A box diagram is shown in the middle of Figure A1 and represents the process of
oscillation of a B0

s meson into a B0
s one. The exchange of two W bosons allows the B0

s meson
to change its flavor. There are four vertices in the process and the comma between u, c,
and t quarks indicates that the process can happen through many different ways, whose
probabilities are summed up.

Loop diagrams, shown in Figure A1 (right), are very important in the search for effects
beyond the Standard Model, since new particles could participate to the decay virtually,
meaning that they will not need energy greater or equal to their mass to be produced. This
quantum-mechanical effect gives access to energy scales which are not directly accessible
by the collider.
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