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Abstract We consider directed polymers in random environment in the criti-
cal dimension d = 2, focusing on the intermediate disorder regime when the
model undergoes a phase transition. We prove that, at criticality, the diffu-
sively rescaled random field of partition functions has a unique scaling limit:
a universal process of random measures on R? with logarithmic correlations,
which we call the Critical 2d Stochastic Heat Flow. It is the natural candidate
for the long sought solution of the critical 2d Stochastic Heat Equation with
multiplicative space-time white noise.
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1 Introduction and main results
1.1 Overview

The model of directed polymer in random environment (DPRE) is by now a
fundamental model in statistical physics and probability theory. It is one of
the simplest and yet most challenging models for disordered systems, where
the effect of disorder—which is synonymous with random environment—can
be investigated. Originally introduced by Huse and Henley [59] in the physics
literature to study interfaces of the Ising model with random impurities, over
the years, DPRE has become an object of mathematical interest and lies at the
heart of two areas of intense research in recent years. On the one hand, it is
one of the canonical examples in the Kardar—Parisi—Zhang (KPZ) universality
class of interface growth models, which has witnessed tremendous progress
over the last two decades in spatial dimension d = 1 (see e.g. the surveys
[34,35,73]); on the other hand, it provides a discretisation of the Stochastic
Heat Equation (SHE) and (via the Cole-Hopf transformation) of the Kardar—
Parisi—-Zhang (KPZ) equation, for which a robust solution theory in d = 1
has been developed only recently in the larger context of singular stochastic
partial differential equations (SPDE) [49,53,55,56,64].

Our goal in this paper is to consider DPRE in the critical spatial dimension
d = 2, for which much remains unknown. Our main result shows that, in a
critical window for the disorder strength, the family of partition functions of
DPRE converges to a universal limit, which can be interpreted as the solution
of the (classically ill-defined) 2-dimensional SHE. This is the first example
of a singular SPDE for which a solution has been constructed in the critical
dimension and for critical disorder strength.
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The critical 2d Stochastic Heat Flow 327

In the remainder of the introduction, we first recall the definition of DPRE,
its basic properties, and the works leading up to our current result. We then
present our main results and discuss their connections with singular SPDEs
and related research.

1.2 The model

The first ingredient in the definition of DPRE is a simple symmetric random
walk (S = (Sp)n>0, P) on 74, started at Sop = 0. To specify a different starting
time m and position z, we will write P(-|S,, = z). The second ingredient
is the disorder or random environment, encoded by a family of i.i.d. random
variables (o = (@(n, 2)),eN ;ez4, P) with zero mean, unit variance and some
finite exponential moments:

Elw] =0, Elo’]=1,
3Bo >0 suchthat A(B) := logE[eﬁw] <oo VB e]0, Bol.
(1.1)
Given N € N, > 0, and a realization of w, the polymer measure of length

N € N and disorder strength (inverse temperature) 8 in the random environ-
ment w is given by

1
Z8°@)

N—1
dPR “(S| Sy =2) = ezt PoSOHEN 4p(S | Sy = 2),  (1.2)

where

N-1
Zf/w(z) = E[ezn—l {Bo(n,Sx)—(B)}

So = zi| (1.3)

is the partition function. Note that A(f) in the exponent ensures that
E[Z5 “(2)] = 1.

In the mathematical literature, DPRE was first studied by Imbrie and Spencer
[60]. There have been many results since then, although many fundamental
questions remain open. We briefly recall what is known and refer to the recent
monograph by Comets [30] for more details and references.

DPRE exhibits a phase transition between a weak disorder phase and a
strong disorder phase. Using the martingale structure of the partition functions
(Z]’f,’ “(0)) yen, first identified by Bolthausen in [6], DPRE is said to be in the
weak disorder (or strong disorder) phase if the martingale converges almost
surely to a positive limit (or to 0). It was later shown in [33] that there is a
critical value 8. > 0 such that strong disorder holds for 8 > B, and weak
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328 F. Caravenna et al.

disorder holds for 0 < 8 < B., where B, € (0, 00) for d > 3 [6,60], and
Be =0ford =1, 2[22,32] (see also [10,65,72]).

In the weak disorder phase, a series of works culminating in [33] showed that
the random walk under the polymer measure converges to a Brownian motion
under diffusive scaling of space and time, as if the disorder is not present. In the
strong disorder phase, it is believed that under the polymer measure, the path
should be super-diffusive, but this has only been proved for special integrable
models in dimension d = 1, see [36,61]. Even less is known in d > 2 due to
the lack of integrable models within the same universality class. We mention
that the strong disorder phase can alternatively be characterised by the fact that
two polymer paths sampled independently in the same random environment
have positive overlap, see [22,32,77] and the more recent results [5,8,9,24].

1.3 Thecased =2

Henceforth, we will focus on dimension d = 2. Surprisingly, even though
Bc = 0, there is still a weak to strong disorder transition, which was identified
in [17]. More precisely, if we choose 8 = By = B/+/log N, which is called an
intermediate disorder regime, then it was shown in [17] that below the critical
point Bc = /7, the partition function Zﬁ,” *“(0) converges in distribution to a
log-normal random variable, which is strictly positive, while at and above Bc,
it converges to O (such a transition does not occur in d = 1). This raises many
interesting questions about the 2-dimensional DPRE.

There are two main perspectives in the study of the partition functions of
DPRE. One is to investigate the fluctuation of a single log-partition function
log Zf,’w(O) as N — oo. Ind = 1, this is conjectured to converge, under
suitable rescaling, to the universal Tracy—Widom distribution whenever g > 0.
Similar universal fluctuations are expected to arise in d > 2 when 8 > S,
although only numerical results are available so far [57,58]. Ind = 2 and in the
intermediate disorder regime By = B/+/Iog N with a sub-critical interaction
strength ,3 < ,B}, [17] showed thatlog Z Z “(0) converges to a universal normal
limit independent of the law of w. The super-critical case > /SAC remains a
difficult challenge.

Another perspective, which we take in this paper, is to study the diffusively
rescaled field of partition functions indexed by all starting points in space-time:

(Un(t,x) = ZR (VND), g g (14)

as well as the diffusively rescaled field of log-partition functions:
(Hw (. x) =10g Z§Y *(VNX)), g emo- (1.5)
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The fields Uy and H provide natural discretizations of the solutions of the
two-dimensional Stochastic Heat Equation (SHE) and Kardar—Parisi—Zhang
equation (KPZ) respectively:

1 .

8tu:§Au—|—ﬁWu, (1.6)
1 1 .

ath=§Ah+§|Vh|2+,3W, (1.7)

where W = W(t, x) denotes space-time white noise. These stochastic PDEs
are singular and ill-posed: even the recent breakthrough solution theories of
regularity structures [55,56] and paracontrolled distributions [53,54] only
apply in d = 1 but not in the critical dimension d = 2. Therefore, if Uy
and Hy admit non-trivial limits, then these limits are natural candidates for
the long-sought solutions of SHE and KPZ ind = 2.

The study of the random field Z/IN was initiated in [17], which showed that
in the subcritical regime ,8 < ﬂc, the centered and rescaled random field
Jlog N (Z/{N (t,x) — 1) converges to the solution of the so-called Edwards—
Wilkinson equation, which is a Gaussian free field at each time ¢. The study
of the random field Hy was first carried out in [25]," which showed that
VIog N(Hn(t, x) — E[Hn(t, x)]) is tight in N as a family of distribution-
valued random variables for ,é sufficiently small; shortly after, [20] proved
convergence to the solution of the same Edwards—Wilkinson equation as for
Uy for all B < ﬁc (simultaneously, the same result was proved in [50] for B
sufficiently small).

In the much more interesting and delicate critical regime B = Ppo—thereisin
fact a critical window of width O(1/log N) around Be, see (1.11) below—the
random field U (¢, x) no longer needs any centering and rescaling. Its limiting
correlation structure was first identified in [ 7] through a different regularisation
of the 2d SHE (1.6) (mollifying the noise W instead of discretizing space and
time). In [19], the third moment of the averaged random field Uy (¢, ¢) =
f UN(t, x) p(x) dx, for test functions ¢, was computed and shown to converge
to a finite limit as N — oo, which implies that all subsequential limits of Uy
have the same correlation structure identified in [7] (tightness is trivial since
E[Un] = 1). Subsequently, [51] identified the limit of all moments of Uy (¢, ¢)
(see also the more recent work [26]). However, the uniqueness of the limit of
Uy remained elusive and challenging, because the limiting moments identified
in [51] and [26] grow too fast to uniquely determine the law of the random
field.

1 More precisely, [25] and [50] both study the analogue of Hy defined by mollifying the
noise W in (1.7) instead of discretizing space and time, while [17] considered both types of
regularizations.
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330 F. Caravenna et al.

Our main result settles this question and shows that, in the critical window
around B = B, the random field Uy indeed converges to a unique universal
limit, which naturally provides a notion of solution of the 2d SHE (1.6) for
disorder strength 8 in the critical window. Therefore, we name it the Critical
2d Stochastic Heat Flow.

1.4 Main results

To formulate our main results, we generalize the partition functions in (1.3)
by introducing a point-to-point version, where both the starting and ending
positions of the random walk are fixed: for M < N € Ng ={0, 1,2, ...} and
w, z € 72 we set

Zh 4w, 2) == E|:ezn S oSy B g ‘SM = w:| (1.8)

with the convention ZIIL_A},H{. ..}:=0forN <M+ 1.
To deal with parity issues, for x € R? we denote by [x]] the closest point

z € waen = {(z1,22) € Z* : 71 + z2 even}; for s € R we define the even
approximation [[s]] := 2 |s/2] € Zeven := 27Z. We then introduce the process

of diffusively rescaled partition functions:>

N gy
2 = (z@”s,(dx 4y) = 7 ZiNa v VN2 IV YD) de dy)

0<s<t<o0

(1.9)

where dx dy denotes the Lebesgue measure on R? x R?, and By will be defined
shortly.

B
We regard Z\"

equip the space of locally finite measures on R? x R? with the topology of
vague convergence:

N /«z»(x,y)mdx,dywf¢<x,ym<dx,dy>

V¢ € C.(R? x R?).

(dx, dy) as a random measure on R2 x RZ, where we

Our main result proves weak convergence of the law of Zﬁ, as N — oo, when
B = B is rescaled in a suitable critical window, that we define next. Let us
introduce the sequence

2 Note that E[Zh (. 2)] = P(Sy = 2| Sy = w) = O(xkyy) = O(J) for M/N < ¢ <

1, by the local limit theorem, which explains the prefactor N in (1.9). The extra factor % is due
to periodicity.
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N ) N N 1 /2n\)? log N
Ry =) ) PS5 =2 :X_;P(&":O):Z{W<n>} R

n=1 772 =1

(1.10)

which is the expected overlap (number of collisions) between two independent
simple symmetric random walks starting from the origin in Z? up to time N.
Recalling that A(-) is the disorder log-moment generating function, see (1.1),
the critical window for 8 = By is

2PN =20(BN) 1 — L 1+ 19+—0(1) , for some fixed ¥ € R.
Ry log N

(1.11)

Since A(B) ~ %ﬁz as B | 0, see (1.1), we have By ~ Bc/./logN with
,BAC = /7 irrespective of the parameter 1, which contributes to the second
order asymptotics, see (3.12).

We can now state our main result, which will be proved in Sect. 9.

Theorem 1.1 (Critical 2d Stochastic Heat Flow) Fix By in the critical win-
dow (1.11), for some ¥ € R. As N — oo, the family of random measures
Zg” = (Z’:;\;’S’t(dx, dy))o<s<r<oo defined in (1.9) converges in finite dimen-
sional distributions to a unique limit

F? _ (Q’;fi(dx, dy))o<s<r<oos

which we call the Critical 2d Stochastic Heat Flow. This limit %7 is universal,

inthat it does not depend on the law of the disorder w except for the assumptions
in (1.1).

We can infer directly from its construction some basic properties of the
Critical 2d Stochastic Heat Flow, which we collect in the next result, also
proved in Sect. 9.

Theorem 1.2 The Critical 2d Stochastic Heat Flow %7 is ( space-time) trans-
lation invariant in law:

;
= (22 (dx, dy))ogs<r<os

va > 0, Vb € R?,

(2 asva(d(x +b), d(y + b)))o<s<r<oo

and it satisfies the following scaling relation:

dist T+
(22, 2[d(vVax), dVay))ogscieco = @2, *3(dx, dy)ogs<reno ¥a > 0.

(1.12)
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The first and second moments of 27 are given by

E[Z,(dx, dy)] = § 81—y —x)dxdy,

Cov[Z),(dx,dy), Z7,(dx’, dy")] = 3 K (x,x"; y,y) dx dy dx'dy,
(1.13)

where g denotes the heat kernel in R2, see (3.20), and K Y isan explicit kernel,
see (3.50).

Remark 1.3 The covariance kernel K ;9_ ((x, X'y, y") was first identified in [7]
(see also [19]) and is logarithmically divergent near the diagonals x = x’ or
y=y"

We now briefly explain the proof strategy. As noted before, the moments
of 27 identified in [51] and [26] grow too fast to uniquely characterize the
law of 2°”. The bounds given in these works suggest that the n-th moment
is at most of order exp(exp(nz)), while our recent work [21] gives a lower
bound of exp(cn?). Physical arguments on the Delta-Bose gas [74] suggest
that the growth should be exp(exp(n)). It may thus be surprising that we are
still able to prove Theorem 1.1 and show that the limit is unique, without
criteria to uniquely identify the limit. Another prominent result of this nature,
which gave us inspiration, is the work of Kozma [63] on the convergence of the
three—cglimensional loop erased random walk with dyadic scaling of the lattice
27N73.

The basic strategy is to show that the laws of (Zﬁ,’v )neN form a Cauchy
sequence, i.e.

Z%N and Z/;,IM are close in distribution for large N, M € N.  (1.14)

To accomplish this, we first construct a coarse-grained model %(Cg)(- |®),
for each ¢ € (0, 1), which is a function of a family ® of coarse-grained
disorder variables. We then perform a coarse-graining approximation of the

partition function on the time-space scale (¢ N, /¢ N), which shows that Zfi,’v

can be approximated by the coarse-grained model %(Cg)( -|®) for a specific
choice of coarse-grained disorder ® = ®y  that depends on N and ¢, with an
approximation error which is small for small ¢ and large N (shown via second
moment bounds). As a consequence, we finally prove (1.14) by showing that
the coarse-grained models D@’;(cg)(- |©) with ® = Oy . and ©® = Oy, are
close in distribution, for small ¢ > 0 and large N, M € N (shown via a
Lindeberg principle).

We give a more detailed proof outline in Sect. 2. Let us just highlight here
the key proof ingredients:
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A. Coarse-Graining, which leads to a coarse-grained model with the same
structure as the original model, demonstrating a degree of self-similarity;

B. Time-Space Renewal Structure, which sheds probabilistic light on second
moment computations and leads in the continuum limit to the so-called
Dickman subordinator;

C. Lindeberg Principle for multilinear polynomials of dependent random vari-
ables, which controls the effect of changing ® in the coarse-grained model
29 (-10);

D. Functional Inequalities for Green’s Functions of multiple random walks
on Z?, which yield sharp higher moment bounds for the coarse-grained
model.

This framework is robust enough that it can also be used to show convergence
of other approximations of SHE (1.6) to the Critical 2d Stochastic Heat Flow.

Remark 1.4 (Mollified SHE) The same proof steps A, B, C, D can be carried
out for the solution u; of the mollified SHE (1.6), where the space-time white
noise W is mollified spatially on the scale § and 8 = Bs is chosen in the
corresponding critical window, that is ﬂg = lig 5+ l(s‘lz)rgog)lz) (cf. (3.12)). A key
point is that coarse-graining us on the mesoscopic scale leads to exactly the

same coarse-grained model Q@(Cg)(- |®) constructed in this paper, just with
a different family of coarse-grained disorder variables ® = ®; .. This means
that the solution u; of the mollified SHE would converge as § | 0 to the same
universal limit 2 in Theorem 1.1. We will not carry out the details here since
the paper is long enough.

We remark that Clark has proved in [28] an analogue of Theorem 1.1
for DPRE on the hierarchical diamond lattice, which is particularly useful
for renormalization analysis and can mimic Euclidean lattices of different
dimensions as the lattice parameters vary. Furthermore, in [27,29], he also
constructed the continuum polymer measures and studied their properties.
This raises interesting questions as to whether similar results can be proved
for DPRE on the Euclidean lattice, where exact renormalization analysis is no
longer available. We point out that our work developed in parallel to that of
Clark, and our proof strategies share some common features, such as coarse-
graining and controlling distributional distances via a Lindeberg principle in
our case vs. Stein’s method in [28], and showing that the laws of the partition
functions form a Cauchy sequence.

Now that we have proved the existence of a unique limit 2°” —the Critical
2d Stochstic Heat Flow—the next challenge will be to investigate its properties
and characterize its law.

Remark 1.5 (Alternative scaling) The simple random walk on Z? is 2-periodic
. 1 . .
and each component has variance 5. As a consequence, the diffusively rescaled
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partition functions Uy (¢, x) in (1.4) provide a discretization of a slightly mod-
ified SHE (1.6), namely

1 .
ata=zmz+f2ﬂwa

(see [21, Appendix A.3] for more details). The SHE with the usual parameters
in (1.6) can be recovered via the change of variable Uy (¢, iz). Therefore to

describe a candidate solution of (1.6), we should consider the rescaled Critical
2d Stochastic Heat Flow given by (recall (1.12))

~ d log2
Z7 = (%i(d%’d%))0§s<t<oo = (2 %2,;;% (dX,d)’))ogsgmoo’

which is also normalized to have mean 1 rather than % (see (1.13)).

1.5 Related literature

We next discuss the connection between our work and various results in the
literature and point out some future directions of research.

1.5.1 Singular SPDEs

As explained in Sect. 1.3, the scaling limit 2” in Theorem 1.1 can be inter-
preted as the solution of the 2-dimensional SHE (1.6) in the critical window.
For SHE, dimension d = 2 marks the critical dimension in the language of
singular SPDEs and renormalisation group theory. To define a solution for
singular SPDEs, such as SHE and KPZ in (1.6)—(1.7), a standard approach
is to mollify the space-time noise W in space on the scale of ¢, and then try
to identify a scaling limit as ¢ | 0. Discretizing space-time by considering a
lattice model, such as the DPRE that we study in this paper, is just another way
of removing the singularity on small scales (also known as ultraviolet cutoff).

All existing solution theories for singular SPDEs, including regularity struc-
tures [55,56], paracontrolled distributions [53,54], the renormalization group
approach [64], or energy solutions [49], do not apply at the critical dimension.
The only singular SPDEs for which progress has been made in defining its
solution at the critical dimension are SHE and KPZ (via the Cole-Hopf trans-
form). The phase transition identified in [17] was unexpected, and to the best
of our knowledge no such transition has been established for other singular
SPDEs in the critical dimension. Theorem 1.1 is thus the first result to define a
solution for a singular SPDE at the critical dimension and for critical disorder
strength.
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In dimension d = 2, recently there has also been significant progress in
understanding the solution of the anisotropic version of the KPZ equation
(aKPZ), which differs from (1.7) in that [Vv|? = (3,,v)? + (,v)? therein is
replaced by (9y, v)? — (BX2U)2. This case is also beyond the reach of existing
solution theories, and unlike the isotropic KPZ, it cannot be linearized via the
Cole-Hopf transformation. Cannizzaro, Erhard, and Schénbauer [11] regular-
ized the aKPZ via a cutoff in Fourier space, instead of discretizing space and
time or mollifying the noise on the spatial scale ¢ (all are ultraviolet cutoffs).
They showed that if the non-linear term (9y, v)? — (amv)2 is rescaled by a
factor A/+/| log €], then the solution of the regularized aKPZ is tight with non-
trivial limit points, which is the anisotropic analogue of [25]. Very recently,
Cannizzaro, Erhard, and Toninelli [14] succeeded in proving that the limit is
in fact Gaussian and solves the Edwards—Wilkinson equation, which is the
anisotropic analogue of [20,50]. In contrast to the isotropic case (1.7), there
is no phase transition in A for the aKPZ. The same authors also studied the
aKPZ without scaling the non-linearity, and in a surprising result [12,13], they
showed that the solution exhibits logarithmic superdiffusive behaviour.

In the supercitical dimensions d > 3, the transition between the weak and
strong disorder phases for the directed polymer is long known [30] and has a
natural counterpart for SHE and KPZ. In recent years, there have been many
studies on the solutions of SHE and KPZ via mollification, namely, analogues
of the random fields /y and H y defined in (1.4)—(1.5). These studies are all
in the weak disorder regime and are analgous to results in d = 2, see e.g.
[31,37,38,41,52,68,69,71].

1.5.2 Coarse-graining

The first step in our approach is to construct a coarse-grained model. Coarse-
graining has a long history in statistical mechanics and renormalisation theory.
In the framework of directed polymer models, coarse-graining has played a
crucial role in the studies by Lacoin [65] and Berger-Lacoin [10] on free
energy asymptotics, which extended previous works in the literature of pinning
models, see [47], from which we single out the fundamental work of Giacomin—
Lacoin—Toninelli [48].

In our analysis, we need a family of coarse-grained models which provide
a sharp approximation of the partition function at the critical point, while the
works mentioned above used coarse-grained models to provide upper bounds
away from the critical point. The need for a sharper approximation creates
several challenges, which lead to the refined estimates in Sects. 5 and 8 and
the development of the enhanced Lindeberg principle in Appendix A.
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1.5.3 DPRE on hierarchical lattices

In a series of papers [27-29], Clark successfully treated the directed poly-
mer model on hierarchical diamond lattices at the “critical dimension” and
in the critical window of disorder strength, which contains an analogue of
Theorem 1.1 and more. Due to their tree-like structure, hierarchical lattices
are especially convenient for performing exact renormalization group calcula-
tions that are typically intractable on the Euclidean lattice. By tuning suitable
parameters (such as the number of branches and the number of segments along
each branch), hierarchical lattices can mimic Euclidean lattices with different
spatial dimensions. When the branch number equals the segment number, hier-
archical lattices mimic Z?. For DPRE on these lattices, Clark was able to prove
in [28] the analogue of Theorem 1.1.

Exploiting the structure of hierarchical lattices, in [29], Clark was able to
use the limiting partition functions obtained in [28] to construct a continuum
version of the polymer measure and study its properties. Furthermore, in [27],
he identified an interesting conditional Gaussian Multiplicative Chaos (GMC)
structure among the continuum polymer measures with different parameter ¢
(similar to ¥ in Theorem 1.1). These results raise interesting questions as to
whether similar results can be obtained for DPRE on the Euclidean lattice. In
this respect, Theorem 1.1 provides the starting point.

1.5.4 Continuum polymer measure

A continuum version of the DPRE polymer measure in dimension d = 1
was constructed in [1,2], exploiting the continuum limit of the point-to-point
partition functions. The same approach was applied in [15] to pinning models
with tail exponent o € (%, 1). An essential feature of these constructions, as
well as the one by Clark [29] in the hierarchical setting in the critical regime,
is that the continuum partition functions are random functions of the polymer
endpoints. The same holds for DPRE in dimension d = 2 in the subcritical
regime By ~ B//Tog N, with B < B. = /7, where it was recently shown in
[44] that the discrete polymer measure, diffusively rescaled, converges to the
law of Brownian motion.

The situation for DPRE in dimension d = 2 in the critical window is
radically different, because the continuum partition functions Z? ((dx, dy)
given in Theorem 1.1 are only random measures and undefined pointwise.
The point-to-plane partition function Z ﬁ,’v *“ defined in (1.3) in fact converges
to 0 as N — 00, as shown in [17]. For this reason, constructing a continuum
version of the polymer measure—or studying the scaling properties of the
discrete polymer measure—started from a fixed point, remains a significant
challenge. However, if we consider discrete polymer measures with the starting
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point chosen uniformly from a ball on the diffusive scale, then the same proof
strategy as that for Theorem 1.1 should be applicable to show that the measures
converge to a continuum polymer measure starting from a ball, whose finite
dimensional distributions are uniquely determined.

1.5.5 Schrodinger operators with point interactions

When the disorder w is standard normal, a direct calculation shows that for k
N, the k-th moment of the polymer partition function in (1.3) is the exponential
moment (with parameter 82) of the total pairwise collision local time up to
time N among k independent random walks on Z>. When k = 2, by a classic
result of Erdos and Taylor [42] (see also [46]), the collision local time rescaled
by 1/log N converges to an exponential random variable with parameter 7.
In the critical window we consider here, we have By = B.//Iog N with
,BAC = /7, and hence the parameter of the exponential moment matches exactly
the parameter of the limiting exponential random variable, making the moment
analysis particularly delicate.

Viathe Feynman—Kac formula, it can also be seen that the k-th moment of the
partition function is the solution of a discrete space-time parabolic Schrodinger
equation with a potential supported on the diagonal (point interaction). In the
continuum setting, there have been a number of studies on the Schrodinger
operator with point interactions (also called Delta-Bose gas) in dimension
d = 2 [3,4,39,40]. Using ideas from these studies, especially the works of
Dell’ Antonio—Figari—Teta [39] and of Dimock—Rajeev [40], Gu, Quastel, and
Tsai [51] were able to compute asymptotically all moments of the averaged
solution of the mollified SHE, which are analogues of the averaged polymer
partition functions Z5Y (9. ) = [[ ) ¥ (y) 2k, (dx.dy) in (1.9),
with ¢ and ¢ assumed to be in L2 in [51]. Previously, only the third moment had
been obtained in [19]. When ¢ is a delta function, the moments of Zﬁ,N y (o, V)
diverge as N — oo, and the asymptotics of the third moment has been inves-
tigated in [43]. But all mixed moments of the form E[ I, Z’;,N 5. (@i w,-)]
converge if ¢; are chosen to be distinct é functions, which was shown recently
by Chen in [26].

As an input to the Lindeberg principle mentioned in the proof sketch for
Theorem 1.1, we need to bound the fourth moment of the coarse-grained
model, which approximates the original partition function. The results from
the Schrodinger operator literature and [51] are not applicable in our set-
ting, because they rely on explicit Fourier calculations. We therefore develop
an alternative and more robust approach based on functional inequalities for
Green’s function of multiple random walks on 72, see Lemma 6.8. Instead of
working with ¢, ¥ € L? asin [51], we can work with weighted LP—L spaces
with % + %] = 1. The choice of a weight allows us to consider a wider class
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of boundary conditions, such as ¥ = 1 and ¢ an approximate delta function,
and also to control spatial decay when the support of ¢ and i are far apart, all
of which are needed in our proof. See Sect. 6 for more details.

1.5.6 Lindeberg principle

A Lindeberg principle is said to hold when the law of a function ® of a
family of random variables does not change much if the family of random
variables is switched to another family with some matching moments. Lin-
deberg principles have been very powerful tools in proving universality. The
usual formulation such as in [23] requires the family of random variables to
be independent (or exchangeable), and ® needs to have bounded first three
derivatives. This is not satisfied when @ is a multilinear polynomial, whose
derivatives are unbounded. This case was addressed in [70,76] when the argu-
ments are independent random variables (see also [16]).

In the proof of Theorem 1.1, we need to deal with a multilinear polynomial of
dependent random variables with a local form of dependence. We formulate
an extension of the Lindeberg principle to this setting in Appendix A. Our
calculations are inspired by a work of Réllin on Stein’s method [75], which is
an analogue of [23] for a function ® (with bounded first three derivatives) of
dependent random variables.

1.6 Structure of the paper

The rest of the paper is organized as follows.

e In Sect. 2, we give a detailed proof outline.

e In Sect. 3, we introduce some basic notation and tools that we need for
the rest of the paper, which includes in particular the polynomial chaos
expansion and second moment asymptotics for the partition function.

e In Sect. 4, we define the coarse-grained model %“g)( -|®) and the coarse-
grained disorder ® = ®y .. Then in Sect. 5, we show that %(Cg) (- 1ON.e)
provides a good L? approximation for the diffusively rescaled partition
functions Zy in (1.9).

e In Sects. 6, 7 and 8, we derive key moment bounds for Zy, ®y . and
Z V(- 10).

e In Sect. 9, we wrap up the proof of our main results: Theorems 1.1 and 1.2.

e In Appendix A, we formulate an enhanced Lindeberg principle for multi-
linear polynomials of dependent random variables.
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Notation

We denote by Cp,(R?), resp. C.(R?), the space of bounded, resp. compactly
supported functions ¢ : RY — R. The usual L” norms will be denoted by
llell, for functions ¢ : R? — R and by || X||z» for random variables X. For
notational simplicity, we will use ¢, C, C’, C” to denote generic constants,
whose values may change from place to place.

2 Proof outline

We elaborate in more detail our proof strategy for Theorem 1.1, especially
the coarse-graining procedure. After reading the proof strategy, to see how the
pieces fit together more precisely, we encourage the reader to go directly to
Sect. 9.1 to read the proof of Theorems 1.1 and 1.2. The proof is contingent
on some earlier results, such as Theorems 4.7 and 8.1, but otherwise is mostly
self-contained.

Recalling (1.9), we just consider a single averaged partition function

2y =20 = [ 9 V) 2, ),

X

for some ¢ € C.(R?), ¥ € Cp(R?), and By = Bwn(¥) chosen as in (1.11)
for some fixed ¥ € R. To prove that Zx converges in distribution to a limit
as claimed in Theorem 1.1, we will show that the laws of (Zx)yecn form a
Cauchy sequence.

The starting point of our analysis is a polynomial chaos expansion for Zy,
which will be recalled in more detail in Sect. 3.3. In short, by introducing the
i.1.d. random variables

En(n, z) 1= ePVODTAEN) 1 (n,7) € N x 72,

which have mean 0 and variance a/%, as in (1.11), we can expand Zy as a

multilinear polynomial in the £y’s as follows:

o0

1
Zv=qone )+ ) D dom (@) En(z)

r=l zy,..,z,€7?
O<ni<...<n <N (2.1)
X {

r
anjfl,l’lj(zj—19 Z‘])éN(njv Zj)}%i\:,N(Zr, w)a

j=2
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where g, (x, y) := P(S, = y|Sm = x) is the random walk transition kernel,
and q,ﬁi\”n((p, 21), q,if,n(zr, V), q,l,\[,n(w, ¥) are the averages of gy, , (x, y) w.r.t.
o(x/~/'N), ¥ (y/~/N), or both (see (3.16)—(3.18)).

Each term in the sum in (2.1) contains a sequence of disorder variables
(én(nj, zj))1<j<r linked by random walk transition kernels, and different
terms in the sum are L2-orthogonal. We will see that when it comes to sec-
ond moment calculations, the sequence of points (n1, z1), ..., (n,, z;) can be
interpreted as a time-space renewal configuration.

Before explaining our proof strategy and ingredients, we first give a heuris-
tic calculation that already shows universality, namely that as N — oo, the
limiting law of Zy in (2.1) (if a unique limit exists) does not depend on the
law of the i.i.d. random variables &y (-, -) provided the first two moments are
unchanged. The heuristic is based on a Lindeberg principle, which will help
to illustrate some key ideas in our proof.

A heuristic calculation

Let us write Zy (§y) to emphasise the dependence on the i.i.d. family Ex (-, -),
and let Zy (ny) be defined similarly with &y replaced by an i.i.d. family ny
with matching first two moments and finite third moment. To show that Zx (§x)
and Zy (ny) are close in law, it suffices to show that for any f : R — R with
bounded first three derivatives,

Jm | f(ZnEn) = f(En )] = 0. 2.2)

This difference can be bounded by a Lindeberg principle. In particular, we can
apply Theorem A.4 to the case of i.i.d. random variables (the sums in (A.9)-
(A.10) will only contain indices k = [ = m due to the i.i.d. assumption) to get
the bound

1
I (ENEN) = FENONI < CI oo Y / E[|3(,o) 2(EN) P1dt,

1<n<N,zeZ?

(2.3)

where 51(\;) = /tEy + /1 —tny interpolates between ny and £y, and

0(n,z)Z2(én) denotes partial derivative w.r.t. £y (n, z). Since Z(§ ,(\;)) is a multi-

linear polynomial in & ,(\;) (-, -), it is easily seen from (2.1) that

1
A0 Z(EV) = ~ 2. (1. ) 2((n. ). ),
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where Z((n, z), ¥) is the point-to-plane partition function starting from the
point (n,z) and terminating at time N with boundary condition i, and
Z(p, (n, z)) is the plane-to-point partition function with initial boundary
condition ¢ and terminating at the point (n, z). Since ¢ has compact sup-
port, only (n, z) on the diffusive scale (n of order N and z € 7?2 of order
V/N) contribute to the sum in (2.3), and there are N2 such terms. This sum
is more than compensated by the factor % from E[|8§N(,17Z)Z(§N)|3] =

%EHZ((p, (n, 2))IPIE[Z((n, 2), ¢)|3], where we used the independence
between Z(¢, (n, z)) and Z((n, z), ¥). To deduce (2.2), it suffices to show that
the moment of the point-to-plane partition function E[|Z((n, z), ¥)|’] < N
as N — oo, which holds by Remark 6.5 below.

This heuristic can be made rigorous using the results we establish in Sect. 6.
But this argument will not show that Zp (§) has a unique limit in law. For that,
we need to define coarse-grained models and compare Zy (§y), for different
N, with the same coarse-grained model. We outline the proof strategy below,
which contains many of the same ideas in the heuristic above, but in a more
complicated setting.

A. Coarse-graining

As a first step, for each ¢ € (0,1), we approximate Zy in L> by a

coarse-grained model %(Cg) (¢, ¥|®nN.¢), which is a multi-linear polynomial

in suitable coarse-grained disorder variables ®y . and depends on N only

through ®y .. The details will be given in Sect. 4. Here we give a sketch.
We partition N x Z? into mesoscopic time-space boxes

Beny(i,a) ;== ((i—1DeN,ieN] x ((a— (1, 1)veN,aveN] N ngen,
Ten () Sen (@)

(2.4)

where (i, a) € N x Z2 is the mesoscopic time-space index of B,y (i, @), which
has temporal width ¢ N and spatial side length /¢ N, and (a — b, a] = (a; —
b1, ai] x (ay — by, ay] for squares in R?. We then decompose the sum in (2.1)
according to the sequence of mesoscopic time intervals Zgp (i1), . . ., Zen (ix)
visited by the renewal configuration (n1, z1), ..., (n,, z,). For each T,y (i;),
we then further decompose according to the first and last mesoscopic spa-
tial boxes Sgy(a;), SgN(a/j) visited in this time interval. This replaces the
microscopic sumover (11, 21), . . ., (1, Zr) in (2.1) by a mesoscopic sum over
time-space renewal configurations (i; aj, a’l), vy (s ag, a}(), which specify
the sequence of mesoscopic boxes Ben(ij, a;) and Ben (i, a/j) visited. See
Fig. 1 for an illustration.
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Ideally, we would like to replace each random walk kernel g;, ,, (x, y) in (2.1)
that connects two consecutive visited mesoscopic boxes B,y (i, a’j) 3> (n,x)
and Ben(ij+1,@41) 3 (m, y) by a corresponding heat kernel. Namely, by the
local limit theorem (3.21), replace g, (x, y) by

2 , .
g%(|j+l_|j)5N

(@41 —a)VeN) = —Ter, (@1 =),
where the factor 2 is due to periodicity. With such replacements, given a meso-
scopic renewal configuration (i; ay, a’l), con, (ks ag, a;(), as we sum over
compatible microscopic renewal configurations (n1, z1), - . ., (n,, ) in (2.1),
the contributions of £y (1, z) from each interval 7 y (i;) would decouple, lead-
ing to a product of coarse-grained disorder variables of the form

) X
. ’ .
On.ejia;.8)) == 3 2. Ewma
=l (”17Zl)a~~~,(”r’zr)ezgven
21€8en(@)).2r€Sen (@)
ny<--<np,ni €Ty (i)

< [ ] ano1m; @1, 2N () 2)), (2.5)
j=2

with consecutive coarse-grained disorder variables Oy (i;; a;, a;.) and
ONe(ij+1;a)41, a’jH) linked by the heat kernel g%(_. iy (@j+1 —a)) (we
absorbed the factor % into (2.5)). This would give our desired coarse-grained
model 2°® (p, w@N,e).

Unfortunately, this ideal procedure does not produce a sharp approximation
of the partition function Zy in (2.1). Indeed, the kernel replacement

2 /
; — a a; 2.6
Gnm (X, ) ~> NSl i @i+t —8)) (2.6)

induces an L2-error, and this error is small (in the sense that it vanishes as
e | 0, uniformly in large N) only if ij41 — i; is sufficiently large (we will
choose it to be larger than K, = (log %)6) and |@;411 — a’j| is not too large
on the diffusive scale (we will choose it to be smaller than M, /i; 1 — i; with
M, = loglog %). We address this issue as follows.

The first crucial observation is that, modulo a small L? error, micro-
scopic renewal configurations (n1, z1), ..., (1, 2r) in (2.1) cannot visit three
or more mesoscopic time intervals Ton(i;), Ten(ij41), and Ten(ij12) with
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\Y%
=

eN

Fig. 1 An illustration of the chaos expansion for the coarse-grained model (2.7). The solid
laces represent heat kernels linking consecutively visited mesoscopic time-space boxes. The
grey blocks represent the regions defining the coarse-grained disorder variables ®p .. The

double block in the middle represents a coarse-grained disorder variable ® 8(7 a) visiting

two mesoscopic time intervals 7,y (i) and T,y (') with |i’ —i| < K, = (log < )6 and cannot be
decoupled

bothij 1 —ij < K¢ and ijip —ij11 < K¢ (see Lemma 5.1 below). Fur-
thermore, with a small L? error, we can also enforce a diffusive truncation
aj41 —aj| <M ¢v/lj+1 — ij (see Lemma 5.6 below). We will then make the
random walk/heat kernel replacement (2.6) only between mesoscopic boxes

Ben(ij, aj.) > (n,x) and Ben(ij41,@j41) 2 (m, y) that satisfy the constraint
i L — i j > K..

After such kernel replacements, what are left between the heat kernels
decouple and appear as a product of two types of coarse-grained disorder
variables:

e one type is as given in (2.5), which visits a single mesoscopic time interval
Ten (D);

e another type visits two mesoscopic time intervgls Ten (D) and Ty ("), with
i —i < K,: we denote it by @y .(i,a) withi = (i,i) and 2 = (a, @),
where a identifies the first mesoscopic spatial box visited in the time interval
Ten (i), while @ identifies the last mesoscopic spatial box visited in the time
interval T,y (i") (see (4.11)).

This leads to the actual coarse-grained model we will work with:

@ Springer



344 F. Caravenna et al.

(log 1)?
£

FD (4 y1©) = lei(o,¥) + 3 fog%h(%’ ano(, ar)

1
2
@i,....a,) 2.7

-
X { ng%(ij4}7l)(aj - a/]‘_l)G)(ij, éf)}gé(i—i;)(a;’ Ve),
j=2

where ¢, and ¥, are averaged versions of ¢ and v on the spatial scale /&,
while g/ (¢e, ), gi/z(a’, Ve), &ij2(@e, Ye) are averages of the heat kernel
gij2(a — a’) wrt. g, Y, or both.

In the sumin (2.7), we have hidden the various constraints on the mesoscopic
time-space variables for simplicity (see (4.8) for the complete definition). Also
note that in (2.7) we denote by ® = (0(i, a)) a generic family of coarse-
grained disorder variables; in order to approximate the averaged partition
function Zy, we simply set @ = Oy .

Remark 2.1 (Self-similarity) The coarse-grained model %(Cg) (¢, ¥|®) in
(2.7) has the same form as the original partition function Zy in (2.1), with
1/¢ in place of N, Oy . in place of &y, and the heat kernel gj/; in place of
the random walk kernel g,,. This shows a remarkable degree of self-similarity:
coarse-graining retains the structure of the model.

B. Time-Space Renewal Structure

Once we have defined precisely the coarse-grained model Q’g(cg) (p, ¥|ON.¢),
see Sect. 4, we need to show that it indeed provides a good L? approximations
of the original partition function Zy, in the following sense:

. . 2
lim timsup |20, w1On.0) = Zn [ = 0. (2.8)

N—o00

This approximations will be carried out in Sect. 5, where we rely crucially
on the time-space renewal interpretation of the sum in (2.1), which in the
continuum limit with N — o0 leads to the so-called Dickman subordinator
[18]. This will be reviewed in Sect. 3.5.

C. Lindeberg Principle

In view of (2.8), given ¢ > 0 small, we can approximate Zy by

Q@(Cg) (¢, ¥|®OnN. ), where the L? error is uniform in large N and tends to
0 as ¢ | 0. To prove that the laws of (Zy)yen form a Cauchy sequence, it
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then suffices to show that given ¢ > 0 we can bound the distributional dis-
tance between %(Cg) (¢, ¥|Op.¢)and .,@@(Cg) (¢, ¥|OpN ) uniformlyinM > N
large, and furthermore, this bound can be made arbitrarily small by choosing
& > 0 sufficiently small. This would then complete the proof that Zy con-
verges in distribution to a unique limit.

The control of the distributional distance is carried out via a Lindeberg

principle for the coarse-grained model %(Cg) (¢, ¥|®nN.¢), which is a multi-
linear Rolynomial in the family of coarse-grained disorder variables ®y =
{On.£(i,2)}. We note that Oy ((i, '), (a,a")) and Oy ((j, ), (b, b’)) have
non-trivial dependence if (i, @) or (i’, @") coincides with either (j, b) or (', b’).
We thus need a Lindeberg principle for multilinear polynomials of dependent
random variables, which we formulate in Appendix A and is of independent
interest.

D. Functional Inequalities for Green’s Functions

To successfully apply the Lindeberg principle, we need to control the second
and fourth moments of the coarse-grained disorder variables ®y .. We also
need to control the influence of each ®y ., which boils down to bounding

the fourth moment of the coarse-grained model .,@’;(Cg) (¢, ¥|OnN.¢), with the
choice of boundary conditions ¥ = 1 and ¢(x) = %]ll X< e

The moment bounds on @y . and Q@(Cg) (¢, ¥|®On ) are technically the
most delicate parts of the paper, especially since we need to allow ¢(x) =
%]l| X< JE and ¢ = 1. Since the structure of @y  is similar to an averaged
partition function, we will first derive general moment bounds on the averaged
partition function Zy in Sect. 6. The fourth moment bound on ®y . then
follows as a corollary in Sect. 7.

The approach we develop is different from the methods employed in [51]
to bound the moments of the averaged solution of the mollified SHE. Our
approach is based on functional inequalities for the Green’s function of random
walks (see Lemma 6.8) and it is robust enough to be applied also to the coarse-
grained model defined in (2.7), which will be carried out Sect. 8.

3 Notation and tools

In this section, we introduce some basic notation and tools, including the
polynomial chaos expansion for the partition function, random walk estimates,
the renewal interpretation for the second moment of partition functions and
the Dickman subordinator that arises in the continuum limit.
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3.1 Random walk and disorder

As in Sect. 1.2, let (S = (Sp)n>0, P) be the simple symmetric random walk
on Z?, whose transition kernel we denote by

gn(2) =P(Sn =2),  qman(x,2) = qn-m(z —x) =P(S = 2[Sn = x).
(3.1)

Let (w = (@(n, 2)),en ;ez2, P) be the disorder, given by a family of i.i.d.
random variables with zero mean, unit variance and locally finite exponential
moments, see (1.1).

The expected overlap between two independent walks is (see [18, Proposi-
tion 3.2])

N
Ry =YY q.2)? Zqzn@ —+ +o(1)

n=1ze7? (3.2)
o
with o =y +1logl6—m ~0.208, y := —/ e " logudu >~ 0.577.
0

Note that Ry is the expected number of collisions up to time N between two
independent copies of the random walk S when both start from the origin. Also
note that y is the Euler—Mascheroni constant. We further define

1
u(n) =Y gu(x)* =qu0) ~ == asn— oo, (33)

n
xeZ?

where the asymptotic behavior follows by the local limit theorem, see (3.21)
below.
In order to deal with the periodicity of simple random walk, we set

ngen ={z=(1,---,20) €2 71+ ...+ zq is even}. 34

Given x € RY with d > 2, we denote by [[x]| the point in Z<, closest to x
(fix any convention to break the tie if [x]] is not unique). More explicitly, we
have

[x]=wv EZeven
— xeB(v)::{xeRd:|x1—v1|+...+|xd—vd|<1}.
(3.5
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For s € R it is convenient to define the even approximation [[s]] € 2Z by

Is] =2 BJ (3.6)

3.2 Partition functions at criticality

The point-to-point partition functions fo], ~(w, z) were defined in (1.8). We
mainly consider the case M = 0, for which we write

N-1
Zzﬁv(w’ 7) = E[ezn_l (Bom.S)=2@B) g _

So = w] 3.7

The field of diffusively rescaled partition functions Zﬁ,, 5 (dx,dy) was
introduced in (1.9). In the special case s = 0 we simply write:

N
Zﬁ,’t(dx, dy) := 7 Z[ﬂNt]](H«/Nx]], [[x/ﬁy]]) dxdy,

where we recall that dx dy denotes the Lebesgue measure on R? x R?. We next
define averaged partition functions Zﬁ,’ (@, ) for suitable ¢, ¥ : R? - R:

20 (@ 9) = / /R e 20, (dx, dy) ¥ ()

1
TN / /R 2 PN Zina X1 Iy ¥ (F5) dx dy.

We can rewrite the integrals in (3.8) as sums. For alocally integrable function
¢ : R? > R, we define ¢y : Z2,., — R as the average of w(ﬁ) over cells

even
B(v) € R?, see (3.5):

1 1
on(v) = B /go( )dx:i / <ﬂ(ﬁ)dx-

B(v) {lx1—v1|+|x2—v2| <1}

(3.8)

3

(3.9

If we similarly define ¥y : Z2.,
the second line of (3.8) as a sum over the points v = [x]l, w = [[y]] € Z

as follows:

— R given ¢ : R? — R, we can rewrite
2
even

1
Zn ) = o D0 o) Ziygow) yn). (340

2
V,W € Zyen
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Remark 3.1 (Parity issue) Let Zodd = Z24N\74 .. If in (3.10) we sum over
v, w € Zodd’ we obtain an alternative “odd version” of the averaged partition
function, which is independent of the “even version” because two simple
random walks started at even vs. odd sites can never meet. This explains why
we enforce a parity restriction in (3.10).

Finally, we recall the critical window of the disorder strength (inverse tem-
perature) that was introduced in (1.11). Given the definition (3.2) of Ry, for
some fixed ¢ € R, we choose 8 = By = By (¢) such that

02 = Var[ePrvorbn) = gepm-2n) _ g = L (1 P
Ry log N

(3.11)

We can spell out this condition more explicitly in terms of By (see [18,
Appendix A.4]):

IBJZVZL_ K3 9/ + (363 — ks — )+0(L)
Ry~ (Ry)2 (Ry)? (Ry)*
. K3 773/2 +7T(l9—05)+”2(%"32_%'(4_%) (3.12)
" logN  (logN)3/2 (log N)?
1
+0<(log1v)2>’

where k3, k4 are the disorder cumulants, i.e. A(8) = %,82+%/33+%,34+0(,34)
as B | 0, and o ~ 0.208 is as in (3.2). Henceforth we always set B = By.

3.3 Polynomial chaos expansion
We now recall the polynomial chaos expansion of the partition function. This

is based on the following product expansion, valid for any set A and any family
of real numbers (4,,),c4 labelled by A:

e2neahn — H(l—i—(eh” -D) =1+ Z l_[(eh” - D a3y

neA W##BCA neB

@ Springer



The critical 2d Stochastic Heat Flow 349

If we apply (3.13) to the partition function ng"f (x, y)in (1.8), by (3.1) we
obtain

Z0 (. y) = qa.p(x.y)
_ E[(ezhf—_;H Ecaa o095 s _ 1)

Sdzx:|

= i Z EH ﬁ (e(ﬁNw(nj,zj)—x(ﬁ,v))nsnj:Zj B 1)}

r=1 d<ni<..<n,<f j=l1
2o zr €22

Sd:x].

Recalling (3.11), we introduce a family (§n(n, 2))(, ;)ez2 of ii.d. random
variables by

]le:y

PN D—ABY) _ |
En(n,z) =e i (3.14)
sothat E[fny(n,2)] =0, Var[fy(n,z2)] =oy.

These variables allow us to write

eBNo D) =A(BN) s =2 _ 1 = (eﬂNw(n,Z)—)»(ﬁN) —D1g,—, =&n(n,2) 15—,

hence, by the Markov property for the random walk with kernel g, we get

o0
Z e = a0 +Y. Y G iz v )

r=1 d<ni<..<n,<f

212y €22 (3.15)

,
X { nqn_,-,l,nj(zj'—h Zj)%'zv(nj,zj')} Gn;.f(Zjs ¥)s

j=2

where ]_[;:2( ...):= lifr = 1. We have expressed the point-to-point partition
function as a multilinear polynomial (polynomial chaos) in the independent
random variables &y (n, 2).

A similar polynomial chaos representation holds for the averaged partition
function Zﬁ,N (@, ¥) given in (3.10). To simplify notation, it is convenient to
define an averaged version of the random walk transition kernel g, ,(x, y).
Given suitable ¢, ¥ : R? — R, a time horizon M € (0, 00), and two points

@ Springer



350 F. Caravenna et al.

(m,w), (n,z) € ngen, recalling o and Yy from (3.9), we define

AWm@w) =Y on©) qomv, w), (3.16)
UEZ%VEH

@) = Y quimy(@ w) yn(w), (3.17)
wezgven
1

W@ V) =5 Y en® o, w) Yy w). (3.18)

v, weZ2

even

Then (3.15) yields the following polynomial chaos expansion for Zﬁ,’v (o, ¥)
in (3.10):

l o0
SRR RO D DD DR PRI LM CIRD
r=1 O<ni<...<n,<Nt
212y €72 (3.19)

.
: { I1 qn,,l,n,(z,q,zpsmn,-,z,»)I cap g @ )
j=2

As will be explained later, when it comes to second moment calculations,
the time-space points (n1, z1), ..., (1, 2r) in the sum can be interpreted as a
time-space renewal configuration.

3.4 Random walk estimates

Let g; : R2 — (0, 0o) denote the heat kernel on RZ:

a2
gi(x) = e 2, g, y) =gy —x), (3.20)
wt
where, unless otherwise specified, we denote by | - | the Euclidean norm on

R4,

The asymptotic behavior of the random walk transition kernel g,(x) =
P(S, = x) is given by the local central limit theorem: as n — oo we have,
uniformly for x € Z2,

() = (g2 + 0 (7)) 2 L ez,

4 (3.21)

1 Ix®
= g% (x) eo(")+0( n’ ) 2]1(/1,)()623 ’

even

where the two lines are two different variants of the local central limit theorem
for the simple symmetric random walk on Z? given by Theorems 2.3.5 and
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2.3.11 in [66]. We recall that ZZ _ is defined in (3.4), the multiplicative factor

even
2 comes from the periodicity of the simple random walk S, = (S,gl), S,(12>) on
72, while the factor % in the time argument of the heat kernel comes from the

fact that E[S,gi)S,gj )] = 5 1;—;. We also note that

gn(x) = %g%,ﬁl(jﬁ) vn, N € N, Vx € Z2. (3.22)
Similar to the averaged random walk kernels qN defined in (3.16)—(3.18),

given g € L! (]Rz), /S LOO(RZ),t > 0,anda, b € R?, we define the averaged
heat kernels

g9, a) = A P gi(a —x)dx, (323)
& (b, ¥) = /R , 80 =D dy, (3.24)
&g V) = /Hé o D8O =X V() dxdy. (3.25)

Recall qé\’/ Nt (@, ) from (3.18). By the local limit theorem (3.21), recalling
(3.9) and (3.22), we have

Vi=0: 0 lim gy, (e, ¥) = 381(0, V), (3.26)

S

where the prefactor % is due to periodicity.

We will also need the following lemma, which allows us to replace a random
walk transition kernel by a heat kernel even if the time-space increments are
perturbed.

Lemma 3.2 Let g, (-) be the transition kernel of the simple symmetric random
walk on 72, see (3.1), and let g: () be the heat kernel on R2, see (3.20). Then
there exists C € (0, 00) such that, for all n € N and for all x € 72 with

[x] < n%, we have
gn(x) < C g (x). (3.27)

Let 01,02 > 0 and set C := 2e 01 02. Then, given an arbitrary m € N, for
allny,n, € Nwithny > m and % € [1/01, 02], and for all x1, x, € R? with

|x1 — x2| < /m, we have

C X2
g1 (1) < Cgoun(x2) = —gom (= ). (3.28)

N
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Proof Let us prove (3.27): by the second variant of the local limit theorem in
(3.21),

1 o |*
an () = W pez, ) 282 (00 exp {0 () +0 (S5 < ()
1

We next prove (3.28): by the assumption % € [1/o1, 02], we have

g%](xl) ~ 201mp { |x2|2 _ |x1|2}

Som(x2)  my 200ny
bl al?
< 20102 exp{ } < 20102¢,
2n ni

where the last inequality holds because |x2|?> < 2(|x1]? + |x2 — x1]?) <
2|x1|? 4+ 2m and n; > m by assumption. m|

3.5 Renewal estimates and Dickman subordinator

We next present the time-space renewal process underlying the second moment
calculations for the partition function. Under diffusive scaling, this leads to
the so-called Dickman subordinator in the continuum limit. This approach was
developed in [18,19].

We first define a slight modification of the partition function z’ d.f (x,y)in
(1.8), where we “attach” disorder variables &y (n, z), see (3.14), at the boundary
points (d, x) and (f, y) (which may coincide, if d = f):

End, x)]ly =x} if f=d

Bn
Xa s @) = ey, 0 28 e e (o) i F 2 d 1

(3.29)

Such quantities will appear as basic building blocks in our proofs. Note that

E[Xﬂ N (x,¥)] = 0. The second moment of Xﬁ N '+(x, y) can be computed
exphcltly by the polynomial chaos expansion (3. 15) and it can be expressed
as follows:

E[X5Y(x.9)?] = 02 Un(f —d.y — ), (3.30)
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where we recall that ‘71%1 = Var(éy(a, x)),and forn € Ny = {0, 1,2, ...} and
x € Z? we define

Un(n,x)

Tix—0) ifn =0,

o0

oy g0+ e Y qom (0.21)°

= 3 r=1 O<ni<..<n,<n
2senn2r €22 ifn>1.
-
X { l_[ an_l,nj(Zj—l, Zj)z} an,n(zrvx)z
j=2

(3.31)

The quantity Uy (n, x), which plays an important role throughout this paper,
admits a probabilistic interpretation as a renewal function. More precisely,

let (r,(N), Sr(N))r>0 denote the random walk (time-space renewal process) on
No x Z2 starting at (0, 0) and with one-step distribution

2
n(x
P(Tl(N) =n, SiN) =x) = ull{1 ..... Ny (n), (3.32)

where Ry is the random walk overlap defined in (3.2). Then we can write,
recalling (3.11),

o0
Un(n,x) =Y 0N P(tN) =n, SV =x)

r=I (3.33)
¥+ o(1)
here Ay :=0ciRy=1+——"
v N = ON AN + log N
When Ay = 1, we see that Uy(n, x) is just the renewal function of

(r,(N), S,gN))r;O. When Ay # 1, we can think of Uy (n, x) as an exponentially
weighted renewal function, weighted according to the number of renewals.
Note that the first component V) = (t,(N))r>0 is a renewal process with
one-step distribution

My = 40 g, (3.34)
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where u(n) =), qn (x)? is defined in (3.3). Correspondingly, we can define

Un(n) =Y _ Uy, x)=> () P(rt") =n). (3.35)
r=1

xeZ?

The asymptotic behaviors of Uy (n, x) and Uy (n) were obtained in [18],
exploiting the fact that 7™ is in the domain of attraction of the so-called
Dickman subordinator, defined as the pure jump Lévy process with Lévy
measure )lc 1(0,1)(x) dx. More precisely, we have the following convergence
result, which is an extension of [18, Proposition 2.2] from finite dimensional
distribution convergence to process level convergence.

Lemma 3.3 Let (tr(N), S,(N))r>0 be the space-time random walk defined in
(3.32). Let (Yg)s>0 be the so-called Dickman subordinator [18], i.e. the pure
Jjump Lévy process with Lévy measure %]l(o,l)(t)dt, and let Vs := %Wys where
W is an independent Brownian motion. Then we have the convergence in
distribution

(M s
< ylog V] - Zlslog J) — (Y0 = (Y5, Vi)ss0,  (3.36)
$30 N—00

N T JUN

on the space of cadlag paths equipped with the Skorohod topology.

(N) S(N )
Proof Denote Y = (v,", vV .= (Q g) The convergence

N VN
of finite dimensional distributions was already proved in [18, Proposition 2.2].
We prove tightness by verifying Aldous’ tightness criterion [62, Theorem

14.11], namely that for any bounded sequence of stopping times Ty with
(™)
inthy

— 0 in probability as N — o0. This follows immediately from the

respect to (YEN)) s>0 and any positive constants iy | 0, we have Y
(N)
Y

™
fact that the increments of ¥ V) are i.i.d. and Y;l[;]v) — (0, 0) in probability as
N — oco. |

For ¢ € (0, 00), we define the exponentially weighted Green’s function for
Y = (Y)s>o0:

Gyl(t,x) = /oo e f (1, x)ds, (3.37)
0

where f,(-,-) is the density of the law of Y on [0, c0) X R?, given that
Yo = (0, 0) (we take notation from (3.36)). It was shown in [18] that

Gy (1, %) == Gy (1) g1 (x), (3.38)
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where g.(-) is the heat kernel, see (3.20), and 619(:) = fR2 aﬁ(t, x)dx is
closely related to the so-called Dickman function in number theory. Fort < 1,
it can be computed explicitly as

00 e(ﬂ—y)s s ts—l

Gs(t) =Gy(t) = /0 m ds, (3.39)

with y as in (3.2) (see [18]3). We will also denote Gy (¢, x) := Gy (t) 8t (x).
Note that for ¢+ < 1, Gy (¢, x) and Gy (¢) are the continuum analogues of
Un(n, x) and Uy (n), respectively. It is therefore no surprise that the asymp-
totics of Uy will be expressed in terms of Gy, which we record below for later

use.
In light of (3.30), it is convenient to define

Un(n.x) =0y Uy(n.x), Uy :=03Uymn)= > Uy x.
xeZ?

(3.40)

Recalling (3.31), we can give a graphical representation for Uy (b —a, y — x)
as follows:

ﬁN(b—a,y—x)E [ VAV VV VvV )
(a, x) b, y)
=D ) T - w e (4D
k2R (@ x) (n1.x0) (2, x2) (k. 1) (b, )

where in the second line we assign weights g,/_, (x’ — x) to any solid line

going from (n, x) to (n’, x") and we assign weight 01%, to every solid dot.

Recall that 01%, ~ ﬁ, see (3.11) and (3.2). We now rephrase some results

from [18]. Fix T > 0.
e By [18, Theorem 1.4], for any fixed 6 > 0, as N — oo we have

Un(n) = % (Gy (%) +o(1))  uniformly for SN <n < TN,
(3.42)
and moreover there is C < oo such that
— C
Un(m < Gs(%) VYO<n<TN. (3.43)

3 In [18], there was no separate notation 679 for the weighted Green’s function, which might
cause some confusion.
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e By [18, Theorem 2.3 and 3.7], for any fixed § > 0, as N — oo we have

Unn.x) = 5 (Go (. 25) +0(1) 21 ey )

uniformly for 6N <n < TN and |x| < %\/ﬁ

The prefactor 2 is due to periodicity and, moreover, there is C < oo such
that

Un(n,x) < Gy(%) VYO<n<TN,VxeZ’ (345

z|la
S| =

e By [18, Proposition 1.6], for t € (0, 1] the function Gy (¢) is C*° and
strictly positive, and as ¢ |, O it has the following asymptotic behavior:

Gy(t) = ! {l-l— 20 +0(;)} (3.46)
A t(log %)2 log% (log %)2 ’ '

henceast | 0

! 1 04 1
Gy(s)ds = {1 + + 0( )} (3.47)
/o log % log % (log %)2

Remark 3.4 In the proof of (3.42)—(3.45), the case T > 1 has to be treated
differently from 7 = 1. In [18], the case T > 1 was reduced to T = 1 through
a renewal decomposition and recursion (see [18, Section 7D. Alternatively,
we can reduce the case T > 1to T = 1 by first setting N := TN, ¥ :=
9 +1log T +o(1) so that o, = o3 (9) = o (D) by their definitions in (3.11),
and then applying (3.42)—(3.45) with N replaced by N, using the observation
that 7Gp110g7 () = G (1).

We will also need the following bound to complement (3.44).

Lemma 3.5 There exists ¢ € (0, 00) such that forall . > 0and0 < n < N,

3 Unx) el < c e Ty (n). (3.48)

xeZ?

Note that by the Markov inequality and optimisation over > 0, (3.48) implies
that the probability kernel U y (n, -) /U n (n) has Gaussian decay on the spatial

scale \/n.
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Proof Recall the definition of Uy (n, x) from (3.33). Conditioned on T(N), el

r,(N) with T, (N)

with

= n, wWe can write S,( ) = = {1 + --- + ¢ for independent ¢;’s

Qn,- (X)2

P i = = —’
(« ) Zyez2 qn; ()’)2

where n; = rl.(N) — ri(ivl) and x € Z2. For each i, denote by ¢;.1 and ¢; 2 the

two components of ¢; € 7?. Then we note that there exists ¢ > 0 such that for
any A > 0,n; € N,

E[eTii] < &M j=1,2. (3.49)

This can be seen by Taylor expanding the exponential and using thatE[¢; .] = 0
by symmetry, [E[¢” ]| < 3(E[£] + E[¢”**]) by Young’s inequality, as
well as E[¢¥] < (Cny)*(2k — 1)!! for some C > 0 uniformly in n;, k € N.
The bound on E[{l.zf‘ ] holds because by (3.21),

P =x)= dn; (X x)? < {SuperZ qn; (X)

n; <C/ n; )
om (0) Gon (0) }"'(x) n; (%)

where g, has the same Gaussian tail decay as the heat kernel g, 2. Using
ePl < e* + e*, this then implies

1 1
E[emﬁNM [z = E[exl Yisi cil] < E[ele Yisi cul] 2E[ele Yio w] 2
l
< I (] el
j=1,2

r

- I (Tl )+ el

j=12 i=1

4c?
< 27T,

The bound (3.48) then follows readily from the definitions of Uy (n, x) and
Uy (n) in (3.33) and (3.35), recalling that U y(n, x) and U y (n) are defined in
(3.40). |
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3.6 Second moment of averaged partition function

Using X dﬁNf (x, y) as introduced in (3.29), and recalling (3.15), we can now

rewrite the chaos expansion for the averaged partition function Zﬁ,N (@, ¥)in
(3.19) as follows:

1
2V D=4y TS D a0l ) X ) a0 ).
O<d<f<Nt
x,yeZ2

(3.50)

so that by (3.30) and the fact that Uy = o*]%, Uy, we have

E[2R, (0. ¥)7] = ad/ni (0. ¥)’
1 _
+7 D 90a@ 0P UNG —dy =0 ] (0, 9.

x,y622
0<d< f<Nt

(3.51)

We now compute the limit of E[ZﬁN’YZ (o, W)z] as N — oo. This was first
obtained for the Stochastic Heat Equation in [7] in the special case ¢ = 1; see
also [19, Theorems 1.2 and 1.7] for an alternative derivation, that also includes
directed polymers.

Proposition 3.6 (First and second moments) Recall Gy (t) from (3.39) for all
t > 0. For ¢ : R> > R, define*

lolg, = /f 9(2) Gi(Z — 2) p(z') dzdZ/,
R2xR?2

t
where G;(x) = / gs(x)ds. (3.52)
0

Then for all ¢ with |¢|g, < oo and all Y € L (R?), we have

Jim E[Z} (0. )] = Fg1(0. ). (3.53)
ngnooE[zgw, W] = dec. )’ + 377 (0.9, (3.54)

4 The positivity of ||¢ ||ét can be seen via Fourier transform.
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where

17 (o, ¥) = ff// 0(2) 0(z) K (z,7'; w, w) ¥ (w) ¥ (w') dz dz’ dw dw’
®%)* (3.55)

t
< IVl ||go||é,/0 Gy ) du,

and the kernel K ;9 is defined by

/ /
K (e 2wy = gy (55— 55)

X // gs(Z —2)Gy(u —5) gr—y(w — w)ds du.
O<s<u<t

(3.56)

Proof The first moment convergence (3.53) holds because by E[Zﬁ,’v (@, W)] =

q(])\,’ N (@, ), see (3.50), in view of the asymptotic relation (3.26).

For the second moment computation (3.54) we exploit (3.51), where the
first term in the r.h.s. converges to A% 812, w)z by (3.26), which matches
the first term in the r.h.s. of (3.54). It remains to show that the sum in (3.51)
converges to the term %%”((p, Yr) in (3.54).

Recall the definition of qN in (3.16)—(3.17). By the local limit theorem
(3.21) and in view of (3.22), we see that for any ¢ > 0, uniformly form > e¢N
and w € Z2, we have as N — 00

N
do,m (9, w) = <g%%(¢h )+ 0(1)) L, wyez

’
even

and similarly, uniformly for n < (1 — &)Nt and z € Z?,

G (@ W) = (g%(t—%)(\/Lﬁ’ V) + 0(1)) Ln2)eZden
Applying the asymptotic relation (3.44) for Un(f — d, y — x), we see that
the sum in (3.51) is a Riemann sum that converges as N — oo to the multiple
integral®

5 The contributions to the sum in (3.51) given by m < eN and n > (1 — )Nt are small when
& > 0 is small, uniformly in large N, as can be checked using the uniform bound (3.27).
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1
S0 @)
=T 2G b b, ¥)*ds du da db
_5 g%((p’a) ﬁ(u_s, _a)gt_T”( 71/0) s duaa s
O<s<u<t
a,beR?
(3.57)
where the prefactor % results from combining the periodicity factor 2 in
(3.44) with the volume factor % . % which originates from the restrictions

d, x), (f,y) € Z3,.. in (3.51). Then it follows by (3.23), (3.24) and (3.38)

even

that the equality in (3.55) holds with

K (z, 75w, w)=mn ////{g;(a—z)g;(a—z/)}Ga(u—S)ggs(b—a)

O<s<u<t
a,beR?

X {gt_Tu(w — b)gr—Tu(w/ —b)} dsdudadb.

We can simplify both brackets via the identity g;(x) g;(y) = ga(x —
y)g ¢ (%), see (3.20). Performing the integrals overa, b € R? we then obtain
(3.56).

The bound in (3.55) follows by bounding ¢ with ||| - and then succes-
sively integrating out w, w’, followed by u and s in (3.56). O

Remark 3.7 (Point-to-plane partition function) For ¥ (w) = 1(w) = 1, we
can view Zg”t (¢, 1) as the point-to-plane partition function Z]’f,N (2) in (1.3)
averaged over its starting point z. By (3.53)—(3.56),

lim E[Z} (o, 1)] = 1g:(go )= ! /w(z)dz
N—o0 Nt 37> 272 ’ '

2
R2
: BN 1 o 1 NE2; ’ ’
lim Var[Z", (0. D] ==%"(p. ) == || @) ¢) K] (z — 2)dzdZ,
N—o00 ) 2 2
(R2)?

where we set
K,ﬁ(x) =7 // gs(x)Gy(u — s)ds du.
O<s<u<t

We note that both the asymptotic mean and the asymptotic variance of
Z@N . (@, 1) are half of those obtained in [19, eq. (1.19)—(1.20)]. This is because
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see (3.10), while in

[19], the sum is over both Z2,; and Z2,.,, which give rise to two i.i.d. limits

as N — oo by the parity of the simple random walk on Z?.

here we have defined Z’,’;,N (9. V) as a sum over Z2,.,,

4 Coarse-graining

In this section, we give the details of how to coarse-grain the averaged partition
function and what is the precise definition of the coarse-grained model, which
were outlined in Sect. 2. The main result is Theorem 4.7, which shows that
the averaged partition function Z’ﬁ,” (@, ¥), see (3.10), can be approximated

in L? by the coarse-grained model.

4.1 Preparation

The starting point is the polynomial chaos expansion (3.19) for the averaged
partition function Z'IBVN Ao, ¥), which is a multilinear polynomial in the disorder
variables &y (n, z). We will call the sequence of time-space points (n1, z1), -..,
(ny,z) € N x Z? in the sum in (3.19) a microscopic (time-space) renewal
configuration. We assume that the disorder strength is chosen to be By =
Bn () as defined in (3.11)—(3.12). For simplicity, we assume the time horizon
tobe tN witht = 1.

Givene € (0, 1) and N € N, we partition discrete time-space {1, ..., N} x
72 into mesoscopic boxes

Beny(i,a) ;== ((i—1DeN,ieN] x ((@a—(1,1)veN,aveN] N ngen’
Ten () Sen (@)

4.1

where 7,y (i) is mesoscopic time interval and S,x(a) a mesoscopic spatial
square.® These boxes are indexed by mesoscopic variables

(,a) e {l,.... 1]} x Z%

Recall from Sect. 2 that to carry out the coarse-graining, we need to organize
the chaos expansion (3.19) according to which mesoscopic boxes By are
visited by the microscopic renewal configuration (n1, z1), ..., (fy, 2r). To
perform the kernel replacement (2.6), which allows each summand in the
chaos expansion (3.19) to factorize into a product of coarse-grained disorder
variables ®y . connected by heat kernels, we will impose some constraints on

6 We use the notation (a — b, a] = (a; — by, a;] x (@ — by, ay] for squares in R2.
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the set of visited mesoscopic time intervals 7,y (-) and spatial boxes Sgy (+),
which will be shown to have negligible costs in L?. We first introduce the
necessary notation.

Let us fix two thresholds

K, = (log é)G, M, :=loglog L. 4.2)

We will require that the visited mesoscopic time intervals 7,y (i1), ..., Zen (ix)
belong to

§“°‘riple> ::U {(il,...,ik) eN: K. <ij<ih<...<ik < L%J - K,
keN
such that if ij-H — ij < K, then ij_|_2 — ij-H > K, }
4.3)

We call this the no-triple condition, since it forbids three consecutive meso-
scopic timeindicesi;, ij41, ;42 withbothi; 1 —i; < Kcandij2—ij41 < K,.
We can then partition (iy, ..., Ix) into time blocks such that i;, i; 1 belong to
the same block wheneverij | —i; < K.

Definition 4.1 (Time block) We call a time block any pairT =(i,i") e Nx N
with i < i’. The width of a time block is

i =7 —i+ 1.
The (non symmetric) “distance” between two time blocks T, m is defined by
dist(i, M) :=m—1i  for i=(i,i") and M = (m, m’),
and we write “1 < M” to mean that i precedes M”:

i<m = distd, M) >0ie i <m.
With the partitioning of the indices (i, .. ., ix) of the visited mesoscopic time
intervals into consecutive time blocks as defined above, which we denote by
| = (i1,1), ... iy = (ir, ) with possibly i; = i}, the constraint A"
then becomes the following:

=, (notriple) .

A

€

=-U {timeblocks Ke<hi<...<i <[l -k
reN

such that [ij| < Ko ¥j=1,..or, dist(jo1, 1) > Ke Vj=2,....r ],
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If the time hOI’lZOIl is Nt with ¢ 7& 1, then in (4 3) and (4.4) we just replace
the upper bound Ir < L J — K. byi, < |_8J —

Given a time block | = (i, ") with i’ — i + 1 < K. (possibly i = 1),
which identifies two mesoscopic time intervals 7,y (i) and 7,y (i) visited by
the microscopic renewal configuration (n1, z1), ..., (1., z;) from (3.19) and
no intervals in-between is visited, we can identify the first and last mesoscopic
spatial boxes visited in the time intervals 7,y (i) and 7y (i), respectively. We
call this pair of mesoscopic spatial indices a space block.

Definition 4.2 (Space block) We call a space block any pair a = (a,a’) €
7% x 7. The width of a space block is

al :=|a' —al,

with | - | being the Euchdean norm. The (non symmetric) “distance” between
two space blocks &, b is

dist(3, b) := |b—a'| for A= (a,a’) and b = (b, b).
Putting the time block and space block together, we have the following.

Deﬁnltlon 4.3 (Time- -space block) We call a time-space block any pair (I a)
where i is a time block and & is a space block. We also define

T, := { time-space blocks (i, 3) with |i| < K. and |3] < Mg\/ﬁl}.

4.5)

In (3.19), we will restrict to (n1, z1), . .., (1, z») (interpreted as a time-space
renewal configuration) that satisfy condition (4.3), so that they determine a
(no triple)

sequence of mesoscopic time-space blocks {(iy, ap, ... (Ir ,a,)) €
This would give the main contribution in (3.19). We now impose further con-
straints on the spatial components that still capture the main contribution.

Given two “boundary variables” b, ¢ € Z? and a sequence of time blocks

e e diff diff e .
(i, ..., 1), we denote by .A( lb)c = ,E lb Z:(Il, ..., 1) the following subset

€5
of space blocks (@i, ..., a,), where we impose dzﬁ”uszve constraints on their

widths and distances:

- (diff - . - =
A((g;lb’z: = {space blocks ap,...,ar suchthat |a;| < Mey/lij]

Vi=1,....r dist@_1.8;) < Me/dist(j_1.1;) Vj=2,....,r, (4.0)
laj — bl < Me+/ij and |c—a;|<Mg\/L%J—i’r}.
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VeN i
<>
eN

Fig. 2 An illustration of the coarse-graining procedure. The solid lines represent the heat
kernels after the kernel replacement (2.6), which connect adjacent coarse-grained disorder

variables ®( €8 j 2 (@, a) consisting of sums over the dashed lines in each visited time-space block
o N(I a) (see (4.11)). The solid and the dashed lines satisfy the diffusive constraint given in

Aidltf) ¢ and (4.11), respectively

Given a sequence of mesoscopic time-space blocks (i, ap), ..., (ir, a,) deter-

mined by the microscopic renewal configuration (n1, z1), ..., (1n,, ) from

. . . > ipl dif}
(3.19), which satisfies the constraints Aino ") and Ai b. 2), we will perform

the kernel replacement (2.6), which leads to a factorization of each summand
in (3.19) as the product of coarse-grained disorder variables Oy (i}, a,),

1 < j < r, connected by the heat kernels gl( (aj+1 — a’j). See Fig. 2.
2 J J

4.2 Coarse-grained model

We are now ready to give the precise definition of the coarse-grained model
Q@(Cg) (¢, ¥|®) given earlier in (2.7), which depends on ¢ € (0, 1) and is a
multilinear polynomial of a given family of random variables ® = {®(T, a))
indexed by time-space blocks (T, a).

Definition 4.4 (Coarse-grained model) Fix ¢ € (0, 1) and a family of random
variables ® = (O(, a)) (.3)eT indexed by the set T, of time-space blocks

defined in (4.5). Fix two locally integrable functions ¢, ¥ : R> — R and
define ¢;, ¥, : Z> — R as follows:
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0e(b) = / o(Vex) dx, Y. (0)
(b—(1,1),b]

= / Vv (Vey)dy forb,c e Z°. (4.7)
(c—(1,1),c]

Recall the heat kernel g;(-) from (3.20). Then the coarse-grained model
2 (g, y10) is

1
2 (0. 910) = 5 810 V)
(log 1)
&
+ 3 Zl bZZ% ﬁZ( foil(?)gl"(al b)O(i1, ap)
CEZE () iye Al
@i Al @9

,
x { [Tes6,-1_(@ —aj-0 0. 5/')}
j=2 '

X g%(L%J_i;)(C - a;)lﬁe(c)-

Note that in (4.8), for technical reasons that will become clear later (to control
the error induced by kernel replacements—see Sect. 5.3), we also imposed the
constraint that the number of time-space blocks cannot exceed (log %)2. This
coarse-grained model has the same structure as the original averaged partition
function Zﬁ,N (@, ¥) in (3.19), with 1/e replacing N, © replacing &y, and the
heat kernels replacing the random walk kernels. Note that when ¢ has compact
support, (4.8) is a sum over finitely many terms.

Remark 4.5 To approximate the averaged partition function Zf,’v (@, ¥) with

t # 1, we define a corresponding coarse-grained model 27, (ce) (¢, ¥|®) which
is obtained from (4.8) simply replacing 81 (o, V) by 8 ((p w) and g,

2(L 1=
(notriple) (diff)

by g, (L |—if) 88 well as modifying accordingly A and As . (teplac-

ing |_€J by LEJ therein).
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4.3 Coarse-grained disorder variables

We now identify the coarse-grained disorder variables @xi) so that the
averaged partition function Zﬁ,"”t (¢, ¥) can be approximated in L? by the
coarse-grained model Z; (Cg) (¢, ¥|®) with ©® = ®(Cg)

Recall the point-to-point partition function Z A Nf (x, y) with its chaos expan-
sion as in (3.15). Assuming f — d < €N, we introduce a diffusive truncation
as follows, the effect of which will be negligible in L2, but it ensures that the
coarse-grained disorder variable ®§§2 will only depend on &y (7, z) in alocal-
ized time-space window. In (3.15),leta = a(x) € Z? be such that x € Syn(Q)
(recall (4.1)). We then restrict y and all space variables z; in (3.15) to those
mesoscopic boxes Syy (@) with |a —a| < M, = log log% as in (4.2), and
define

(dlff)( )
la—al<M.
0
qa,r(x,y) + Z Z
r=1 d<ni<..<n,<f
_ Zlyeens ZV€U\573\<M€ Sen (@)
qd.n; (x,21) én(n1, 21) ifye U Swn@.
r la—a|<M,
X { anj1,nj(Zj—1,Zj)$N(”ijj)}
j=2
X gnj, (2, y)
4.9)
Similar to the definition of X", (x, y) in (3.29), we define
En(d, x) if f=d
(dlft)( y) = (i) (4.10)
EN, ) Zg (e, EN(fy) i f>d+17

Note that we omit the dependence of Z (dlff) (x,y) and X (dlff) (x,y)onN,e.

The coarse-grained disorder variables @5\,‘2 (i, a) are deﬁned as follows (see
Fig. 2).
Definition 4.6 (Coarse-g:mined disgrder variable) Given N € N, ¢ € (0, 1)
and a time-space block (i, @), with i = (i, ") and @ = (a, &’), the associated
coarse-grained disorder variable ®§\clgg (i, @) is defined by
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®(Cg)(| a)

2 -
(d1ff) e

-~ X (x, ) if i =1,

(d,x)eBen(i,a)

(f.y)eBgn (i,a)
with d< f

=1 X > >

(d,x)eBen(i,a)  b:lb—al<M.  (f,y)eBen(i,b) N
(f',y)eBen(i’a) b —a'|<Me (d',x")eBen (i',D) if il > 1
such that such that '
b/ —b|<M T—=i d<f,d'<f’

diff diff
X0y apar G5 X ()

(4.11)

In the special case | | = 1,ie.,i=1, we will also write ®( g)(I a, a’) in place
of O42 (i, &).

We point out that the prefactor 2 in (4 11) is due to periodicity, because the
sums are restricted to By (i, a) C Zeven, see (4.1).

4.4 Coarse-graining approximation

We can finally state the key result of this section, which approximates the
averaged partition function Zﬁ;fz (¢, ¥) in L? by the coarse-grained model

Q@fig) (o, ¥ |®§$’gs) ), with an error which is much smaller than Var(Zi,N (0, v¥))
in (3.55) when N is large and ¢ is small. Recall || - ||g, from (3.52).

Theorem 4.7 (Coarse-graining) Let Zﬂ N (@, V) be the averaged partition
Sfunction in (3.8), where By = Bn (D) satlsﬁes (3.11) for some fixed v € R. Let

.st(jg) (¢, ¥|®) be the coarse-grained model from (4.8), with K, = (log —)6
and M; = log log% as in (4.2), and let @(T, a) = ®(Cg)(| a) be the coarse-
grained disorder variables from Definition 4.6. Then for any T € (0, 00),
there exists C = C(T) < o0 such that, for ¢ > 0 small enough, we have

lim sup HZQN, (0. 9) — Z5% (o, l/f|®(cg)) ||L2

N—o00

el
< C(ncpném + ——= ) 1%, (4.12)

uniformlyint € [0, T], ¥ € L (R?) and ¢ : R? — R with lellg, < oo.
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Note that the r.h.s. of (4.12) tends to 0 as ¢ | 0, because K, ¢ — 0. The
whole of Sect. 5 is devoted to the proof of Theorem 4.7.

5 Second moment bounds for averaged partition functions

This section is devoted mainly to the proof of Theorem 4.7, which approxi-
mates the averaged partition function Zfi,” (@, ¥) from (3.10) by the coarse-

grained model Q@E‘;g) (o, W|®§$gg) from (4.8). We may assume t = T = 1
without loss of generality. The’uniformity in ¢t < T will be clear from the
proof. Throughout this section we simply write Zx (¢, V), omitting the depen-
denceont =1 and on By.

The starting point of our proof of Theorem 4.7 is the polynomial chaos
expansion (3.19). In the second moment calculations, the time-space renewal
representation and the limiting Dickman subordinator presented in Sect. 3.5
play a crucial role. The proof will be carried out in three steps, presented in
Sects. 5.1-5.3 below: given ¢ > 0, we introduce two intermediate approxi-

mations Zg\r,lf)gtrip le) (¢, ¥) and ZE\(,iif) (¢, V) of the averaged partition function

Zn (¢, ), and bound the following in L2.

o Step 1. We bound Zy (¢, ¥)— Zy" ") (¢, ), see Lemma 5.1 in Sect. 5.1:

. : . . i - ipl
this is the cost of imposing the constraints AS‘O Pl and Aino e e), see
(4.3) and (4.4).

e Step 2. We bound ng,lf’striple) (0, ) — ngiff)

&

(¢, ¥), see Lemma 5.6 in

- . . . . . . . = (diff
Sect. 5.2: this is the cost of imposing diffusive constraints, including .Ai; 1b7z

in (4.6) and the diffusive truncation in the definition of 85\%2 in (4.11).

e Step 3. We bound Zﬁf,l’iif) (p, V) — %(Cg) (¢, ¥|OnN.¢), see Lemma 5.8 in
Sect. 5.3: this is the cost of the kernel replacement (2.6).

Combining Lemmas 5.1, 5.6 and 5.8 then gives Theorem 4.7.

In the last Sect. 5.4, we will prove a separate second moment estimate for
the coarse-grained model, which is needed later in Sect. 8 for higher moment
bounds.

The proof details in this section are technically a bit heavy and could be
skipped in a first reading.

5.1 Step 1: constraints on mesoscopic time variables

In this step, we introduce our first approximation Zgogtriple) (¢, ¥) and show
that it is close to Zn (¢, V).
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Recall the mesoscopic time intervals 7,y (i) := ((i—1)e N, ie N]introduced
in (4.1), to which we associate the mesoscopic time index i € {1, ..., é}. In
the chaos expansion for Zﬁ,’v (¢, ¥) in (3.19), each time index n; belongs to

Ten(i) for some i € {1,..., %}. The first step of coarse-graining is to group
the terms in the expansion in (3.19) in terms of the mesoscopic time intervals
T.n (-) visited by the sequence of time indices ny, ..., n,. Namely, we can

rewrite (3.19) as (omitting By from Zﬁ,"’ (¢, ¥), and expanding qé\,/nl (¢, 21)
and ¢ ,{X ~ (@r, ¥) according to their definitions in (3.16)—(3.17)):

Zn(p, ) = 4 n(0. %)

+% Zw(v)i > >

V,WEZL oy k=1 0<ij<..<ix<! di<fi €Ten (), ..., di<fi € Ten(ik)

X1y V1o oo Xk Yk €Z2 5.1
q0,d; (v, x1) Xa,, f; (X1, ¥1)

k
X { 1_[ qfi1.d;(Vj—1,xj) Xa;, £;(xj, yj)} q fi,N Ok w) ¥y (w),
=2

where @y, ¥y were defined in (3.9), and X4, r(x, y) was defined in (3.29).
Recall from (4.2) that K, = (log %)6. We will show that in (5.1), the dom-
inant contribution (in L?) comes from mesoscopic time variables (i, ..., ig)
which contains no consecutive triples i;, ;1,142 withbothij 1 —i; < K,
and ij12 —ij41 < K,. This is encoded in AS‘" iPl) from (4.3), which we
recall here
frowele . — | {(il ..... i) eNF: Ko <ip<ip<...<ip <l Ke
keN (52)

such that  if ij49 —i; < K¢, then ij40 —ij41 > K¢ }

We will further restrict the sum in (5.1) to (i, ..., ix) with & < (log %)2,
which leads to the following first approximation of Zy (¢, ¥):

. 1

2
U, WELEyen

DD 2

k=1, ipearourle) di<fieTen(n), ..., di<fi € Ten (it)
X1s Y15 s Xks Yk € Zz
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k

q0,4, (v, x1) Xa,, £, (x1, y1){ 1_[ qfi1.d;(Vj—1,xj) Xa;, f;(xj, yj)}
=2

qf,N Yk, w) Yy (w). (5.3)

The main result of this subsection is the following approximation, which
constitutes part of the bound in (4.12). The proof is a bit lengthy, but it contains
many important ingredients, including a key renewal interpretation of second
moment bounds.

Lemma 5.1 (No close triples) Recall from (4.2) that K, = (log %)6 and recall
| - llg, from (3.52). There exists C € (0, 00) such that for ¢ > 0 small enough,
we have: for all ¢ with ||<,0||é1 < oo and Y € L®(R?),

limsup | (Zg?;riple) — Zy) (0. V)|, iz
N— o0 with Ne2N

) 5.4
<C (ngongm +

(log K£)2
log 1

&

||<o||é,> 1113,

Proof The random variables X, r(x, y) depend on the disorder variables
En(n,x) ford < n < f, see (3.29). They are centered and orthogonal in
L? and, by (3.30) and (3.40),

ElXa, £ (x, ¥) Xar, o ', 901 = Lya foxopy=ia, oy Un(f —d, y — x).

Since the sum which defines Zy°""') (¢, ) is a subset of that of Zy (¢, V),

cf. (5.1) and (5.3), it follows that we can write

[ = 2w)@ vl
1 (log 1)?

vl X +¥ %

k>(log 1)? 0<ij<..<ik <t (it ig) (AT TPy

Ine Iy e

2
x > ( > wN(v)qo,dl(v,x1)> (5.5)
di<fi €N o di <fr €Ten (k) vEZR e,
X1y V1 wesXks Yk € 2

k
x Un(f1 —di, » —xl){ [1a51a;i-1.x)> Un(fi — dj, y; —x,)}
j=2
2
x( > qfk,myk,w)wN(w)) :

w engen
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where Iy . and Iy . are the contributions of {k > (log %)2} and {(i, ..., ix) €

(Aéno triple))C}. We split the proof in two parts, where we show that for some

C < oo we have:

li Ive < C—— llol% ¥ 5.6
1m sup Ne S el 115 (5.6)
N—>00 with Ne2N log <

(log K)*
log 1

&

lim sup Iy < C (II(plléng +
N—>00 with Ne2N

||go||él> Iyl (5.7

Remark 5.2 Let us sketch a probabilistic interpretation of (5.5). From (3.33),
we recall that the expansion for U y(f — d, y — x) has a time-space renewal
interpretation, and from (3.51) the expansion of E[ZN (e, w)z] consists of a
mixture of UN(f —d,y — x), with weight #qa’d(w, x)zq}\fm(y, lﬁ)z. We
can therefore write

E[Zy(p. ¥)?] = > M%Y (S).
S={(n1,z1),....(ny,2,)}
I<ni<--n,<N, z1,..., 2r ez?

where denoting S = {(n1, z1), ..., (n, z,)} with r = |S5], we define
2rR2(r—l) 5
M(ﬁ/,w(s) = UNTA;( Z q)N(v) q0,n, (U, Zl))
vEngen
2
X ( Z qn,’N(Zr, w) 1//1\](11))) (58)

2
we Ze\'en

< P((z.5) = iz v <i < r| @™ sV = o 2).

The measure Mf,"//(-) is called a spectral measure since MK,’W(S) equals the
square of the coefficient of H(ni, z)eS &n (n;, z;) in the chaos expansion (3.19)

for Zn (¢, V), where different terms in the expansion are orthogonal in L2,
similar to a Fourier decomposition. For more on spectral measure, see e.g.
[45].

The r.h.s. of (5.5) can then be written as

|52 — Zy) (o, )3
= MY (IZS)] > Glog 1? or T(S) € (A™™9)),  (5.9)

where given S C {1, ..., N} x Z2,
IS = {iefl,.... 1} : SN (Ten() x Z%) # 0.
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Thanks to Lemma 3.3, it can be shown that as N — oo, M‘;\’,"/’ converges to a
similarly re-weighted measure for the continuum time-space renewal process
introduced in Lemma 3.3, whose time component is the Dickman subordi-
nator (Ys)s>0 with exponentially weighted Green’s function Gy, see (3.37)
and (3.39).

Second Moment Bound via Renewal. We first explain the common steps
in bounding Iy ¢ and Iy ;. from (5.5), which also applies to the variance of
Zn (¢, ¥) and the mean squared error of later approximations. The common
feature is that they all have the same expansion as in (5.5), except the summa-
tion constraints are different.

Consider Ily . from (5.5). We first sum out the space variables in (5.5).
Recall (3.9) and note that

[ e == sup [Yn(w)| < [V ]lco. (5.10)

weZ?

so that in (5.5) we can bound

2
( > q\,ck,N(yk,w)wN(w)) <Ionlife < Il (5.1

2
weZeven

We can plug this bound into (5.5) and sum over the space variables in reverse
order, from y, x; until yz, x2, y1, thus replacing Uy (f; — dj, y; — x;) by

Un(fj —dj)and gy, .a;(yj—1.x;)* by u(dj — fj—1), see (3.40) and (3.3).
Finally, we sum over x; and observe that

2
> ( > soN(v)qo,dl(v,xl)) = > onen () qaa; (v — V)

x1€Z2 vezgven v,v/Gngen (5,12)

- wou(®).

where we introduced the function ®y. Substituting these bounds into (5.5)
then gives

Cllyll5
Oy.e < N Z Z Z

k=1 . inealorirleye di<fi € Ten (). ... di < fi € Ten (k)

k
[Tu@ = fi-0TNG - dj)}. (5.13)

j=2

‘DN(%) Un(fi —dy) {
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A similar estimate can be derived for Iy ., with a corresponding summation
constraint.

We now compute the limit as N — oo of the r.h.s. of (5.13). Recalling ¢
from (3.9), the local limit theorem (3.21), and (3.22), if d; /N — s € (0, 1),
then for ® in (5.12) we have

<I>N(;lv—1) 1= % Y on@ o) gaa (v — V)

V€ Len (5.14)
— // P(2)9()gs (2 — 2) dzdz' =: ®(s),
R2 xRR2

N—o00

where we note that, by the definition of | ¢||g, from (3.52),

t
| s = e, (5.15)

We will use the following result, which says that as N — oo, for each
| == (i1,...,0k) C {1,..., é}, the term in (5.13) converges to a limit that
can be interpreted in terms of the Dickman subordinator, as mentioned in
Remark 5.2.

Lemma 5.3 Let ®y and ® be defined as in (5.14). For any fixede > 0, k € N

and | :={ij,..., i} C {1,...,%}withi1 <ip < ... < g, we have
lim Z
m —
N—>oco N . . . .
di<fi €Ty, oo, die < fi € Ten (i)
k
CDN(le)ﬁN(fl —dy) { l_[u(dj — fi—DUN(fj — dj)} = 72(),
j=2
(5.16)
with
2() = // daj dby - - - day dby
a1<by € Te(ir), ..., ap<by Ef(ik) (5.17)
®(ay) Gy (b —ay) H;G (bi—aj)
1) Gy (b 1 jzzaj_bj_l v (D J )

where 1,(i) := (e(i — 1), €i], and Gy (see (3.39) and (3.37)) is the weighted
Green’s function for the Dickman subordinator with Lévy measure %]l ,1)()dz
introduced in Lemma 3.3.
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Proof If we introduce the macroscopic variables a; := d; /N, b; :== f;/N in
(5.16), the sums converge to corresponding integrals as N — oo (for fixed
& > 0), by the asymptotic expansions (3.3), (3.11), (3.42) and (3.43) for u(-),
al%,, Uy () (also recall (3.2)), as well as the local limit theorem (3.21). This
gives (5.16)—(5.17). O

We can interpret If () in (5.17) as the weight associated to a Dickman
subordinator. More precisely, recall that G is the weighted Green’s function
of the Dickman subordinator Y introduced in Lemma 3.3, and satisfies the
following renewal property [18, eq. (6.14)]:

Vs <t<t: Gpt—ys)

1
:// Gy(u—s) Gyt —v)dudv. (5.18)
ue(s,r), ve(t,t) vV—Uu

In (5.17), let us denote by Z3'(iy, . . ., ix) the integral where the extreme vari-
ables aj and by, are not integrated out but rather fixed to be s and ¢ respectively,
namely,

.’Zi’t(b = f s / db] daz dbz cee dak_1 dbk_l dak
s<by €T (1), ..., ax <t € Te(ix)
k—1 1 1
Gy(by — ——Gybj—aj);—— Gyt — ar).
9 (b S){]l:[zaj—bj—l 9(bj a")}ak—bk_l 9 (t — ap)

(5.19)

This is the weight of renewal configurations that only visit the intervals 7, (i),
..., Te(ix), and aj, b; are the first and last renewal points in 7 (i;), while
ﬁ comes from the Lévy measure of the Dickman subordinator. An iter-
ative application of (5.18) then shows that

Vi<|, Vs e T.(j), Vt € Tc(j') :

Z Z T i, i) = Go(t —9), (5.20)

k=1 j=iij<ir<...<ig—1 <ig:=j

which is just a renewal decomposition by summing over the set of possible
intervals 7, (i), ] < i < |/, visited by the Dickman subordinator Y, given that
s, t are in the range of Y.
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Applying Lemma 5.3 to (5.13) then gives

(log )
limsup Iy, < ClyI3, Y. > Z2Gy, ..., i),
N—o0 k=1

(i) €(AT P e

(5.21)

With the same arguments, we obtain a corresponding bound for Iy ¢:

limsup Ive < ClIVIS, >, D IXG...i. (522

N
- k> (log 12 0<ij <...<ip<1

To complete the proof of Lemma 5.1, it remains to derive (5.6) and (5.7) from
these bounds. We start with Iy ., which is more involved, but we first make
a remark.

Remark 5.4 (Variance bound) If we remove any constrainton k and (i, . . ., i)
from formula (5.5), summing over all k € Nand 0 < i} < --- < i < 2,
we obtain Var(Zy (¢, ¥)) (recall (3.19)). We thus have a simpler analogue of
(5.21) and (5.22):

o0

limsup Var(Zn (¢, ¥)) < ClIYl% Y. Y, T,k

N—o00 . .
k=1 0<|1<---<|k<é

< Clylg /f ®(5)Gy(r —5) dt ds

O<s<t<l1

1 1
<C||w||§o(f Gﬂmdz)(f <I>(s)ds)
0 0

= Cea ¥ 1% gl
(5.23)

where in the second inequality we applied the renewal decomposition (5.20),
with s and ¢ being the first and last renewal points, we denoted cy =
fol Gy (t)dr, see (3.46), and recalled (5.15). Note that this bound is the same
as the one in (3.55) and does not depend on €.

Bound for Iy .: proof of (5.7). We start with (5.21). The constraint
(Agnotrlple))c contains | = (iy, ..., ix) witheither 1 <i; < K, ori; > %—Kg,
orijy1 —ij,ij4o0 —ij41 < K, for some j (hence k > 3). We will treat the
three cases one by one.
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For the first case 1 < i} < K, omitting the factor ||y || , its contribution
is bounded by

(log 1)?

Y ... i)

k=1 O<ij<K;
i <...<ik<é

éfﬁnggcp(s) Gyt —5)dsdt < cpllollg, .. (5.24)

s<t<l1

where we applied the renewal decomposition (5.20) as in (5.23), and recalled
from (5.15) that ||<p||g Kee @ (s)ds. This gives the first term in (5.7).

For the second case Ik > g — K., omitting ||y || ,its contribution is bounded
by

(log 1)?

Z Z A (TN 1

k=1 0<|1< L<ip—1<ig
1
7_K€<Ik\€

// D(s)Gy(t —s)dsde

O<s<t
1-K e<t<l1

Kee ! Cliglig
< c(f G(t)dt)(/ dD(s)ds) <
0 0 log =

where in the second inequality, we used that | “tKet Go(ydr < C N Kee

Gy(t)dr < C/ log uniformly in ¢ small enough and a € (0, 1) (by (3.46)—
(3.47) and the ch01ce (4.2) of K;). This bound is much smaller than the second
term in (5.7).

For the third case with i1 —1i;,i;42 —ij41 < K, for some j, we need to
bound

(log 2)* k-2
W, = Z Z AL (TP TS
k=3 j=I

0<i1<...<ik\%
ij+1 _ij<Kg and ij+2—ij+1 <K,

< > //// dbdadbda”/ ds/ dr

0<|<|’<|”< beT, (i)
' ~i|<Ke a'<b'eTe (1)
i'—V|<K. a'eT.({")
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Gyt — a”).

1
X ®(s)Gy(b—s) 7 —b Gy(b'—d) a —b

where we again applied the renewal decomposition (5.20). Bounding the inte-
gral of Gy(t —a”) overt by cy = fol Gy (1) du, we obtain

i+K. +K;

ngi oy ///fdbda db’ da”

i=1 I'=i+11"=i"+1 beT, (i)

a'<b' eT, (i) (5.25)
a”eT (I//)
b / /
Gs(b—5)Gs(b —
x/ e ®(s) 19( 5) Gy ( a)ds.
0 —b  a =V
Note that if we restrict the sumto 2 < i’ —i, i” —i’ < K., then using (3.47), it is

2
not difficult to see that the integrals can be bounded by C % fol D (s)ds.

Complications only arise when i’ =i+ 1ori” =i + 1.
We will proceed in three steps. The following bound will be used repeatedly:

‘ )dx
—x

(5.26)

)
V8 € (0,1), Vz e [8,00) : / Gy (x) 10g<
0

log(1+ %
c g( 16)-
log 5

Indeed, splitting the integral over (O, %) and (%, 8) and exploiting (3.46), we
note that:

e for x < g we have log(1 + 5=) < log(1l + S/LZ) < C log(l + %) and

[ Gy (x)dx < £
gz

e forx > % we can bound Gy (x) < m and, by the change of variable
5
t:= 8_
8 00
log(l 4 ¢
f log(l—kL)dx:z/ LZ—i_)dth’cSlog(l—i-E)
0 d—x z t 1)

5

(5.27)

We now continue to bound the r.h.s. of (5.25).
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Step 1. Given i’ € Nand a’ € 7,(i"), we bound the integrals over a” and b’ in
(5.25):

i'+K
q 1

> / / da"db' Gy (b’ —a') ——

i//:i,+1b/67}(i’): b'>a
a//ef];: (i//)

e’

i Ky) — b
_ / db' Gy (b —a') log LT Ke) =0
g e — b

k)
[f dx Gy (x) log <1+ eKe )}
0 d—x

log(1 4+ =<K= )
c 28U T er=a)

§:=¢i’—a’

el'—a
log 77
where we used (5.26) and changed variable x := b’ — a’. Plugging it into
(5.25), we obtain
1 .
:  I+Kg
We<CY > /f db dd’
i=1 =i+, 7 )
a'eT, (i)
b 1 log(1+ X<
X / ds ®(s) Gy(b —5) — I . (5.28)
0 a —b>b log T

Step 2. Giveni € N and b € 7,(i), we focus on the integral over a’ in (5.28):

4K, /gv L loe(+ 2K )
a
S Je-y @b log 77ty
i+Ke e ek,
1 log(1 +
-3 [ sl (5.29)
Sy Jo el—b—x logy

by the change of variables x := ei’ —a’. We first bound the sum from i’ = i+2
onward, for which we note that for x € (0, ¢),

@ Springer
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i+K, .
1 1 I+ K 1)—>b—
Z — < ~lo 8( + & + ) X

“h—x Y T it —b—x

_ 11 ek,
T e Og( e+ 1)—b—x>

1 < eK, )
—log |1+
e —b

Moreover, by the change of variables x = g e/,

i'=i+2

N

fslog(1+€xﬁ)dx B 8/00 log(1 4 Kee') “
0 0 t+10g8

o
f e (t + log(1 + K,)) dt,
0

log L
08 X (5.30)

&

<
h log%

because ¢ + logé > log% and 1 + K e’ < (1 + K,)e'. Therefore

log(1 + £Xe log(1 + K ek,
Z / _ g( : < )dx <C og(1+ ) log <1 4 )
el log < log 1 . ei—b

Now for the case i’ =i+ 1, we have

/8 1 1og(1+€xﬁ)d
" X
o e(i+1)—b—x log}c

2 /2 log(1 + £Ke log(1 + K,) [ 1
< _/ g 20 4 ¢ loel ¥ Ko) : dx
0 log + log 2 e e(i+1)—b—x

log(1 + K 2
< C()g(—-‘_la)(l-l—log(l-i-L))
log < b

log(l + K K
—og( + 8)log<1+ £Re >

X
&

<C

log% ei—>b
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Substituting the above bounds into (5.28) then gives

W, < C’log(HK) Z f dbf ds ®(s) Gy (b — s)

IOgg =1 beT.
) ek,
X 10
: gi—b (5.31)
1 . ,
1 1 K € &l €l
_ c’og(—+15) Z/ dsCD(s)/ db Gy (b —5)

10g5 i_ 0 ax{s,e(i—1)}

eK,
X log( b)

Step 3. Given s € (0, 1), we bound the integral over b in (5.31).
e Fors € (e(i — 2), €i) we can bound, by (5.26) with § = &i — s,

/8 Gy(b—s) log (1

where the last inequality (which is very rough) holds, say for ¢ € (0, 4)
uniformly for s € (e(i —2), i) and K, > 1, because x := % > 218 >2
and

K.
. )db< o ogdl +§. )

log (5.32)

8|S

< C' log(1 + K,),

I log(1 + (eK¢)x) < s log((1 + K¢)x)  log((1 + K¢)2)
=2 log x = x;; log x - log2

< log(1 + Kp).

2
log 2

e Fors < (i —2) we can bound Gy(b —s) < CGy(e(i— 1) — s), see

(3.46), and
K
£ )db
el—>b

&i
[
e(i—1)
K, ,
dx < C'¢elog(1+ K,),
X

ol

by the change of variables x := ¢i — b and the estimate (5.27) with § = ¢
and z = ¢K,.
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Substituting these bounds into (5.31) then gives

1

2 ¢ e
W, gc”wz {/ ®(s)ds

log 1 — | Jeli-2)*

e(i-2)t
+ ¢ / @(S)Gﬁ(e(i—l)—s)ds}
0

1 (5.33)
log(1 + K.))? (! :
¢ doed £ Ko))” / @(s){z+ 3 eGﬁ(e(i—l)—S)}dS
log ¢ 0 =215
(log(1 + K))? (! (log(1 + Ke))?
<Cg—1‘€/ D(s)ds = Cg—18||</’||él,
log ¢ log

where the last sum can be seen as a Riemann sum and bounded by a multiple of

cy = fol Gy (x) dx. This bound gives the second term in (5.7) and completes
its proof.

Bound for Iy .: proof of (5.6). In view of (5.22) and (5.15), we need to show
that

! 1
V, = > 20 <cC (/0 (1) dt) @. (5.34)

IC{1,... 1}, 111> (log 1)2

By Markov’s inequality, we can bound

1 1 :
e < ———= NZ2() < —— 2.
v el > Mz <1ogg)2z ()

{1, 13, 111> (log 1)2 =il s

Recalling the renewal interpretation of If (I) after Lemma 5.3 and the renewal
decomposition (5.20), we can integrate over the first renewal visit s, the last
visited point u € 7, (j), the first visited point v after 7 (j), and the last renewal
visit ¢ < 1, to obtain the bound

1
Vi< —5 D /f/f ®(s) Gy (u —5)
(og3)?

QK% O<s<u<v<t<l
ueZ;(j),v>¢j

Gyt —v)dsdudvdet

vV—Uu
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ds dr.

1
—51
(log = Z // B() Gy u— ) log ——

1<j< 0<s<u ue7e(j)

Observe that the sum of the integrals is exactly the same as in the r.h.s. of (5.31)
with K, replaced by % Therefore the bounds leading to (5.33) also applies,
which gives

1\ ! C !
C”log(1+ )/ q>(s)ds<—1/ ®(s) ds.
(10g )? 0 log ¢ Jo

This matches our goal (5.34) and completes the proof of (5.6). |

5.2 Step 2: diffusive truncation in space

In this step, we introduce our second approximation Z(dlff) (¢, V) and show
.. tripl
that it is close to Zg\r,lf)e riple) (o, V).
Fora = (alV, a®) e Z2, recall from (4.1) the mesoscopic spatial square

Sen(@) :=((@— (1, ))VeN, aveN |

=(@" —1veN, aVVeN] x (@? — DVeN, aPVeN],
(5.35)

to which we associate the mesoscopic space variable a. We now per-
form coarse-graining in space by grouping terms in the expansion of

Zg\r,lf);riple) (¢, ¥) in (5.3) according to the mesoscopic spatial boxes visited
by the space variables v, x;, y;, w in (5.3). Namely, recall the definition (4.1)
of the mesoscopic time-space box

Ben (i, @) = (Ten (i) x Sen(@) N Zdep. (5.36)

We can rewrite (5.3) by introducing the mesocopic space variables bg, a;, by,
< 8k, bg, A p:

ipl
20, = gyl v)
(1og b2

ZZZZ

i )EA(“‘)[“PR) boeZ? ay, by, ...,ax, by € 72

.....
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(di,x))eBen(ir,a1)  (di,x)€Ben (i ar)
(f1,y0)€Ben(i1,b1) (ks i) €Ben (i, br)

with d1 < fi with di < fx
X ( > en @ qoa (v, xl)) Xay, f1(x1, y1)
VES N (D)NZ2,ep

k
X { l_[ qfi1.d;(Vj—1,xj) Xa;, f;(xj, yj)}
j=2

X ( Z Z q fi,N Ok, w) 1//N(w)). (5.37)

Ak1€Z% weSen (Ar1)NZE

even

We now perform a diffusive scale truncation by replacing each X4, 7. (x;, ;)

in the above expansion by its truncated version X L(i?iff? (x;, y;) defined in (4.10).
Let us stress that

X\, ) =0 forx e Sen(@). y € Sen(b) with b —a| > M,.
(5.38)
Furthermore, we restrict the mesoscopic space variables (a;, by, ..., ax, by)
in (5.37) to a “diffusive set” that depends on the initial and final space variables
bg and ai 1, and time variables (i := 0, iy, ..., ig, ik+1 := %):
(diff) . 272k
S;b(),ak+l L {(a19 blv LRI akv bk) € (Z )
st.V1 < j <k, |bj —aj| < M.,
and V1<) <k+1, Jaj=bjoil < Meyfij —ij1 |-
(5.39)
Remark 5.5 Once (if, ..., i) € AS‘O iPle) are grouped into time blocks, see
Definition 4.1, we can then group (ai, by, ..., ar, by) € Aic,lgfg into space-

blocks, see Definition 4.2. The constraint Agigfg then maps to the constraint

ALY defined in (4.6).

More explicitly, we can approximate Zg\l,lf);riple) (¢, ¥) from (5.37) by
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(log 1)?

I 1
Zye @) = adln (g ) + Z >

k= 1(II I)GA(notriple)
> >

) .
bo,ax+1 €Z (a, by, ...,ax, bk)eAi‘;igg),ak+1

)RS Y. en0o

(dr,x1)€Ben(i1,a1) (di,xk)€Ben (ik,ar) yoeSen (00)NZ2 en
(f1.yD€Ben(i1.01)  (fi, yx) €Ben (ik,bor)

with d1 < f1 with di < fx
k
diff
{qu, 1y 1, 6) X (), y,)}
j=1
> N Ok X)) YN (i) (5.40)

Xk1E€SeN @41)NZEyen

where fj := 0. The main result of this subsection is the following, where the
approximation error is much smaller than Var(Zﬁ,Af (@, ¥)) in (3.55).

Lemma 5.6 (Diffusive bound) Recall from (4.2) that M, = log log% and
recall || - ||g, from (3.52). There exist ¢, C € (0, 0c0) such that for ¢ > 0 small
enough, we have: for all ¢ with ||g0||é] < oo and ¥ € L®(R?),

. diff tripl 2 —_cM?
limsup (V0 — 230N . v |2 < Ce Mgl 1w 1%
N — o0 with Ne2N

(5.41)

Proof We argue as in the proof of Lemma 5.1. Note that the chaos expansion

for Z(dlf) is a restricted sum of terms in the expansion for Z(no Pl que to

the followmg two effects:

(D) the replacement of Xa;. ¢ (xj,yj) by X, (dlff) (x j»yj) (cf. (4.10)—(4.9)
and (3.29));

(Il) the restriction of (a;, by, ..., ax, by) to A%

e;bo, k41
Since terms in the chaos expansion are mutually L? orthogonal, we can write

[(Z8 — Z000P9) (o, )2, = Ty + Ty, (5.42)

where Iy . and Il y . are the squared L? error as we first make the replacement
in (I) and then impose the restriction in (II).
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To be more precise, we can define X (SuPerdlff)( y) by the equality
Xd f(x y) _ X(dlff) (x y) + X(superd1ft)( ) (5‘43)
In view of (3.30) and (3.40), we define
F7(diff) diff
UNldf( y) =E[X, (1 )( »2], (5.44)
Ty o y) = E[X “”p"”d‘“% el (5.45)

Note that X (Sl;?erdlff) (x,y)and X, (dlff) (x, y) are orthogonal in L2, see (4.10)—
(4.9) and (3.29). As a consequence 1f we plug (5.43) into (5.37) and expand
the product, we obtain

o=y X% X o ¥

k=1 (no triple) bo.bo’ (d1,x1)€Ben (i1,a1)  (di,xk)€Ben (ik,ar)
..... Ae 0, 0 2 A X
USROS ar. by, ..a. b €z (f1, VI)EBZN(H by) (fk-)’k)EBiN(lkqbk)
with d1 < f with di < fie
x ( Y en@en®) qoa (v x1) qoa (v’,xn)
UESSN(bo)ﬂZg\,en (546)

V' €Sen (00" )22 en

k 2
X { l_[q;j/-,l,d_/-()’j—hxj)z} ( Z qf.N YV, w) 1//N(w)>

Jj=2 WL yen
f(superdlft) —(diff)
<y TIoNER e TT U600,
JC{l,. k) T|>1 jed Jell,. kN
The term Il ¢ in (5.42) accounts for the further restriction to (a;, by, ...,
(diff) (diff) / / 2
ag, by) € ./éls;bo’ak+1 N ./48;%’&:Hl for some by, bo’, ax+1,a),; € Z-, and
hence
| Gogz 2
IR )3
k=1 i eAlmoiple) bo.bo’,ax41.8) . €Z? y
@1.br. i b ) WASE:))’-HLH )

T S >
(dy,x1)€Ben (i1,a1)  (di,xk)€Ben (i, ak)

(Sr.yD€Ben(i1,b1)  (fi,yk)€Ben (ik,b)
with d1 < f1 with dj < fx

x ( > on () on (V") qo.ay (v, X1) g0, (V' x1)>

veSen (bg) chvcn
v eSey (bo’ )ﬂZeven
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k

—(diff) 2 77(diff)

UN,dh_ﬁ(xl,yl){ [Tara;i1.xp) UN,d,.,_f,«x,-,yj)}
Jj=2

x( > qfk,N(yk,xH')qfk,N(yk,x,2+1>wN<xk+.)1//N(x,L+1>). (5.47)

Xk 41 €SeN (A 1IN Ty
’ ’ 2
V1 €SeN @y ) Vgyen

To prove (5.41), it suffices to show that for some ¢, C € (0, 00),

. —cM? 2 2
limsup Iy < Ce " lollg, ¥]5 and
N— o0 with Ne2N

limsup Iy, < Ce M [l W12 (5.48)
N—o00 with Ne2N

We need the following bound, which follows easily from Lemma 3.5. Recall
Uy (n) and U y(n) from (3.35) and (3.40).

dc,Ce€(0,00) sit. VN €N, e>0,d< feNwith|f —d| <eN:

SRR y) < Ce M Tn(f - ). (3:49)
yeZ?

We are ready to bound Iy ¢ in (5.46). As in the proof of Lemma 5.1, the last

term (ZweZZ q f,N Yk, w) 1#1\/(11)))2 can be bounded as in (5.11). We then
sum over all space variables in reverse order from yy, x; until y;. We will use
erzz qrd(y, x)? = u(d — f) by (3.3), apply (5.49) together with the fact
that

—(diff 77 U
> Uiiaye ) < LT ~diy =0 =Tn(f ~d). (550
yez? yezZ?

and finally sum over x1, noting that, by (5.12),

Z Z Z Z on () o (V) qo.a, (v, X1) go,a, (V' x1)

a€Z? x1€8en (@1) by,by €72 veS,y (bo)ngm

U/ESsN(bO/)ﬂngen (551)
’ ’ di
= Z N (W) on (V') q2ay (v = V') = NCDN(*)-

N
v,v' €72

‘even
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We then obtain an analogue of (5.13):

(log 1)?

Iy, < C||1/f||2 Z 3 3

(i1, ipeAletrle) di<fi e Ten (i), .., di < fi € Ten (i)

—eM2|J| d;
5 e

Ky 71

k
X { l_lu(dj — fi-DUN(S; —dj)}-

j=2

For k < (log é)z, recalling that M, = loglog %, we can bound for ¢ > 0 small
enough

[ > Ce—ch”'] = C{(1+e MYk _ 1)
Jc{1

Sl k) 1121
< 2Cke M < 2Ce M

We now plug this bound into (5.52) and sum freely over all 0 < i < ... <
i <L AN = oo, by Lemma 5.3 and similar to (5.21), we obtain (with
c= %)
(log )*
limsup I, < C |yl e Z Y L...iw,
N—00

O<i<.. <|k< 1

(5.53)

The renewal decomposition (5.20), together with ¢y = fol Gy(x)dx < oo,
yields

oY ..

k=1 0<ip <...<ik\é

1
= f/ D(s) Gyt —s)dsdr < cly/ O(s)ds. (5.54)
O<s<t<l 0

By (5.15), this proves the first bound in (5.48).
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We now prove the bound on Il y . in (5.48). Note from (5.39) that

( A(diff) )c

€;b0, 841

Il
C~

{|b[ —ay| > ME} U

o~
o
LR

{|aj—bj_1|>Mg ij—ij_l}. (5.55)

—

J

The first union in (5.55) gives no contribution to (5.47) since U%fg’) f (x,y)=0
whenx € Sgy(a@) and y € Sy (b) with b —a| > M., by (5.38) and (5.44). Tt
remains to consider the contribution to (5.47) from the second union in (5.55),
namely, |[a; —b;_1| > M,/ij —i;_ forsome j € {1,...,k, k+1}.

In contrast to the bound on Iy . where a small factor C e M, : comes from the

boundon ) y; €22 Uﬁ?‘;‘j‘;ﬁfﬁ (xj,yj)in(5.49),in the bound for Il y ., the same

small factor now comes from the following estimates: there exists ¢ € (0, 00)
such that forany i < ¥/, f € Ton(i), d’ € Ten(i), b € Z?, and y € Sen(b),
we have

_ 2
> 3 qra(.x) < CeoME, (5.56)
a/eZ?: |a/—b|>M/T—i X'€Sen (@)
a2
2. Y g < CeMu@ - ),

a'eZ?: |a' —b|>MT—i X'€Sen (@)
(5.57)

where recall from (3.3) that u(n) := Zzezz qn (2)* = q2,,(0). The first bound
follows from the fact that g, (-) has Gaussian tail decay. The second bound is
a consequence of the first bound, because sup, g, (z) < % < Cu(n) by the
local limit theorem (3.21) and (3.3).

The bound on Iy . then follows the same steps as that for Iy ., where we
take a union boundoverall 1 < j < k+1 < (log %)2 +1with|a; —b;_| >

Mg /i —ij_q.

e For j = k + 1, bounding v by [|¥||s and applying (5.56), the sum over
w, w and ag. 1, a;( 41 in (5.47) under the super-diffusive constraint |81 —

. 2 .
bi| > M,, /% — i leads to an extra factor of Ce~M: compared with the

bound when this constraint is not present (see (5.11)).
e For 2 < j < k, by (5.57), the sum of qu_l,dj(yj_l,)cj)2 over x; in

. . . . . 2
(5.47) under this super-diffusive constraint gives an extra factor of Ce =Mz

compared to the case when this constraint is not present.
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e For j = 1, given by, b}, € 72, we could have either |a; — bg| > M:+/i1
or |a; — by| > Mm/_], either way, given v € S;n(bo), v € S;n (b)) and
d) € YLN(n) the sum of go 4, (v, x1)q0.4, (V', x1) in (5.47) under this super-

e L 2 .
diffusive constraint gives a factor Ce~“M: compared to the case when this
constraint is not present.

Since there are at most (log é)z + 1 choices of such j, this leads to the same
bound we had for Iy ¢ in (5.53), which establishes the second inequality in
(5.48).

This completes the proof of Lemma 5.6. O

5.3 Step 3: kernel replacement

In this step, we introduce a last approximation Z(Cg) - (@, ¥) and show that it is

close both to Z(dlff) (¢, ¥) and to the coarse-grained model Z; ce) (o, 1//|®(Cg))
This completes the proof of Theorem 4.7.

Let us first summarize the previous steps. So far, we have performed
coarse-graining by grouping terms in the chaos expansion for Zy (¢, V)
in (3.19) according to the mesoscopic time-space boxes Bgy (i, a) visited
by the microscopic time-space renewal configuration (ny, z1), ..., (ny, 2r)
in (3.19). Imposing suitable restrictions, we have defined the approxima-
tions Zy2"" (g, ) in (5.3) and 2" (g, ¥) in (5.40). The next step
is to replace the relevant random walk transition kernels in the expansion
(5.40) for Z(dlff) (¢, V) by heat kernels as in (2.6), i.e., replace the random
walk transmon kernels g, | 4;(yj—1,x;) connecting the microscopic points
(fj_l, yj_l) S BSN(ij_l, bj_l) and (dj, xj-) S BSN(ij, aj) by a heat kernel
that depends on the mesoscopic time-space variables (i;_1,b;_1) and (i}, a;).
However, such an approximation is only good if i; —i;_1 is sufficiently large,
say at least K, = (log é)6 as in (4.2).

This naturally leads to the decomposition of (iy, ..., i) into time blocks,
where consecutive i;_1, i; with distance less than K, are grouped into a single

block. The constraint .A(no triple) ; in (5.2) ensures that each time block consists

of either a single i;, or two consecutive ij_p, i;, leading to the definition of

time blocks i in Definition 4.1, while A "P1®)

1
Aino tiple) ; ntroduced in (4.4) for a sequence of time blocks. Given a sequence

of time blocks (|1, ey r) visited by the microscopic time-space renewal con-
figuration, for each time block i; = (i, i;), we can identify the first mesoscopic
box S.n(ay) visited by the renewal configuration in the time interval 7y (i),
as well as the last mesoscopic box Sgy (@) visited by the renewal configura-

is mapped to the constraint
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tion in the time interval 7y (i}). This produces a space block a; = (a, ay) as
in Definition 4.2.

Summarizing: we can rewrite the expansion for Z(dlff) (¢, V) in (5.40)
according to the sequence of visited time-space blocks (I1, a1) (Ir, a,),
where the diffusive constraint .A( i ¢ 0 (5.39) is mapped to Ag b c ) defined in
(4.6) for the sequence of space blocks See Fig. 2.

We are ready to define our last approximation Z(Cg) (¢, ¥): having rewrit-
ten the expansmn (5 40) for Z(dlff) (¢, ¥) in terms of the visited time-space
blocks (|1 ,a1), ..., (Ir, a,),we replace each random walk transition kernel con-
necting two consecutive time-space blocks by a heat kernel depending only
on the mesoscopic variables (i., a.). More precisely, given ( fi-1,yj-1) €
BaN(i/j_l,a’j_l) and (dj,xj) € Bgn(ij,a;), we make within (5.40) the
replacement

2 /
o Sha—i_ @i~ a1, (5.58)

qfjrdy (Vj=1.Xj) > —

where the prefactor 2 is due to periodicity (note that i; — i/j_1 > K, by the

constraint :4?0 tiple) from (4.4)). We similarly replace the “boundary kernels”
in (5.40), namely
N 1

2 yo € Sen (o),
00, 11) = g 845, G100 T g ) € Bavir.an),

(5.60)
(fk’ Yk) € BSN(ik’ bk)v

Xkt1 € Senv(@r41),
(5.61)

2
feN ks Xk 1)~ — 81y @1 — by) - for

. i t
where the constraint A(nomple) (which maps to A(no riple)

and -~ —ix = K. We thus define Z( & . (¢, V) as the expression obtained from
(5. 40) via the replacements (5.58) and (5.59)—(5.61) (this description is useful

to compare ngi) (¢, ¥) with Z(dlff) (@, ¥)).

) ensures i > K,
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An alternative, equivalent description of Z( g) - (¢, ¥) is through the follow-
ing formula:

(log 1)?

208, ¥) = %g%«o, w>+% > > < > w(v))

— 2
r=1 ('l 0 )EA(nomple) VESen (aé)ng\'en
i)

ab,arﬂeZ .@y,. a)eA a4

Hgl(,, @ —a DO (i1, &)

A

1@ — 2y )— > wmw)) (5.62)

wESsN(aH—l)nZe\en

where i, := 0and ®(Cg) (ij, a;) is the coarse-grained disorder variable defined
in (4.11), Wthh collects the contributions in (5.40) from a given visited time-

space block (i j»a;), and it arises thanks to the factorisations induced by the
replacements in (5.58) and (5.59)—(5.61).

Remark 5.7 Only the prefactor % arising from the last replacement (5.61)
appears explicitly in (5.62): all other factors of % arising from (5.58) and

(5.60) have been absorbed in the coarse-grained disorder variable @5\?‘2 (T jis a i)
following the replaced kernel ¢, see (4.11).

Finally, to compare Z( g) (¢, ¥) with the coarse-grained model %(Cg)
(o, ¥ |®(Cg)) defined in (4.8), we introduce the notation

2 2
oM (ap) = m( > «w(v)), M(ayq) = m( > wmv)),

VESe N () NZ3yen WESeN (@r4+1)NZ2en
(5.63)
which allows us to rewrite (5.62) more compactly as
1 o oz P2
230, ) = 3810 9) + = Z 3 3 o™ (@)
r= 1a0 ary 72 ('I’ ..... Ir)eA(notrlple)
TR R

#8021 (5.64)
,
X { Hg%(iz—i}_l)(al —a_)) ®§\C/’g€)(il, 5-1)}
=1
x 11y @1 —a) ¥ @)
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Compare this with Q@(Cg) (o, W|®§$%3) in (4.8), the only difference is that ¢,

and ¥, in (4.8) are now replaced by goéN) and w;N) .
The main result of this subsection is the following L? approximation, which
completes the proof of Theorem 4.7.

Lemma 5.8 (Coarse graining) Recall Zg\c,ﬁff)(go, Y) from (5.62), %(cg)(go,

,€
V10%) from (4.8) and | - g, from (3.52). There exists C € (0, 00) such that
fore > 0small enough, we have: for all ¢ with ||gollél < ocoandy € L®(R?),

: diff 2 C
imsup  [(Z252 (0, ¥) — 290 @ )72 < @nwné] 1113

N—o00 with Ne2N e

(5.65)

. (c®) (cg) (cg) 2
1 - Z = 0. .
voolim 2 e, vOyD) = 235 @ 1 = 0 (5.66)

Proof We first prove (5.65). To define Zyy (¢, ) from Ziy' (¢, ) in (5.40),

€
we first replaced the summation constraint 1 < k£ < (log %)2 in (5.40)
(on the number of visited mesoscopic time intervals) with the constraint
I <r < (log é)z in (5.62) (on the number of visited coarse-grained dis-
order variables), where each coarse-grained disorder variable can visit either
one or two mesoscopic time intervals. This amounts to adding some terms
with (log %)2 < k < 2(log é)z in (5.40). The error from such additions is
bounded as in (5.34) and agrees with the bound in (5.65). We then replaced
the random walk kernels by heat kernels as in (5.58) and (5.59)—(5.61). We
will make these replacements sequentially and control the error in each step,
showing that it is bounded by the r.h.s. of (5.65).

First note that the replacement (5.59) simply changes the first term in (5.40),
which is a deterministic constant. Since the Lh.s. of (5.59) converges to the
rh.s. as N — oo, see (3.26), the L2 cost of the replacement (5.59) vanishes
as N — oo, which does not contribute to the bound in (5.65).

Next note that thanks to the diffusive constraint A% : in (5.40), which

£, b(),ak+
- (diff
maps 1o Ay | in (5.62), the replacements in (5.58) and (5.60)(5.61) are

all of the form

2
gs.t(x,y)  ~ mg%(ij_i)(b_a)

for some (s, x) € Ben (i, @) and (¢, y) € Ben(j, b), with (t =5, y —x) € Z3 1,

j—i> Kg, and |b — al] < M./j — i (recall from (4.2) that M, = loglog é).
We can then apply the local limit theorem (3.21) and refine the bounds in
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Lemma 3.2 as follows:

T
456, y) =28 (v — v exp | 0( ) + 0 (=)

O(M_é‘)
=2gis(y —x)e KN

2 sNg%(y—x) 0( M )
YA P eK.N
SNgJT(b a) Py .
2
u -
- ié’a(b - a)eO(aKszv) eN( -1
eN"™ = P

|y—x|2+|b—a|2}

XeXp{_ r—s j—i

where since |(f —s) —eN(j—i)| < eNand |(y—x)—+/eN(b—a)| < V2eN
we can bound

eN(G—1 1 _|y—x|2 |b—a|2_ M,
s _1+0(K5)’ t—s + j—i _0<x/KT>’

so that for some ¢ > 0, uniformly in ¢ > 0 small enough and N large, we
have

e_CMe/«/E < M < eCMs/x/KT_ (5.67)
N8 =] (b—a)

Namely, every time we replace a random walk kernel by the corresponding
heat kernel, we introduce an error factor of e=¢Me/ VK,

We first estimate the cost of the bulk replacements (5.61). Consider each
term in the sum in (5.40), which we abbreviate by Z; for simplicity, where i
gathers theindiceskandi;, a;, b;, (d;, x;), (fj, y;) for1 < j < k (excluding
bo, yo and ag41, xx+1). Note that within each term Z;, we replace at most
(log %)2 random walk kernels, which amounts to replacing Z; by y; Z; with
¢—clog £’ Me//K: <y < eclos $*Me/VE We then have

2
4 M C
Bl(iZi = Z)"1=(v = D*EIZ]1<C (log })" L= BIZ}< -~ EIZ),
0 =

€ €

(5.68)

since M, = log log% and K, = (log é)6 by (4.2). Since the terms Z; in the
sum in (5.40) are mutually orthogonal, we can sum the bound above over i
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and we see that the contribution of the bulk replacements to (5.65) is at most

C
limsup  Var(Z\0 (0. 9)) < —IvIZlel,.  (5.69
log N— o0 with Ne2N logg

where the last bound follows from (5.23). This agrees with (5.65).

We next consider the boundary replacements (5.59) and (5.61). Replacing
the leftmost random walk kernel gq 4, (yo, x1) in (5.40) by the corresponding
heat kernel introduces an error factor e~Me/VKe < Yyo,(d1,x1) < eteMs/VK:
see (5 67), which affects the L norm by {3, on (50) (Vyo.(dr.x1) — DI* <

Mg {Z Yo loN (yo)|}2 (no disorder variable is attached to yg). Thus, as in
(5 69) the left boundary replacement contributes to (5.65) at most by

2
e

M . diff ¢
—=  limsup  Var(ZP (el ) < — =< IV I%lelg,
¢ N— oo with Ne2N (log 2)

which is a stronger bound than (5.65). The right boundary replacement (5.61)

is controlled in a similar fashion, which completes the proof of (5.65).
Lastly, we prove (5.66). As noted before, the only difference between

Z(Cg) (o, ¥) and Z; (ce) (o, 1//|®(Cg)) is that ¢, ¥ in (4.8) are replaced by

(N) w(N) in (5.64). For a € Z?2, e (@) is the integral of ¢ over the square
8 (@) = (Jea— (e, 4/€), /€], by the definition of ¢, in (4.7). On the other
hand, by the definition of (péN) in (5.63) and ¢y in (3.9), s(p( ) is the integral
of ¢ over the region S¢(a) := Uvesg(a)ﬂ(zgven/f) (xeR?:|x—v|; < \/Lﬁ}.
The difference between S, (a) and Se (a) is contained in a shell of thickness
1/+/N around the boundary of S,(a). Therefore, if ¢ : R> — R is locally
integrable, then (p( ) converges pointwise to ¢, as functions on Z?, while if
¥ : R? — R is also bounded, then l/f(N) converges uniformly to .. If ¢
has bounded support, then (5.66) is easily seen to hold since we already have
control over Var(ZE\f‘iz (¢, ¥)) that is uniform in N. General ¢ can then be
handled by truncating its support. This concludes the proof of Lemma 5.8. O

Combining Lemmas 5.1, 5.6 and 5.8 then gives Theorem 4.7.

5.4 A second moment bound for the coarse-grained model
In this subsection, we prove a second moment bound for the coarse-grained

model, which is loosely speaking the analogue of Lemma 3.5. This is needed
when we bound the fourth moment of the coarse-grained model in Sect. 8.
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First we 1ntroduce some notation. Let us define the following variants of

1
Aino triple) and .A b c (see (4.4) and (4.6)), without dependence on the bound-
ary condltlons
= (notriple) . e e
A, = {tlmeblocks i< ... <
suchthat [i;| < K, Vj=1,....r
and dist(ij—1, 1) > Ko Vj=2,....r}, (5.70)
- (diff = 2
Ai .= {space blocks ay, ..., a;,
such that |a;] < Mo/li;| Vj=1,....r,

dist(@,_1,8;) < M, /dist(i;_1, 1)) Vj:2,...,r}. (5.71)

Recall the definition (3.40)-(3.41) of U(n — m, x — y). We introduce an
analogous quantity for the coarse-grained model defined in (4.8) (illustrated
in Fig. 2). Given n € Ny and x € Z?, we define a coarse-grained analogue of
Xg, r(x,y)in (3.29):

Z A(,C,f) (n, x)

OV ((0,n). (0,) ifn < K,

(log 1)?

Z 3 Yo eya.an

= (notriple) - (diff)
: % i, e @ ar>A‘

i=0, i[=n =0, al=x ifn > Ke,
,
x 1_[ 81;-i_p@ji—a )®( g)('w a;)
) (5.72)
and define
TRE (N, %) = E[(2,2 (n, %)), (5.73)

We prove the following analogue of Lemma 3.5 (with an extra sum in the
time index).

Lemma 5.9 For every ¢ € (0,00), there exist C = C(c) € (0,00) and
ro = Ag(C) € (0, 00) such that: there exists eg > 0 such that forall ¢ € (0, &g)
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and ) € (io, 00), we have

2/e

5 — C
limsup Y e " 3 VXTRE M x) < — . (5.74)
N—o0 n=0 xe72 IOg

>

Proof The basic strategy is to first undo the replacement of the random
walk kernels by heat kernels in the definition of the coarse-grained model
Zﬁg) (¢, ¥) in Sect. 5.3. We then undo the summation constraints imposed in

,€
Sects. 5.1 and 5.2, which allows us to bound UE\?% (n, x), the second moment of

., A(,Cf) (n, X), in terms of the second moment of the original partition function,
so that Lemma 3.5 can be applied. The details are as follows.

Let usrecall how the coarse-grained model Zx%’; (¢, ¥)in (5.62) was defined

from Zggf) (¢, ¥) in (5.40) by replacing the random walk kernels with heat
kernels in the chaos expansion (see (5.58), (5.60)—(5.61)). It was shown in
the proof of Lemma 5.8, in particular, in (5.67) and (5.68), that the aggregate
effect of such replacements is to change the second moment by a factor that
is bounded between 1 — C/ logé and 1 + C/log é We can therefore undo
these replacements, which only changes the second moment by a factor that
is bounded between 1 — C’/ logé and 1 + C’/ log% (< 2 for & small). More
precisely, define

2 o0
Ay.e(N,X) = — > > En(ni, 21)
r=1

ny<..<n,
..... 2 €77
,0), (ny,zr)€Bey (N,X)

-
X 1_[ Gn; 10 (Zj—1,2)) EN(nj, 2j),

j=2

which is obtained by reversing the replacements of the random walk transition
kernels by heat kernels in the definition of .2 ]\(,ff) (n, X)in(5.72), plugging in the

chaos expansion for the coarse-grained disorder variables G)g\c,i) from (4.11),
(4.10) and (4.9), and then relaxing the constraints on the time-space summation
indices. The pre-factor 2/¢ N comes from the first @53%’2 in (5.72) and is a
normalising factor in its definition in (4.11). Since relaxing the summation
constraint only increases the second moment because the terms of the chaos

expansion are L2 orthogonal, we have that for ¢ sufficiently small and all N
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large,

TNE(n,x) = E[(2,2 (n, )7
<2E[(Xy (N, %))%]

8 —
> Un(n—m,x —y),

- 2
N )eBun 0.0y (nx)eBuy (0.)

(5.75)

where we have used the definition of U n(n — m, x — y) from (3.40)-(3.41).
Substituting this bound into the Lh.s. of (5.74) then gives

2/e
Z —en Z WS U(Cg)(n X)
xeZ?
8 2/¢e )
—Agn c/e|x| 77 N N
SRR DID 302D SYCCLND DI MR}
(m,y)€Ben (0,0) n=0 xeZ? (n,x)€Ben (N,X)

We now observe that for (m y) € Ben(0,0) and (n, x) € Boy(n, X) we have

"W € n—1n+1]and P22 lx— y' € [IX|—+/2, |X]++/2], hence en =

and \/g|X| = ’i/ﬁy + 0(\/_). Recalling that |Ben (0, 0)] = 0((8N)2), the
change of variables (n — m, x — y) = ({, z) then yields

2/e
lim sup Ze —hen Z OVE ﬁx,gz (n, x)

N—o0 n=0 xeZ?2

JE I
C lim sup Ze Zecﬁ Un(,2)

<
N—oo 1=0 272
3N 3N [N | [
< Climsup ey Un() < Climsup e~y —Gg(—)
N—o00 % N—oo ; N N

C/ —(h—cC )AGﬁ(S)dS<C‘/\/7€ ”ng(s)ds-i-C/ e~ Gz}(S)dS
0

S_

C
logi’

N

where we applied Lemma 3.5 and (3.43) in the second and third inequalities,
then we chose A > 2cc? =: Ao and applied (3.47) in the last line. This
concludes the proof of Lemma 5.9. O
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6 Higher moment bounds for averaged partition functions

In this section, we bound higher moments of the averaged partition function
Zg (¢, V) (see (3.8) and (3.19)) in the critical window as specified in Theo-
rem 1.1 and (3.11)—(3.12). As noted in Sect. 1.5 and the discussion therein on
Schroédinger operators with point interactions, these bounds are very delicate
in the critical window. Unlike in the sub-critical regime considered in [17,20],
where the chaos expansion of Z’;f, (¢, ¥) is supported (up to a small L2 error) on
chaoses of finite order independent of N, for 8 = B in the critical window,
the expansion is supported on chaoses of order log N, so hypercontractiv-
ity can no longer be used to bound higher moments in terms of the second
moment. Instead, the expansion has to be controlled with much greater care.
Bounds on the third moment were first obtained in [19]. Bounds on higher
moments of the averaged solution of the mollified stochastic heat equation
(continuum analogues of Z']‘i, (¢, ¥)), for ¢, ¥ € L2, were then obtained in
[51] using techniques from the study of Schrodinger operator with point inter-
actions (also called Delta-Bose gas) [39,40]. The recent work [26] studied the
semigroup associated with the Schrodinger operator and allowed ¢ to be delta
functions.

Our goal is to develop similar moment bounds as in [51] for the aver-
aged polymer partition function Zﬁ, (¢, V). The approach of [51] used explicit
Fourier calculations and the underlying space-time white noise, which can-
not be easily adapted to lattice models with general disorder. We develop an
alternative approach, where the key ingredient is a functional inequality for
the Green’s function of multiple random walks on Z? (see Lemma 6.8). This
leads to Theorem 6.1, which is the main result of this section, where instead
of working with ¢, ¥ € L? as in [51], we will work with weighted LP—L4
spaces with % + % = 1, which allows ¥ (y) = 1 and ¢(x) = s_l]lmgﬁ
to be an approximate delta function on the scale /¢, and it also gives spatial
decay if the support of ¢ and ¢ are far apart. Our approach is robust enough
that it can be applied the coarse-grained disorder variables ek g), which can
be seen as an averaged partition functions (see Lemma 7.2), and it can also be

adapted to the coarse-grained model 27, (ce) (p, W|®(Cg)) as we will show in
Theorem 8.1.

6.1 Statement and proof

Given a countable set T and a function f : T — R, we use the standard
notation

Ifller = 1 fllercm)
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1/p
= (Zlf(z)lp) for p € [1,00), | flle :=sup|f(2)], (6.1)

z€T zeT

while we let ||g]|, denote the usual L” norm of g : R?2 — R. We will ignore
parity issues, since this only affects the bounds by a constant multiple: for
a locally integrable function ¢ : R*> — R, we consider its discretization
: Z* — R in (3.9) to be defined on the whole Z? (rather than just on
even) Here is the main result of this section.

Theorem 6.1 (Higher moments) For N < N € N, let Zﬁ,ﬁ (p,¥) =
Zz’v (@, ¥) be the averaged partition function in (3.8), where B = By =
By () satisfies (3.11) for some ¥ € R. Fix p,q € (1, 00) with % + ql =1,

an integer h > 3, and a weight function w : R* — (0, 00) such that log w
is Lipschitz continuous. Then there exist C,C' < oo such that, uniformly in
large N < N € N and locally integrable ¢, ¥ : R? — R, we have

E[(2h @) - E[zﬂﬁ (v, w>])h]|

C YN
< — © lwx
e 15 W [ vt vontals
c ¢
< —=— |2 i rwtsn,
log(1 + %)

where oy, VN, wy : Z?> — R are defined from ¢, ¥, w : R> — R by (3.9),
we denote by B C R? a ball on which r is supported (possibly B = R?), and
we set By := B\/N.

Theorem 6.1 will be needed later in the proof of Lemma 7.2, where we
consider N = ¢N with ¢ € (0, 1); this is why we allow for 8 = B with
N>N.

Remark 6.2 The second line of (6.2) follows from the first line by Riemann
sum approximation (note that w(x+y y =04+ oL )) w( f) by the Lips-
chitz continuity of log w).

Remark 6.3 Typically we will let w(x) = e~ !, which allows ¥ = 1 provided
¢ decays sufficiently fast at co. If 1 is bounded with compact support, (6.2)
also gives exponential spatial decay as the support of ¥y moves to infinity. This
answers the conjecture in [51, Remark 1.2] in our lattice setting, which can be
extended to their continuum setting.
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Remark 6.4 Similar to [S51, Theorem 1.1], we can show that the moments in
the Lh.s. of (6.2) converge as N — oo. However, the limits are expressed as
series of iterated integrals and are not very informative, so we will not state
them here.

Remark 6.5 In the bound (6.2), we could first assign ¢y, Yy : 72 - R
and then define the corresponding ¢, ¥ : R> — R, e.g. by piecewise con-
stant extension ¢(x) = @y ([v/Nx1) and ¥ (y) := ¥n([vNx), because
Zﬁ, (¢, ¥) depends on the functions ¢, ¥ : R*> — R only through their dis-
cretizations ¢y, ¥y in (3.9), see (3.10).

In particular, we can apply the bound (6.2) to the point-to-plane partition
function Zﬁ,N (0) defined in (1.3). More precisely, we can write Zﬁ,’v 0) =

Yy 200, y) = 2 (p, 1) with gy (w) = Nlgy=o) and Yy (z) =

1(z) = 1, cf. (3.7) and (3.10), which correspond to ¢(x) := ¢on ([ Nx]) =
1—-1

N]l{\x1|+|x2|<1/ﬁ} and ¥ (y) = 1. Note that [|¢], = O(N" 7). Then, apply-

ing (6.2) with w(x) = el implies that for any integer 4 > 3 and for any
p > 1, there exists Cp, , < oo such that forall N € N,

(280 -5z 0))']| = [z o - 1] < cpuntt.
(6.3)

Since we can take any p > 1, this shows that centered moments of any order

h > 3 of the point-to-plane partition function ZI"L\},N (0) diverge as N — o0
more slowly than any polynomial.

Proof of Theorem 6.1 Our starting point is the polynomial chaos expansion of
Zi,’v (¢, ¥) as in (3.19), which gives

et = E[(2 @ v) B2 0. 0) ]

= SE[(Z X alhute g o

r=lgzy,..,z.€2?
O<ni<...<n,<N

X {]L[qnj_l,n,.(z,'—hz;)é(nj,zj')}q,iVj,N(Zj, 1//)>h], (6.4)

j=2

where &(n, z) = §5(n, 2) is as defined in (3.14) with By therein replaced by
B (¥) so that Var(§) = 0]%,. We will expand the /-fold product above, which

gives a sum over h microscopic time-space renewals (n‘l, z‘l), R (n’,’,, er,-)a
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1 <i < h. Given these & renewals, each lattice point (m, x) will contribute a
factor of E[£(m, x)*], where # is the number of times (1, x) appears among
the & time-space renewals. Recall § and oy from (3.14) and (3.11), we have

El£(n, x)] =0, El£(m, x)*] =02 ~ 102 =

|[E[&(m, x)']| < Coy, forl > 3. (6.5)

Therefore a given configuration of / time-space renewals will give a non-zero
contribution to the expansion in (6.4) if each (m, x) is visited by none or by at
least two of the s renewals. We will rewrite the expansion by first summing over
all possible choices of the set of time coordinates Uf’zl {nil, R nii }, then for
each time 7 in this set, sum over the locations x € Z2 such that (n, x) is visited
by (at least two) of the /& renewals (nil , z’i), el (nii , zii ), and lastly, determine
which of the A renewals visits (n, x). Note that in the expansion (6.4), for each
of the & renewal sequences that visits (n, x), there is a random walk transition
kernel g entering (n, x) and another one exiting (n, x), while for each renewal
that does not visit the time plane {(n, y) : y € Z?}, there is a transition kernel
qab(x,z) witha < n < b, for which we will use Chapman—Kolmogorov to
rewrite it as ga,b (X, 2) = Dy ez Ga,n (X, Y)qn,b (Y, 7).

To expand the centred moment M f/l]/(? in (6.4) as described above, we first

,N.,h
introduce some notation. Given h > 2, let I + {1, ..., h} denote a partition

I =11)u---ul(@m)of{l,..., h} into disjoint subsets I (1), ..., I (m) with
cardinality |I| = m. Write k L [ if k and [ belong to the same partition

element of /. The interpretation is that, for a given time n, we have k L [ if the
k-th and [-th time-space renewals visit the same time-space point (n, x) for
some x € Z?, which leads to a power of the disorder variable &(n, x). Given
I+{1,...,h}, denote

Egl= [ EE"VN (6.6)

LG ()22

For x € (Z*)", we denote

x~1 ifxg=x Ykl 6.7)

7 This is the key difference between the expansions in [19] and [51]. This decomposition was
used in [51], which allows a functional analytic interpretation of the iterated sums and helps
bypass the combinatorial complexity encountered in [19], which the authors could control for
the third moment but seemed intractable for higher moments.
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For x, ¥ € (Z*)", denote the h-component random walk transition probabili-
ties by

h

h
Qi(x, %) :==[Ja:E —x0). (0. x):=]]ad,(¢.x0),

i=l i=1

h
O (x, ) =] [ 4 (xi, v, (6.8)

i=1

where qévt (¢, x;) and qé\j[(x,-, Yr) are defined in (3.16)—(3.17), and for 1, J +
{1,..., h}, denote

05 (x, %) 1= T gy gy Qi (%, %), (6.9)

We can then write

o0
ey 1 N I
My 5w = WZ Z Oy (@ YD Ly~ EIET]
r= I<ny<-<ny<npy1:=N
I, L {1, hY, mi=|1; | <h

YooY, €N
1 Il i
X H Ot it 3OEIEM X Uy iy ON L (3 ).
(6.10)

First note that we can bound |M](f,f:/ | from above by replacing E[£7], ¢

and i with their absolute values. To smlphfy notation, we assume from now
on E[£7i], ¢ and 1 are all non-negative.

Next, we bound v by ||V ||co1 B, where B is the ball of radius ¢ € [1, oo]
containing the support of ¢r. We then note that, uniformly in 1 <n, < N <
ny+1 < 2N and y,, we can find C > 0 such that

ON -, s ¥ lloo) S C QY (35 1 lloo 1) (6.11)

Recalling the definition of q(])Y (1Y lloo 1 B) from (3.17), this bound follows
readily from the observation that, given that a random walk starting from y
reaches /N B at time N — n,., the probability of being inside +/N B at time
ny41 — n, € [0,2N] is uniformly bounded away from 0.3 Therefore we can

8 For 3N/2 < ny41 < 2N, the inequality (6.11) holds for much more general B than balls of
radius o > 1, and Theorem 6.1 can be extended accordingly. But we use balls for simplicity.
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(0123)

(07%

|~

Fig. 3 An illustration of the expansion for the fourth moment in (6.10). Solid dots are
assigned weight E[¢§ ] with  being the number of renewal sequences visiting the lattice
site, while circles are assigned weight 1 and arise from the Chapman—Kolmogorov decomposi-
tion of g, ,(x, y) at an intermediate time. Curly lines between sites (a, x), (b, y) (together
with the solid dots at both ends) represent Uﬁ(b —a,y — y) as in (6.14) and (3.41),
while solid lines between sites (either solid dots or circles) (a, x), (b, y) are assigned weight
qa,p(x,y). As an illustration of the expansion in (6.17), we see the sequence of operators
P*,I] — Q*,I] UI], PI],Iz — QI]’IZUIZ, PI2,I3 — le,l37 P13,14 — Q13’I4, PI4,I5 — Q14,[5,
with [I1| =3, || =3, 3] =2, 4] =1, |I5] =3

sum the r.h.s. of (6.10) over N < n,41 < 2N and then divide by N to get

o |~ CIVIE < N |
|MNNh| = N+ Z Qn1(¢,y1)]l{yl~11}E[§ ]
o r=1 1<ni<--<n<nr41<2N
I, LH{, ... kY, mj=|1;|<h
YooY €N (6.12)

r
Ii_1,1; .
X l_[ Qni_lni—l (yl.*l’ yl)}E[sll] X 1{yr~11‘}Q71yr+l—nr(yr’ ]lB)'
i=2

We first single out consecutive appearances of the same / among Iy, ..., I,
with |I| = h — 1 (that is, I consists of all singletons except for a pair {k, [}).
Given I H{l,...,h}with |I| =h —1,forl <s; <s» < Nandzi,2 €
(Z*", define

1

Sz—S],N(zl’ ZZ)
00 r
1,1
=L Y BET Y [T2nn i
r=1 no:=s1<n|<--<np:=83 =1

yi€(ZH", yo:=21. y,=22

(6.13)
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(recall that the moments of £ depend on N, see (6.5)) and define U (I) N (21, 22) ==

1z =z,~1}. If {k, [} is the unique partition element of I with cafdinality two,
then we can write

UI

sy B 22) = U (52 = s1, 206 — 21,4 [T dosui—z10),

ie{l,..h\{k.I}
(6.14)

where U (n, x) was defined in (3.31) (with a]%, therein replaced by cr]%,). In
(6.12), we can then contract the consecutive appearances of [; = [ =
---1; = I with [I| = h — 1 into a single kernel U’(., ), so that each I; with
|1;] = h — 1 does not appear twice in a row in the summation in (6.12).

With a slight overload of notation in order to avoid extra symbols, for A > 0
we set

2N
0.2 =) e Ol (y.2).,  y.ze @)
n=1

(6.15)
2N
J . —An J 2\h
U/ s =) U v, yoze @)
n=0
for partitions 7, J = {1, ..., h}, and we finally define, with operator notation,
LJ . Qi{v if [J| <h—1,
WNN T QI,J Ul i1 =h—1 (6.16)
LN CTANGN :

To lighten notation, we will often omit the dependence of these operators on

N, N.
The introduction of the parameter A, especially the choice A = A/N we will
take later, will be crucial in decoupling the sum over ny, np —ny, ..., 041 —

n, = N — n, in (6.10). Together with the replacement of n,4; = N by
averaging n,41 over [N, 2N]in (6.12), this allows us to take Laplace transform
and bound the r.h.s. of (6.10) in terms of the operators defined in (6.15)—(6.16).
Furthermore, by taking A large, we can extract a logarithmic decay in A from
Ui v i S€e (6.24). These ideas were used in [51] in a continuum setting.
To’proceed with estimates along these lines, we first obtain an upper bound
on (6.12) by inserting the factor ¢**¢~* ik ni=nie1) > 1,forA > 0tobe
determined later, and enlarging the range of summation for each n; — n;_
to [1, 2N]. Denoting by I = x* the partition consisting of singletons (namely,
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I ={1}u{2}---u{h}), we can then rewrite the sum in (6.12) and obtain the
bound

M4
N, N.h
CN |yl & @h p N P1‘ b pheil g 1, ¥ 1L®h E
TONRFL > Z B l—[ [£"1,
r=I11I,..., 1,
(6.17)
where the sum is over r partitions Iy, ---, I, = {1,---, h} such that |I;| <
h—1foralll < i < r and there is no consecutive I; | = I; with |I;| = h —1;

we also applied the definition of q(l)\j 2 (@, 2) and q(])Y 2 (2, ¥) from (3.16)—(3.17),
we set By := +/NB and, given f : Z> — R, for y € (Z*>)" we define
Oy =TT £ ).

Our bounds will be in terms of the norms of operators acting on the function
space 04 ((Z*") for some qg > 1. To allow for ¢ = ]l%f] in (6.17), it is
necessary to introduce spatial weights, which incidentally will also give bounds
on the spatial decay if i has compact support and we shift its support toward oo.
More precisely, for a function w : R — (0, oo) such that log w is Lipschitz,
we define its discretized version wy : Z2 — R by (3.9) and we introduce the
weighted operators

®h
0, y(y.2) = L@Tﬁy; 0 vy 2),
(6.18)
) U’
ANN(y 2) = N () ANN(y 2),

with F’I - deﬁned from Q and U as in (6.16). Given a partition / +
{1,. h} denote

(ZH" = (x e @D 1 x ~ 1}, (6.19)

which is just a copy of (Z?)/| embedded in (Z*)". Due to the delta function
constraints in its definition (Ljx~; z~y in (6.9)), we will regard Q/I\{V (x,Xx)
as an operator mapping from Zq((Zz)h) to Z‘I((Zz)h) for some q > 1, and

similarly for Oi - and Px N .For p,qg > 1 with 1 + = 1, by Holder’s
inequality, we cén then rewrite the bound (6.17) as
L
N,N.h
CPNyIIL, < Bl Bl Blh gl gy
Y Z Z P R HE[E ]
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11 ’|511,12

A

C Ny, &
Nh+] Z Z ‘

124 L4—e4 04— 14

r—1.1r Ir,*
- [P o

15| HE[$ (6.20)

L4—e4 4—19

where || - ||¢(T) is defined in (6.1), and given an operator A : £9(T) — ¢4(T"),
we set

A ’
1Alleoeo = sup 108l sup (f.Ag). (6.21)

ez0  lIgllea) 1 lep ey <1, lgllea oy <1

In our case PI I Qi J Eq((Zz) ) — E‘J((Zz)h) (note that for I = * we have
@) = @,

We will choose A := )AL/N with A large but fixed so that e’V remains
bounded. We will show the following.

Proposition 6.6 Fix p,q > 1 with — 1 >+ % =1, an integer h > 2 and ). > 0.
Then there exists c = ¢ g <00 such that, uniformly for partitions I, J
{1,...,h}with1 < |1, |J|<h—landl7é]when|1| |J| =h—1, for
largeN <N eNand i = N we have

” 0y v SE (6.22)
P~ 1 AT % 1
|Q}‘N 04— 04 SeN, ‘ 2N | pa—s pa ScNr: (6.23)
c
Sfurthermore, for |I| = h — 1, HU)» N <—.
04— ¢4 (log k%) 01%[
(6.24)

Recall by (6.5) that [E[£%]| = a}% if |1;| = h — 1, while |[E[£%]] < ¢/ 01% =

O((log N )_%) if |I;] < h — 1. Then, by the definition of P analogous to
(6.16), Proposition 6.6 implies that in (6.20), for each 2 < i < r, we have for
N sufficiently large

CZ 7
/
+ 1 <h—njcc’o

e

< Lynj=n-1 :
-t (log A %)

@ Springer



The critical 2d Stochastic Heat Flow 407

where for |I;| = h — 1 with P’ Lh i’ rhig UA, we used the fact that

Al 0 Tyl Ii (VK
1077 U e ee < NQ5 """ Nlea 0 |0} flea > ga. Similarly,

Bl [Py

09— 4

1/cl ¢’ 1
<CN‘/(M+]1 || <h— 1}CO‘§I)< Na.
logAN

Substituting these bounds into (6.20), bounding the number of choices for
each [; I— {1,..., h} by a suitable constant ¢;, choosing A large such that
Ch @ and using the fact that | /1|, || < k& — 1, we then obtain that, for
all N sufﬁ(:lently large,

ZA h o0 1"
, Iy | on e’ \r
) < S 81 0152
n —1 logiy
(2Ccchc ON
—annooH || ot il (6.25)
N" log A N
YN
i |25 |7 oy,

Y log(1 + N)

where the last inequality holds for A > 2. This concludes the proof of Theo-
rem 6.1. o

6.2 Functional inequalities

It only remains to prove the bounds in Proposition 6.6. The key ingredient
is a Hardy-Littlewood—Sobolev type inequality. First we need the following
bound on the Green’s function of a random walk on (Z2)".

Lemma 6.7 Given N € N, A > 0, an integerh > 2 andx,y € (Zz)h, denote

O, n(x,y) = Zii’l e M H?:l qn(yi — xi). Then for some C € (0, 00)
uniformly in A, N and x, y,

c 2\h
A5y —xpiT forallx,y e (Z°)",
01N (x,y) < A (6.26)
Nh—le_ CN for|x —y| > VN.

Proof We may assume A = 0. Note that ]_[5’=1 qn(-) is the transition kernel
of a random walk on Z>". By the local central limit theorem [66, Theorem
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2.3.11] and a Gaussian concentration bound, we have

2
—X
2Iynl

h

Ci _
1_[%()’5 —x) < e ©
i=1 "

for some C1, Cy € (0, 00) uniformly inn € Nand x, y € (Zz)h. We then
have

2N ly—x[? 1 2 lzy 1
O,(x,y) <C Zn—he—cz n < Cpmin {2, Y / e 27 dt},
0

n=1

where we used a Riemann sum approximation and we set zy := (y —x)/+/N.
When zy = 0, we just use the constant upper bound Q; n(x, y) < 2C1. When
zn # 0, we write

C 2 ey 12
QN y) < — / the=C2 g
0

N1
C o
= ﬁ/ th=2¢77dr,
CN NPT ey
where N|zy|> = |y — x|?, while the integral is bounded uniformly in zy
and can be bounded by Cze—Calzn & when |zx| = 1. The bound (6.26) then
follows. o

The following crucial lemma proves a Hardy-Littlewood—Sobolev type
inequality. This generalizes an inequality of Dell’ Antonio—Figari—Teta in [39]
(see Lemma 3.1 and inequalities (3.1) and (3.5) therein) which played an
important role in [51] for moment bounds with L? test functions and initial
conditions.

Lemma 6.8 Fix p,q > 1 with % + ql = 1 and an integer h > 2. Consider
partitions I, J = {1,...,h} with 1 < |I|,|J| < h—1,and I # Jif|l| =
|J| = h — 1. Recall (ZZ)}; from (6.19) and the associated function space
Z”((Zz)}]’). Let f € Zl’((Zz)};) and g € ¢4 ((ZZ)}J’). Then there exists C =
Cp.g.n < 0, independent of [ and g, such that

Z fx)g(y)

— <C|flplele  ©27)
xe(Z¥)], ye(Z?), (1+ 30 b — yilz)h ! eriie i

In [39], an analogue of (6.27) was proved in the continuum for the special case
p=qg=2C(Gqe., L? test functions) and || = |J| = h — 1 with I # J. They
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presented their inequality in Fourier space, but in the L2 case, it is equivalent to
(6.27) by the Plancherel theorem. Here we work on the lattice, which requires
us to also consider partitions with |/| < 2 —1or |J| < h — 1, which cases are
not present in the continuum. We also consider test functions in general £7-£9
spaces (our proof steps can also be carried out in the continuum to extend
the inequality of [39] to L”-L4 spaces). Instead of working in Fourier space
as in [39], we will work directly in real space, which allows the extensions
mentioned above.

Remark 6.9 The inequality (6.27) is not expected to hold for |/| = |J| = h—1
with I = J, because it is exactly the borderline case of the Hardy—Littlewood—
Sobolev inequality when it fails, see [67, Theorem 4.3].

Proof of Lemma 6.8 We first consider the case || =|J|=h—1,and I # J.
Then I and J each contains a partition element with cardinality 2, say {k, /} and
{m, n} respectively, and {k, [} # {m, n}. In particular, x; = x; and y,, = y,
forx € (Z*), y e (Z*)".

Fixany 0 < a < ﬁ. We then apply Holder to bound the left hand side of
(6.27) by

f(x)p . (1 + |xm - xn|2a)p)l/[7
h h—1 — |2
re@hyeyy (14 Xiz 1xi = il?) (D = %)
1
x gy (A Iy = Py ) a
h h—1 _ 2
reariyeqzy; (1+ Zizi b —yil2)' ™ (U4 B =[5

(6.28)

We now bound the first factor in (6.28). Note that since y,,;, = y,, by the
triangle inequality,

_ 2 _ 2
|Xm — ym|2 + |xn — ))n|2 = i = ol ;_ n = Il . (6.29)

Substituting this inequality into Z?:l |x; — yi|? then bounds the first factor in
(6.28) by

C(Z FEPA A+ xm = xa*)P

Z 1 )l/p
X
h—1 :
v (U4 o = X2+ 2 i = 3i2)" (L4 [y = yi?)P
(6.30)
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1 c :
m < =T unlformly for
s > 0and x € Z?. We can then successively sum over the variables y j with
J # k,I: there are |J| — 2 such variables y; and they are all present in the
sum Z#m lyi — x; |2 (recall that we sum over y € (Zz)h ,hence y,, = y, is a
single variable), hence we get

Z 1
yemyy (L b = a4 Sy 1y = 2)" (0 Iy = Py
1

Note that for r > 1 we can bound }° 7

<C A=
11%)

veyr (L4 1xm — xa 2 4 vk — x>+ |y — x A+ lyx — w129P

Note that x; = x;. Via the change of variables y; = yy — y; and y, =

Yk + ¥1 — 2xx, and the observation that |y; — xk|2 + |y —x; |2 (y1 + y%)/Z
we can bound the above sum by

1
¢ Z hA1-1J]

i (U v — 22 + 37+ 53) (1 + |51 20)
1
<C Z
~N\h—|J -
(14 Do = xal2 + 5271 4 5120y

< C
] + |xp — xm|2(h—1—|J|)+2ap’

where the last inequality is obtained by summing separately over || < |x, —
Xm| and |¥1| > |x; — x|, plus the assumption that ap < 1. Substituting this
bound into (6.30), since we assume |J| = h — 1, we obtain that the first factor
in (6.28) is bounded by C|| f||¢». The second factor in (6.28) can similarly be
bounded by C||g||¢«. This concludes the proof of (6.27), and hence also (6.22),
forthecase |I|=|J|=h—1and I # J.

We can adapt the proof to the case min{|/|, |J|} < h — 1 as follows. If

L[ — x5 |2

|11, ]J| < h—1,thenthere is no need to introduce the factor T and its

reciprocal in (6.28) because we already have Zye(ﬁ)@ T i <
oo.If |[I| < h—1and |J| = h — 1, then we can still find k, [ in the same

partition element of /, but not the same partition element of /. We should then

1+ |t — X [ . : : 1
replace the factolr e and its reciprocal in (6.28) by ; Fu— The
rest of the proof is essentially the same. m|

6.3 Proof of Proposition 6.6

We now prove (6.22)—(6.24).
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Proof of (6.22) Note that (6.22) is equivalent to showing (recall (6.18))

(y; gy) <cllfllerligllea (6.31)

Yo @0y, y)

xe(@Mh ye(@h

uniformly for all f € €7 ((Zz)};) and g € Eq((Zz)}}). To control the effect of
the weight w%h , we split the summation into the regions

={@x,y): Ix — y| < Cov/N}

c I Xy —
and A, for some Cy to be chosen later. Note that log w( Jﬁ) log w( «/N) =
O(%), because log w is assumed to be Lipschitz. Since wy : 7Z? > Ris
obtained from w : R?> — R by (3.9), we have for all x, y € (Z*)"

ﬁ <e Clx— yl/f (6.32)
)

which is bounded by €0 in Ay . Therefore, the contribution of this region to
the Lh.s. of (6.31) is controlled by the following uniform bound, that we prove
below:

Yo f® eI e <crlfllerlighe.  (6.33)

xe(Zdh ye(z

In the region A, since Qi{v < Qi n (recall (6.8)—-(6.9)), we can apply
Lemma 6.7 to bound

()
—a N (x,y)
wiy (y)
¢ x—yP | Clr—yl ¢ x|
< rrep| - B+ Bl < Sep | - 2L 639)
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where the last inequality holds for |x — y| > Cov/N with Cy := C(C + 1).
Thus

> fw- g x) 0} (x. 3) - ()
(x,y)eAy Yy

lx—

_lx—yl
< WZf(x)e W g(y)
X,y

C - 1/p
< ol X rwre W) (6.35)
xe(ZM ye(@

_lx=yi\1/g
(X lswlre W)
xe()} ye@?);

2] |1|
< CN »

—(h=1)
1. ler 11glleas

where the prefactor is bounded if | /], | J| < & — 1. Combined with (6.33), this
implies (6.31).

It only remains to prove (6.33), which follows from Lemmas 6.7 and 6.8
above. O

Proof of (6.23) Tt suffices to show that for p, g > 1 with + —|— - = 1 and for
1| <h—1

Y @ oG y) ()g<y><cN%||f||m|g||zq (6.36)

xe(22)h ye(z2)h V'

uniformly in f € £7 ((Zz)’l’) and g € £9((Z*"), which proves the second
relation in (6.23); the first relation follows by interchanging f and g. (We
recall that J = x denotes the partition of {1, . .., h} consisting of 4 singletons,

ie. J ={1}L1{2},...,{h}.)

The proof is similar to that of (6.31). When the sum in (6.36) is restricted to
AS with Ay == {(x, y): |x — y| < Cov/N}, the same bound in (6.34)—(6.35)
holds, which gives an upper bound of

AU (h—1) 141 1
CNv» 4 Ifllerliglles = CN= ¢ [ fllerliglles < CN 7 fllerligllea-
(6.37)
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It only remains to bound the sum in (6.36) restricted to Ay and show the
following analogue of (6.27):

Fx)g(y) 1
Z h 2\—1 SCN? f”e!’ ”gng- (6.38)
xe(Z®h, ye(z?h (1 + Zi:l lxi — yil )
|x—y|<Cov/N

W.l.o.g., we may assume that 1 and 2 belong to the same partition element of
I, so that x; = x». By Holder’s inequality, we can bound the Lh.s. by

r
q

fp(x)(log(l‘i‘WNmz)) )117
(1+Z —1 1% — il )hl

2.

xe(ZMh, ye(z?)"

lx—y|<Cov/'N
1
8y I
. Z h nh-1 C2N ’
xe@yhyeay (1420 i = yil?)" log (1 + 750p)
lx—y|<Cov/'N

(6.39)

In the second factor, since x| = x», we can bound |xp — yzl2 + |x1 — ¥ 12 >

ly1=y2 2 +Ix1—y1 2
R 3

Vil

asin (6.29) toreplace [x, — y2 |2 by | y; —y2|* inside "1, |x; —
. By the same argument as that following (6.30), we can sum out the
variables x; for i > 3. Since there are |/| — 1 such variables in (ZH", for
1| < h—1we get

1
h—1 C2N
xe(z?)! (L+ 1y —»*+ Do lxi — yil?)" log (1 + m)
1 1
<
log (1 CS_N) 2 (L4 [yt = y2I? + [x1 — y1 P11
og + 12 xleZZ
I+[y1—y2l
Ix1—y11<Cov/N
< C,

(6.40)
1 k
where the last bound holds because »_, cz2. | <k TR S Clog(l + 75)
uniformly in k, s > 1, and furthermore |y; — y2| < |y1 — x1| + |[x2 — y2| <
2Cov/N by |x — y| < Co~/N. This implies that the second factor in (6.39)
can be bounded by C||g]||¢s.
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For the first factor in (6.39), we can first sum over y € (Z*" to bound

CiN 2
(log (1 + 35 =p))

3 =1
ye(z2)h (1420 I — yil?)

CIN 2
(log (1 + 17 =577))

<C > .
5 1+ |y1 = x12 4 [y2 — x2/?
V1, 2€Z
Iy1=x1l,|y2—x2|1<Cov/N

Recall x; = xp. Letzy := y; — yp and 25 := y; + y» — 2x1, so that |z1], |z2] <
2Co+/N and |z1 % + |z2]> = 2(|ly1 — x1|> + |y2 — x2|%). Summing over z» then
leads to the bound

C2N  \1+2
> (e(+° ) " <oN
Z
211<2CoV/N !

by a Riemann sum approximation. Therefore the first factor in (6.39) can be

1
bounded by CN 7 || f|l¢r. Together with (6.40), this implies (6.38) and con-
cludes the proof of (6.23). O

Proof of (6.24) Note that (6.24) is equivalent to showing

®h ~
wy'(x) _ clogN
N <= lerliglles (641)

®h =
wy (¥)  log AN

>, feUl gk

x,ye(Zz)}I’

uniformly in f € £7 ((Zz)é‘) and g € ¢4 ((ZZ)?). Without loss of generality, we
may assume / - {1, ..., h} consists of partition elements {1, 2}, {3}, ..., {h},
so that x; = xp and y; = y».

Recall from (6.15) and (6.14) that

2N h
U’%,N’N(x, Y) =Npmy + ) e VU0 y1 = x0) [ [ 201 = x),
n=1 i=3

(6.42)

where Uy (n, x) is defined in (3.31), with 01%, replaced by O’]%/. Let us set
T := % > 1 for short. By (3.35), (3.43) where Uﬁ = G}%}Uﬁ, and (3.46), we
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have
2N
I R
2, Vi s ST+ e N Uz
ye@)j n=1
< 2N/T st 2
log N _ins - [T 1
< 1+ch e o Gy (%) < 1+C10gN/ e MGy (t)dt
n=1 0
A2 _iTe Y
T log N
‘ B (643)

i ~ ~ 2
<1+CeA2T10gN+C10gN/ —dr < =
0 t(log ;)2 log AT

where the last inequality follows by bounding the integral separately over
(O, W) and (W % A %), with the dominant contribution coming from
the first interval.

On the other hand, for any C > 0, by (6.42) we have

lx—y

[A C N
Z U%,N,A_/(x’ y)e

ye@}

\X,

y =X h
1+Z Z U (n, YI_xl)eC‘lNl‘l_[<ZQn()’t_xz)e N )
i=3  yez?

\|€Z2

2N =
log N (6.44)

<1+CY e i Uuym < C=
0g

n=1

where we applied (3.48) and (6.43).
We can now bound the Lh.s. of (6.41) as follows, recalling (6.32)

x—y

|
IR LS UL @ 50)
( ) xye(ZZ)h

x ye(Zz)h
\x }’\ 1/p
<c( ¥ If(x)l”U’ e
x,ye(Z2)]
C\x Y\ 1/g
X( > lglf U’ L pe N) :
x,ye(Z?))
<C—= liglles,
log AT

where we applied (6.44). Recalling that T = %, this concludes the proof of
O

(6.41).
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7 Moment estimates for coarse-grained disorder

In this section, we derive second and fourth moment estimates for the coarse-
grained disorder variables ®( g) L (0, a) defined in (4.11). These will be used later

to bound moments of the coarse-grained model Q’;(Cg) (¢, ¥|0®) introduced in
Definition 4.4, with © = ©¢2).

7.1 Second moment estimates

We first study the second moment of ®( g)(I a).
Lemma 7.1 For each time-space block (T a) = ((i,1), (a,a")) € T, defined

in (4.5), the coarse-grained disorder variable ek g)(I a) as defined in (4.11)
has mean 0 and its second moment converges to a ﬁmte limit

02,8 = lim E[(6§%(.a)°], (7.1)

see (7.4)—(7.5) below. Furthermore, there exist c, C > 0 independent of ¢, T
a such that

Ce—clal/lilg

02(i,8) < L
(13> 0}U{i|>2} |i|2

1+1
(log '™

Proof (I) Random walk representation. We first express E[ (©; e, a)) ]in

terms of the time-space renewal (r.(N), s ) defined in (3.32). Flrst consider
the case |i| = 1, 1i.e., i = i’. Recall from (4.11), (4.9) and (4.10) that

2
OV (i, a) = EN{ > Mgen, En(d x)
deTen ()
xeS,n(@NSen (@)

+ 3 Lwwezm, dd.r @ VENE, 0EN(F Y)

even
d<feTn()
xeSen (@), yeSen (@)

o0
+> > L xyezd e,

r=1 d=no<f:=n,11€Tn (i)
x:=20€Sen (@), Vi=Zr41 GSEN(a/)
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r+1
x Y &nd.v) Hqn,_l,nj(zj_l,z_,>sN(nj,z,)},
d<ni<..<ny<f j=1

Llyeens Zr € U|é—a|<Mg Sen(@)

where we note that the terms are uncorrelated because &y (-, -) are independent
centred random variables with mean O and variance o*]%, (recall (3.14) and
(3.11)). Therefore

c 4
[(9( g)(| a) ] (eN)z{ Z Ly ez, ONn

deTyn (i)
xeSen (@NSey (@)

4 2
+ Z ]l(dx)ezgvenazqu,f(x»)’)

d<feTn(i)
xeSen (@), yESgN(a/)
0
2(r+1)
+Y o2 > Ltz
r=1 d:=no<f:=n,11€Tn (i)

x:=20€8,n (@), y:=z,+1€Sen (@)

r+1
2
<Y Méwmeo)

d<ni<..<n,<f j=1
Z1,--22r € U|;§_a|<M£ Sen (@)

Note that this sum admits a representation in terms of the space-time random
walk (7", St")i=0 defined in (3.32), namely,

o0
E[@x%g a, 5)2] =20} Y (o} Ry)*

k=0
. s IIN) (N)
x PIoS [ = Sc(@)V1<i<k; e T.(i) x S, (@
.,a(ﬁ |57E|J<M; @ (N f) 0] ())

(7.3)

where PN ¢ denotes probability for (rk(N), S,EN))/@O with (réN), S(()N)) sampled

unlformly from 7,y (i) X Sey () ﬂZeven Changing variable k = s log N, using
O’N Ry =1+ (@ +o0(1))/log N, and applying Lemma 3.3 on the convergence
of (rk(N) S,EN))/@O toaLévy process Y. = (Y., V.), we find that the sum above

converges to the Riemann integral
. 00
02(.3) = 27r/ PL(Vue U S@Vue 9 (Vo) e Tl x @) ds
A ,

la—al<M,

(7.4)
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where Pi o denotes the law of the Lévy process Y, = (¥,, V,,) with ¥ ¢ sampled
uniformly from 7, (i) x Sg(a).

For |T| >2,0 N,S(T, a) is defined in (4.11). The same argument as for the
case |T| =1 gives

> o
agz(i,a) = Z 271/ ds e?s
b: |b—a| <M. 0
b': b/ —a' | <M, |0/ —b|< Me /7|

xP%(H[e«LnsJ(Yf,wf)e%G)debL(h,%)e%U@XSAUﬁ
Vue@©.0:Vue |J Se@;
la—al<M;

Voes): Vue J :%@x(n,w)ezaﬁxsgdﬁ. (7.5)
lo—b'| < M.

Here ¢ is the time (Y., V.) jumps from 7, (i) x S¢(b) to Z.(i") x S:(b').
(IT) Proof of (7.2). First consider the case |i| = 1. By translation invariance,
we may assume i =i’ = 1 and @ = 0. First note that

. 00
o208 <2 [ PR ((1 V) € T0) x Sul@)) ds
0

) (7.6)
=& 27 / Osotes Gyt —s) s (y — x)dsdrdxdy,
x€8:(0),yeS: (@)

where Gy(t — s,y —x) := Gyt — 5) g%(y — x) is the weighted Green’s
function defined for the Lévy process Y, see (3.38) and (3.37).

When @’ = 0, we can relax the domain of integration in (7.6), use standard
bounds on the Gaussian kernel g, and set u := ¢ — s to obtain

C
log %

9’

- &
o2i@ <[ Goweymady < [ Gy <
ue(0,8) 4 0

(7.7)

where we applied the asymptotics for fos Gy in (3.47).

When @’ # 0, the bound for ogz(i, a) can be improved with an extra factor
—cla'? . . .
of ek:ga, . Indeed, using polar coordinates (with respect to the | - | norm) for

x € S;(O), we have

O<s<t<e Gyt —s) g’jT-‘ (y — x)dsdrdxdy

02(i, @) < 8227'[/
x€8:(0),yeS: (@)
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<e 2 / / dsdr Gy (t —s) f 2erdr
O<s<t<e

O<r<l

X f gi=s (2)dz. (7.8)
(la'|-r)ve<lzI<(a[+2) Ve

If |@’| > 2, then we can use (3.46) to bound the right hand side of (7.8) by

e 2 // dsdr Gy (t — ) / gi=s (w)dw
O<s<t<e de

[@'|—-1<w]

HEUCEN
e o // Gyt —s)e 20=9° dsdt
O<s<t<e
<4 /1 ! g
T e 2u du
h o u(logi +logl)?

47 O 47 1 4yre—cla?
< —12 —e 2u dl/t = —12 —e de g —12
(log )= Jo u (log ;)* Jja2 v (log )

If 1 < |a@’| < 2, then we can bound the right hand side of (7.8) by

1
e o /f dsdt Gy (¢ —s)/ 2rdr fgﬂ (w)dw
O<s<t<e 0 de

1—r<|w|
1 [
< 27 / Gﬂ(u)/ 2re” Edrdu < 4n / G,;(u)/ e wfdrdu
0 0

O<u<e O<u<e
1 1 1 2
< C/ — 15 / e~ v drdv
0 v(log; +1log;)? Jo

e} —cla’|?
\C/ ﬁ/ e dsdv < Cl <C 12
0 /v(log +1log )2 Jo (log2)? ~ (log+)?

This concludes the proof of the upper bound in (7.2).

We now bound 0’2(I a) for the case ||| = 2. By relaxing all the constraints
in (7.5) except (Yy, Vi) € T (i) X S:(a’), we note that except for a change of
constants, the bound in (7.2) for ||| = 1 also applies in thlS case. In particular,
the bound in (7.2) holds for ||| =2 and |a| # 0. For ||| =2and |a| = 0, let
us assume for simplicity that i = 1, " = 2, and a = 0. Again, relaxing all
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constraints in (7.5) except the constraint on (Y, V), we have

082(7, a) < Csf?{)<s<8<t<28 Gyt — s)g%(y — x)dxdydsdt
x,y€S8:(0)
&
< Ce™! // Gy (t — s)dsdr < C/ uGyw)du (7.9)
O<s<e<t<2e 0

€ 1 C
<C 5 du < T
o (log)? (log £)?

The upper bound in (7.2) also holds.
We now consider the case ||| 3. We first ignore the constraints on V;
for r € (0,1) U (z, s) in (7.5). Using the weighted Green’s function Gy and

the Lévy measure H(O =00 ¢, /4drdx for the Lévy process Y = (Y, Vi) (see [18,
Section 2]), we obtam the bound

2.7 2 -2
os(i,a) < Ce
(@) < Z // O<s<t<e
b: Ib < M- x€8;(0),yeS: (b)
b o’ —a' |<Me., 16 —bI<Me /T

I <Idxdydx dy’dsdtds’dt’
X' €S (b').y' €S (@)

gy (X' =)
Gyt —8)gi=s (y—x) —2— Gy (t' =5 - gr_y ) = X)).
7 s’ —t T

Since |i| =i —i+1 > 3, we can bound = < 1 2 to obtain

(|i|—2)8 lile
1 a
e ( ) |I|83 /_/./ 0<§<l<£

(i'—De<s'<t'<i'e

X _/_/xesg(O) Gyt —s5)Gy(t' — s/)g,/T,.‘ (y' — x) dsdrds’dt’dxdy’
VY EeS (@)

s |I|53 /0 G ()au /./ O<s<e /,/XESS(O) gt,f (y, =% de[,dXdy/

(i"—De<t'<i'e © " y'eS.(a’)

C  e—cl’/il
SGel? TR (10

where we first relaxed the constraints on b and b’, then successively integrated

out y, x’, s/, and r and applied (3.47), while in the last inequality, we applied

a uniform bound on the heat kernel g,/ (y' — x). This concludes the proof of
7

the upper bound in (7.2). O
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7.2 Fourth moment estimates
We next study the fourth moment.

Lemma 7.2 Let ©\* (i, &) be defined as in (4.11), with (i, 8) = JEASNCRED)

€ T, defined in (4.5). There exist c, C € (0, 00) uniform in (I, a), such that
for all ¢ > 0 sufficiently small,

Ce—ca/Vilg

lim sup E[®( g)(| a) ] {llaléMs |i\}‘
N—o0 log 2

(7.11)

Proof We first prove (7.11) for |T| =i —i+ 1 < 2. Consider a time-space
block (T, a) = ((i, ), (a,a)) with |a] < M, |T| and assume without loss of
generality thati = i = 1 and @ = 0. The case |T| = 2 is similar (just replace ¢
by 2¢). We will compare ®( g) (§a) with an averaged partition function so that
Theorem 6.1 can be apphed

Let us recall the polynomial chaos expansion of ®( g) 2 (0, a) from (4.11)

(cg) 2 (dlff)
6= D (x, ).

(d,x)eBey (1,0)

(f.y)eBen(1,a")
with d< f

which is essentially an average of point-to-point partition functions with aver-
age over (d, x) and (f, y) in the bulk instead of through boundary conditions
attime 0 and ¢ N respectively. To compare with an averaged partition function

as in Theorem 6.1, we replace ®( g) (Ea) by

® =—Z Y sy @EDg0a )X g pen (v, 22)

71,20€Z2 (d,x)eBeN(1,0)
(foy)eBen(1,a)
with d< f

x1Ls,y@)(z2), (7.12)

where Sey(@) = ((@ — (1, 1))4/eN,a+v/eN] and we note that uniformly in
(d,x) € Ben(1,0) and (f, y) € Beny(1,@’), we have

Z Is,y0) (21)90,d(z1, X)gfen (¥, 22)1s,y@)(z2) = C > 0.

21,22€72
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Therefore E ®(Cg)(| a)*] < CE[®?*] because in the expansion for the fourth
moment, all terms are non-negative if we assume E[& N] 0, which we may

assume from now on since our bounds are in terms of |E["§ vl forl <k <4
(see the proof of Theorem 6.1). In the definition of ®, we can further remove the

constraint on y and the summation constraints in the definition of X , (dlff) (x,y)
in (4.9)—(4.10), which gives the centred partition function

2P (@, ) —ELZ°N (0, ¥)]

as defined in Theorem 6.1, with ¢(x) = 1s,(0)(x) and ¥ (x) = L @)(x).
Therefore for N large, we have

E[042 (i, 8)*] < [(Zﬂw ¥) — ELZ2N (0, v)]*]
Ce—1@—al (7.13)
<7 ()‘” [ i1 It 1 < Tl

where we applied Theorem 6.1 with N set to sN, T=1/e,p=q=2,h=4,
and w(x) = eI, This proves (7.11) for |T|

We now consider the case ||| 3. Recall the deﬁnltlon of © g)(I a) from
(4.11), we can rewrite it as

Oy (.8 =Y 0y @.b), b, a)), (7.14)
b,b’
where
O\ (i (a.b), (v, a")
2 i i
-5 X > x4 000 XFRE .
(dx)eBey(i.:2)  (fy)EBe(ib)
(f"Y)eBen (@) (@ x")eBen (,b)
A<t d'<Sf!
(7.15)
For each (b, b’), because i’ — i > 2, we can apply Lemma 3.2 (withm = &N)
to bound

121
_C —eb-bii

gra (v, x") < —=
eNJi|
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uniformly in (f, y) € Ben(i,b) and (d’, x") € Bey (7', b’). We can make this
replacement in the bound for the fourth moment to obtain

o—clb-b/f
B[oN2 0.8 < CE[ (L ey2h. @by
b,b’
x O, ),(b’,a/)))4]. (7.16)

By triangle inequality, we can split the sum over b, b” into three parts (with
overlaps): (1) |b —a| > [a]/3; (2) [b' —a'| > |a]/3; [b" —b| > |a]/3. It
suffices to bound the fourth moment of each part.

For part (1), we can bound

e—clo—b'2 /il

E[( T e, @ b))T®§§%§((i/,i’),(b/,a/)))4]
b-al 3 (7.17)
<g[( Y e @) e[( e n. v.an)’]
b:lb—a|>|a|/3 b’

where the inequality can be justiﬁed if we first expand the power and take

—clb—b/12/Ii
expectation and then bound e—l-lll—

®(Cg)((| i), -) and ®(Cg)((| i"), -). For the first factor in (7.17), we can expand
the power and bound

< 1; we also used the independence of

(Y edham)]= ¥ E[l_[®(°g)((|,i),(a,b,-))]

lb—al>|d|/3 |b;—al>|a|/3 i=1
for 1<i<4

4
< Y JIE[efd bm“]%

lb;—a[>[/3 i=1

for 1<i<4
14 C —cla|
=( X E[6fdhab]) < =
lb—al>/al/3 log

where in the last 1nequahty, we applied the fourth moment bound (7.13)
for ®(Cg)(| -) with ||| 1. The second factor in (7.17) can be bounded
the same way without the factor e~ This implies that when the sum in
(7.16) is restrlcted to |b —al > |3 /3, we get a fourth moment bound of
Ce—clal /(log < )2 The same bound holds if the sum is restricted to b’ — a’| >
al/3.
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When the sum in (7.16) is restricted to |b — b’| > |a|/3, we can bound
o—clb—b'12/ii
i o
which leads to a fourth moment bound of Ce~¢lI”/lll /(log %)2. Combined
with the previous estimates, it is clear that (7.11) holds. This concludes the
proof of Lemma 7.2. m|

212 /13 . .
< e~¢lal/ll The rest of the calculations is the same as before,

8 Moment estimates for the coarse-grained model

In this section, we will prove an analogue of Theorem 6.1 for the coarse-grained
model (defined in (4.8)), that we rewrite for convenience:

2% (g, ¥|©)
(log 1)?

= -glw ¥+ 3 DY Y. eed)gy; (@1 — DO, &)

= 2 = 2 1
= b0 e

(diff)
@y, ar)e.AF ',, .

{1_[820 -, )(aj_a;'—l)@(ijéj)}g;(LJ )( c—a)ve(c),

8.1

with coarse-grained disorder variables G)(T, a) = G)(Cg)(l a) (see (4.11))

indexed by time-space blocks (T, a) = ((,1), (a,a)) in the set T, (see
(4.5)), while g, ¥ : Z> — R are defined by (4.7) from ¢ € C.(R?) and
¥ € Cp(R?).

We will prove the following analogue of Theorem 6.1 for the 4-th moment
of the coarse-grained model.

Theorem 8.1 Let Zy (¢, V) = Z; (ce) (o, ¢|®(Cg)) be the coarse-grained
model defined above. Further assume that |V || co < 00 and  is supported on
a ball B (possibly B = R%). Then for any p, q € (1, 00) with % + % = 1and
any w : R?> — (0, 00) such that log w is Lipschitz continuous, there exists
C € (0, 00) such that uniformly in ¢ € (0, 1),

lim supE[(fN,g(go, V) = E[Zyc(p, 1))’ ]

N—oo
Pe
We

Csf’

¥ llg w3, (8.2)

Lr(Z2)

where w; : 72 — R is defined from w by (4.7).
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Proof We will adapt the proof of Theorem 6.1 to the current setting. The com-
plication is that the coarse-grained disorder variables ®§\C,i) (T, a) are assigned
to time-space blocks (T, a) instead of individual lattice sites. We will therefore
divide the proof into two parts: first, expand the fourth moment and perform
a resummation to bring it into a similar framework as in the proof of Theo-
rem 6.1; second, give the necessary bounds analogous to those in the proof of
Theorem 6.1.

Part 1. Expansion. First, as in (6.4) in the proof of Theorem 6.1, denote

MG =E[(Zx.ct0.9) — BLZ o0, 0]

(log 1)?

[( Z Z Z ¢:(b)g1; (@1 — b)®(cg)(|1 a)

r=1 bCEZ (|1 |) A(nomple)

- - (diff)
@i,..., ar)EAg; b,c

{ngo )@ —a) DONE G810 - a;)wg(c)ﬂ.

(8.3)

By assumption, we have || < ||V [|oo1 B,, Where B, = B/./¢. By the same
reasoning as in the proof of Theorem 6.1 (see the discussion leading to (6.12)),
we can replace ¥ by [|[{|lo1p, and replace g%(;_i/)(-) by g%(ﬁ_i/)(-) (with
7 first summed over [¢~!, 2¢~!], then extended to [1, 28_1]) to obtain the
following bound

2/e

MG <Clylt e SZE[(Z 3 > peigy, @1 —b)OK i, A

r= 1bC€Z (I I )e A(nomple)
Gronin)e Aidg'c) 8.4)

r
T 4
x { [Tey,- @i —a-DOREG;. ap}g%(ﬁ,i;)(c ~a)1s©) |.
=2 '

We then expand the product in (8.4) to obtain the sum over 4 sequences of time-

space blocks, each time-space block contributing a @ﬁgg) variable. Because we
will bound the sum by taking the absolute value of each summand, we can
relax the summation constraint on r to obtain an upper bound. Also note that

- (diff
thanks to the assumption ¢ € C, (R?) and the diffusive constraint Ai,log (see
(4.6)), we have a sum with finitely many terms, which allows us to pass the

limit N — oo inside the sum later. For each ®(Cg) (i, @) with ||| =i—i+1>2,
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oL

<>
eN

Fig. 4 A depiction of the expansion of the fourth moment of the coarse-grained model that
satisfy conditions (a)—(g). There are four time-space renewal sequences, each depicted in a
different colour. Different sequences visit different mesoscopic boxes B y (i, &), but each visited
box must be visited by at least two sequences to give a non-zero contribution. The first two time
strips are visited by the two renewal sequences coloured black and red, which match in the
disorder they sample. These two strips are grouped together as a block of type U. The third and
fourth time strips are visited by three renewal sequences, coloured black, red, and green, which
form a block of type V and its width cannot exceed 4. Within this V block, the spatial boxes of
entry by the three renewals are all within distance 2 M of each other, 2 of which match exactly.
The last time strip is only visited by two renewal sequences, coloured blue and red, which also
forms a U block

we further expand it as

oy ia =Y = 6y @b, b, a)), (8.5)
b: |b—a|<M,
b':|b'—a’'|<M,

Ib'—bl<Me /1]

where @gc,i) @, (a, b), (b', @) is defined as ®§\C/,g3 (T, a), except the sum in its
definitionin (4.11) is restricted to a fixed choice of 6 := (b, b’). The expansion
of the product in (8.4) then gives 4 sequences of coarse-grained disorder vari-
ables @5\%’3, some of which may visit two distinct mesoscopic time intervals
with indices i, i" due to the expansion in (8.5). If we record the indices of the
visited mesoscopic time intervals and the mesoscopic spatial boxes of entry
and exit in each time interval, then we obtain 4 sequences of time-space indices
(i{, al, b{), . (iij, a{j, b{j), 1 < j < 4. We will call each such sequence
a mesoscopic time-space renewal sequence, or just renewal sequence (see
Fig. 4).
We will rearrange the expansion of (8.4) as follows:
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(1) Sum over the set U‘;Zl{i{, e, iij} =:{ny,...,n}.

(2) For each time index n;, 1 < i < r, sum over the set of indices J; C
{1, ..., 4}, which determine the renewal sequences that visit time interval
n;.

(3) For each j € J;, i.e., a renewal sequence that visits time interval n;, sum
over the indices (a{ , b{ ) that determine the spatial boxes of entry and exit
in that time interval.

Given a choice of these summation indices, the summand contains a product of
coarse grained disorder variables of either the form ®(Cg) ((n;, ny), (a;, b)) =:

®(Cg)(n,, a;, b;) or the form ®§Vgg)((n,, nj), (a;,b;), (a;,b;)), connected by
heat kernels 8L (ng—ny) (ax — by). For such a product to have non-zero expec-
tation, we have the following constraints (see Fig. 4):

(@) |Ji| =2foreach1 <i < r;

b) If |J;| =2,say J; = {k,l} C {1, ..., 4}, then we must have af.‘ = af and
bk — bl.

(©) If |Ji] = 3, then for each sequence k € J;, there must be another sequence
[ € J; such that |al. — al.l < 2M,, where M, = log log - asin (4.2).

If (c) is violated, then by the spatial constraint in the definition of ®§\C,gg) in
(4.11), there will be a coarse-grained disorder variable visiting time interval
n;, which is independent of all other coarse-grained disorder variables in the

product, and hence leads to zero expectation.

(no triple) (diff)

The summation constraints A and .A b (see (4.4) and (4.6))
in the definition (8.1) of the coarse—gramed model implies the following
additional constraints on the summation indices r, (n;)1<i<r» (Ji)1<i<r» and

@, b!)lgigr,jel,"

(d) Forall 1 < i < randeachrenewal sequence withindex j € J;, |b] —aJ | <
M87
e Forl < j<4andl <iy <ip<r,ifjeJ,NJ,and j ¢ J; for

all iy < i < i (namely renewal sequence j visits the mesoscopic time
intervals with indices n;, and n;,, but nothing in between), then |a bj | <

M /ni, — niy;
(f) Ke <nj <np <--- <np <1— K, where K, = (log 1)% asin (4.2);
(g) (ny,...,n,)canbe partltloned into consecutive stretches Dl, ..., Dy, such
that each D; consists of consecutive integers, with a gap between D; and
Dit1.TheneachD. = (nj, ni4+1 =n;i+1, ..., nj= n;+(j—i)) has width
nj —n; +1 < 4,since |J,,| > 2 fori <1 < j (namely the mesoscopic
time interval with index n; is visited by at least two renewal sequences),

and each sequence can visit at most two mesoscopic time intervals with

.. (no triple)
indices among n;, n;41, ..., n; by the constraint A P
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diff
" in 4.6) and O

(no trlple)
mn

Conditions (d)—(e) follow from the definitions of A

in (4.11), while conditions (f)—(g) follow from the definition of A
(4.4).

To handle the dependency among the coarse-grained disorder variables
in the expansion of (8.4), we perform a further resummation. First parti-
tion (ny,...,n,) into consecutive stretches Dy, ..., D, as in (g), so that
{ni,....n.} = UL, Dj. For each D, let J; = Ujepi Jj, which records
which of the 4 renewal sequences visits the stretch D;. Next we group
together consecutive D;,, D;, 41, ..., D;, with the same J; = {k, [} for some
k #1 e {l,...,4}, and only keep track of s := minD;, and ¢ := max D;,,
thus effectively replacing Ui1<i<i2 D; by [s, t]. This allows us to identify
from (ny, ..., n;) asequence of disjoint time intervals (which we call blocks)
I, = [s;, ;1N N, 1 < i <k, each associated with a label set J; C {1, ..., 4}.
Some of these intervals arise from | J;, <;<;, Di as above, which are visited by
exactly 2 renewal sequences, the rest coincide with the original D;’s. We can
then rewrite the expansion of (8.4) as follows:

(1) Sum over integers K, < 51 <t1 <sp <Kl < - <s§ <l <n < %,
with s;4+1 — t; > 2 for each i (recall the summation index 7 from (8.4)).
Denote Z; := [s;, ;] N N.

(2°) For each block Z;, sum over the set of indices [J; C {1, ..., 4} with | J;| >
2.If |Ji| = 2, we call Z; a block of type U because it leads to contributions
similar to U, (z!, z2) in (6.14) (see also (3.41)); otherwise we call it a block
of type V. There are no consecutive blocks Z;, Z; | of both type U with the
same label set J; = [J;11, and each block Z; of type V must have length
|Z;| < 4. See Fig. 4 for an illustration.

(3’) For each block 7; and each renewal sequence j € J; that visits block
7Z;, sum over time-space indices (o ay /) and (rJ bJ ) with 5; < aiJ <

ri] < t; and a’ b] € 72, which identifies the mesoscopic time-space

blocks of entry and exit by the j-th renewal sequence in the time interval
Z; = [si, ;] NN.

The constraints imposed in (d)—(g) carry over, so we do not repeat them here.

To rewrite the expansion of (8.4) in a form that fits the framework developed
in the proof of Theorem 6.1, we will carry out the following steps, that we
describe below.

(A) Todecouple different blocks, replace each coarse-grained disorder variable
®(Cg) (it will arise as a summand in (8.5)) that visits two consecutive blocks
7Zi and Zi4+1 by the product of two coarse-grained disorder variables of the
form ®(Cg)(| a) with ||| = 1, joined by a heat kernel.

(B) Bound the moments of the effective disorder variable associated with each

U block and V block.
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(C) Modification of the heat kernels g Lsi1—1) (+) connecting different blocks.

In particular, carry out a Chapman—Kolmogorov type decomposition for
the heat kernels as in the proof of Theorem 6.1, so that we sum over the
spatial locations for all 4 renewal sequences at the beginning and end of
each block Z;.

This rewriting will introduce a constant factor for each block, but it will not
affect our final result. We now give the details for (A)—(C).

(A) Note the technical complication that given a realisation of the sum-
mation indices in (1°)—(3’), there could be coarse-grained disorder variables

OV ((r], o)), (@] .b). @l b])) (see (8.5)) that visit two distinct blocks
Zi, = Isiy, ;] N Nand Z;, = [si,, t;,] N N for some i; < i, due to the contri-
bution from the j-th renewal sequence for some j € J;; N J;,. In particular,

rl.{ € 7;, and crl.é € 71;,. Recall from (8.5) and (4.11) that

e i J J hl J opl
On (75 07, @; . 0;), (@7, D7)
2 diff diff
=5 X > XEP 00 apa o6 XG0,
(dx)eBen () al) (£)eBan (@, b))

(f')eBen (o) b)) (@' ¥)eBev o) a],)
d<f.d<f!

(8.6)

Note that by the definition of a U block, if Z;, is a block of type U, then we must
have rijl = t;,, the last time index in the block Z;, ; while if Z;, is a block of type

V, then we must have rl:{ > si, = tj, — 3 because V blocks of length at most

4. Similarly, if Z;, is of type of U, then we must have aijz = §j,, the first time

in the block Z;,; while if Z;, is type V, then we must have o*l.j2 <t <sip +3.
Therefore d’ — f < (si, — ti, + 7)eN. On the other hand, Z;, and Z;, are
distinct blocks and hence s;, —#;, > 2 and d’ — f > ¢N. We can therefore
apply Lemma 3.2 withm = eN,ny =d’' — f,ny =s;, —t;, and 0 = 10 to
bound

ne € i _pi
sup g (6. X) S — 8106, -y (@, —B). (B.7)
(f))EBen (T bl )

(d'.x)eBey (o) al))
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Applying this bound in (8.6) then allows us to make the replacement (recall
the definition of ®§\C,’gg from (4.11))

C®(Cg)(‘c )glo(% i) (a’ _ bj ) @(cg)( J aJ bj) .

Of course this is not an upper bound since ®§vge) could be negative. However,
when we compute the moment in (8.4), we end up with products of the moments

of G)( & . s and its constituent § 5 ’s, which are then be bounded by their absolute
Values Applylng (8.7) at this point gives a true upper bound, which has the
same effect as making the replacement (8.8) in the expansion before taking
expectation, and then compute the moment as in (8.4). To keep the notation
simple, we will assume this replacement from now on, so that the expansion
of (8.4) now contains only ®(Cg)(l a, b) that visits a single mesoscopic time
interval 7 y (i), which 51mpl1ﬁes the expansion from (8.4). The costis replacing
some heat kernel g ; (-) (more accurately, the associated random walk transition
kernel) by Cgyi(-) as in (8.7).

(B) We now consider a U block Z = [s, t]NN. Assuming w.l.o.g. 7 = {1, 2}
so that only renewal sequences 1 and 2 in the expansion of (8.4) visit block
T.Let a, b € Z? be spatial indices for the mesoscopic boxes of entry and exit

in the time interval Z. Then the coarse-grained disorder variables G)( & . visited
by renewal sequences 1 and 2 in the time interval Z must match perfectly in
order to have non-zero expectation. Taking expectation in (8.4), each U block
in the expansion therein leads to the following quantity analogous to U y (1, x)
defined in (3.40) and (3.41):

T2t —s,b—a)

= > EOy . a1 ]l_[gl(l @i a,_DEO;,3,)?,
TRRATY K
@i,....3,)€ A(d'ff)
i1=s,i.=t,aj=a,a.=b
(8.9)
where .A(nomple) d.A(d )are defined in (5.70) and (5.71). Because the sum

above is a sum over ﬁnltely many terms, by Lemma 7.1, the following limit
exists

Tt —s,b—a):= lim_ T\t —s,b—a. (8.10)
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We next consider a V block Z = [s,t] " N with size t —s + 1 < 4. Let
J C {1, 2,3, 4} denote the set of renewal sequences that visit Z. To have non-
zero expectation in the expansion of (8.4), we must have | 7] = 3 (|J] = 2
would make it a U block instead). Each renewal sequence can visit at most two
mesoscopic time intervals with indices in Z. For each renewal sequence j € J
that visits block Z, let (o7, @’) and (77, b/) be the indices of the mesoscopic
time-space boxes of entry and exit in Z. In the expectation in (8.4), such a V
block then leads to the following factor

VN2 (o], T al b)) = E[ [T 0§80, o), @l b)) |
jed
1
< 1_[ ]1{3j;ﬁke\f|aj_ak|<6Mg}E[®§\?%;((aj7 TJ)? (aj7 bj))4] 41

jeJ

where the indicators follow from the local dependence of ®§\C,‘i2 from its def-

inition in (4.11). Applying (7.11) with |T| < 4 (since V blocks have length at
most 4) then gives

hmsupV( g)((0'] t/,al, b)) jey)

N—o0
C o lo/—al
S 171 1_[ (FkeT k+j,|al —ak|<6M,; € | |
(logH7 jez b/ —al|<M,}
= V& (@, b). 8.11)

(C) We next modify the heat kernels connecting different blocks Z; . First, we
will contracteach V block Z; = [s;, t;]NNinto ablock of size 1. Note thatevery
heat kernel in the expansion connects two different blocks Z;, = [s;,, t;, NN
and Z;, = [s;,, t;,,] NN, i1 < iz, and are of the form S )(aiz —b;,) for

some 7;, € Z;, and 0;, € Z;, with |a;, —b;, | < M, m The heat kernel
81 (o1~ )( -) from time 7;, to 0;, may jump over multiple blocks of type V. If
we contract the time span [7;,, 0;, ] of the heat kernel by shrinking each block
of type V that intersects [7;,, 0;,] into a block of size 1, and let u denote the
length of the reduced time span for the heat kernel, then u > %(0,-2 —1;,) since

blocks of type V have length at most 4. Therefore

g%(aiz—ril)(aiz - bi1) < 882u(ai2 - bil)-
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The heat kernels introduced in (8.7) are of the form glo((,iz_,l.l)(a,-2 —bi))
and can similarly be bounded by 8ggo,(a;, — b;,). For consistency, we will
further bound g7, (-) < 20gg0,(+). This shows that at the cost of introducing a
constant factor C for each block Z;, we can assume from now on that all blocks
Z; of type V have length 1, namely s; = #;, and all heat kernels appearing in
the expansion (as an upper bound for the expansion of (8.4)) are of the form
880(si, 15 ().

Lastly, we perform a Chapman—Kolmogorov type decomposition for each
heat kernel gSO(SiZ—til)(bil’aiz) = gg()(siz_til)(ai2 — b,‘l) at each Sj,tj €
(ti,, si,) NN, similar to what was done in the proof of Theorem 6.1. To sim-
plify notation, let ug = #;,, u1, ..., uk—1, ux = Si,, with uy, ..., ux_1 being
the times at which we want to perform the decomposition. Let Xy := b;,,
Xk := a;,. Then we can bound

880(uy—up) (X0, Xk)

= // 880(u1—uo) (X0, X1) * - 880(u —uy_1) (Xk—1, X )dxy - - - dxg—1

X1,esXp—1€R2

k
< Z l_[ (2880(ui—ui—1) (Xi—1, Xi)),

X1y Xk—1€Z2 i=1

where we have discretized the spatial integral into a sum over the lattice and
introduced a factor 2 for each intermediate time u;, 1 < i < k, as a crude
upper bound.

The steps (A)—(C) we have performed so far basically allow us to bound

the expansion (8.4) in a form that is similar to (6.12), and ready to lead to
the analogue of (6.17). The U blocks we have introduced correspond to U’
introduced in (6.14), while V blocks correspond to the disorder variable &,
which even after contracting each V block into a block length 1, still has non-
trivial spatial dependence. Due to the heavy notation, we will not write down
the analogue of (6.12) here. Instead, we explain below how the analogues of
(6.17) and (6.20) can be derived.
Part II. Bounds. Based on the considerations above, we can write down an
upper bound for (8.4) that allows us to adapt the proof of Theorem 6.1. First,
we introduce some notation that parallels those in the proof of Theorem 6.1.
Similar to (6.8), fora = (a/)1<j<4,b = (b/)1<j<a € (Z*)*and ¢ : Z? — R,
define

4
Qi(a,b) := [ ] gsm(@’, b)),

j=1
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4

Qp.b) =[] ( D weHgsn®d —ch).
Jj=1 ciez?
4

Q@) =TT ( X ssor(c/ —ahwieh).
j=1 ciez?

Similar to (6.14), for J = {k,l} C {1, 2,3, 4}, define (recall ﬁgfl from
(8.10))

USEY (18, b) = L gt _at ph oty U (1, b* — @) T gsor (@’ b7,
JtT
(8.12)

with go(@a’,b/) := Liqi—pjy- Similarly, define (recall V(Cg) j(a b) from
(8.11))

V(Cg) j(a b) — V(cg) j(a’ b) 1_[ ]l{aj:bj}‘ (813)
v

To be consistent with the notation in the proof of Theorem 6.1, we will replace
J C {1, 2,3, 4}, which determines which mesoscopic renewal sequences col-
lect coarse-grained disorder variables at time ¢, by a partition / + {1, 2, 3, 4},
which specifies which sequences interact with each other through the coarse-
grained disorder variables at time ¢. In particular, in Ugfflij corresponding to
a U block, the associated partition / consists of 7 and {j} for j ¢ 7, so that
|| =3.In VéS?Q ’Jcorresponding to a V block, if | 7] = 3, then the associated
partition I consists of J and {j} for j ¢ J, so |I| = 2; if |J] = 4, then
the associated partition / is given by the connected components of {1, 2, 3, 4}
with an edge between i and j whenever |ai —a’| < 6M,, and there can be no
singletons in the partition to ensure that Véffi’y # 0 (in particular, |/| = 1 or
2).

From now on, we write U(Cg) I(t a, b) and V(Cg) I(t a, b), replacing 7 by
the associated partition / - {1, 2,3, 4}. Define

WS (1, a,b) == 1= USE (1, @, b) + 113y VEE) (a, b). (8.14)
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We can now write down the following upper bound for (8.4) in the limit
N — oo

0
78V . %) 4 5 r
MEY =limsup MG < [yl &> C >
N—o0 r=1 I, LH{1,2,3,4),]1]<3
K9<S1<t1<S2<~~<5r<tr<Sr+1\%

ai,bi,...a,,b,e(z?)*

.
i
Qs0s; (¢e, A1) ]_[Wé‘;gi (ti — si, 8, b;) Q8054 —1) (0i> Qi 1),
i=1
(8.15)

where C does not depend on ¢, 8,41 := 1p,, the sum in (8.15) contains no
consecutive I; = I; 1 with |[;| = 3, and when |/[;| < 2, we must have s; = ;
thanks to the contraction of the V blocks. )

For A > 0 to be chosen later, we can insert the factor e
e Lt Gimti)=h X G —si) > 1 into (8.15) to obtain a bound similar to
(6.17):

o0

. 2% 4 5 4 prlipl;l rllh 4

IMEY] <e™ wiide® Y Y (@@t PPl pir gl 8
r=1 Ii,.... I,

(8.16)

where given two partitions 7, J = {1, ..., 4}, with I = x denoting the partition
consisting of singletons, P){i are integral operators with kernels given by

, Qv if1J] <3,
Pyl =1 0 (8.17)
QUi if|J] =3,
where for a, b € (Z%)%,
2/e
Qiig(b, a) = Lyp~s.a~j} Ze'*k" Qgon(b, @),
n=1
2/¢ (8.18)
Ul @b)i=T@pn Y e U (n.a,b), 1] =3,
n=0
V! ,@ b) = Lap-nVel'(a, b), 1] < 3.
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Here, givena = (a/)1<j<4 € (Z*)* and apartition 7 - {1, 2, 3, 4}, with k Ly
denoting k, / belonging to the same partition element in 7,

I .
. Vk~1, ak =4 if |1 = 3,
a ~ [ denotes the constraint

VL1, @k —al| <20m, if |1 <2.
(8.19)

We will denote (Zz)‘} = {b € (Z** : b ~ I}. The main difference from
(6.17) and (6.15) is that the spatial constraint there are delta functions (see
(6.7)), thatis,a ~ I with M, setto 0. Here we also have the additional operator
V>J», . (@, b) because we allow b # a. The analogue of [E[£”] are the moments
of the coarse-grained disorder variables @ﬁgg, which are now captured in VAJ .
and U { .

As in (6.18), for a weight function w, : Z*> — R, see (4.7), we define the
weighted operators

w®*(b)
w(a)

0l b.a):= ol (b, a).

and define Uj , (a, b), V/ . (a, b), and P}/ similarly. For p, ¢ > 1 with 1 +

1 — 1, we can then bound (8.16) via the following analogue of (6.20):

q
N
[ MEe |
00 ®4
2 -~ ~T. .
2 4 5 - 25 *, 1 ‘ I
<es
L €e¢ ||¢”oo€ ZC Z ) w®4 @p((22)4) re 09— 04 AE 09— 049
r=1 1.1, %e i
oh—1:1, Ny ix 4. ®4
|l H r \ ] , 8.20
H 2oe o Nea—ea 148 Hloa—ea I7Be 78 lleaz2y ) ( )

where we still have (Zz)‘} .= {b € (Z>* : b ~ I}, but the definition of

the constraint b ~ I has changed as in (8.19). We still regard /Q\igj(, -) and

I/:’\ig/(\, -) as operators from Eq((Zz)‘}) — Zq((Zz)‘}), and similarly for G){E
J

and Vj .

We choose A := ie with A large but fixed so that ¢*¢ remains bounded. We
have the following analogue of Proposition 6.6, where we again omitted (Z2)‘}
from || - [[¢r(.).
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Proposition 8.2 For some c uniformly in ). = % >0,ee€©,1),andl,J C
{1,...,4twith1 < |I|,|J| <3and 1 # J when |I| = |J| = 3, we have

@i: v SELun=s=3 + M0 71<2); 8.21)
oy o )

N A 4 (Lyn=3) + Lyn<oyM,); (8.22)
o S cs_%(]l{m:g + 1<y MY); (8.23)
Gi‘?v& 04— ¢4 S log for |11 =3 (8.24)
Vi, < for |11 < (8.25)

4=t (log Ly

We now substitute these bounds into (8.20) and note that when |I| = |J| =

3, each factor ||@i;j||gq%eq can be controlled by ||0§8 8||eq—>eq, and when

[I| A |J] < 2, the powers of M, = log log% from (8.21)—(8.23) can be
1/2 1/2 Y] .

controlled by [[V] 1312, 4l A,eug({w (set [V lleaea = 1if |1] = 3).

This leads to a convergent geometric series similar to (6.25), which gives

‘M ‘ CsI'

IleloonllBHM (8.26)

for some C depending only on A. This proves Theorem 8.1. O
To conclude this section, we sketch the proof of Proposition 8.2.

Proof of Proposition 8.2 We will sketch how the proof of Proposition 6.6 can
be adapted to the current setting.
Proof of (8.21). First note that it is equivalent to

4( )
Y f®9p —a5 80
xe(Z2)}.ye(Z?) (y)
c(Lyri=is1=3y + MELgniai<3y) L fllerllg Nl ea (8.27)

uniformly for all f € €7 ((Z*)}) and g € €9((Z*)). We split the region of
summation into A, = {|]x — y| < Co/+/¢]} and AS. Note that the analogue
of Lemma 6.7 holds for Q, . Therefore following the same argument as in
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(6.35), the region A¢ gives the contribution

1,J
Yo f@Qrlx.y)
xe(Zh}.ye(Z?)
(x.y)eAS

ccd( Y i e

xe(Z)}, ye(@?)?}

R4
w% x) g(y)

w2 (y)

x > el e""‘y'ﬁ)l/q
xe(Z2)], ye(Z?)
NIl
<Ce P4 (Lyn=isi=3) + MILgnA1<3) | fller l1gles
SCIfller lIgllea, (8.28)

where the spatial constraints in x € (Zz)‘]‘ and y € (Zz)‘} (see (8.19)) led to
the factor in the bracket in the third line.

In the region A;, the factor w§’4 (x)/ w§’4 (y) is bounded. By the analogue
of Lemma 6.7 for 9, ., it suffices to show

Z fx)g(y)
4
xe(Z)h ye(22y (Lo 3oy i = yil?)?

< c(Lgri=g1=3) + MLy a1<3) L llerllglea (8.29)

When |I| = |J| = 3, the proof is exactly the same as that of (6.27). When
[1],]J]| < 3, we can apply Holder to bound the Lh.s. of (8.29) by

(X )

4
xe(Z2y4,ye(z?)} I+ 272 v — il

" < Z g(y)? )l/q

4
xe(@)t ye ) (142000 i — yil»?

< CM|| fllerllgllea- (8.30)

When |I| < 3 and |J| = 3 (the case |/| = 3 and |J| < 3 can be treated
identically), we can find k,[ € {1, 2, 3, 4} that belong to the same partition
element in /, but to different partition elements in J; in particular, x € (Zz)‘}
implies |x; — x;| < 20M;. Fix any a € (0, 1/g). We can then apply Holder to
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bound the L.h.s. of (8.29) by

( Z fx)? . 1 )1/1)
72)h 1+ 2?21 i — i3 (e =y 24P

xe(Z2)3. ye(

g(y)? 1/q
(X ; (1 Iy - wP7)
A+ 1k —yil®3
xe(Z2)4,ye(2? i=1

< CME| fllerllgllea,

where in the first bracket, the sum over y is uniformly bounded by the same
argument as in the bound for (6.28), while in the second bracket, we can
distinguish between two cases: either |yr — y;| < 40M,, in which case we

24
apply this bound and sum over x to get a bound of M/’ ¢ llgllea;or |y — y1| >
40M; > 2|xx — x|, in which case we apply the triangle inequality

lxe — vl + 1xi =yl Ty — il
Xk — yil + |x1 — yil = > + 1

and follow the same argument as for (6.30) to get a bound of Mg /a llgllea,

where M? /4 comes from summing over the redundant components of x after
selecting one component of x for each partition element of /. This concludes
the proof of (8.21).

Proof of (8.22)—(8.23). Similar to (6.36), we need to show

w®
Y @l y) ®4§ ;gu)

xe(Zh}, ye(@H*

_1
<ce 7 (Tynzsy + Lyn<sy M) fllerllglea (8.31)

uniformly in f € ﬁ”((Zz)‘}) and g € £9((Z*)*). Restricted to (x, y) € AS, we
note that the bound (8.28) can now be replaced by

4 3 821

3— —= _u
Ce P(]l{|1|:3}8 T+ LinayMe " e q)llfllzp 18 lea

_1
< Ce 7 fller llgliea-

Restricted to Ag, it suffices to bound the following analogue of (6.38):

Z f(x)g(y)
4 3
xe(@Hh, ye(zy* (1+ 2272 1 — yil?)
(xsy)eAé‘
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1
< Ce v (Lyn=3y + Lyn<syM) 1 fllerllglea (8.32)

When |1| = 3, this follows by exactly the same proof as that of (6.38). When
|I] < 2, the estimate is simpler and we can apply the Holder inequality to
bound the L.h.s. of (8.32) by

1
Z fx)r )P
4 3
xe(Z)t, ye(z2y (142772 1 = vil?)
(x,y)€A;

(8.33)

« 3 g1 a
1 4 . 12 3 )
xe(Z?)},ye(Z?)* ( + Zi:l lxi — il )
(x,y)eA,

Since || < 2, the second factor can be bounded by C Mg‘ llg|l¢a. For the first
factor, summing over y gives

)3 —

3
ly—x|<Co/\/e

uniformly in x € (Zz)‘}. Collecting all the bounds obtained so far then gives
(8.31).

Proof of (8.24). Assume w.l.o.g. that I - {1, 2, 3, 4} consists of the partition
elements {1, 2}, {3}, {4}. Recall from (8.18) and (8.12) that for x, y € (Z?)%,

2/e
- (cg)
Ul oy =Y e TSy —x0) [ gsonr, o).
n=0 i=3,4

We then have the following analogues of (6.43) and (6.44):

2/e

_ (cg) c
U’ Ly <4} e hen Ug -,
> Z > < oed
ye(z®4 zeZ?
2/e
2 UL TN €Y S T e <.
2y4 2 log A
Ye(Z4); [ =/

both of which follows from Lemma 5.9 by Fatou’s Lemma (recall ﬁgﬁl from
(8.10)). The rest of the proof is exactly the same as that of (6.24).
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Proof of (8.25). Given a partition I + {1,2,3,4} with [I| < 2, recall the
definition of Vi . from (8.18). We need to show that

®4
S PV x g(y) ®4E ; <

x.ye(Z?)}

R 1);||f||el’||g||eq (8.34)
og 4

uniformly for all f € ¢7((Z*)}) and g € £9((Z?)7). As before, we consider
the sum of x, y over A, = {|x — y| < Co//¢l} and A¢ separately and apply
Holder’s inequality. The bound (8.25) will follow if we show that uniformly
inx e (Z*)34,

C
Z V(Cg)l(x y) — and Z V(Cg)l(x y)eC\y x|/

ye@y} (log £)* ye@y}
C
< = (8.35)
(log )

These bounds hold because (8.13) and (8.11) imply that

VEE (x. y) < ]_[ﬂ{m—x,KMs il
(log 1) z )i i=1
This concludes the proof of Proposition 8.2. O

9 Proof of the main results: Theorems 1.1 and 1.2
9.1 Proof of Theorem 1.1

We can rephrase Theorem 1.1 as follows.

Theorem 9.1 Assume the same setup as in Theorem 1.1. Let k € N. For
i=1,...,k assume 0 <s; <t; <00, ¢ € C.(R?) has compact support,
and r; € Cp (R?) is bounded. Then the following convergence in distribution
holds as N — oo:

k = ("@i‘l?t(gol.’ Wi))izl k? (91)

.....

(24 Vs (Pis W)y

.....

where Zi (0. 9) == [[ o) ¥ (y) Zh  (dx, dy).

We will prove Theorem 9.1 by showing that the random vector in the Lh.s.
of (9.1) converges in distribution as N — oo to a unique random limit. This
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in turn implies that (Zﬁ,",’s ,(dx, dy))ogs<r<co converges to a unique limit,

denoted 27 = (Z,,(dx, dy))o<s<i<oo-

The convergence of the one point distribution in Theorem 9.1 follows from
the following result. We will explain how this can be adapted to finite dimen-
sional distributions in Remark 9.5.

Proposition 9.2 Given ¢ € C.(R?) and ¥ € Cp(R?), let Zy(p, V) =
Zf,’YO’le, vy =[[ go(x)w(y)Z’i,N (dx, dy) be as in Theorem9.1 with N € 2N.
Then Zn (¢, V) converges in distribution to a unique limit as N — oo.

Proof Since

1
EllZn(p, W < ijz|<p(j—ﬁ)||w(%ﬁ)|qzv(y—x)
X,y€

—> f/ Iso(X)Ill/f(y)lg%(y—X)dxdy,

it follows that E[|Zn(g, ¥)|] is uniformly bounded in N and hence
(Zn (@, ¥))Nen is a tight family and admits subsequential weak limits.

To show that the limit is unique, it then suffices to show that for every
bounded f : R — R, with uniformly bounded first three derivatives, the limit

ngnoo E[f(Zn (g, ¥))]

exists. To this end, we will show that (E[ f(Zy (¢, ¥))])nen is a Cauchy
sequence.
Theorem 4.7 allows us to approximate Zy (¢, ¥) by the coarse-grained

model Q@(Cg) (¢, ¥|®) with coarse-grained disorder variables ® = @5\0,{2, with

an L? error that is arbitrarily small, uniformly in large N, if ¢ > 0 is chosen
sufficiently small. Therefore it only remains to show

lim lim sup [BLf (2 (o, 1O — BLf (25 (0, w1O;E ]| =0.

eJ0 N—>oo >N

9.2)

We will prove (9.2) by applying the Lindeberg principle for multilinear poly-
nomials of dependent random variables formulated in Lemmas A.2-A.4.

Let us set ®(®) := Qi(cg) (¢, ¥|0©), and note from its definition in (4.8)
that ® () is a multilinear polynomial in the variables ® := (O(i, é))a 3)eT,
where recall from (4.5) that

T, := {(T, a)= (i), @a): lil=f—i+1<K,, |3 =la—a|< Mg\ﬁ}.
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We write ©, for the coarse-grained disorder variables @fﬁ? =
(@f,c,%)(i, a)) (.3)eT,” €€ (4.11). These satisfy Assumption A.1 with the fol-
lowing dependency neighborhoods:

e for each z; := (Tl, aj) € T,, its dependency neighbourhood is given by

Az ={z2 = (@2 82) € Te : {2, 1) N {0, 1)) # 0,

dist({az). a1, a)}) A dist((a). (a1, @) < 2M. };

e given | € T, and Z; € Az, the dependency neighbourhood of {z;, z,} is
given by

AZIZZ = AZI U AZZ'
Recalling the definition of T, we see that, uniformly ine > O and z € T,,
|Az] < CM? K. (M.\/K:)*> = C MY K2 (9.3)

In order to apply Lemma A.4, we first verify that condition (A.8) is satisfied
by ©(®).

Lemma 9.3 The multilinear polynomial ®(®) := Q@(Cg) (¢, ¥|®) satisfies
condition (A.8).

Proof Condition (A.8) reads as

VZ] € TS, VZZ € AZI’ VZ3 S AZIZZ = Azl UA22 .
07,,® =0forall 1 <i,j <3,

where d; denotes derivative w.r.t. ®(z). Since ® is multilinear in (®(2))zer, ,
this condition is equivalent to the claim that no term in the expansion of @
(recall its definition from (4.8)) contains more than one of the factors ®(z;),
1 < i < 3. From the definition of ®, clearly the product ®(z;)®(Z,) cannot
appear because z; = ((i1, 1)), (a;,a))) and z = ((iz, i}), (az, a,)) have
an overlapping time index. Similarly, if z3 € A for either i = 1 or 2,
then the factor ®(z;)®(z3) cannot appear. The last case is if z3 € Az,, but
Z3 ¢ Az (the case zz3 € Az, Z3 ¢ Az, is the same by symmetry, since
Zy € Az if and only if z; € Az,): let us show that ®(z1)®(z3) does not
appear in ®(©). Both Tl and 73 have an overlapping time index with Tz, hence

dist(ir, i3) < i) — i = |i] — 1 < K, — 1, which contradicts the constraint

- ipl
imposed by f?no triple) in (4.4), that for ®(z;)®(z3) to appear, we must have

dist(Tl,E) > K. This verifies condition (A.8). |
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We can then apply Lemmas A.2-A.4 to bound

[E[f(®(©,)] — ELf(@©,)]] < 1™ + 1" + 11" + 1)V + 1",
(9.4)

where Il(m) and IZ(m) are the terms from applying Lemma A.2toh(-) = f(P(-))
and X = 0, see (A.4) and (A.5), similarly for Il(") and 12("), while 13(’"’")
is the term from applying Lemma A.3 to two Gaussian families Z = ®,(7? )

and Z = ®,(1G) with the same mean and covariance structure as ®,, and ©,,,
respectively, but independent of them, see (A.6).”
We are now ready to prove (9.2) exploiting (9.4). It suffices to prove that

lim limsup /™ =0,  lim limsup /¥ =0,  lim limsup I{""™ =0,

el0 posoo el0 pooo el0 n,m—o0

9.5)

We will prove these relations separately, exploiting (A.9), (A.10) and (A.11)
from Lemma A.4. This will conclude the proof of Proposition 9.2.

Bound on lim sup 1 1("). By (A.9), we have

n—oo

" < ||f’”||oo sup E[0,(z))[’] >
z21€Te, ZIETg,ZzeAzl,ZSEAzlzz
1 1

sup E[ [0, o (WZ12) | sup [ Jo, 0 (W) ] ©6)
s, t,u

S,t,u
1
373
x supE[|az3<b(W§};§2)| ]3,
s,t,u
where for s, t, u € [0, 1],

Az Az,2,\Az ACZ z ra G
Hsz,lt:iz = Su\/;("Dn 1 l‘M\/;®n 122\ Az +\/;®n 2 1_t®1(1 )’
9.7

with ©2(2) := 0,(2)1(zea}-

First note that by the assumption ¢ € C, (R?) and the definition of the
multilinear polynomial ®(®) in (4.8), ®(®) depends only on ®(z) for a
finite set of z € T. In particular, the sum in (9.6) is finite, and we can pass
lim sup,,_, , inside the sum.

9 Since (®,(2))zeT, are uncorrelated, (®SZG) (2))zeT, are in factindependent Gaussian random
variables.
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Note that || f”'||so is bounded by assumption, and by (7.11),

. . 3/4 C
lim sup sup E[l@n(21)|3] < limsup sup E[|®n(21)|4] < ——
n—0o0 z;€T, n—oo zeT, (log E) /
(9.8)
The sum in (9.6) can be bounded by
g 2120141774
Z 3 Z Sup E[|azi<b(Ws,t:u )\ ] . 9.9)
s,t,u

21€T5,226A21,23€A2122 i=1

Given z = (T, a) = ((i,i"), (a,a’)) e T, by the definition of ®(®) =
2 (. ¥10) in (4.8),

2
8,9(0) = o) 2 (9, ¥1©) = -

268 (0, 15.@|0) 2%, (s, @), ¥10),
(9.10)

where ;@iécﬁ) (¢, 1(s,(a)1®) denotes the centred coarse-grained model with
initial condition ¢ at time 0 and terminal condition 1, () at time i: this is just
the original coarse-grained model in (4.8) with time horizon i instead of | 1/¢]

and with the constant term % 81 (¢, ¥) omitted. (Werecall that S, (a) is a square

of side length /¢ defined as in (5.35).) The definition of o@;[i(,f%)/g] (Is, @y, ¥10)

is similar, which is independent of Z;; (¢, 115, (a)|©). Each of d z) 2%,

Q;E(()Cig]) and Q‘;[i(f%) .1 contains a factor of ¢/2 by the defintion of the coarse-
grained model in (4.8), which is why there is a prefactor of 2/¢ in (9.10). We
then have

B[l o(weyi2)[]
16 > 4
= S EB|(Z57 1500 0¢ — Ve Wi |
_ 4
< E(Z63 e son v = VeOIWE) | )

where we interchanged initial and terminal conditions by symmetry and used
translation invariance and independence.

We can bound the two factors in the r.h.s. of (9.11) by applying slight variants
of Theorem 8.1, which was formulated for the original coarse-grained model.
Let us focus on the first factor in the r.h.s. of (9.11), for which we need to take
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into account two differences: the time range [0, i] instead of [0, ¢~ 1] and the
disorder W{}'7? instead of ©,,.

The first difference is immaterial, because our moment estimate Theo-
rem 8.1 is monotone increasing in the time lengthi € [1, e~ N (see the argument
leading to (8.4)). As a consequence, we can apply the bound in Theorem 8.1

with w(x) = e~ t0 Z(H (0, ¥|©,), which yields

Ls, (0 H4
w

7(cg) 4 4 4 4
E[(Z5 (15,00 9 — Vea)lOn) ]| < Cen eIt g oyl

- 4
< Cligligoe st WeaBo) g,

(9.12)

where C depends on the choice of p, ¢, but is uniform in i and a and in n
sufficiently large, while By, is a ball that contains the support of ¢.

The second difference is also immaterial, that is we can replace ®, by WsZ : 2
in (9.12). This is recorded in the following result, which we prove later.

Lemma 9.4 The bound (9.12) also holds if ®, is replaced by WSZ’ %:iz, uni-
formly inzy,zy € Te and s, t,u € [0, 1], and n large.

Similarly, we can also bound the second factor in the r.h.s. (9.11) by

[(zg%}g L0y = VRV 2)']

4
< Ce ||w|| lwl? < Clylider. 9.13)

Substituting these bounds into (9.11) and then (9.9) gives (for n sufficiently
large)

3/4
> Z sup E| 3z, @ (W2 )|

s,t,u
Z1€T£,22€AZ1 i=1
ZgGAzlz2

6 3 4
3 3 =3 —=dist B,
< Clloldllvil.er > emadsvERLE)

z1=(i1,a1)€Te, 22€Az;
Z3€Az,2,

3 3 .8-5,10 6

S Cllelz v liser "M K,
where we used the symmetry in the dependency structure between 2y, 2,, Z3
(zo € Az if and only if z; € Az,) to reduce Z?:l to the case i = 1,

and in the last inequality, we first summed out z;,z3 and applied the
bounds |A;, |, |Az,z,| < CM}K? from (9.3), then summed out (i}, a}) in
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z1 = ((i1, 1)), (a1, @})) where the sum over i} gives another factor of K, and
the sum over @) gives another factor of M, 2 K., and lastly we summed out
(i1, ar), noting that iy € {1, ..., e~} while the sum over a; gives a factor
(0] ((ﬁ)_z) = O(¢ ') because of the exponential decay on the scale (\/E)_1
(we recall that ¢ has compact support).

We recall from (4.2) that K, = (log %)6 and M, = loglog % Choose p > 1
sufficiently close to 1 and substitute the above bound into (9.9) and then (9.6),
together with (9.8), we then obtain that for any 6 € (0, 1), there exists Cs such
that

limsup |1\ < Cs °.

n—oo

This proves the first relation in (9.5).
Bound on lim sup 12("). By (A.10),

n—oo

1
71 < 515" oo sup E[104@)] >
z1€Te Z]€T8,226A21,23€A2122
1

1 1
sup E|:|821 CD(WtZ”ll,Zz) |3] 3 sup E[|822®(Wtz,,14’22) |3i| 3
tu t.u

1
3

wsup [, o (w747 ]
t,u

where W22 = u /10,7 4 /10,92 + VT=10'% for1, u € [0, 1]. The
bounds are exactly the same as for |I,§1)|, which gives lim sup,,_, . |12(n)| <
Cse® for any 8 € (0, 1). This proves the second relation in (9.5).

Bound on lim sup 13('"’"). By (A.11) and the fact that ®,, is a family of mean

m,n— 00
zero uncorrelated random variables,

m,n 1 V2
|I3( , )l < Ellf lloo Z (E[@i(z)] — ]E[@,i(z)]) S[l(l)p”E[|3z<D(Wz)|2]
zeT, reld

9.14)

where W, = \/?G),EG) + 1 - t@,(nG) for t € [0, 1]. Note that by definition,
@ (®) depends only on a finite set of ®,, z € T,. Therefore the sum in (9.14)
contains finitely many terms. For each z € T,

lim (E[©;(2)] - E[6},(2)]) =0

m,n— 00
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by Lemma 7.1. On the other hand, uniformly in ¢ € [0, 1], E[|BZ<I>(W,)|2]
converges to a finite limit as m, n — oo because d;®(W;) is a multilinear
polynomial in W;(z) for finitely many z € T,, while its second moment is
a multilinear polynomial of E[W,Z(Z)], z € T, each of which converges by

Lemma 7.1. It follows that lim sup,, ,, , |I3(m’”) | = 0, which is stronger than
the third relation in (9.5).

Conclusion. Assuming Lemma 9.4, we have proved (9.5). This implies (9.2)
and finally completes the proof of Proposition 9.2. O

Remark 9.5 (Extension to finite-dimensional distribution) Finally, to prove
the finite-dimensional distribution convergence in Theorem 9.1, we argue
as in the proof of Proposition 9.2. First we approximate the components

Zfi,” si.ts (¢i, Vi) of the random vector in the Lh.s. of (9.1) by coarse-grained

models Qfg(ig t (@i, ¥i|®), with the same coarse-grained disorder variables

e = ®§$g€) , which we can do with a small L? error, uniformly in large N,
provided we choose ¢ > 0 small enough, by Theorem 4.7.

It remains to apply a Lindeberg principle for a vector of multilinear poly-
nomials, which is given in Remark A.5. The estimates needed are exactly the
same as in the Lindeberg principle for a single multilinear polynomial. This
concludes the proof of Theorem 9.1.

Proof of Lemma 9.4 We re-examine the proof of Theorem 8.1. First note that,
similar to the L? orthogonal decomposition of ©,,(i, @) with |i| > 1 asin (8.5),
we can write

W2z, 8) = > W2 (a,b), (0, &), (9.15)
b: |b—a|<M,,b": |b'—a’|<M,

b’ —b <M /1T

where Wsz, i:iz (T, (a,b), (b’, @) are defined through the same mixture as
in (9.7) between ©,(i, (a, b), (b, @) and O (i, (a, b), (b, &')), with the
latter being independent normals with mean O and the same variance as
®,(, (a,b), (b’, a")). We can then carry out the same expansion as for (8.4),
and note that: whenever a product of coarse-grained disorder variables ®,, has
zero expectation because of the presence of some ®, (i, a) with either (i, a)
or (i’, @") unmatched by any other ®,, in the product, the same is true if the
family ©®,, is replaced by WY , .25 similarly, whenever two collections of ®,
variables are independent of each other, the same is true if ®,, is replaced by
W; }52 This implies that the expansion and re-summation carried out for the
r.h.s. of (8.4), as well as the accompanying constraints on summation indices,
also apply when @, is replaced by W7122,

s,t,u
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Next we claim that, for W;’,ziz((il, iv), (a1, by), (a2, b)) that visits two

distinct blocks 71, 7> (see the exposition leading to (8.6)), although we no
longer have a chaos expansion representation as in (8.6) due to the Gaussian
component of WSZ, ‘,jz , we can still make a replacement similar to (8.8) in order

to bound the r.h.s. of (8.4), with ®,, replaced by W21 22

s,tu

WEe (i, 1), (a1, by), (a2, b2))

< Z1,2p . 21,22 /; (916)
~ CWi 5 (s @, br) giogy—i (@2 — by) Wiy (i2; @z, b2).

To see this, note that W12 is a mixture of ®, and 0.9 with mixture coef-

ficients given in (9.7). When we expand the r.h.s. of (8.4) with W21'2? in

s,tu

place of G)E:;gg), we can further expand Ws% 1t:52 in terms of its mixture. Each

term in the expansion then consists of a product of ®, variables and @flG)
variables, whose expectation factorises due to the independence between ©,,
and @;G). For terms that contain the factor ®, ((i1, i»), (a1, b1), (a2, by)), the
decomposition (8.6) applies, and the same argument justifying the replace-
ment (8.8) can be applied here. For terms that contain the Gaussian factor
@f,G)((il, ir), (a1, b1), (a2, b)), the expectation will be non-zero only if this
factor appears exactly twice or four times. The resulting contribution will be
either the second or the fourth moment of @,SG)((i], ih), (ai, by), (az, by)). Its
second moment coincide with that of ®,((i1, i), (a1, by), (az, b)), while its
fourth moment can be bounded in terms of its second moment by Gaussianity.
Then as in (8.8), we make the following replacement in the expansion:

09 ((i1, i), (ar, by), (az, b))
5 €09 a1,b1) g106,-i) @ — by) O (ix: az, by). (9.17)

Therefore in the mixture of W>1"?2((iy, in), (a1, by), (a2, bs)) (recall (9.7)),

s,tu

we can replace the ®, and @,SG) components each by its factorisation as in
(9.17). The mixture coefficient of the term C®,(i; ai, b1)giog,—i;) (@2 —
b1)®, (ip; a2, by) is equal to a+/f with either « = su, u or 1, while the mixture
coefficient of the term C@,EG)(il; ar, bi)giog,—ip) (@ — b1)®f,G)(i2; ap, by)
equals +/1 — ¢. This mixture can be further replaced by the r.h.s. of (9.16),
which just contains extra terms and larger coefficients, where the choice of
s =u = 1and ¢ = 1/2 in the first factor le’ll’/zzz’l (i1; a1, by) helps to bound
the mixture coefficients.

The remaining parts of the proof of Theorem 8.1 depends on the coarse-

grained disorder variables ®, = @f,cé) only through their second and fourth

moments. Note that uniformly ins, 7, u € [0, 1]and z1, z;, the second moment
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of W/1 22 is bounded by that of ®,, and modulo a constant multiple, the fourth
moment of W } Z2 can be bounded by that of ©,. Therefore the remaining

parts of the proof of Theorem 8.1 carries through without change if ®, is
replaced by WZ!°22_ In particular, the bound on U I(VC i) in (8.10) still holds since

s, t,u

it only depends on the second moment of ®,,, and the bound on V;,Cgs) in(8.11)
still holds because it only depends on the fourth moment of ®,,. O

9.2 Proof of Theorem 1.2

The translation invariance of the law of 2 is obvious.

To prove the scaling relation (1.12), let us write Sy (¢}) to emphasize that By
as specified in (1.11) depends on a parameter . Given a > 0, let N = N/a.
Then using (1.11) and the fact that Ry = %(log N + a + o(1)) given later in
(3.2), we have

o2 = L(HM) - L(H v _logaf"(l)), (9.18)

Ry IOgN Rl\~/ logN

so that By (¢) = By (¥ —loga), or equivalently, By (¢ + loga) = By (D).
By (9.1), for ¢, ¥ € C.(R?), we have

L L By @)w
f/w )v a)zm (dx. dy)
// ) azi’g,al(dxv dy)
N—oo

= / / ¢<x>w<y>£;'i,at<d<¢5x>, d(vay)).
(9.19)

On the other hand, recall (1.9), we can rewrite the L.h.s. of (9.19) as

N// a) 250 (K, [[fylbdxdy

[Nas].[Nar]

By (@), w v
ﬁ Z Zvastivan )/ /w< - )dv
2

i’ieZeven lu—x]1<1 [v—yh<1 an
Ay (OHloga). o ¢ 5 v
Z ZINs1INT] )/ /¢<ﬁ>dv
)C yEZeven lu—x|1<1 lv—y1<1

= [[ewvmazl =@,
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where we again applied (9.1). Combined with (9.19), this implies (1.12).

The first and second moments of 27 can be identified from the limits
in (3.53) and (3.54), since for ¢ € C.(R?) and Vo€ Cp(R?), the averaged
partition function Zfi,N (@, ¥) has a finite fourth moment that is uniformly
bounded in N, see Theorem 6.1.
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Appendix A. Enhanced Lindeberg principle

In this appendix, we prove a Lindeberg principle for multilinear polynomials
of dependent random variables with a local form of dependence. This extends
[75], which requires the function to have bounded first three derivatives and is
not applicable to multilinear polynomials, and it extends [70], which considers
multilinear polynomials of independent random variables. We first introduce
the necessary setup. Let T be a finite index set.

Assumption A.1 (Local dependence) Let X = (X;);cT be random variables
satisfying:
° E[X,'] =0and E[Xin] = 0ij,
e for every k € T there is Ay C T such that Xj is independent of (Xi)ieAi;
e forallk € T,l € A thereis Ay; C T such that (Xg, X;) is independent of

(Xi)ieAzf

The sets (Ar) ket and (Ax;)keT,iea, Will be called dependency neighbourhoods
of X = (Xi)ier.

Let Z = (Z;)ieT ~ N(0, 0.) be a Gaussian vector independent of X, but

with the same covariance matrix as X. Foru,t € [0, 1],k € Tand !/ € Ag, we
define

Wtkul = uv/1XM + 1X M+ VT =12, (A.D
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where for any subset of indices B € T we write
XB .= X;1jcp). (A.2)
Fors,u,t € [0,1],k € Tand! € Ay, we define

Wol = suvIX A uix A L xR £ VT =1z, (A3)

We have the following Lindeberg type result, which controls the distribu-
tional distance between X and Z through smooth test functions.

Lemma A.2 (Lindeberg principle for dependent random variables) Let X, Z,
k ! , and Wl be defined as above. Let h : Rl — R be bounded and thrice

s,t,u

dlﬁ”erentlable Then

E[h(X)] -E[r(D] =L+ DI

where
1
I = 5/ , Z E[Xk X1 Xm (S]l{meAk} + ]l{MEAkI\Ak})
011 ger, leAk meAy
X \/_8klm ( 5.t u)] ds df du, (A4)
1
I = _5/ > oklE[Xm fza,flmh(w,’f;f)]dt du, (A.5)
[0,1]

2
keT,leAr, meAy

assuming that the integrals and expectations above are all finite.

To control the distributional distance between X and another random vec-
tor X = (X;)jer with slightly perturbed covariance matrix (0;;); jeT and
dependency neighbourhoods Ak, A, we will apply Lemma A.2 to X and X
separately, plus the following result that compares two Gaussian vectors.

Lemma A.3 Let Z = (Zi)ier ~ N(0,0.) and Z = (Z;)ier ~ N(0,5))
be centred Gaussian random vectors with covariance matrices (0j;j);, jeT and
(0ij)i, jet respectively. Let h : RTl — R be bounded and twice differentiable.
Denote W; := ﬁf + /1 —tZ. Then we have

E[h(Z)] - E[h(Z)] = Z(okz—am / oW d
kle’]I‘
(A.6)

assuming that the integrals and expectations above are all finite.
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We now specialise Lemmas A.2 and A.3 to our case of interest, where # is
a function of a multi-linear polynomial ® (X).

Lemma A.4 Assume that h(X) := f(®(X)) for some bounded f : R — R
with bounded first three derivatives, and

eX) =Y e [[Xi (A7)

ICT iel
for some fixed coefficients c; € R. Furthermore, assume that

VkeT, €Ay, meAy, 0

m

=0} ®=070=0. (AS8)
Then for I, I and I3 as in (A.4), (A.5) and (A.6), we have

1
1< 05" lloo sup B1X ] >
keT keT, lcAg, meA
5 ks MEA]

1 1
sup E[[ac0(W/ )] sup B[ [ o (Wil )] sup E[Jam @ (WS )P ]
s, t,u s, t,u Ss,tu

(A9)

=

1
1220 < 517" oo sup E[1 Xk ] >
keT keT, IcAy, meA
s k>, MEAL]
1

1 1 1
stupE[}akq>(W,’f;f)|3]3 stupE[{a,q>(Wl’f;f)}3]3 stupE[|8md>(Wk’[)|3]3, (A.10)

tu

1 = S
131 < 51 oo Y. @kt — o) swpE[ @0 @(Wi))? |* sup E[ 00 (W))?] .
keT, Ay ! !

(A.11)

Remark A.5 We can extend Lemma A.4 to the vector setting, i.e. for a function
h(X) = f(d>(1)(X), ..., ®® (X)) of a finite number k of multi-linear poly-
nomials @ (X) as in (A.7), each satisfying (A.8), where f : R¥ — R has
bounded partial derivatives of order up to three. The bounds (A.9)—(A.10) are
simply modified replacing || /" |loc by maxi<;, j i<k [19;,j.1 flloo and the three
occurrences of ® by oD oW D and then summing over 1 < i, j,I < k;
similar modifications apply to the bound (A.11). The adaptation of the proof
is straightforward.

We now give the proofs of Lemmas A.2—A 4.
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Proof of Lemma A.2 Let Y; := /tX + /1 —tZ,t € [0, 1]. Then we can
write

dr
> = k() = nh(Yy)
PO oo

keT keT

Iq
E[h(X)] — E[h(2)] =/0 —E[h(Y;)]dt

Given C C T, let us denote
=V1X¢+ V1 —tZ, where Xl-c = X; Ljjiecy-

Inparticular, Y; = UIT.ObservethatE[Xk akh(UtA")] = E[Xk]E[akh(UtA")] =
0 by independence. We recall Gaussian integration by parts: for smooth func-
tions ¢,

ElZk9(Z)] = ) ou Bloig(2)] = ) ou Blojp(2)],
IeT le Ay

since oy = 0 for [ ¢ Ag. Then
E[h(X)] — E[h(2)] = lflE[Zﬁ (h(US) = 0eh(U}))
2Jo Ligvi o e

> oudph) )]dz.

keT, leAg
. Af
Let us expand the first term. We can interpolate between UtT and U, * by

UM 4 sViXM  fors € [0, 1],

Then

1
c d c
kh(UT) — ach (U :/ —akh(Uf‘k + s/1X %) ds

=i ZXAkak, U 4 51X ) ds

0 JeT
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Note that we can restrict the sum to [ € Ay because XIA" = 0 otherwise. This

leads to

1l .
Blhoo1 - B2 = [ E[ Y XX (U six)

keT,leAy

- > ou a,f,h(UF)]ds dr.

keT, leAy

Note that E[X; X;02h(U*)] = E[Xi X;E[02h(U¥)] =

a,dE[a,flh (U ,A"’ )] by the independence assumption. By adding and subtracting
this term, we get

E[h(X)] -E[r(D] =L+ DI

where

1/01E[ > xex (o)t +s«fXA‘)—32h(UA“)>]dsdt

l\)\'—‘
S—

keT,leAx
1 1 1 kl
=3 E ou (97 (U) = o3 WD) |ds dr
0 Jo ke, leAk
1 1
f E[ o (93h(U, “)—akh(UT)>]
0 Lier rea,

where we performed the integration on s in I (whose integrand does not

depend on s).
Let us deal with /;. Note that

AS c
U 4+ s/tXM = sVt X% + ViXxY% + V1T —1Z
and UM = Jix% + VT =12,

, A€ A€
We can therefore interpolate between U, © and U, * + s/t X% by

W;(,}lu — U[Ak/ T uT(s XA ¢ x A\ u €0, 1].
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Note that (s X4k 4+ XA\4) = 0 for m ¢ Ag;. We can then write

c c 1 d
2 h(U[ + s/TXM) — a2 n(U/) = /0 Ea,f,h(wj?,{u)du

1
=~/;/ D" X Lmea + Limeaiag) Bpmh (We ) du.

0 meAy;

This yields the final form of /;:

1
I :5/ E[ Y Xk Xi Xn(slpmeny
0.1] KET, l€Ay, meAy

+ Lpmeag\ary) ﬁa/?zmh(Wf,}l,u)] ds dr du.

. . AS,
Let us now deal with I,. We can interpolate between U, * and U by

W,kul = U,Ak’ +utX2, uelo,1].
Then
2 Ay 2 T 'd 2 k1
(U M) = 8h(U, ) = — aakzh(Wz,h) du
0

1
- _ﬁ/ D7 Xon (W) du.
0 meAy;

This yields the final form of /5:

1
L= _5/ E[ > ou Xmﬁaflmh(Wff;f)]dt du.
[0,17?

keT,leAy, meBy

This concludes the proof of Lemma A.2. O
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Proof of Lemma A.3 Let W, := /1Z + /1 —tZ, t € [0, 1]. Using Gaussian
integration by parts as in the proof of Lemma A.2, we have

- I'd
E[h(Z)] — E[h(Z)] :/0 —E[h(Wz)]dt
Zi
Z—akh(w,) Z akh(W,)}dt
'/ [ keT Vv 1—1

=2 Y Gu—ow [ E[sEncw]ar

kleT

which proves the lemma. O

Proof of Lemma A.4 We can easily compute

h(x) = f'(P(x)) P (x),
Fgh(x) = (D)) P (x) JP(x) + /(P (x)) P (x),
R (¥) = [ (D (x)) %P (x) P (x) 3 P (x)
+ (@)L, D) P (x) + 3, P (x) H P (x)
+OHP) I @)} + /(D)) 3, P ().

which by assumption (A.8), gives
a,?,mh(x) = f"(®(x)) P (x) 9D (x) 3, P(x). (A.12)
We can then substitute this into (A.4) to bound

[E[Xe X0 Xon(1 = sTimene) V1 05, h(WEP |

<17 (B[ a0 (W) ] s e (WL ]
X B[ X c1>(Wm,)|3D1/3
<"l 2161%E[|Xk|3]( oo (W) | E[Jae (W) ]

<Elmowitf])

where we used the fact that 9; @ (. ..) is independent of X since assumption
(A.8) implies that d; ®(. . .) does not depend on (X,;)mea,,. This immediately
implies (A.9).
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~The~pr00f of (A.10) is the same if in (A.5), we write oy = E[)?kf)zl] for
(X%, X;) with the same distribution as (X, X;) but independent of X. The

proof of (A.11) is even simpler. O
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