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Abstract: Since its introduction to the public, ChatGPT has had an unprecedented impact. While some 
experts praised AI advancements and highlighted their potential risks, others have been critical about 
the accuracy and usefulness of Large Language Models (LLMs). In this paper, we are interested in the 
ability of LLMs to identify causal relationships. We focus on the well-established GPT-4 (Turbo) and 
evaluate its performance under the most restrictive conditions, by isolating its ability to infer causal 
relationships based solely on the variable labels without being given any other context by humans, 
demonstrating the minimum level of effectiveness one can expect when it is provided with label-only 
information. We show that questionnaire participants judge the GPT-4 graphs as the most accurate in 
the evaluated categories, closely followed by knowledge graphs constructed by domain experts, with 
causal Machine Learning (ML) far behind. We use these results to highlight the important limitation of 
causal ML, which often produces causal graphs that violate common sense, affecting trust in them. 
However, we show that pairing GPT-4 with causal ML overcomes this limitation, resulting in graphical 
structures learnt from real data that align more closely with those identified by domain experts, 
compared to structures learnt by causal ML alone. Overall, our findings suggest that despite GPT-4 not 
being explicitly designed to reason causally, it can still be a valuable tool for causal representation, as 
it improves the causal discovery process of causal ML algorithms that are designed to do just that.
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1. Introduction

Causal discovery moves beyond mere correlations to uncover the underlying causal 
mechanisms that drive observed phenomena. Determining a causal graph enables the 
parameterisation of causal models, such as a Causal Bayesian Network (CBN), which 
can then be used for causal inference and optimal decision-making under uncertainty 
through simulation of hypothetical interventions. A CBN is a probabilistic graphical 
model represented by a Directed Acyclic Graph (DAG), where nodes represent 
variables, and directed edges indicate causal relationships between these variables. 
Each node in a CBN is described by a Conditional Probability Distribution (CPD) that 
quantifies the effect of its parent nodes. This structure allows for the representation of 
complex causal relationships and the computation of joint conditional and marginal 
probability distributions.

A CBN supports both backward and forward inference. For example, predicting 
effects such as symptoms given a cause such as disease, or inferring the most likely 
disease cause given observed symptoms. More importantly, causal models enable the 
simulation of hypothetical interventions and estimation of their effects before real-world 
implementation, which is crucial for decision support. For a comprehensive review of 
causal Machine Learning (ML) algorithms, we direct readers to Kitson et al. (2023) 
and Zanga et al. (2022).

Despite their utility, causal ML algorithms face significant challenges that 
necessitate combining these algorithms with domain knowledge or interventional data. 
Three key limitations that are relevant to this study are:
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a. Uncertainty in the number of edges: Causal ML algorithms often face 
significant challenges in accurately recovering the correct number of edges in 
a causal graph. One major limitation is their tendency to underestimate the 
number of edges when the sample size is low. This occurs because limited data 
can obscure subtle dependencies and causal relationships, leading to an 
unreasonably sparse graph. Conversely, when the sample size is high, these 
algorithms may overestimate the number of edges, often due to overfitting 
issues or inability to disentangle all spurious relationships from causal 
relationships. Consequently, the reliability of these algorithms can vary 
significantly with the sample size, impacting their effectiveness in accurately 
modelling causal structures.

b. Incomplete orientation of edges: Causal ML algorithms typically do not 
orientate all the edges they discover. This limitation arises because 
observational data alone is generally insufficient to distinguish between 
different causal graphs, often requiring either interventional (also refer to as 
experimental) data for complete causal discovery, or additional strong 
assumptions which force edge orientations from observational data. In the 
absence of additional assumptions that force edge orientations irrespective of 
the input data, a causal ML algorithm typically employs an objective function 
that is score-equivalent, allocating the same score to any two DAG structures 
that are part of the same Markov Equivalence Class (MEC). A MEC of DAGs is 
a set of DAGs that entail the same conditional independencies, and each MEC 
is represented by a Completed Partially DAG (CPDAG). A CPDAG contains 
both directed and undirected edges, where a directed edge indicates that all of 
the DAGs within the MEC have the same orientation for that specific edge, 
whereas an undirected edge indicates a directional inconsistency between 
those DAGs. 

c. Irrational orientation of edges: Even when edges are orientated, some may 
be wrongly-orientated, and may even appear completely irrational to a human 
in that they disobey the fundamental tenets of causality. For instance, an 
algorithm might incorrectly suggest that Dance moves cause Music, or that 
Rainbow causes Rain. This is partly due to causal ML algorithms not being 
provided with key temporal information about the input variables; i.e., data 
indicating that event 𝐴 occurs after observing 𝐵, and hence the constraint that 
𝐵 cannot cause 𝐴. While it has been argued that objective temporal information 
should form part of observational data in causal discovery (Constantinou, 
2021), it is generally viewed as a form of optional subjective information that is 
overlooked, contributing to these orientational inaccuracies.

Large Language Models (LLMs) represent a class of artificial intelligence 
models designed to understand and generate human-like text. These models are built 
on deep learning architectures, particularly transformers, which enable them to 
process and produce natural language text with remarkable accuracy and fluency. The 
most well-known example is OpenAI's ChatGPT, with iterations like GPT-2, GPT-3, 
and beyond setting new benchmarks for generating coherent and contextually relevant 
text. LLMs are not designed to disentangle correlation from causation, and some argue 
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that it is crucial for LLMs to reason causally in order to generate logical inferences. 
Because LLMs do not reason causally by design, significant debate remains as to 
whether they merely generate restructured memorised information or go beyond that 
and towards some form of causal reasoning (Bubeck et al., 2023; Zhong et al., 2023; 
Zhou et al., 2024). 

Since the public release of GPT-3, there has been a growing interest in utilising 
LLMs for causal discovery, with studies highlighting conflicting conclusions about their 
causal reasoning capabilities. We begin with the papers that conclude that LLMs are 
mostly inadequate in terms of causal reasoning. These include Jin et al. (2024) who 
evaluated 17 LLMs on causal inference skills and found that these models “achieve 
almost close to random performance”. Zhou et al. (2024) explored criteria for 
benchmarking the causal learning capabilities of LLMs and concluded that “even the 
most advanced LLMs do not yet match the performance of classic and SOTA methods 
in causal learning”. They illustrated that while LLMs can compete with state-of-the-art 
(SOTA) methods when the problem relies on small datasets, their effectiveness 
diminishes with larger datasets. Long et al. (2024) showed that the accuracy of GPT-
3 in causal discovery depends on the language used by the user to describe the 
relationship between two events, concluding that “the use of LLMs to build DAGs 
should be, at present, only conducted with expert verification”. Zhang et al. (2023) 
suggested that while LLMs can answer causal questions based on existing knowledge, 
they are still incapable of providing satisfactory answers to problems involving new 
knowledge. Pawlowski et al. (2024) demonstrated that neither context-augmented 
LLMs, that are given the non-parameterised causal graph, nor API-augmented LLMs 
that are given the parameterised causal model, can correctly solve causal question-
answering tasks. Tu et al. (2023) tested the ability of ChatGPT to answer causal 
discovery questions about a neuropathic pain diagnosis case study, and showed that 
while ChatGPT is good at correctly discovering true positives, it is poor at correctly 
identifying false negative causal relationships. Lastly, Zečević et al. (2023) focused on 
experiments with Structural Causal Models (SCMs) to illustrate and argue that LLMs 
not only cannot reason causally, but are also weak ‘causal parrots’.

In contrast to the above studies that highlight the inability of LLMs to reason 
causally, other research indicates that LLMs are adequate in producing causal graphs. 
For instance, Kiciman et al. (2023) studied the capabilities of LLMs on various causal 
reasoning tasks and found that algorithms based on GPT-3.5 and GPT-4 “outperform 
state-of-the-art causal algorithms in graph discovery and counterfactual inference”. 
Lyu et al. (2022) explored the capability of LLMs in establishing causality between two 
variables at a time, which is not generally feasible for causal discovery algorithms that 
do not make additional assumptions to force orientations (i.e., some algorithms claim 
to be able to orientate all edges, but this requires strong assumptions about the nature 
of noise in the data), and showed that LLMs are effective in distinguishing cause from 
effect. In a similar study, Jiralerspong et al. (2024) propose a framework that, instead 
of performing pairwise queries to LLMs which require a quadratic number of queries 
with the number of variables, it conducts a breadth-first search with only a linear 
number of queries, demonstrating positive results on real-world graphs. Long et al. 
(2023) demonstrated that LLMs can serve as imperfect domain experts, helping causal 
discovery algorithms to select the correct DAG from a MEC, whereas Takayama et al. 
(2024) acknowledge the challenges associated with acquiring domain knowledge and 
propose an approach for eliciting causal edges from LLMs, demonstrating that GPT-4 
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improves data-driven causal discovery by recovering graphs that are closer to the 
ground truth. In a similar study, Cohrs et al. (2024) explore using LLMs as an 
alternative to domain experts for causal graph generation, and frame conditional 
independence queries as prompts to LLMs, showing that when the LLM-generated 
results were provided to the PC algorithm, the resulting graph was a plausible causal 
representation. Zhang et al. (2024) showed that pairing LLMs with Retrieval 
Augmented-Generation (RAG) solutions enables them to recover causal graphs that 
are more accurate than those learnt by causal ML, while Antonucci et al. (2023) found 
that LLMs are competitive in inferring causal relationships with traditional natural 
language processing and deep learning techniques. Lastly, Le et al. (2024) present a 
framework that uses the multi-agent capabilities of LLMs for causal reasoning, and 
demonstrate how causal-related problems could be addressed by combining 
reasoning skills with statistical analysis through multi-agent LLM collaboration. For a 
detailed review on integrating LLMs with causal discovery, we refer readers to a recent 
survey by Wan et al. (2024).

In this paper, we use a questionnaire to gather data from human participants 
on their ability to identify whether LLMs, causal ML, or domain experts constructed the 
presented causal graphs, and to evaluate and comment on their accuracy. 
Additionally, we investigate whether the causal relationships extracted from GPT-4 
(Turbo) can address some of the current limitations in causal ML, with a focus on the 
two limitations discussed above in incomplete and irrational edge orientations. The 
remainder of the paper is structured as follows: Section 2 describes the methodology 
and experimental setup, Section 3 presents and discusses the results, and Section 4 
provides our concluding remarks, highlighting limitations and future research 
directions.

2. Methodology and experimental setup

Figure 1 illustrates the complete methodology, with descriptions provided in the 
subsections that follow. We have made all files needed to reproduce the results of this 
study, including the real datasets, graphs constructed by domain experts, GPT-4 
prompts, GPT-4 outputs, GPT-4 averaged outputs, GPT-4 constraints, as well as the 
questionnaire responses, publicly available through the Bayesys repository 
(Constantinou et al., 2020).
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Figure 1. The process we followed to compare LLM graphs with causal ML and domain expert graphs, 
and evaluate the participants’ responses, where green nodes can be viewed as inputs, blue nodes as 
processes, and orange nodes as outputs.

2.1. Case studies as input to GPT-4 (Turbo)

Five case studies were selected from diverse domains for a more comprehensive 
evaluation. These are detailed in Table 1, which shows that the case studies vary 
widely across several dimensions: domain, variable size (ranging from 9 to 56), 
sample size (from under a thousand to hundreds of thousands), number of edges 
(from 15 to 95), and free parameters (from approximately a thousand to around 39 
million). The networks also differ in graph complexity, with maximum in-degree 
(number of parents) ranging from 2 to 17, maximum out-degree (number of children) 
from 6 to 15, and maximum degree (number of neighbouring nodes) from 6 to 22. 

We avoided selecting case studies incorporating hundreds of variables to 
ensure that a) the case studies are simple enough to enable questionnaire participants 
to review them, and b) the number of the variable labels can be processed by GPT-4, 
since there is a limit to the number of characters an input to LLMs can have, which 
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varies with platforms and implementation versions. The selected case studies span 
various domains, outlined as follows:

a. Sports: A small BN model that combines football team ratings with various 
performance statistics to predict different match outcomes.

b. COVID-19: A medium-sized BN model capturing key events of the COVID-19 
pandemic in the UK, including mobility measures and vaccination efforts, and 
their influence on infection rates and hospitalisations.

c. Property: A medium-sized BN model developed to assess investment decisions 
within the UK property market. Because this case study lacks real data, it is 
included in the questionnaire analyses but not in the causal ML evaluations.

d. Diarrhoea: A medium-sized BN model investigating factors associated with 
childhood diarrhoea in India, using data from a large demographic and health 
survey.

e. ForMed: A large BN model that evaluates the risk of violent reoffending 
amongst mentally ill prisoners and examines potential interventions available 
to probation officers for managing this risk.

Table 1. The case studies used to evaluate the causal reasoning of GPT-4. All five case studies are 
taken from the Bayesys repository (Constantinou et al., 2020).

Complexity of the real dataset Complexity of the knowledge DAGCase 
study

Variable
s

Sample 
size

Model/Data 
type

Edges Free 
parameters

Max in-
degree

Max out-
degree

Max 
degree

Sports 9 3,536 Discrete 15 1,049 2 7 7

COVID-
19

17 866 Discrete 37 7,834 5 7 10

Property 27 n/a Discrete 31 3,056 3 6 6

Diarrhoea 28 259,627 Discrete 68 1716 8 15 17

ForMed 56 953 Discrete 95 39,196,846 17 11 22



8

a. Input preparation for GPT-4: For each case study, we provide the labels of 
the variables as input to GPT-4, and ask GPT-4 to identify causal relationships 
between the labels. Specifically, GPT-4 was asked to specify a set of directed 
edges representing causal links between the input variables. No additional 
context or data was given to GPT-4, isolating its ability to infer causal 
relationships based solely on the labels. Moreover, because the way a question 
is posed to GPT-4 may influence its output (noting that even identical questions 
often generate slightly different responses), we repeated this process 10 times 
for each case study using different prompts generated by GPT-4, as shown in 
Table 2.

Table 2. The 10 prompts we used to ask GPT-4 to generate causal relationships between the input 
variables for each case study. These prompts were obtained from GPT-4 using the following prompt 
“Generate 10 different ways to ask someone to provide a list of causal relationships between variables 
in a given dataset”.

Prompt 
no.

Prompt

1 “Could you identify and list the causal connections among the variables within the 
dataset?”

2 “Would you mind detailing the cause-and-effect relationships present among the dataset's 
variables?”

3 “Can you provide an analysis of the causal linkages between the dataset's variables?”

4 “I'd appreciate it if you could enumerate the causative associations among the variables 
in our dataset.”

5 “Could you explore and list out the causal relations found within the dataset's variables?”

6 “Please, could you dissect and document the causal connections that exist among the 
dataset's variables?”

7 “Would you be able to chart out the causal pathways linking the variables in the dataset?”

8 “Can you draft a list of causal relationships that are evident among the variables of the 
dataset?”

9 “I'd like you to investigate and compile a list of the cause-and-effect dynamics among the 
dataset's variables.”
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10 “Could you analyze and itemize the causal links present within the dataset, focusing on 
the variables' interactions?”

2.2. Questionnaire 

A questionnaire was designed for human participants to evaluate the different causal 
graphs produced by GPT-4 based on variable labels, causal ML based on data 
samples, and domain experts based on their subjective causal knowledge. A sample 
of the questionnaire is shown in Figure A.1, showing the first causal graph of the first 
case study. Participants were free to complete one or up to all five case studies. It was 
completely up to them to decide how many, and which, of the case studies they 
completed. This option was necessary to ensure that we did not force participants to 
complete case studies they were not be able to judge reasonably well. Moreover, we 
estimated that each case study required an average of 6 minutes to complete, which 
makes for a total of 30 minutes for those who decide to complete the questionnaire in 
full.

The questionnaire involved three causal graphs for each case study in Table 1, 
for a total of 15 causal graphs. The three graphs for each case study represent the 
following:

a. Knowledge graphs: These are the causal graphs elicited from domain 
experts. They are taken from the Bayesys repository (Constantinou, 2020), and 
are based on the knowledge graphs as published in the original studies.

b. Causal ML graphs: These are causal graphs learnt with causal ML algorithms 
from real case study data. For the Diarrhoea and COVID-19 case studies, we 
took the learnt graphs from the original studies. The other three studies did not 
employ causal ML, so these graphs were not available. We, therefore, learnt 
the structures using and a set of algorithms spanning different classes of 
learning; i.e., score-based HC, Tabu, GES and MAHC, constraint-based PC-
Stable, and hybrid MMHC and SaiyanH.

However, because our aim here was to obtain a single DAG structure 
representative of causal ML, we performed model-averaging on the set of 
causal ML graphs learnt for each case study. We use a model-averaging 
process similar to (Petrungaro et al., 2024; Zahoor et al., 2024; Constantinou 
et al., 2023a), where the average graph contains all the edges that appear in 
at least two thirds of the graphs in the input set of learnt graphs, as long as an 
edge added to the average graph - starting from the directed edges that appear 
the most times within the set of graphs - does not produce a cycle.
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c. LLM graphs: These are the causal graphs obtained by GPT-4 as described in 
subsection 2.1. Because we obtained 10 graphs per case study, we applied 
the same model-averaging process described in (b) above in order to retrieve 
a single DAG structure for each case study that is representative of the GPT-
4 output.

Participants were shown the causal graphs and asked to specify whether they had 
been produced from domain knowledge, causal ML, or LLM. They were also asked to 
judge the accuracy of each graph. Answering these questions involved selecting one 
of four possible responses:

a. Very Likely, Likely, Unlikely, and Very Unlikely, in determining whether a graph 
was constructed by human experts, causal ML, or LLM;

b. Very Accurate, Mostly Accurate, Mostly Inaccurate, and Very Inaccurate, in 
judging the accuracy of a causal graph. 

The participants were also given the option to comment on each graph presented to 
them. Key comments left by participants are presented in Table 7 and are discussed 
in Section 3.
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Figure 2. Visualisation of participants’ responses, where white and black boxes indicate a response or 
no-response to multiple-choice questions, while green and red boxes indicate a response or no-
response to optional free-text comment questions.

Figure 2 presents a box visualisation showing participants' responses to multiple-
choice and free-text comment questions across each case study. The results indicate 
higher participant engagement in the earlier, smaller, case studies compared to the 
later ones which are larger networks, possibly due to increasing complexity in each 
subsequent case study. Specifically, participants completed 93%, 67%, 57%, 55%, 
and 45% of the 15 multiple-choice questions per case study, for the Sports, COVID-
19, Property, Diarrhoea, and ForMed case studies, respectively. For the optional free-
text comment questions, response rates were 24%, 17%, 6%, 10%, and 6% for each 
case study in the same order.

2.3. Using LLMs to guide causal ML

Unlike the common practice of evaluating causal ML algorithms with synthetic data 
due to the absence of real-world ground truth graphs, this paper investigates whether 
LLMs can assist causal ML in learning graphs that more closely align with those 
constructed by domain experts. Specifically, we investigate the usefulness of the 
causal relationships generated by GPT-4 in terms of guiding causal ML algorithms 
when learning from real data. We employ a systematic approach that involves multiple 
algorithms across different classes of structure learning, and test those algorithms on 
real case-study data with and without GPT-4 constraints, with different quantities of 
constraints.

We begin by describing how we convert GPT-4 outputs into constraints. As 
discussed in Section 2.1, the variable labels are provided as input to GPT-4 using 10 
different prompts, leading to 10 GPT-4 outputs. We take those 10 outputs, for each 
case study, and record the edges that appear in at least a third (33%), a half (50%), 
and two thirds (67%) of those 10 outputs. These differing number of edges are 
reflected by the different numbers of constraints, so that we assess the robustness 
and consistency of the causal relationships proposed by GPT-4 across different levels 
of confidence. Table 3 presents the results by repeating this across all five case 
studies, leading to 15 different sets of edges. It is worth noting that for the ForMed 
case study, no same edge appeared in at least two-thirds of the 10 outputs, resulting 
in an empty generated edge set for that experiment. This may be due to the relatively 
large number of nodes in the ForMed network (56), suggesting – together with the 
results in Table 3 - that the output of GPT-4 becomes increasingly distorted with 
variable size, leading to greater inconsistency between outputs.

Table 3. The number of edge-sets extracted from GPT-4 for each case study, based on the specified 
threshold rates about the proportion of times the same edge appeared across each of the 10 GPT-4 
prompts per case study.

Case Edges Edges Edges
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study (rate 33%) (rate 50%) (rate 67%)

Sports 14 14 8

Covid-19 27 20 13

Diarrhoea 34 25 9

ForMed 32 7 0

We then take each set of edges specified in Table 3, and convert it into three 
different types of constraints that could be used to guide structure learning algorithms. 
These three types of constraints, which are described in (Constantinou et al., 2023b) 
in greater technical detail, are:

a. Required edges: explicitly define the directionality of causal links between 
variables, where the search space of graphs is restricted to structures 
containing the specified directed edges.

b. Initial graph: also known as starting graph, represents the starting point for 
exploration in the search-space of graphs. For most algorithms, the starting 
point is typically an empty, a fully connected, or a random structure. When the 
set of constraints is given as an initial graph, then the starting point in the search 
space is the structure specified in the set of constraints.

c. Temporal order: also known as temporal edge tiers, ensures that the temporal 
order of events was respected, preventing causal directions that contradict 
temporal sequences. Specifically, the search space of graphs explored is 
restricted to graphical structures that satisfy the temporal constraints, converted 
from the set of required edge constraints. For example, if 𝐴→𝐵 and 𝐵→𝐶 appear 
in a set of constraints, these two edges alone would produce multiple temporal 
constraints; i.e., 𝐵 cannot a parent nor an ancestor of 𝐴 (although not all 
implementations impose restrictions on ancestral relationships), and 𝐶 cannot 
be a parent nor an ancestor of neither 𝐴 nor 𝐵. In this case, the search-space 
of graphical structures is restricted to DAGs that do not violate any of the 
temporal orderings implied by the set of required edge constraints.
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To enforce these constraints, we selected algorithmic implementations that 
support structure learning with constraints on discrete data. Table 4 lists these 
algorithms, their class of learning and implementation details. We used the constraint-
based PC-Stable algorithm, the score-based Fast Greedy Equivalence Search 
(FGES), Hill-Climbing (HC), TABU, and Model-Averaging Hill-Climbing (MAHC) 
algorithms, and the hybrid Max-Min Hill Climbing (MMHC) and SaiyanH algorithms.

Table 4. The causal ML implementations tested (Scutari, 2010 for bnlearn; Ramsey et al., 2018 for 
Tetrad; Constantinou, 2019 for Bayesys), that support discrete data and simulation of the specified 
structural constraints.

Algorithm

Learning 
class

Library/

Software

Required edge 
constraints

Initial graph 
constraints

Temporal 
constraints

FGES Score-based Tetrad Yes No Yes

HC Score-based Bayesys Yes Yes Yes

MAHC Score-based Bayesys Yes Yes Yes

MMHC Hybrid bnlearn Yes No Yes

PC-Stable Constraint-
based

bnlearn Yes No Yes

SaiyanH Hybrid Bayesys Yes Yes Yes

TABU Score-based Bayesys Yes Yes Yes

3. Results and Discussion

The results are separated into two subsections. The first part focuses on the 
questionnaire outcomes, while the second part focuses on structure learning 
outcomes.

3.1. Questionnaire outcomes

We invited approximately 200 MSc students, 300 PhD students, and 1,000 LinkedIn 
connections to complete the questionnaire. The 200 MSc students invited were 
enrolled in the post-graduate Data Analytics course at Queen Mary University of 
London (QMUL), where 40% of the material is based on causal ML. The 300 PhD 
students invited were enrolled in the School of Electronic Engineering and Computer 
Science at QMUL. The 1,000 LinkedIn connections invited included academics and 
industry professionals across different disciplines.
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We received 32 responses from 111 different universities or organisations, 
resulting in a response rate of approximately 2.13%. The rather low response rate may 
be partly explained by the fact that this questionnaire was unfunded and so the 
respondents were not offered any payment for their participation. Additionally, the 
questionnaire took a relatively long time to complete, with an estimated six minutes 
per case study, resulting in a maximum total of 30 minutes for those who chose to 
complete all five case studies. Figure 3 shows the distribution of the responses by the 
participants’ expertise or knowledge in a pre-determined set of domains relevant to 
the case studies.

Despite the rather limited number of responses, consistent patterns emerged 
across all five case studies. As presented in Table 5 and detailed in Figure 4, the 
questionnaire responses suggest that GPT-4 is the most reliable method for achieving 
higher accuracy in the evaluated categories, closely followed by knowledge graphs, 
with causal ML far behind. Specifically, as shown in Table 5, GPT-4 was consistently 
judged by participants as the highest for accuracy scores, with knowledge graphs 
generally close to those of GPT-4. The graphs learnt by causal ML, however, received 
the lowest accuracy across all categories. 

Figure 3. Questionnaire responses distributed by the participants’ stated (one or more) expertise or 
skill.

These results do not necessarily suggest that causal ML is less effective than 
the other two methods in this context. Instead, they highlight and support the important 
limitation of causal ML discussed in the introduction, in that they often produce causal 
relationships that are counterintuitive, which is not something we would expect from a 
domain expert or LLM. As shown in Table 7, which presents some of the key optional 
comments provided by participants, most of them commented negatively on the 
graphs learnt by causal ML, and say that the graphical structures tend to be sparse or 
too simplistic, some relationships seem counterintuitive or wrong, some edge 
orientations appear to be incorrect, and some key relationships are missed.

Presumably, these observations helped the questionnaire participants to more 
accurately identify the graphical structures generated by causal ML. As shown in Table 

1 From Queen Mary University of London, University of Milano – Bicocca, University of Oxford, 
University of Toronto, Munster Technological University, Ministry of Health, Middle East Technical 
University, Stock exchange, Indian Institute of Science Education and Research - Bhopal, UNSW 
Sydney, and University of Utah.
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6, all five causal ML graphs were correctly identified by the average participant. On 
the other hand, most of the knowledge graphs were incorrectly identified as LLM 
graphs, whereas most LLM graphs were incorrectly identified as knowledge graphs. 
Overall, the results suggest that the participants were accurate in identifying graphical 
structures learnt with causal ML, but they were partly correct in identifying knowledge 
graphs and LLM graphs, often confusing a knowledge graph as an LLM graph and 
vice-versa.

Table 5. The accuracy of the 15 causal graphs as determined by questionnaire responses, where  
Overall score = Very accurate × 1 +  Mostly accurate × 0.66 + Mostly inaccurate × 0.33 +
Very Inaccurate × 0.00.

Graph

Very 
accurate

Mostly 
accurate

Mostly 
inaccurate

Very 
inaccurate

Overall 
score

Sports 
(Knowledge) 26.7% 56.7% 16.7% 0.0% 69.63

COVID-19 
(Knowledge) 19.0% 57.1% 23.8% 0.0% 64.54

Property 
(Knowledge) 0.0% 76.5% 23.5% 0.0% 58.25

Diarrhoea 
(Knowledge) 5.9% 70.6% 23.5% 0.0% 60.25

ForMed 
(Knowledge) 0.0% 64.3% 28.6% 7.1% 51.88

Sports (Causal 
ML) 9.7% 29.0% 41.9% 19.4% 42.67

COVID-19 (Causal 
ML) 0.0% 27.3% 68.2% 4.5% 40.52

Property (Causal 
ML) 0.0% 44.4% 50.0% 5.6% 45.80

Diarrhoea (Causal 
ML) 5.5% 66.7% 16.7% 11.1% 55.03



16

ForMed (Causal 
ML) 7.1% 50.0% 35.7% 7.1% 51.88

Sports (LLM) 16.1% 80.6% 3.3% 0.0% 70.39

COVID-19 (LLM) 14.3% 76.2% 9.5% 0.0% 67.73

Property (LLM) 5.5% 77.8% 16.7% 0.0% 62.36

Diarrhoea (LLM) 16.7% 61.1% 22.2% 0.0% 64.35

ForMed (LLM) 7.7% 61.5% 30.8% 0.0% 58.45
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Figure 4. How the questionnaire participants assessed each of the 15 causal graphs in terms of causal 
representation accuracy.
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Table 6. How the questionnaire participants classified each of the 15 graphs. The classification is 
determined by the responses presented in Figures B1, B2, and B3, where the scores presented are 
derived in the same way as in Table 5; i.e., Highly likely × 1 + Likely × 0.66 + Unlikely ×
0.33 + Highly unlikely × 0.

Classification by participants

Graph Knowledge Causal ML LLM Overall

Sports (Knowledge) 19.2 18.3 19.6 LLM

COVID-19 
(Knowledge)

12.3 15.6 13.3 Causal ML

Property (Knowledge) 11.3 10.3 11.9 LLM

Diarrhoea 
(Knowledge)

9.6 11.3 11.9 LLM

ForMed (Knowledge) 7.3 7.9 9.9 LLM

Sports (Causal ML) 11.6 17.9 17.6 Causal ML

COVID-19 (Causal 
ML)

8.3 13.6 12.9 Causal ML

Property (Causal ML) 7.6 10.9 10.0 Causal ML

Diarrhoea (Causal ML) 9.3 11.6 10.3 Causal ML

ForMed (Causal ML) 7.3 7.9 7.3 Causal ML

Sports (LLM) 18.9 18.2 18.9 Knowledge

COVID-19 (LLM) 15.6 13.3 12.3 Knowledge

Property (LLM) 11.3 10.6 11.2 Knowledge

Diarrhoea (LLM) 9.9 9.3 12.3 LLM
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ForMed (LLM) 9.0 8.3 9.6 LLM

Lastly, Figure 5 illustrates how the frequency of questionnaire responses 
marked as Very Accurate or Mostly Accurate, categorised by case study, varies with 
network size. There is a clear tendency for trust in these graphical structures to 
decrease with network size for graphs constructed by humans and LLMs. However, 
while a weaker trend appears for causal ML, the pattern is less distinct. This outcome 
could be due to larger networks providing more opportunities for errors in edges to be 
identified by participants, thereby lowering the accuracy scores, whereas the poorer 
accuracy ascribed to smaller causal ML graphs may also be due to the fact that 
counter-intuitive arcs - which causal ML tend to generate - may be easier to spot in 
smaller networks.

Figure 5. The frequency of questionnaire responses marked as Very Accurate or Mostly Accurate for 
relationships depicted in graphs categorised by case study, and ordered by network size.
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Table 7. Key comments left by questionnaire participants.

Case 
study

Graph   Comments

Sports Knowledge 1. “It seems AI generated because it is very symmetrical.” 

2. “The symmetric nature of the graph and the absence of clearly counter-intuitive arcs led me to believe this was mostly likely created by a 
human.”

3. “This looks like a human produced graph. A human would think of two teams in a football match as having the same variables but with different 
values. Humans would emphasize symmetry of the graph as a result.”

4. “I don't think my knowledge level gives me enough confidence to say this is very accurate when (despite being someone who used to work in 
Sports media) but it looks pretty conducive. If i was being critical of my own assessment, I'd say my opinions has been based on the fact that 
this is laid out symmetrically, in an intuitive way. Hence i think a human designed it.”

Sports Causal ML 1. “If this modelling is for the match simulation, RDlevel should not be the end/target node, but HDA should be the end node. Human can and LLM 
would understand what to achieve is match result, and HDA is the end node from the context. (but this is the case only if LLM is given a 
well-instructed prompt they can understand what to do)” 

2. “I judged most of the relationships to be correct, except that team rating was an effect of possession and natch result rather than a cause 
of these which is what I would expect human/LLM to say ... hence why I thought this most likely to be created by Causal ML”

3. “Obviously it's not human knowledge based and I think any constraint-based algorithm would have got it more accurate, so it's probably an 
LLM result. (I don't have enough knowledge about LLM)”

4. “This looks like a graph produced by a Causal ML. Noise in the data or latent variables frequently cause the model to reverse connections, 
such as possession -> RDlevel instead of RDlevel -> possession.”

5. “The only inclination i get that this might be done by a human is because of the positioning of RDlevel. On the one hand, this is a rating, perhaps 
it becomes an arbitrary measure in causal relationships, and is actually only a reflection of the state of the game. On the other hand, perhaps 
because this reflects the state of the game, it can be understood as a casual variable. I don't know. However, my conclusion is that this is 
perhaps a mistake by an LLM. Also, the chain of cause is too simplistic, I think possession proportion would influence the number of shots 
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on target directly (even if this is through an implicit relationship e.g. possession increases the number of shots taken which equates to increases 
in shot accuracy and therefore shots on target.)”

Sports LLM 1. “If it was drawn by human knowledge it should have had the edge from RDlevel to possession probably!” 

2. “This looks like an LLM produced graph. They tend to get "most" but "not all" of the connections right. Tell tale sign is the lack of RDlevel 
-> Possession connection a human would make from the start.”

3. “All causal directions seemed correct but with some missing making me think LLM the most likely creator”

COVID-19 Knowledge 1. “Again most of causal relationships seemed corect, but less comprehensive than Graph 2 making me think it might be more likely produced 
by an LLM”

2. “This looks like an LLM produced graph. LLMs tend to get most but not all of the connections right. However, they make reasoning errors, 
such as Deaths with Covid on Certificate -> Second Dose Uptake. A human would probably think in terms of reduction and say Second Dose 
Uptake -> Deaths with Covid on Certificate.”

3. “I think that Graph #3 is the worst one here (for example, I do not understand the meaning of the connection Deaths_with_COVID_on_certificate 
=> Second_dose_uptake). A human could not produce this graph.”

COVID-19 Causal ML 1. “I think work and school activity is more likely to cause transportation activity. There should probably be a link from new/re infections to hospital 
admissions. Patients in MVB more likely to cause deaths with covid on certificate.”

2. “death with Covid on certificate and MVB direction, transportation activity and lockdown direction does not make sense.”

3. “This seemed to have a number of counter intuitive relationships e.g. Deaths by Covid --> Persons in MVBs typically produced by Causal 
ML”

4. “This looks like a graph produced by a Causal ML. Tell tale signs are reversals, such as Positive Test -> New Infections instead of New 
Infections -> Positive Test, and the sparse connections, probably due to the model not being able to find the right connections or minimizing the 
number of connections.”

5. “Looks to simple to be the product of an algorithm - looks like it has been built out with domain knowledge.”

6. “I suggest that correct connections are mostly missing here.”
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COVID-19 LLM 1. “the position of facemask and direction of reinfection->positive_test->new-infection is not convincing.”

2. “This had a set of plausible sets of cause and effect, with for instance, a comprehensice set of causes for New infections.”

3. “This looks like human produced graph. Humans tend to have a target variable in mind and build the graph around it. In this case, the target 
variable is the number of new infections, which has a huge number of incoming connections.”

Property Knowledge 1. “Relationships seemed mostly correct but and 'well-structured' making me think this was most likely human-generated”

2. “This looks like an LLM produced graph. Most connections are correct, but there are some errors, such as Income Tax -> Rental Net Profit 
Before Interest.”

Property Causal ML 1. “This seemed to be missing key relationships” 

2. “This looks like a graph produced by a Causal ML. Tell tale sign is the sparse connections, probably due to the model not being able to find 
the right connections or minimizing the number of connections.”

Property LLM 1. “This seemed to have the most comprehensive range of cause and effects, which seemed plausible that it might be created by an LLM”

2. “This looks like human produced graph. Humans tend to have a target variable in mind and build the graph around it. In this case, the target 
variable is the net profit, which has a huge number of incoming connections.”

Diarrhoea Knowledge 1. “This seemed the most "well-structured" graph making me think a human was the most likely creator”

2. “This looks like human produced graph. There is a clear tiered structure between the variables showing a hierarchy of importance. And one 
variable is centralized as the cause of most of the other variables (Economic Wealth Quintile).”

3. “there are more dependencies in this model in general, i think this makes it more likely to be produced by an algorithm or LLM.”

Diarrhoea Causal ML 1. “E.g. watching tv can't cause the mother's education, i think region more likely to affect language than other way round.”

2. “The relationship around immunisation and vitamin A1 and the direction of region and language group seem not correct. Also, the cause of the 
diarrhea are only breast and bottle feeding and there should be more factors cause the diarrhea”
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3. “Most relationships seemed plausible, but some seemed wrong e.g. immunisation -> EarlyBreastFeeding because this is in the wrong temporal 
order.”

4. “This looks like a graph produced by a Causal ML. Tell tale sign is the reversal of connections, such as CUL Language Group -> GEO Region, 
which a human would probably think of as GEO Region -> CUL Language Group.”

Diarrhoea LLM 1. “Most relationships seemed plausible, but therew ere too many making me think LLM was the most likely the creator.”

2. “This looks like an LLM produced graph. Most connections are correct, but there are some missing connections. LLMs usually need a few 
rounds of prompting to get all the possible connections out of them.”

3. “This graph seems a lot more disjointed than the others. It's less interconnected, with features being introduced at all tiers of the graph.”

ForMed Knowledge 1. “Graph seemed to have implausible causal relationships (e.g. Age is a cause of Violence) making me think this was most likely created by 
Causal ML”

2. “This looks like an LLM produced graph. Most connections are correct, but there are some missing connections and reversal which a human 
would probably not make.”

ForMed Causal ML 1. “Seemed to have some counter-intuitive relationships e.g. CannabisUse was a cause of Age making me think Causal ML most likely creator”

2. “This looks like a graph produced by a Causal ML. Tell tale signs are the reversal of some connections and the sparse connections.”

ForMed LLM 1. “Most relationships seemed correct, but graph rather dense (e.g. many many direct causes of Violence) making me think LLM might be the 
creator.”

2. “This looks like human produced graph. Humans tend to have a target variable in mind and build the graph around it. In this case, the target 
variable is the Violence, which has a huge number of incoming connections.”
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3.2. Using GPT-4 to guide causal ML

As described in Section 2.3, we also test the usefulness of GPT-4 in terms of using its 
output as causal constraints to restrict or guide the search space of graphs explored 
by causal ML algorithms. The results presented here are based on four case studies 
involving real (not synthetic) datasets, as shown in Table 3. These results consider 
three different confidence levels of constraints, also described in Table 3, and three 
types of constraints: required edges, temporal order, and initial graph, as described in 
Section 2.3. Additionally, eight algorithms from different classes of learning, which 
support some or all of these types of constraints, are utilised as detailed in Table 4.

Figure 6 presents the overall impact of GPT-4 constraints on structure learning. 
Specifically, the results measure the relative impact on the graphical structures learnt 
by the causal ML algorithms with real data, comparing scenarios with and without 
GPT-4 constraints, and with reference to the knowledge graph for each case study as 
determined by domain experts. Each sub-chart summarises the results using the 
different metrics of F1, BSF, SHD, and BIC scores, for each rate and type of constraint 
across all algorithms and case studies.

The F1, BSF, and SHD scores represent graphical metrics that measure the 
distance between two graphical structures. With reference to the confusion matrix, the 
SHD score considers the false positive and false negative edges between the two 
graphs, the F1 score includes those considered by SHD plus the true positive edges, 
and the BSF score further includes those considered by F1 plus the true negative 
edges. Note that because SHD does not account for true positive nor true negative 
edges, it is known to be biased in favour of sparser graphs. However, the SHD score 
is widely used in the literature, and while we present the SHD scores to enable cross-
comparisons between studies, most of our focus will be on the F1 and BSF metrics. 
Lastly, in contrast to the graphical metrics, the BIC score is a model-selection function 
that estimates how well the learnt model, balances between data fitting and model 
dimensionality.

The results presented in Figure 6 show that all three graphical metrics agree 
that the GPT-4 constraints help the algorithms output a graphical structure that is 
closer to those produced by domain experts, compared to the corresponding graphical 
structures learnt without GPT-4 constraints. The results also indicate that, amongst 
the different types of constraints, the GPT-4 constraints are most effective when 
employed as required edge constraints, irrespective of the rate of constraints. The 
initial graph constraints do generate a positive effect too, but not as strong and 
consistent as required edge constraints, whereas the temporal constraints produce 
mixed results.

For required edge constraints, both the F1 and BSF scores show that the 
results are stronger at a 33% rate of constraints, implying that the constraints are more 
beneficial when extracted from the set of edges that appear in at least a third of the 10 
GPT-4 prompts. This goes against our initial expectation, which expected the results 
to be stronger at a 67% rate of constraints, where the edges constrained are restricted 
to those that appear in at least two-thirds of the 10 GPT-4 prompts, thereby increasing 
the confidence in the set of constraints due to larger agreement between GPT-4 
prompts. On the other hand, we observe the reverse effect for initial graph constraint, 
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with mixed effect in other cases, and so this observation does not seem to be 
consistent across all types of constraints and metrics. 

Figure 6. The impact of GPT-4 constraints on structure learning in terms or relative change in CPDAG 
score, over all algorithms and case studies, and based on the specified threshold rates about the 
proportion of times the same edge (constraint) appeared across each of the 10 GPT-4 prompts per 
case study. A lower percentage in the legend indicates a higher number of GPT-4 constraints. Blue 
coloured bars indicate an increase in accuracy, whereas red coloured bars indicate a decrease in 
accuracy. BIC scores exclude PC-Stable since PDAG outputs could not be converted into a CPDAG.

The BIC score, on the other hand, decreases across all cases. This is not 
necessarily surprising since the score-based algorithms are designed to find optimal 
or close-to-optimal structures that maximise the BIC objective score. This means that 
the added constraints prohibit the algorithms from exploring parts of the search space 
that may contain a higher objective score. For example. notice how the higher 
numbers of constraints, in the 33% and 50% cases, tend to decrease the BIC score 
faster than when the quantity of constraints is lower, as in the 67% case. While it may 
be counterintuitive for constraints to increase graphical scores but decrease model-
selection scores, it is consistent with previous studies that show that the graphs 
constructed by domain experts often yield BIC scores that are distant from the optimal 
graph – as judged by BIC - within the search space of graphical structures. This 
discrepancy arises because knowledge-based graphs tend to overlook model 
dimensionality, and this study further highlights the weaknesses of traditional objective 
functions in recovering graphical structures that align with expertly-constructed causal 
graphs.

Figure 7 presents the range of graphical scores produced across the different 
structure learning settings using box-plots. Unlike Figure 6 which contradicted our 
initial expectations – that fewer, more ‘certain’ GPT-4 constraints (at the 67% 
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threshold) would be more effective than more, less ‘certain’ constraints - Figure 7 
partly supports this expectation. This is because it shows that the fewer constraints 
generated at 67% threshold effectively limit the number of low graphical scores. 
However, these fewer constraints do not lead to the higher graphical scores observed 
at 33% and 50% thresholds, explaining why Figure 6 supports these lower thresholds. 
Overall, the 67% threshold seems to reduce the variability of the results, effectively 
avoiding the lowest scores but also failing to reach the highest scores.

Figure 8 provides a detailed analysis of the impact of GPT-4 constraints on F1 
scores at the individual algorithmic level, based on the aggregated results shown in 
Figure 7. The findings indicate that the trends observed in Figure 7 largely extend to 
each individual algorithm, reinforcing confidence in the positive effect of GPT-4 
constraints on structure learning, especially when the constraints are applied as 
Required edges or Initial graph.

Figure 7. Box-plots on the comparison between the specified graphical metric scores produced by 
causal ML without GPT-4 constraints (in red), and causal ML restricted or guided by different types and 
rates of GPT-4 constraints (in various shades of yellow), where each box illustrates the interquartile 
range, the horizontal line inside each box is the median, x is the mean, 𝑜 are the inner values that fall 
within the range from the lower quartile (Q1) to the upper quartile (Q3), and the whiskers represent the 
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minimum and maximum values. A lower percentage in the legend indicates a higher number of GPT-4 
constraints. The charts on the left include all causal ML algorithms considered, but do not present the 
Initial graph type of constraint (to avoid bias) since it was not supported by all algorithms. The charts 
on the right summarise the results across all types of constraints, restricted to the algorithms that 
support all of them (HC, TABU, MAHC, and SaiyanH).
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Figure 8. An extended comparison of F1 scores for each structure learning algorithm, based on the 
aggregated results shown in Figure 7, both with and without GPT-4 constraints. Each bar represents 
the range of F1 scores across learnt and knowledge-based networks, ranging from the minimum to the 
maximum F1 score , with the mean indicated by an ‘x’. A red vertical dashed line highlights the mean 
F1 score for the top experiment which represents learning without GPT-4 constraints, providing a 
reference for comparison with the other experiments under GPT-4 constraints.

Lastly, Figure 9 illustrates how the average change in F1 score varies across 
case studies, ordered by network size, similarly to Figure 5 which presents 
questionnaire responses. While Figure 5 shows a clear relationship between 
questionnaire responses and network size, Figure 9 does not demonstrate a similar 
association, suggesting a weak relationship between network size and the impact of 
GPT-4 constraints. Figure 9 also highlights cases where GPT-4 constraints were not 
beneficial to causal ML; i.e.,  a) the Required edge constraints at 33%, which had 
minor positive impact on the Sports case study (0.2% increases in overall F1 score), 
and b) the Temporal order constraints at 33% and 50%, which led to small negative 
impacts on the COVID-19 case study (-3% in overall F1 score) and the Diarrhoea case 
study (-2.1% in overall F1 score).

Figure 9. The average change in F1 score, categorised by the type of GPT-4 constraint type and by 
case study, ordered by network size.

4. Discussion and concluding remarks

LLMs transform data and user input into numerical representations known as tokens. 
These tokens capture the sematic meaning of the words, and the trained models 
appear to understand context through layers of neural-network transformations. This 
process helps LLMs generate coherent and relevant response. Therefore, while LLMs 
are not designed to disentangle correlation from causation, they often produce output 
that appears to be causally valid due to their ability to recognise sophisticated patterns. 
This can create the impression that the models understand causality, but it is important 
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to highlight that their apparent causal reasoning is a byproduct of their training process 
rather than a true comprehension of causal relationships. 

Still, because the output of LLMs is now perceived to be much more causally 
valid than we would expect from an associational model, the role of causality in LLMs 
is becoming an area of significant debate. This study adds to this emerging field by 
exploring the usefulness of GPT-4 outputs in terms of causal reasoning, and 
comparing them to those derived from domain experts and those learnt from data 
using causal ML algorithms. 

It is important to clarify that the aim of this study is not to evaluate the 
performance of GPT-4 based on the accuracy of the causal relationships it generates 
for each case study, as we cannot definitively know if these relationships are correct. 
Instead, the objective is to assess GPT-4 in terms of a) the impact these relationships 
have when used as constraints in the structure-learning process of causal ML 
algorithms, and b) how participants perceive the causal relationships generated by 
GPT-4 compared to those produced by causal ML models and domain experts. The 
contributions of this paper are two-fold; it demonstrates that:

a. questionnaire participants find it difficult to distinguish between graphs 
generated by GPT-4 and those by domain experts, while easily differentiating 
these from causal ML graphs, and

b. LLMs, even when given only variable labels and no additional human-provided 
context, improve causal ML performance, both at the aggregate level and 
consistently across individual algorithms, by guiding structure-learning 
algorithms toward causal structures that align more closely with graphs 
constructed by domain experts.

We first designed a questionnaire that asked participants to predict whether a 
presented graph was drawn by causal ML, LLM, or domain experts, and to judge the 
causal accuracy of the graph. The results (refer to Table 6) show that participants 
correctly identified causal ML graphs, but misclassified some LLM graphs as 
knowledge graphs and vice versa. Causal ML graphs were the easiest to classify, and 
this observation is attributed to counterintuitive edges that we would not expect a 
domain expert nor an LLM to produce (refer to Table 7). Moreover, participants 
consistently rated LLM graphs as being fairly more accurate than knowledge graphs 
elicited from domain experts, and much more accurate than causal ML graphs (refer 
to Table 5).

GPT-4 has shown to be able to generate outputs for the case studies tested 
that are indistinguishable from, and often were judged by questionnaire participants 
as being more accurate than, those from domain experts. This might be because LLMs 
effectively summarise targeted human knowledge from sources that are assumed to 
be credible. This suggests that LLM outputs are likely to be valid, generating 
responses that are, or appear to be, well-informed. While some case studies tested in 
this paper might be part of the training data of GPT-4, this cannot be confirmed. This 
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is because the specifics of the training data remain proprietary and undisclosed by the 
developer OpenAI; i.e., OpenAI has not released information on the data or sources 
used for training GPT-4. As a result, it is not possible to determine whether particular 
case studies or datasets were part of the model’s training data or whether it has prior 
exposure to these specific examples. Regardless, this is not expected to impact 
performance, as LLMs like GPT-4 produce well-generalised outputs with an element 
of randomness from vast amounts of related examples and hence, it is not 
unreasonable to assume that removing a single example from its training process is 
unlikely to lead to significant changes in its output.

We also tested the usefulness of GPT-4 in terms of using its output as causal 
constraints to restrict the search space of graphs explored by causal ML algorithms. 
Through an extensive set of empirical experiments involving multiple case studies, 
causal ML algorithms, types of constraints, and quantities of constraints, the results 
show that GPT-4 consistently helps causal ML to produce graphical structures that are 
closer to those produced by domain experts, compared to the corresponding graphical 
structures learnt without GPT-4 constraints, and this result is consistent across all 
algorithms tested at the individual level. 

Overall, our findings suggest that even though GPT-4 is not explicitly designed 
to reason causally, it can still be a valuable tool for causal representation. This is 
despite the fact that GPT-4 was provided with no domain context by humans; it was 
given just a set of variable labels and asked to connect them causally. Note that the 
variable labels are meaningful to LLMs, but meaningless to causal ML since it learns 
from data in an unsupervised manner. Therefore, these results potentially highlight the 
lowest possible performance one could expect from GPT-4 in terms of causal 
reasoning. Nonetheless, the results of this study suggest that GPT-4 potentially 
enhances current solutions for causal discovery. Despite these positive findings in 
favour of LLMs, and somewhat negative ones for causal ML, the latter is expected to 
be more effective in tackling previously unexplored problems where LLMs may 
struggle to generalise effectively.

This study comes with some limitations that could inform directions for future 
research. Firstly, the questionnaire results, though showing reasonably clear patterns, 
are based on a limited sample size of 32 responses, which may not be sufficient for 
drawing strong conclusions about human perceptions of the causal graphs. This 
limited participation can be partly attributed to the lack of compensation and the 
questionnaire's length, which required approximately 30 minutes for those who 
completed it in full. Secondly, the empirical experiments are restricted to case studies 
of small to moderate complexity, containing up to 56 variables. This limitation was 
necessary for the networks incorporated into the questionnaire to be readable and 
understandable to participants, and for the GPT-4 prompts and outputs to handle the 
number of variables reasonably well. Therefore, the results presented in this paper 
may or may not be representative of more complex real-world scenarios, such as gene 
regulatory networks which are not as well-understood as the case studies investigated 
in this paper, and where causal ML could perform better than experts or LLMs, or other 
high-dimensional systems in which the number of causal variables and edges is 
significantly larger. Thirdly, the results presented in this paper are based solely on 
GPT-4 and may not generalise to other LLMs not examined in this study. 
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Appendix A: Questionnaire sample
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Fig A.1. A sample of the questionnaire presenting the set of questions associated with the first graph 
(out of three) of the first case study (out of five).

Appendix B: Supplementary results from the questionnaire responses
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Figure B.1. Questionnaire responses assessing the graphical structures elicited from domain experts.
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Figure B.2. Questionnaire responses assessing the graphical structures learnt with causal ML 
algorithms.
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Figure B.3. Questionnaire responses assessing the graphical structures extracted from GPT-4.
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Appendix C: The knowledge-based, causal ML, and LLM graphical structures for each of the five case studies.

                        

Figure C.1. From left to right, the knowledge, causal ML, and LLM (GPT-4) graphs for case study Sports.



38

Figure C.2. The causal ML graph for case study COVID-19.

Figure C.3. The knowledge graph for case study COVID-19.
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Figure C.4. The LLM (GPT-4) graph for case study COVID-19.
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Figure C.5. The knowledge graph for case study Property.

Figure C.6. The causal ML graph for case study Property.
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Figure C.7. The LLM (GPT-4) graph for case study Property.
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Figure C.8. The knowledge graph for case study Diarrhoea.
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Figure C.9. The LLM (GPT-4) graph for case study Diarrhoea.

Figure C.10. The causal ML graph for case study Diarrhoea.
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Figure C.11. The causal ML graph for case study ForMed.
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Figure C.12. The knowledge graph for case study ForMed.
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Figure C.13. The LLM (GPT-4) graph for case study ForMed.
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