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Abstract

An original, variational formulation of the Virtual Element Method (VEM)
is proposed, based on a Hu-Washizu mixed variational statement for
2D linear elastostatics. The proposed variational framework appears to
be ideal for the formulation of VEs, whereby compatibility is enforced
in a weak sense and the strain model can be prescribed a priori, inde-
pendently of the unknown displacement model. It is shown how the
ensuing freedom in the definition of the strain model can be conveniently
exploited for the formulation of self-stabilized and possibly locking-free
low order VEs. The superior performances of the VEs formulated within
this framework has been verified by application to several numerical tests.
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1 Introduction

The VEM, originally formulated for Poisson’s problems and the Laplace operator
[1], has been successively extended to linear elastostatics [2]. Among the several
contributions appeared in the literature, we mention here the work in [3], with
the VEM formulation in elastostatics on low order 3D polyhedra, the one in [4],
where a detailed derivation of the VEM for linear 2D elastostatics is presented
for the lowest order together with its extension to arbitrarily higher order on
general polygons, and [5], where the finite-deformation case is considered.

While mixed stress-displacement variational formulations of the VEM for
elastostatics have been proposed in the literature (see, e.g., the works [6],
[7], [8], based on Hellinger-Reissner variational principle, and [9]), to our
knowledge, more general strain-stress-displacement mixed VEM formulations
have never been investigated. In this work, we propose a formulation of the
VEM for linear 2D elastostatics based on the mixed Hu-Washizu variational
principle [10]. Making use of Prager’s notion of generalized variables [11, 12],
the stress model is obtained directly from the strain model and, in practice,
is not anymore a primal unknown of the problem, which therefore reduces to
a strain-displacement formulation, where the key ingredient turns out to be
the compatibility matrix enforcing strain-displacement compatibility in weak
form. Using the VEM paradigm, it is then shown how it is possible to compute
the compatibility matrix and, hence, the stiffness matrix, on arbitrarily shaped
polygons.

As it is well-known, in most cases the VE stiffness matrix requires a stabi-
lization to avoid the development of zero-energy hourglass modes. Alternative
hourglass stabilization strategies have been proposed in [1] and in [13]. For
the connection between the VEM and the finite element hourglass control
techniques, see [14]. In this work we present an original derivation of the sta-
bilization stiffness matrix, departing from Argyris’ notion of natural strains
[15, 16]. The key ingredient is the hourglass matrix, which is constructed based
on a decomposition of the discretized displacement modes into a rigid body and
pure deformation part and into an hourglass part. The resulting stabilization
hourglass matrix turns out to be identical to the one in [1]. Once the hourglass
matrix has been derived, the stabilization matrix is built according to what
proposed in [17].

Even though the stabilization has proved to be effective in guaranteeing the
correct convergence order, its substantially empirical nature, being based on
artificial stiffness coefficients, is viewed as a limitation of the method. For this
reason, there is a significant interest in investigating the possibility to formulate
self-stabilized VEs, i.e., not requiring any artificial stabilization. In view of the
weak enforcement of compatibility, in the proposed Hu-Washizu formulation
the strain model is independent of the displacement one. It is then rather
natural to exploit this additional freedom for the formulation of self-stabilized
VEs. In the classical VEM, if the displacement model contains polynomials
of order k, the strain model is assumed to be polynomial of order k − 1. In
this work, a strain model of order p > k − 1 is assumed, leading to a stiffness
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matrix of the correct rank. However, we remark that for arbitrary polygons and
polynomial order, a satisfying theoretical investigation on how the strain model
should be selected in order to have the correct rank is still missing. While in
the standard VEM, only nodal Degrees Of Freedom (DOFs) are required in
the case k = 1, the price to pay for the self-stabilization is that additional,
moment-type, DOFs have to be introduced in the element formulation. Even
though these new DOFs can be easily condensed out, since they are internal to
the element and not shared with neighboring elements, their presence implies
a small additional computational effort. To avoid this, an alternative approach,
based on a projection of the unknown virtual displacement field, based on
what very recently proposed in [18, 19], has also been considered, leading to a
self-stabilized element, not requiring additional DOFs. It should be noted that
while this work was in progress, an approach substantially identical to the one
considered here, though not based on a Hu-Washizu formulation of the VEM,
has been published in [20], leading to the same stabilized stiffness matrix in
the case k = 1.

Another interesting aspect to be investigated is the behavior of the developed
VEs in the incompressibility limit. Wriggers et al. [13] presented a VEM
for large strain elasticity, with excellent locking-free behavior in the nearly
incompressible limit and fully locking-free behavior in the incompressible case,
in this latter condition by means of a penalization of the incompressibility
constraint using pressure as a Lagrange multiplier. For the case of isotropic
elasticity, in [21] Park et al. proposed a decomposition of the elastic tensor
in deviatoric and volumetric parts. The stabilization stiffness matrix is then
constructed as in [17], but using only the deviatoric part of the elastic tensor.
The resulting VEM model is shown to provide accurate results also in the
nearly incompressible case. In this work, we show through numerical tests that
the new VEs, enriched with additional moment DOFs and self-stabilized, seem
locking-free also in the nearly incompressible case and for highly distorted
and/or non-convex element shapes.

The paper is organized as follows. The Hu-Washizu variational formulation of
the 2D linear elastic continuum problem is recalled first. Then, the corresponding
three-field finite element discretization, together with the generalized variable
assumption, is introduced. It is then shown how the VEM paradigm can be used,
starting from the defined mixed framework, to construct the element matrices
for elements of arbitrary polygonal shapes. The mixed variational nature of the
proposed formulation naturally leads to the derivations of Section 3, where two
types of low-order self-stabilized 2D VEs are formulated. Numerical tests for the
compressible and nearly incompressible case show the excellent performances
of the new self-stabilized elements.

Throughout this work, Voigt notation is adopted, so that stress components
are gathered in the stress vector σ and strain components in the strain vector
ε. Furthermore, the material elastic tensor is replaced by the material matrix
of elastic moduli D.
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2 Hu-Washizu variational formulation of the
Virtual Element Method

2.1 Hu-Washizu variational formulation of the continuum
problem

Let us focus on the 2D linear elastostatic continuum problem, under the usual
assumptions of small displacements and strains. Inelastic and thermal effects
are not considered for simplicity, though they could be easily incorporated into
the theory.

The solid body is represented by a domain Ω ⊂ R2, whose boundary ∂Ω is
composed of a constrained part ∂uΩ and a free part ∂pΩ, with ∂uΩ ∩ ∂pΩ = ∅
and ∂uΩ ∪ ∂pΩ = ∂Ω. On the constrained part, imposed displacements ū are
assigned; on the free part, surface tractions p are applied. The body is also
subjected to body forces b. The two in-plane displacement components are
collected into the vector u. All the aforementioned data and unknowns depend
on the position vector x with respect to a Cartesian reference system.

The starting point is the definition of the three-field Hu-Washizu functional,
assuming as independent variables displacements u, strains ε and stresses σ:

Π(u, ε,σ) =
1

2

�
Ω

εTDεdΩ−
�

Ω

σT (ε−Su)dΩ−
�

Ω

uTbdΩ−
�
∂pΩ

uTpds (1)

with u = ū on ∂uΩ. In (1), D is the matrix of elastic constants and S denotes
the compatibility differential operator, defined as:

S =

∂x 0
0 ∂y
∂y ∂x

 (2)

where ∂(·) denotes the partial derivative with respect to (·). Its transpose ST
is the equilibrium differential operator.

Hu-Washizu variational theorem states that among all solutions, the one
satisfying equilibrium, compatibility and constitutive law, makes the three-field
functional stationary:

δΠ =

�
Ω

δεTDεdΩ−
�

Ω

σT (δε− Sδu)dΩ−
�

Ω

δσT (ε− Su)dΩ−
�

Ω

δuTbdΩ+

−
�
∂pΩ

δuTpds = 0 ∀δu, δε, δσ, with δu = 0 on ∂uΩ (3)

Integrating by parts the integral involving the term Sδu and thanks to the
arbitrariness of the variations δu, δε, δσ, the weak form of the governing
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equations is obtained:

δuΠ = 0 =⇒
�

Ω

δuT (STσ + b)dΩ−
�
∂pΩ

δuT (Nσ − p)ds = 0 (4)

∀δu equilibrium

δεΠ = 0 =⇒
�

Ω

δεT (σ −Dε)dΩ = 0 ∀δε constitutive law (5)

δσΠ = 0 =⇒
�

Ω

δσT (ε− Su)dΩ = 0 ∀δσ compatibility (6)

where N is the matrix of director cosines of the outward normal to the boundary:

N =

[
nx 0 ny
0 ny nx

]
(7)

and nx and ny are the two components of the outward normal unit vector n.
The set {u, ε, σ} that makes stationary the Hu-Washizu functional is then

the solution of the problem, corresponding to a saddle point for the mixed
functional.

2.2 Mixed finite elements based on the Hu-Washizu
principle

The problem domain is subdivided into ne finite elements, each occupying a
domain Ωe. Let ∂pΩe be a possible part of Ωe boundary coinciding with a
portion of the body boundary ∂pΩ subjected to surface tractions. Let ξ be a
vector of non-dimensional local coordinates in 2D:

ξ =
x− xG

he
, η =

y − yG

he
(8)

where xG and yG are the coordinates of the element centroid and he is the
maximum diameter of the element, i.e. a measure of the element size.

Remark 1. It should be noted that, unlike in standard isoparametric finite
elements, no geometry mapping is required in the definition of virtual finite
elements; the intrinsic variables ξ and η defined here have therefore substantially
different meaning than in classical isoparametric formulations. This aspect
allows for strongly distorted elements which are forbidden in the isoparametric
setting. �

In the spirit of the Hu-Washizu formulation, an independent modelling of
local displacements, strains and stresses is introduced:

u(ξ) ≈ uh(ξ) = Nu(ξ)û (9)
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ε(ξ) ≈ εh(ξ) = Nε(ξ)ε̂ (10)

σ(ξ) ≈ σh(ξ) = Nσ(ξ)σ̂ (11)

where Nu, Nε, Nσ are matrices of shape functions defined in Ωe whose dimen-
sions are respectively 2× nu, 3× nε, 3× nσ, nu, nε and nσ being the number
of parameters used to define the corresponding discretized fields. û, ε̂ and σ̂
are vectors of parameters, in general not coinciding with nodal values and with-
out a physical meaning. While uh(ξ) is required to be C0 continuous across
elements, the interpolation functions contained in Nε and Nσ are continuous
inside each element, but may not be so across element boundaries. To sim-
plify the notation, the subscript e, denoting the considered element Ωe, will be
omitted unless strictly necessary.

In the proposed formulation, strain and stress parameters ε̂ and σ̂ are
required to correctly represent the element energy, in the sense that:

σ̂T ε̂ =

�
Ωe

σTεdΩ = σ̂T
(�

Ωe

NT
σNεdΩ

)
ε̂ (12)

Parameters σ̂ and ε̂ satisfying this condition are said to be generalized variables
in the sense of Prager 1. Equation (12) implies that nσ = nε and that:

�
Ωe

NT
σNεdΩ = I (13)

where I is the nε × nε identity matrix. Consequently, possible choices for the
stress shape functions Nσ are:

Nσ
3×nε

=DNε

(�
Ωe

NT
ε DNεdΩ

)−1

= D
3×3

Nε
3×nε

E−1

nε× nε

(14)

Nσ
3×nε

=Nε

(�
Ωe

NT
ε NεdΩ

)−1

= Nε
3×nε

G−1

nε× nε

(15)

where the square and invertible nε × nε matrices E (hereafter referred to as
elasticity matrix) and G are defined as:

E =

�
Ωe

NT
ε DNεdΩ, G =

�
Ωe

NT
ε NεdΩ (16)

The second choice (15) will be used in the remainder of this paper.

Remark 2. The choice (15) for Nσ has been proposed by Corradi in [12]
and used, e.g., in [22, 23] in the framework of variational elastoplasticity in

1The concept of generalized variables was introduced by Prager with reference to frame structures
(see, e.g.[11, 22]).
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generalized variables. The choice (14) has been proposed in [23] and recently
used in [20] for an enhanced VEM formulation. �

The final expression of the discretized functional associated to the generic
element e is:

Πh
e (û, ε̂, σ̂) =

1

2
ε̂TEε̂− σ̂T (ε̂−Cû)− ûTF (17)

where (13) has been exploited and the following quantities have been introduced:

� element compatibility matrix, enforcing compatibility in weak form

C
nε×nu

=

�
Ωe

NT
σ (SNu)dΩ = G−1

�
Ωe

NT
ε (SNu)dΩ = G−1

nε×nε

A
nε×nu

(18)

with

A =

�
Ωe

NT
ε (SNu)dΩ (19)

� element equivalent nodal forces vector

F
nu×1

=

�
Ωe

NT
ubdΩ +

�
∂pΩe

NT
upds = Fb + Fp (20)

where Fb and Fp are the contributions to the equivalent nodal forces
vector coming from body forces b in Ωe and surface tractions p on ∂pΩe,
respectively.

Remark 3. If choice (15) for Nσ is adopted, the construction of the compati-
bility matrix C in (18) can be seen as resulting from an L2 projection of the
symmetric part of the displacement gradient onto the discretized strain space. �

The governing equations in discretized form are obtained by enforcing the
stationarity of the discretized functional (17) with respect to û, ε̂ and σ̂:

∂ûΠh
e = 0 =⇒ CT σ̂ = F equilibrium (21)

∂ε̂Π
h
e = 0 =⇒ σ̂ = Eε̂ constitutive law (22)

∂σ̂Πh
e = 0 =⇒ ε̂ = Cû compatibility (23)

Replacing (23) in (22) and (22) in (21), one obtains:

Kcû = F (24)

where:
Kc

nu×nu

= CT

nu×nε

E
nε×nε

C
nε×nu

(25)
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is the element stiffness matrix, symmetric and positive semi-definite, consistent
(the superscript c stands for ’consistent’) with the displacement and strain
models. If nu − nε ≤ 3 and C has nu − 3 independent rows, Kc has the correct
degree of singularity, equal to 3, i.e., equal to the number of rigid body modes
in 2D. In contrast, if nu − nε > 3, Kc has a surplus of rank deficiency, equal to
nu − nε − 3, and zero-energy (hourglass) modes can arise2. Hourglass modes
are spurious deformation modes without physical meaning and are pathological.
Hourglass stabilization is a typical issue of mixed finite element formulations
and it has the role of reestablishing the correct degree of singularity of the
stiffness matrix without upsetting accuracy.

Remark 4. Once the displacement DOFs û have been computed, the proposed
mixed variational framework offers a straightforward strategy for stress and
strain recovery. Using the strain and stress models Nε and Nσ, one immediately
has:

εh(ξ) = Nε(ξ)ε̂ = Nε(ξ)Cû (26)

σh(ξ) = Nσ(ξ)σ̂ = Nσ(ξ)ECû (27)

�

2.3 Hourglass stabilization

The basic idea to stabilize the approximate solution is that of adding a fictitious
stiffness to the element hourglass modes. In this way, the expression of the
discretized element mixed functional becomes:

Πh
e (û, ûH, ε̂, σ̂) =

1

2
ε̂TEε̂+

1

2
ûTHΛûH − σ̂T (ε̂−Cû)− ûTF (28)

The vector ûH contains combinations of displacement parameters defining to
hourglass modes and Λ is a matrix of fictitious stiffnesses. A possible choice
for the definition of Λ (see, e.g., [3]) is (scalar-based stabilization):

Λ =
1

2
tr(Kc)I (29)

where I is the nu × nu identity matrix, tr(·) denotes the trace operator and
the coefficient 1/2 has been proposed in [4]. Another choice, proposed in [17],
is (diagonal matrix-based stabilization):

Λ = diag[Λ]ii = diag

[
max

{
[Kc

e]ii,
1

9
tr(D)

}]
(30)

2Note that the number of zero eigenvalues of Kc is always at least equal to nu − nε.
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The hourglass modes ûH in (28) can be defined in terms of the displacements
DOFs as

ûH = Hû (31)

An original construction of the hourglass matrix H, based on the natural
approach of Argyris [12, 15, 16], is detailed in Appendix A. The resulting
stabilization stiffness matrix is identical to the one originally proposed in [1, 17].
It is also worth mentioning the alternative approach to VEM stabilization
originally proposed in [13]. For a discussion on the connections between the
stabilization of hourglass modes in the VEM and in the finite element method,
see [14].

Defining the local stabilizing stiffness matrix Ks:

Ks = HTΛH (32)

and using the definition (25) of the consistent stiffness matrix and (28) of the
stabilized functional, the stabilized element stiffness matrix K can be expressed
as the sum of two terms:

K = Kc + Ks (33)

This stiffness matrix is symmetric and has now the correct rank deficiency,
equal to 3.

2.4 Virtual element formulation

The general formulation presented in Sections 2.2 and 2.3 can be used to
formulate different mixed finite elements. In particular, this framework will be
exploited here to construct mixed finite elements based on the Virtual Element
Method (VEM).

Let Ωe denote the domain of a finite element extracted from a subdivision
of the body domain in non-overlapping polygons having straight edges and
arbitrary shape. This element is characterized by:

� an arbitrary polygonal shape
� an arbitrary number NV of vertices and straight edges.

Element local coordinates are defined by the simple linear transformation (8),
without a geometry mapping from a parent element.

In the VEM, displacement shape functions Nu are not explicitly known
inside the element and are therefore said to be virtual. These functions are
known only on the polygonal boundary of the element ∂Ωe, where they are
described by a polynomial of degree k (order of accuracy of the method). The
displacement field inside a virtual element is assumed to contain a complete
polynomial of degree k plus other functions that, however, are never required to
be explicitly defined in the element interior and are not used in the computation.

For k > 1 and for the self-stabilized VEs with k = 1 that will be discussed in
Sect. 3.1, the VEM degrees of freedom (DOFs) are not just nodal displacements.
The DOFs in a virtual element are:
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� nodal displacements at the element vertices;
� nodal displacements at the nodes inside the element edges (i.e., at positions

different from the edge extrema);
� moments (scaled with respect to the element area ‖Ωe‖, to be defined later)

of order up to k−2 of the unknown approximate displacement field u = Nuû.
These are present only if k > 1 and are often referred to as ‘internal DOFs’.

For a function f(ξ, η), the moments are defined as

1

‖Ωe‖

�
Ωe

f(ξ, η)dΩ zero order moment

1

‖Ωe‖

�
Ωe

ξf(ξ, η)dΩ first order moment

1

‖Ωe‖

�
Ωe

ηf(ξ, η)dΩ first order moment

etc. .......................................................

(34)

Since a polynomial of degree k in 2D requires for its definition nk parameters
with:

nk =
(k + 1)(k + 2)

2
(35)

the displacement field turns out to be defined by means of nu DOFs, with:

nu = 2NV︸︷︷︸
vertex DOFs

+ 2NV(k − 1)︸ ︷︷ ︸
internal edge DOFs

+ 2nk−2︸ ︷︷ ︸
internal moment DOFs

= 2kNV + k(k − 1)

(36)

where nk−2 = k(k−1)
2 is the number of parameters necessary to describe a

polynomial of degree k − 2 inside the element.
With the previous assumptions on the element displacement DOFs, the

matrix Nu defining the virtual displacement model is of the type:

Nu =

[
Nu

1 0 Nu
2 0 . . . Nu

nu
2

0

0 Nu
1 0 Nu

2 . . . 0 Nu
nu
2

]
(37)

The first NV 2×2 blocks are associated to vertex DOFs; the successive NV(k−1)
2× 2 blocks are associated to edge DOFs; the last k(k − 1) 2× 2 blocks are
associated to internal moment DOFs.

For the subsequent developments, it is convenient to collect the monomials
ξaηb, with a+ b ≤ k, in the following row vector:

qk =
{

1 ξ η ξ2 ξη η2 . . . ηk
}

(38)

With this notation, the entries of qk are denoted as qj . For instance, for j = 4
one has q4 = ξ2, etc.
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The last nk−2 = k(k−1)
2 shape functions in (37) (associated to internal

moment DOFs) are assumed to have value 0 on the boundary and have scaled
moment equal to 1 in their DOF and equal to 0 in correspondence of all the
other DOFs. These last conditions can be expressed as (for j = 1, . . . , nk−2,
i = 1, . . . , nk−2):

1

‖Ωe‖

�
Ωe

qj [Nu]1,2kNV +2i−1dΩ = δij (39)

1

‖Ωe‖

�
Ωe

qj [Nu]2,2kNV +2i−1dΩ = 0 (40)

1

‖Ωe‖

�
Ωe

qj [Nu]1,2kNV +2idΩ = 0 (41)

1

‖Ωe‖

�
Ωe

qj [Nu]2,2kNV +2idΩ = δij (42)

where δij is the Kronecker’s delta and qj are the monomials in the vector qk−2

(38).
The virtual shape functions contained in the first kNV 2× 2 blocks, (i.e.,

relative to a boundary node) are unknown in the element interior but are
assumed to be a Lagrangian polynomial of order k on the element edges, taking
value 1 in their node of definition and 0 in all the other nodes. Furthermore,
their moments up to order k − 2 are assumed to be equal to 0.

The strain field model Nε(ξ) in a Hu-Washizu virtual element is defined
a priori. If the displacement model is assumed to contain at least a complete
polynomial of degree k, in the standard VEM the strain model is assumed to
be a complete polynomial of degree k − 1. Thus, the number of parameters
required to describe the strain field in 2D is:

nε = 3nk−1 = 3
k(k + 1)

2
(43)

The matrix Nε(ξ) can be expressed as:

Nε(ξ) =

1 0 0 ξ 0 0 η 0 0 . . . ηk−1 0 0
0 1 0 0 ξ 0 0 η 0 . . . 0 ηk−1 0
0 0 1 0 0 ξ 0 0 η . . . 0 0 ηk−1

 (44)

The key operator in the present VEM formulation is the compatibility matrix C
defined in (18), projecting the symmetric part of the displacement gradient field
onto the space Pk−1 of polynomials of degree up to k − 1 of the approximate
strain field. The computation of C requires the computation of the symmetric
and invertible matrix G, defined in (16), and of A, defined in (19). The matrix
G is directly computable once the degree of accuracy k of the method is defined,
by computing the integrals by means of a subtriangulation technique. For more
general strategies of polynomial integration on polygons, see for instance [24].
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According to this procedure, the element is subdivided into NV subtriangles
obtained by connecting the element centroid to the element vertices3. Then, a
standard Gaussian quadrature rule for each triangle is applied, in such a way
that polynomials of degree 2k − 2 are exactly integrated.

The computation of the matrix A is less straightforward, since its expression
contains the matrix of displacement shape functions Nu, unknown in the
element interior. To overcome the problem, one can proceed integrating by
parts:

A =

�
Ωe

NT
ε (SNu)dΩ =

�
∂Ωe

(NNε)
TNuds︸ ︷︷ ︸

A1

−
�

Ωe

(STNε)
TNudΩ︸ ︷︷ ︸

A2

(45)

Matrix A1 results from the boundary integral of known quantities, since Nu
i (ξ)

is assumed to be a polynomial of degree k on ∂Ωe, if i denotes a boundary
node, and to vanish on ∂Ωe, if i denotes a moment DOF. This integration can
be performed exactly for the polynomials of order 2k − 1 resulting from the
product of polynomials of degree k−1, related to Nε, and polynomials of degree
k, related to Nu, by the Gauss-Lobatto quadrature rule, using the k + 1 edge
nodes as integration points. Since the displacement shape functions assume
just values 1 and 0 in correspondence of the boundary nodes, the integration
turns out to be remarkably simple.

For what concerns A2, the first part of the integrand is:

STNε(ξ) =

[
0 0 0 ξ,x 0 ξ,y η,x 0 η,y . . . η

k−1,x 0 ηk−1,y
0 0 0 0 ξ,y ξ,x 0 η,y η,x . . . 0 ηk−1,y η

k−1,x

]
(46)

that can be also expressed in the scaled monomial basis qj(ξ) as:

STNε(ξ) =

nk−2∑
j=1

qj(ξ) Mj
2×nε

(47)

where each of the nk−2 matrices Mj contains some zero entries and other
non-zero entries that are constant values and proportional to 1/he.

Replacing (47) in the expression of A2, one obtains:

A2 = −
�

Ωe

nk−2∑
j=1

qj(ξ)MT
j Nu(ξ)dΩ = −

nk−2∑
j=1

MT
j

�
Ωe

qj(ξ)Nu(ξ)dΩ (48)

The integrals in (48) are the moments of order up to k − 2 of the displacement
shape functions Nu, easily computable exploiting (39)-(42).

3This procedure works for a convex polygon. For a non-convex polygon with one vertex defining
a concave angle, the polygon is subdivided in NV − 2 subtriangles connecting the vertex in the
concave angle to all the other vertices.
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Remark 5. From the expression (45) of A2, it is clear that the required
number of internal DOFs is strictly related to the order of the polynomials
assumed for the modelling of the strain field in Nε. In standard VEM, since the
strain field is modelled by a complete polynomial of degree k − 1, the internal
moments have to be assumed up to the order k − 2. This observation will be
relevant in Section 3, when dealing with self-stabilized virtual elements, in
which the enrichment of the strain field model will lead to a number of internal
displacement DOFs higher than in standard VEM. �

Once the compatibility matrix C and the elastic matrix E have been
computed (the latter by means of the subtriangulation technique already
described for the matrix G), one can immediately compute the consistent
stiffness matrix Kc from (25). As for the stabilization stiffness matrix Ks in
(32) 4, whether one chooses for Λ the scalar-based stabilization or the diagonal
matrix-based one, its computation is basically reduced to the computation of
the hourglass matrix H. The computation of the element vector of equivalent
nodal forces F can be carried out following the standard approach used in the
VEM (see e.g. [4]) and it is briefly summarized in Appendix B.

3 Self-stabilized virtual elements k = 1

One of the main limitations of the standard VEM is the need for a stabilization of
the stiffness matrix. Focusing on virtual elements with k = 1, with 4 and 5 nodes
(k = 1 triangles do not require to be stabilized), two methodologies are therefore
proposed for the formulation of self-stabilized elements. The main difference
between the two is related to the introduction or not of additional internal
degrees of freedom. The first category of self-stabilized elements introduces
additional internal moments as displacement DOFs. It is numerically shown
how elements of this kind:

� do not require the stabilization of the stiffness matrix
� exhibit a superior accuracy with respect to standard VEM
� are locking-free, in the sense that the approximated displacement field

does not suffer volumetric locking in the presence of nearly incompressible
materials.

The second category is based on vertex displacement DOFs only as the standard
VEM with k = 1. It is numerically shown how these elements:

� do not require the stabilization of the stiffness matrix
� exhibit an accuracy similar to the standard VEM
� are not volumetric locking-free.

In both cases, the key idea is to enrich the strain field with respect to standard
VEM, exploiting the freedom offered by the mixed Hu-Washizu approach,
where the strain field may be defined independent of the displacement field

4In the standard VEM, the only case in which this matrix has the correct degree of singularity
is that of a triangular element for k = 1. In this case, no stabilization is needed.
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and, therefore, has not to be a polynomial of order k − 1 as in standard VEM.
In the following, the maximum degree of interpolation of the strain field is
indicated by p, while k still denotes the polynomial degree of interpolation of
the displacements along the boundary of the virtual element.

Remark 6. The first approach proposed here is substantially identical to the
’Uncoupled Polynomial Representation’ strategy just proposed in [20], while
this work was in progress, the only difference resting in the choice of the stress
model Nσ. The option in (14) has been adopted in [20], leading to an energy
projection of the displacement gradient, while the choice for Nσ in (15) has
been adopted in the present paper.

The second approach proposed is basically an extension to plane elasticity
of the strategy presented in [18] for the Poisson equation, similarly to what
very recently done in [19].�

Remark 7. The first self-stabilization procedure proposed here could be
straightforwardly extended to higher order displacement models, though at the
cost of significant additional computational burden. For an 8-node quadrilateral,
with quadratic interpolation on the edges (k = 2), e.g., a cubic model (p =
3) would be required for the strain field, with 30 strain parameters and 28
displacement DOFs (16 nodal displacements plus 12 internal moments) [20].
For this reason, only k = 1 elements will be considered here.

The second procedure could also be used in the presence of higher number
of edges and/or higher order displacement models, always keeping the same
number of DOFs as the corresponding standard VEM of the same order.
However, as already mentioned in the Introduction, we remark that a clear and
satisfying analysis on how to design stabilization free VEs in the general case
(i.e. arbitrary polygons and polynomial order) is still missing.�

3.1 Self-stabilized elements with additional internal
degrees of freedom

First, let us focus on k = 1, 4-node elements with additional internal moment
DOFs. The acronym VEM4SS is used to denote 4-node self-stabilized virtual
elements with linear displacement interpolation along the edges. In standard
VEM, a constant strain field (of order k − 1 = 0) is assumed and no moment
DOFs are necessary, since matrix A2 in (45) vanishes. As discussed in Section
2.2, a necessary condition to have a self-stabilized element is that nu − nε ≤ 3.
In standard VEM, for this type of elements one has nu = 8 and nε = 3, hence
the consistent stiffness matrix Kc contains two hourglass modes and requires a
stabilization.

The need for a stabilization can be eliminated by enriching the strain field
with linear terms (i.e., p = 1) in one of different ways, at the cost of two
additional moment DOFs for the displacement model. Since the strain model
now contains polynomial terms of degree p = 1, unlike in the standard VEM
with k = 1, from (45) one has that the first moments of the displacement shape
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functions have to be considered for the computation of matrix A2, implying that
two moment DOFs are required. Considering that NV = 4 and that there are 2
displacement DOFs per vertex and 2 internal moment DOFs, the final number
of displacement DOFs is nu = 2× 4 + 2 = 10. Hence, Nu is a 2× 10 matrix.

As a first attempt, the following 3× 7 strain model is assumed:

Nε =

1 0 0 η 0 ξ 0
0 1 0 0 ξ 0 η
0 0 1 ξ η 0 0

 (49)

where the first three columns define a constant strain state (as for standard
VEM with k = 1), the fourth and the fifth columns correspond to the two
hourglass modes of the 4-node element and the last two are necessary to define
a complete first order polynomial for each strain component and to make
unnecessary the stabilization of the consistent stiffness matrix Kc. Therefore, in
this case p = 1 and nε = 7. This type of element will be denoted as VEM4SS7-
10DOFs, emphasizing the fact that 7 strain parameters and 10 displacement
DOFs are considered.

Alternatively, also the following strain model can be considered:

Nε =

1 0 0 ξ 0 0 η 0 0
0 1 0 0 ξ 0 0 η 0
0 0 1 0 0 ξ 0 0 η

 (50)

In this case p = 1 and nε = 9, and this type of element is denoted as
VEM4SS9-10DOFs, since 9 strain parameters and 10 displacement DOFs are
still considered.

For both the proposed elements, nu − nε ≤ 3 and, if the rows of the
compatibililty matrix C are independent, the element consistent stiffness matrix
Kc has rank deficiency 3, i.e., the element is self-stabilized. Indeed, denoting by
ûR
i the generic vector of displacement parameters corresponding to one of the

three rigid body modes, since SNuû
R
i = 0 by construction, one immediately

has that:

ε̂R

i = CûR

i =

[
G−1

�
Ωe

NT
ε (SNu)dΩ

]
ûR

i = 0 for i = 1, 2, 3 (51)

even in the case nu − nε < 3.
The whole procedure is analogous to the one in the standard VEM. However,

it is worth observing that in this case, being k = 1 and p = 1, the integrands
in the matrix A1 are polynomials of degree k + p = 2 along each edge. In this
case, the number n of integration points necessary for the exact integration of
A1 can be obtained from the condition:

k + p = 2n− 3 =⇒ n =
k + p+ 3

2
(52)
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and if n is not an integer, the the smallest greater integer number has to be
considered. In this case, n = 3, i.e., the two vertex nodes and an additional point
at the middle of the edge are required. In conclusion, the construction of these
elements require a boundary integration of higher order than in the standard
VEM, while matrix A2 is exactly computable thanks to the introduction of
the two internal moment DOFs.

The final difference with respect to the standard VEM is related to the
construction of the equivalent nodal force vector Fb due to the body forces
b. The idea is that of projecting the body force vector b onto the space Pp−1

of polynomials of degree up to p − 1. In this case, since p = 1, the vector b
is projected onto the space P0 of constant polynomials leading to a simple
computation in terms of the two internal moment DOFs. It is worth noting
that the computation of Fb is basically the same as for standard VEM with
k = 2 (see, e.g.,[4]) . The only difference is in the dimensions of the matrix Nu.
Indeed, for a standard VEM quad element with k = 2, Nu is a 2× 18 matrix,
while in this case Nu is a 2 × 10 matrix. In both cases, the only non-zero
components of Fb are those related to the two internal DOFs.

Exploiting the same idea illustrated for the 4-node element, also a 5-node
element has been developed, with the acronym VEM5SS indicating that it is a
5-node self-stabilized virtual element. Also in this case, in the presence of a
linear strain model p = 1, two internal DOFs are required for the computation
of matrix A2. Since on the element boundary one has k = 1 and NV = 5, the
number of displacement DOFs is nu = 2× 5 + 2 = 12. To satisfy the condition
nu − nε ≤ 3, at least 9 strain parameters are needed and the model Nε in (50)
with nε = 9 has to be adopted.

Since nu − nε = 3, the element consistent stiffness matrix Kc has rank
deficiency 3 and the element is self-stabilized if the rows of C are independent.
Also in this case, the whole procedure is analogous to the one for the standard
VEM. The same observations made for the VEM4SS-10DOFs elements are
valid also in this case and will not be repeated here.

Remark 8. The self-stabilized VEs proposed above may seem somehow similar
to the enhanced strain finite elements of Simo and Rifai [25]. There are however
substantial differences. Enhanced strain finite elements are based on a nonlinear
geometry mapping, as all isoparametric finite elements, and hence, they are
unavoidably subject to distortion sensitivity when the geometry transformation
Jacobian becomes singular. In contrast, in the proposed approach no geometry
mapping between the master and the current element is required, leading to a
self-stabilized VE totally insensitive to mesh distortion. Furthermore, in the
enhanced strain approach, strains are composed of two terms: a compatible
strain plus an enhanced, incompatible term, orthogonal to the stress field. Since
the symmetric gradient of displacement is virtual in the VEM, no ‘compatible’
part of the strain can be explicitly defined in the assumed polynomial strain
model. Finally, the proposed VE formulation is valid for general polygonal
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elements, not only for quadrilaterals, even though a systematic application to
elements with more than five edges may be not computationally convenient.�

Remark 9. The proposed self-stabilized VEs have some similarities also with
the Pian-Sumihara (P-S) element [26]. The P-S element is based on a Hellinger-
Reissner formulation, with an elementwise polynomial bilinear interpolation
for the displacements and an elementwise 5-parameter modeling of the stress
field. The stress can be eliminated at the element level, leading to a symmetric
positive system in displacements only. The main difference with the proposed
VEM model is the definition of the stress field. In the proposed Hu-Washizu
formulation, the stress model is a consequence of the strain model, which
requires at least 7 parameters to produce a stable element, while the standard
P-S element uses 5 parameters for the stress definition. Moreover, while the
P-S element is known to be less sensitive to mesh distortion with respect
to standard quadrilateral elements, it is still based on a nonlinear geometry
mapping. Finally, as already commented in the previous Remark, unlike the
VEs, also the P-S formulation applies to quadrilaterals only.�

3.2 Self-stabilized elements without additional internal
degrees of freedom

These elements differ from those described in the previous Subsection 3.1 only
for the computation of matrix A2 in (45) and of the local equivalent nodal
forces vector due to body forces Fb. Matrix A2 in (45) contains the integral of
the unknown displacement shape functions Nu and cannot be computed as it
is. According to the proposed strategy, this term is computed by means of a
suitable projection of the gradient of Nu onto the gradient of known polynomial
functions N1 of order 1 [18, 19].

Let N1(ξ) be the 2× 6 matrix of monomials up to the first order:

N1 =

[
1 0 ξ 0 η 0
0 1 0 ξ 0 η

]
(53)

Let u1(ξ) be the approximate displacement field defined as u1(ξ) = N1(ξ)ŝ.
The ∇s projection of u(ξ) = Nu(ξ)û, where ∇s denotes the symmetric gradient
operator whose matrix representation is S, onto u1 is defined as:

�
Ωe

(SN1)TS(u− u1)dΩ =

�
Ωe

(SN1)TS(Nuû−N1ŝ)dΩ = 0 (54)



Springer Nature 2021 LATEX template

18 3.2 Self-stabilized elements without additional internal degrees of freedom

from which one can write:[�
Ωe

(SN1)TSN1dΩ

]
ŝ =

[�
Ωe

(SN1)TSNudΩ

]
û (55)

The matrix in square brackets at the left hand side is obviously singular in
correspondence of the three rigid body modes. Therefore, in order to solve
system (55) for ŝ, we need to add three other independent conditions, capable
to fix the rigid body modes. A way to perform this step is the following. An
identical term is added at both equation sides:[�

Ωe

(SN1)TSN1dΩ +

�
∂Ωe

(N1R1)TN1ds

]
︸ ︷︷ ︸

G∇s

ŝ = (56)

[�
Ωe

(SN1)TSNudΩ +

�
∂Ωe

(N1R1)TNuds

]
︸ ︷︷ ︸

A∇s

û (57)

where the matrix R1 is such that ŝR = R1ŝ, where ŝR are combinations of
parameters defining rigid body modes. Based on this definition, whenever ŝ
represents a pure deformation mode, only the first addend of matrix G∇s in
(56) comes into play. In contrast, if ŝ represents a rigid body mode, only the
second one intervenes and, in this way, the symmetric gradient projection is not
modified. The construction of the matrix R1 can be performed following the
same procedure used for the computation of the hourglass matrix H illustrated
in Appendix A. One can set:

u1(ξ) = N1(ξ)ŝ = N1(ξ) (ŝR + ŝD)︸ ︷︷ ︸
ŝ

(58)

where ŝD are combinations of parameters defining pure deformation modes. It
is worth noting that N1 does not contain hourglass modes. The displacement
parameters ŝ can be expressed in terms of natural parameters p̂R

1 and p̂D
1 as

(see Appendix A, Equation (A1)):

ŝ = ŝR + ŝD = TR

1 p̂R

1 + TD

1 p̂D

1 (59)

The 6× 3 matrix TR
1 of rigid body modes is given by:

TR

1 =


1 0 0
0 1 0
0 0 0
0 0 1
0 0 −1
0 0 0

 (60)
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where the first two columns define the rigid body translations along ξ and η,
respectively, and the third one defines the in-plane rigid body rotation.

By virtue of the orthogonality of rigid and deformation modes, one has:

(TR

1 )T ŝ = (TR

1 )TTR

1 p̂R

1 + (TR

1 )TTD

1 p̂D

1︸ ︷︷ ︸
=0

= (TR

1 )TTR

1 p̂R

1 (61)

from which the 3× 1 vector of parameters p̂R
1 can be derived:

p̂R

1 = [(TR

1 )TTR

1 ]−1(TR

1 )T ŝ (62)

The 6 × 1 vector ŝR can be eventually extracted from the total vector ŝ as
follows:

ŝR = TR

1 p̂R

1 = TR

1 [(TR

1 )TTR

1 ]−1(TR

1 )T︸ ︷︷ ︸
R1

ŝ = R1ŝ (63)

Hence, the 6×6 matrix R1 required in (56) is fully computable by means of the
matrix TR

1 , whose expression is given in (60). Note that whenever ŝ represents
a pure deformation mode, one has ŝR = R1ŝ = 0.

The matrix G∇s in (56) is now invertible and, hence, the vector of
parameters ŝ can be finally computed as:

ŝ = (G∇s)−1A∇s︸ ︷︷ ︸
Π∇s

1

û = Π∇s
1 û (64)

where the matrix Π∇s
1 = (G∇s)−1A∇s defines the symmetric gradient

projection operator.
The matrix G∇s can be easily computed, since it contains integrals over Ωe

of constant quantities, as well as integrals over ∂Ωe of known functions. On the
other hand, the first part of the matrix A∇s is not immediately computable,
since it contains the integral over Ωe of the displacement virtual shape functions
Nu. However, one can integrate this term by parts:

�
Ωe

(SN1)TSNudΩ =

�
∂Ωe

[N(SN1)]TNuds−
�

Ωe

[ST (SN1)]TNudΩ︸ ︷︷ ︸
=0

(65)

=

�
∂Ωe

[N(SN1)]TNuds

so that:

A∇s =

�
∂Ωe

[N(SN1)]TNuds+

�
∂Ωe

(N1R1)TNuds (66)

where both terms are straightforwardly computable since Nu is known on the
element boundary. Adopting the usual Gauss-Lobatto rule, the first integral
is exactly computable using 2 integration points over each edge (that are also
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boundary nodes of the element), while the second one requires an additional
integration point at the middle of the edge, for a total of 3 integration points
over each edge.

Once Π∇s
1 in (64) is computed, the term A2 in (45) is rewritten as:

A2 = −
�

Ωe

(STNε)
TNudΩ ≈ −(STNε)

T

�
Ωe

N1Π
∇s
1 dΩ (67)

and is immediately computable. It is notable that the computation of the last
integral in (67) turns out to be very simple, due to the fact that:

�
Ωe

ξdΩ =

�
Ωe

ηdΩ = 0 (68)

from the definition of centroidal coordinate system. It finally results:

�
Ωe

N1Π
∇s
1 dΩ =

[
[Π∇s

1 ]11‖Ωe‖ [Π∇s
1 ]12‖Ωe‖ . . . [Π∇s

1 ]1nu
‖Ωe‖

[Π∇s
1 ]21‖Ωe‖ [Π∇s

1 ]22‖Ωe‖ . . . [Π∇s
1 ]2nu

‖Ωe‖

]
(69)

Once the matrix A is computed, the compatibility matrix C is immediately
determined using Equation (18) and the local consistent stiffness matrix can
be also computed, following Equation (25).

Having the same displacement DOFs as the standard VEM element with
k = 1, the local equivalent nodal forces vector due to body forces Fb can be
computed as in the standard VEM.

The approach described above has been implemented for the 4-node element
with both 7 and 9 strain parameters, using (49) and (50), and for the 5-node
element, using (50). Consistently with the nomenclature used in 3.1, these
three elements are respectively indicated by the acronyms VEM4SS7-8DOFs,
VEM4SS9-8DOFs and VEM5SS-10DOFs. All these elements are self-stabilized
since the condition nu − nε ≤ 3 is satisfied.

4 Numerical tests

The mixed Hu-Washizu procedure for self-stabilized virtual elements presented
in the previous Sections has been implemented into a MATLAB code for k = 1.
For all the numerical tests, the diagonal matrix-based stabilization technique
has been adopted in the case of the standard VEM.

For all the three considered tests, the comparison between the standard
VEM k = 1 and the self-stabilized elements k = 1, p = 1 is proposed, evidencing
the better performances of the latters.

Units for the quantities in the examples will not be specified, though they
have been taken in a consistent way (e.g. N/mm3 for body forces; N/mm2

for surface tractions, stresses, Young’s modulus and Lamé constants; mm for
lengths).
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4.1 Convergence test with known analytical solution

The first application of the VEM is related to a classical 2D plane strain
convergence test with known analytical solution. Specifically, the problem
domain, depicted in Figure 1, is a unit square Ω = [0, 1]2 with constrained
displacements all over its boundary ∂uΩ ≡ ∂Ω, i.e., ∂pΩ = ∅. The data of the
problem are:

� Lamé constants λ = 1 and µ = 1 (corresponding to E = 2.5 and ν = 0.25)
� body forces in Ω{

bx = −π2 [−(λ+ 3µ) sin(πx) sin(πy) + (λ+ µ) cos(πx) cos(πy)]

by = −π2 [−(λ+ 3µ) sin(πx) sin(πy) + (λ+ µ) cos(πx) cos(πy)]
(70)

� kinematic boundary conditions on ∂uΩ ≡ ∂Ω{
ūx = 0

ūy = 0
(71)

The analytical solution of the problem in terms of displacements in Ω is given
by: {

ux = sin(πx) sin(πy)

uy = sin(πx) sin(πy)
(72)

Different meshes have been tested for the assessment of the VEM convergence,
each of them with an increasing number of elements: a square mesh, a mesh

Ω

1

1

x

y

O

Fig. 1: Convergence test with analytical solution: problem geometry.
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with convex distorted quadrilateral elements, a mesh with convex and non-
convex quadrilateral elements and two pentagonal meshes with increasing level
of distortion. All these meshes are depicted in Figure 2. Convergence upon
mesh refinement has been assessed in terms of the L2-norm of the strain error,
defined as:

‖eε‖L2 =

√√√√ ne∑
e=1

�
Ωe

‖ε− εh‖2dΩ (73)

where ε and εh denote respectively the exact and the approximated strain field
over the generic element of the virtual element mesh. The integrals in (73)
are computed numerically by means of the usual subtriangulation technique,
evaluating the exact and the approximate strains at the quadrature points.

Convergence upon mesh refinement has been evaluated also in terms of a
displacement error eu, defined as:

eu =

√
‖U(xv)−Uh(xv)‖2

‖U(xv)‖2
(74)

where U(xv) is the global vector containing the exact displacement solution
evaluated at the mesh nodes v, whereas Uh(xv) is the VEM solution in terms
of global nodal displacement DOFs. The results of VEM convergence analyses
show that in all cases, irrespective of the level of element distortion, the slope
of the error ‖eε‖L2 tends to the order of approximation k of the method as the
mean element size h decreases, when plotted in log-log scale as a function of h.
Concerning the displacement error eu, the slope tends to k + 1 as h decreases,
when plotted with the same scales used for ‖eε‖L2 .

The standard VEM with k = 1 has been compared to the self-stabilized
elements presented in Section 3. Figure 3 shows the convergence curves of the
strain error ‖eε‖L2 for the different considered meshes. VEM4 and VEM5 refer
to the standard quadrilateral and pentagonal VEM with k = 1, respectively. As
can be seen, all the self-stabilized elements exhibit the expected convergence
rate k = 1 of the standard VEM. The self-stabilized elements with additional
internal DOFs always exhibit a higher accuracy than the standard VEM. Fur-
thermore, in the case of the very simple square geometry, the self-stabilized
quadrilateral element with 9 strain parameters and 10 displacement DOFs
(VEM4SS9-10DOFs) shows superconvergence behaviour, with a doubled slope
with respect to the theoretical value 1. As no clear theoretical explanation
for this superconvergent behavior is available, one can think that this is the
consequence of the combination of several ingredients: the symmetry of the
analytical solution, the symmetry of the square mesh, ‘aligned’ with the ana-
lytical solution, etc.. The self-stabilized elements without additional moment
DOFs exhibit an accuracy that is very similar to the standard VEM in all
cases, but without requiring the stabilization.
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The comparison of standard VEM and self-stabilized VEM in terms of dis-
placement error eu is shown in Fig. 4. As can be seen, the expected convergence
rate k + 1 = 2 is exhibited by all the considered elements.

(a) Square mesh (b) Convex distorted quad mesh

(c) Convex/Non-convex quad mesh

(d) Distorted pentagonal mesh (e) Extremely distorted pentagonal
mesh

Fig. 2: Convergence test with analytical solution: considered quadrilateral and
pentagonal meshes.
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Fig. 3: Convergence test with analytical solution: comparison of standard and
self-stabilized VEM for different quadrilateral and pentagonal meshes, strain
error.

4.2 Divergence-free convergence test

The second application of the VEM is related to a 2D plane strain convergence
test with known displacement-divergence-free analytical solution. The problem
domain is the same as for the first application, already depicted in Figure 1,
namely a unit square Ω = [0, 1]2 with constrained displacement all over its
boundary ∂uΩ ≡ ∂Ω.

The data of the problem are:
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(e) Extremely distorted pentagonal mesh

Fig. 4: Convergence test with analytical solution: comparison of standard
and self-stabilized VEM for different quadrilateral and pentagonal meshes,
displacement error.

� Lamé constants λ = 9999 and µ = 1 (corresponding to E = 2.9999 and
ν = 0.49995)

� body forces in Ω

{
bx = −4µπ3 sin(πy) cos(πy)[cos2(πx)− 3 sin2(πx)]

by = 4µπ3 sin(πx) cos(πx)[cos2(πy)− 3 sin2(πy)]
(75)
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� kinematic boundary conditions on ∂uΩ ≡ ∂Ω

{
ūx = 0

ūy = 0
(76)

The analytical solution of the problem in terms of displacements in Ω is given
by: {

ux = 2π sin2(πx) sin(πy) cos(πy)

uy = −2π sin2(πy) sin(πx) cos(πx)
(77)

The tested quadrilateral and pentagonal meshes are the ones already depicted
in Figure 2. Figure 5 shows the strain error curves related to the different
meshes. As can be appreciated, the standard VEM exhibits severe volumet-
ric locking behaviour for all the meshes. This may be not so for other VEM
implementations, and in particular for k > 1 (see, e.g., [2]). Also the quadri-
lateral self-stabilized VEM without additional internal DOFs shows locking
behaviour, while its pentagonal version exhibits the correct convergene rate.
On the other hand, the self-stabilized VEM with additional internal DOFs is
always volumetric-locking-free, able to keep the right convergence rate and more
accurate than the other two approaches, as a result of the richer displacement
field.

4.3 Cook’s beam problem

The last numerical application concerns the classical Cook’s beam problem.
The geometry of the problem is shown in Figure 6. It consists of a tapered
cantilever beam, having the left end restrained in both directions and the right
edge subjected to a uniform shear action along y. Also in this case plane strain
conditions are assumed.

Since the closed-form solution of this problem is not available, convergence
has been assessed by comparison of the vertical displacement uA

y of the point
A in Figure 6 with its reference value taken from the literature. Both the
compressible and the nearly incompressible cases have been analyzed. The data
of the problem are:

� Young’s modulus E = 70
� Poisson’s ratio ν = 0.33 (compressible case), ν = 0.49995 (nearly

incompressible case)
� zero body forces in Ω
� surface tractions on ∂pΩ

{
px = 0

py = 6.25× 10−3
(78)
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Fig. 5: Divergence-free convergence test: comparison of standard and self-
stabilized VEM for different quadrilateral and pentagonal meshes, strain error.

� kinematic boundary conditions on ∂uΩ{
ūx = 0

ūy = 0
(79)

The considered quadrilateral and pentagonal meshes for the standard and the
self-stabilized VEM with k = 1 are shown in Figure 7.

First, the compressible case (ν = 0.33) has been considered. In this case,
the reference solution is uA

y ≈ 0.0323. The corresponding results are shown in
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Fig. 6: Cook’s beam: problem geometry.

Figure 8 in terms of the output parameter uA
y as function of the mean element

size h. As can be seen, the self-stabilized VEM with additional internal DOFs
converges to the right value of the vertical displacement at A, always with
enhanced accuracy with respect to the corresponding standard VEM. On the
other hand, the self-stabilized VEM without additional moment DOFs always
shows a slightly worse accuracy with respect to the standard VEM.

Even more interesting are the results in the nearly incompressible limit
(ν = 0.49995), depicted in Figure 9. In this case, the standard VEM with k = 1
always exhibits severe volumetric locking behaviour. Also the self-stabilized
VEM without additional moment DOFs shows locking behaviour, more severe
in the case of quadrilateral elements. Consistently with the results of 4.2,
the self-stabilized VEM with additional moment DOFs is locking-free for all
the different meshes and it rapidly converges to the right value of the tip
displacement uA

y ≈ 0.0277.
Figure 10 shows the mean stress contour maps for the unstructured quad

mesh with 498 elements and the different tested 4-node elements. The mean
stress σm is computed as (σx + σy + σz)/3, where σz = ν(σx + σy) due to the
plane strain hypothesis. The same quantity is reported in Figure 11 for the
distorted pentagonal mesh with 256 elements and the different tested 5-node
elements. From these figures, one can note how only the self-stabilized VEM
with additional moment DOFs seems to be able to completely remove the
locking artifacts in the nearly incompressible situation.

5 Conclusions

A mixed Hu-Washizu variational formulation of the VEM has been presented. It
allows in a straightforward way to cast the VE approach within the framework
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(a) Structured quad mesh (b) Unstructured quad mesh

(c) Distorted pentagonal mesh (d) Extremely distorted pentagonal
mesh

Fig. 7: Cook’s beam: quadrilateral and pentagonal meshes.

of mixed methods with a weak enforcement of compatibility, highlighting the
role of the VEM for the computation of the compatibility matrix.

One of the main drawbacks of the VEM is that in most cases the VEs require
a stabilization. While on one hand an original presentation of the stabilization
technique, based on the natural approach of Argyris [15] and Corradi [12] has
been proposed, on the other hand it has been shown how the formulation of
the VEM as a mixed method quite naturally leads to the derivation of self-
stabilized virtual elements, i.e., not requiring any stabilization. The basic idea is
to increase the order of polynomial representation of the strain model, similarly
to what has been proposed very recently in [20]. The resulting virtual element
requires additional moment DOFs. To avoid this, an alternative technique has
been proposed for the computation of the compatibility matrix, not requiring
additional moment DOFs. The technique is based on a projection of the
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(b) Unstructured quad mesh
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(c) Distorted pentagonal mesh
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(d) Extremely distorted pentagonal mesh

Fig. 8: Cook’s beam: comparison of standard and self-stabilized VEM for
different quadrilateral and pentagonal meshes, compressible case (ν = 0.33)

symmetric gradient of the displacement. A substantially identical technique
has been very recently proposed in [18, 19].

Quadrilateral and pentagonal self-stabilized, k = 1, p = 1, 2D VEs have
been implemented in an in-house code and applied to a number of benchmark
problems. The expected order of convergence has been obtained in all cases,
with the elements stabilized by the addition of moment DOFs exhibiting a
superior accuracy. In all cases the substantial distortion insensitivity of the
VEM has been confirmed.

The new VEs have also been tested in the nearly incompressible limit. Also
in this case, the new self-stabilized VEs with additional moment DOFs have
provided superior performances, exhibiting an almost completely locking-free
behavior. The new VEs, self-stabilized without additional moment DOFS, have
instead shown performances very similar to those of the standard stabilized
VEM, including a substantial deterioration of the convergence rate in the nearly
incompressible limit. However, we highlight that a complete theoretical analysis
of the stabilization free VEs in a general framework (arbitrary polynomial order
and arbitrary polygonal meshes) is not available. Nonetheless, for the present
Hu-Washizu approach a stability and convergence study, concerning the case
k = 1 on quadrilteral meshes, can be found in [27].



Springer Nature 2021 LATEX template

A COMPUTATION OF HOURGLASS MATRIX H 31

02468

Mean element size, h

0.005

0.01

0.015

0.02

0.025

0.03
V

er
ti

ca
l 

d
is

p
la

ce
m

en
t 

o
f 

p
o

in
t 

A
, 

u
yA

VEM4

VEM4SS7-10DOFs

VEM4SS9-10DOFs

VEM4SS7-8DOFs

VEM4SS9-8DOFs

REFERENCE VALUE

(a) Structured quad mesh

0246

Mean element size, h

0.015

0.02

0.025

0.03

V
er

ti
ca

l 
d

is
p

la
ce

m
en

t 
o

f 
p

o
in

t 
A

, 
u

yA

VEM4

VEM4SS7-10DOFs

VEM4SS9-10DOFs

VEM4SS7-8DOFs

VEM4SS9-8DOFs

REFERENCE VALUE

(b) Unstructured quad mesh

0246810

Mean element size, h

0.005

0.01

0.015

0.02

0.025

0.03

V
er

ti
ca

l 
d

is
p

la
ce

m
en

t 
o

f 
p

o
in

t 
A

, 
u

yA

VEM5

VEM5SS-12DOFs

VEM5SS-10DOFs

REFERENCE VALUE

(c) Distorted pentagonal mesh
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(d) Extremely distorted pentagonal mesh

Fig. 9: Cook’s beam: comparison of standard and self-stabilized VEM for
different quadrilateral and pentagonal meshes, nearly incompressible case
(ν = 0.49995)

We conclude by noticing that possible interesting future developments
may consider the extension of the proposed mixed variational formulation to
three-dimensional VEs, to elastoplasticity and to elastodynamics.
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Appendix A Computation of hourglass matrix
H

To define the hourglass modes ûH and the hourglass matrix H in (28) it is
possible to proceed as follows (see, e.g [12, 16]). According to the natural
approach proposed by Argyris [15], the element nodal displacements û can be
expressed as a linear combination of nR rigid body modes and nD natural or
straining modes, through a non-singular matrix T. In the case that nH hourglass
modes are also allowed by the element kinematics, the vector of displacement
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Fig. 10: Cook’s beam: mean stress contour plots for unstructured quad mesh
with 498 elements and different 4-node elements in the nearly incompressible
case (ν = 0.49995)

parameters û can be expressed as:

û = ûD+R + ûH = TD+R

u p̂D+R

u + TH

up̂H

u (A1)

where TD+R
u is a matrix of nD + nR columns, each one representing an inde-

pendent deformation or rigid mode, TH
u is a matrix of nH columns, each one
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Fig. 11: Cook’s beam: mean stress contour plots for distorted pentagonal mesh
with 256 elements and different 5-node elements in the nearly incompressible
case (ν = 0.49995)

representing an independent hourglass mode, p̂D+R
u are natural parameters and

p̂H
u are hourglass parameters defining the amplitude of the corresponding hour-

glass mode. Deformation modes and hourglass modes are taken orthogonal to
each other, i.e.:

(ûD+R)T ûH = 0 (A2)
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The orthogonality between deformation/rigid body modes and hourglass modes
implies also that:

(TD+R

u )TTH

u = 0 (A3)

Making use of this orthogonality property and of the decomposition (A1) of û,
one can write:

(TD+R

u )T û = (TD+R

u )TTD+R

u p̂D+R

u +(TD+R

u )TTH

up̂H

u︸ ︷︷ ︸
=0

= (TD+R

u )TTD+R

u p̂D+R

u (A4)

From the previous expression it is possible to compute the natural parameters
associated to deformation and rigid body modes:

p̂D+R

u = [(TD+R

u )TTD+R

u ]−1(TD+R

u )T û (A5)

Substituting this expression in (A1) and solving for ûH = TH
up̂H

u, one obtains:

ûH = TH

up̂H

u = û−TD+R

u p̂D+R

u = Hû (A6)

where the hourglass matrix H is defined as:

H = I−TD+R

u [(TD+R

u )TTD+R

u ]−1(TD+R

u )T (A7)

and I denotes the nu×nu identity matrix. As it can be easily verified, one also
has HTH = H.

The problem of computing ûH is then reduced to the construction of the
hourglass matrix H and, hence, to the computation of the transformation
matrix TD+R

u associated to deformation and rigid body modes.
In the standard VEM of order k, the approximated displacements locally

contain all the polynomials of degree at most k; accordingly, the strains are
initially modelled by projecting their symmetric gradients onto polynomials
of degree at most k − 1. However, for arbitrary polygons the displacements
are richer and other (typically non-polynomial) functions are required to cope
with inter-element continuity. These additional functions are responsible for
a surplus in the rank deficiency of Kc with respect to the standard value 3.
On the basis of this observation, the number of hourglass modes is equal to
nu − 2nk, nk being the number of parameters required to define a complete
polynomial of order k (35). Of course, nu − 2nk depends on the number of the
element vertices, see (36). As a consequence, the approximate displacement
without hourglass modes can be expressed as:

uD+R(ξ) = Nk(ξ)p̂D+R

u = Nu(ξ)ûD+R (A8)

where:

Nk(ξ) =

[
1 0 ξ 0 η 0 . . . ηk 0
0 1 0 ξ 0 η . . . 0 ηk

]
(A9)
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Considering that:

ûD+R = TD+R

u p̂D+R

u (A10)

the following equality holds:

Nk(ξ) = Nu(ξ)TD+R

u (A11)

Since by definition Nu
i (ξi) = 1, if ξi are the coordinates of the i-th boundary

node and Nu
i is the corresponding shape function, considering (A11), one has,

e.g., at the edge node 1:

Nk(ξ1) =

[
1 0 ξ1 0 . . . ηk1 0
0 1 0 ξ1 . . . 0 ηk1

]
=

[
1 0 0 0 . . . 0 0
0 1 0 0 . . . 0 0

]
TD+R

u (A12)

The matrix product at the right hand side of (A12) returns the first two rows
of the matrix TD+R

u . Repeating the same procedure for all the other DOFs, one
obtains the whole nu × 2nk matrix:

TD+R

u =



1 0 ξ1 0 η1 0 . . . ηk1 0
0 1 0 ξ1 0 η1 . . . 0 ηk1
1 0 ξ2 0 η2 0 . . . ηk2 0
0 1 0 ξ2 0 η2 . . . 0 ηk2
...

...
...

...
...

...
. . .

...
...

1 0
�

Ωe
ξ 0

�
Ωe
η 0 . . .

�
Ωe
ηk 0

0 1 0
�

Ωe
ξ 0

�
Ωe
η . . . 0

�
Ωe
ηk�

Ωe
ξ 0

�
Ωe
ξ2 0

�
Ωe
ξη 0 . . .

�
Ωe
ξηk 0

0
�

Ωe
ξ 0

�
Ωe
ξ2 0

�
Ωe
ξη . . . 0

�
Ωe
ξηk

...
...

...
...

...
...

...
...

...


(A13)

where:  
Ωe

(·) =
1

‖Ωe‖

�
Ωe

(·)dΩ (A14)

The first 2kNV rows contain the scaled monomials evaluated in correspondence
of DOFs on the element boundary. The last k(k− 1) rows contain the following
terms: {

(TD+R
u )2i−1,2j−1 =

�
Ωe
qi−kNV

qj

(TD+R
u )2i,2j =

�
Ωe
qi−kNV

qj
(A15)

with i = kNV + 1, kNV + 2, . . . , nu

2 and j = 1, 2, . . . , nk. All the other terms in
the last k(k − 1) rows are zero.

Summarizing, the matrix TD+R
u can be computed evaluating Nk(ξ) in

correspondence of the element DOFs. Once TD+R
u is computed, the hourglass

matrix H can be computed by means of (A7) and finally Ks can be evaluated.
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Appendix B Computation of equivalent nodal
forces vector

The procedure for the construction of the element equivalent nodal force vector
is different for the cases k = 1 and k ≥ 2. Even though the idea is the same
for k = 2 and k > 2, for the sake of clearness these two cases will be analyzed
separately.

Looking at (20), the term Fp is fully computable since Nu is explicit on
the boundary of the domain, where it is described by polynomial functions of
degree k. Therefore, only the evaluation of the term Fb will be discussed below.

In the case k = 1, the equivalent nodal force vector associated to the
body forces b is computed in an approximate way, exploiting an integration
rule associated to the element vertices. Basically, the load vector is uniformly
distributed to each DOF of the virtual element. Let us introduce the 2 × 1
vector f :

f =

�
Ωe

bdΩ (B16)

whose components are

fx =

�
Ωe

bxdΩ (B17)

fy =

�
Ωe

bydΩ (B18)

The equivalent nodal forces vector due to b is computed as:

Fb =

�
Ωe

NT
ubdΩ ≈ 1

NV

{
fx fy fx fy · · · fx fy

}T
(B19)

where NV denotes the number of vertices of the virtual element.
In the case k = 2, the basic idea is the same as for the case k > 2, namely

that of projecting the body force vector b onto the space Pk−2 of polynomials
of degree up to k − 2. The computation results to be very simple due to the
presence of the internal moment DOFs. In the specific case k = 2, the vector b is
projected onto a vector of constants b̂h, that can be derived from the condition:

�
Ωe

b̂hdΩ =

�
Ωe

bdΩ (B20)

Recalling (B16), the vector b̂h can be expressed as

b̂h =
1

‖Ωe‖
f (B21)
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Finally, the vector Fb is computed as:

Fb =

�
Ωe

NT
ubdΩ ≈

�
Ωe

NT
u b̂hdΩ =

1

‖Ωe‖

(�
Ωe

NudΩ

)T
f (B22)

The quantities in brackets are the moments of order 0 of the displacement
shape functions, computable exploiting (39), (40), (41) and (42). It results:

Fb =
{

0 0 · · · 0 0 fx fy
}T

(B23)

and the only non-zero components of Fb are those related to internal DOFs.
In the general case k > 2, the idea is that of projecting the body forces

vector b onto the space Pk−2 of polynomials of degree up to k − 2:

bh =

nk−2∑
i=1

qib̂
h
i (B24)

where b̂hi is a 2× 1 vector and qi is the i-th component of the vector:

qk−2 =
{

1 ξ η ξ2 ξη η2 . . . ηk−2
}

(B25)

The coefficients of the polynomial expansion are obtained from the condition:

�
Ωe

qjb
hdΩ =

�
Ωe

qjbdΩ (B26)

Replacing (B24) in (B26), one obtains:

nk−2∑
i=1

�
Ωe

qiqjb̂
h
i dΩ =

�
Ωe

qjbdΩ (B27)

Introducing the quantities:

Qij =

�
Ωe

qiqjdΩ (B28)

fj =

�
Ωe

qjbdΩ (B29)

Equation (B26) can be rearranged as:

nk−2∑
i=1

Qijb̂
h
i = fj (B30)
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Assembling all the terms from j = 1 to j = nk−2, one gets the algebraic system:

Qb̂h = f (B31)

from which the vector b̂h containing the parameters of the polynomial expansion
can be derived. The symmetric 2nk−2 × 2nk−2 matrix Q has the following
structure:

Q =



Q11 0 Q12 0 . . . Q1nk−2
0

0 Q11 0 Q12 . . . 0 Q1nk−2

Q12 0 Q22 0 . . . Q2nk−2
0

0 Q12 0 Q22 . . . 0 Q2nk−2

...
...

...
...

. . .
...

...
Q1nk−2

0 Q2nk−2
0 . . . Qnk−2nk−2

0
0 Q1nk−2

0 Q2nk−2
. . . 0 Qnk−2nk−2


(B32)

The 2nk−2 × 1 vectors b̂h and f contain all the 2× 1 contributions:

b̂h =
{

b̂h1 b̂h2 . . . b̂hnk−2

}T
(B33)

f =
{
f1 f2 . . . fnk−2

}T
(B34)

Finally, the element vector of nodal forces equivalent to b can be computed
from:

Fb ≈
�

Ωe

NT
ubhdΩ =

nk−2∑
i=1

(�
Ωe

qiNudΩ

)T
b̂hi (B35)

where the matrices in brackets are the nk−2 moments of the displacement
shape functions Nu, once again computable exploiting (39), (40), (41) and
(42). Due to the fact that the moments of the displacement shape functions on
the element boundary are zero, the only non-zero components of Fb are those
related to moment DOFs.
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