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ABSTRACT The decoupling of infrastructure from services, which has been so far a mainstream paradigm
in the computational and storage domain, is now becoming a paradigm also for mobile networks. Indeed, 5G
must provide a variety of services with very diverse requirements, such as throughput, latency, or reliability,
and decoupling infrastructure from service provisioning allows to deal with such heterogeneity. In this
context, a new business model, involving two different stakeholders, Infrastructure Providers and Service
Providers, has emerged. Besides addressing the technical issues, it is also important to study the economic
feasibility and behavior of such new paradigm and the techno-economic interactions among the different
stakeholders that play different roles in the mobile network market. In this paper, we propose a multi-leader
multi-follower variant of the Stackelberg game to model the considered environment. The proposed model
is then fed with realistic data and used to analyze the system behavior and the impact of the technological
features of the stakeholders on their competitiveness.

INDEX TERMS Multi-stage games, Stackelberg game, 5G, multi-tenancy, network slicing.

I. INTRODUCTION
The decoupling of infrastructure from services, a mainstream
paradigm in the computational and storage domain, is now
being materialized also for mobile networks with the advent
of 5G. Up to date, a typical pre-5G Mobile Network Opera-
tor (MNO) owns and manages by itself the network resources
(infrastructure and spectrum) and provisions services for its
end users. However, over time, there has been a progres-
sive deviation from this typical MNO business model which
can be witnessed through, e.g., the Mobile Virtual Network
Operator (MVNO) business model and infrastructure and/or
spectrum sharing agreements among MNOs [1]–[3]. The
emergence of such new business models, even prior to 5G,
has been mainly driven by the need to cut down on infras-
tructure cost (so as to improve the return on investment) and
to increase resource utilization (e.g., when scarce such as
spectrum).

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonino Orsino .

As for 5G networks, in addition to delivering higher
throughput mobile broadband services, they are also expected
to provide support for the Internet of Things and for
vertical industries: the International Telecommunication
Union Radiocommunication Sector has identified three
usage scenarios for the International Mobile Telecommuni-
cations (IMT) for 2020 and beyond [4], namely enhanced
Mobile BroadBand (eMBB), Ultra-Reliable and LowLatency
Communications (URLLCs) and massive Machine Type
Communications (mMTCs). In these lines, unlike the pre-
vious generations, 5G networks will have to provision het-
erogeneous services with very distinct requirements in terms
of throughput, latency, reliability, connection density, type
of end user devices, etc. As a means to deal with such
heterogeneity and open up the mobile network to verti-
cals, the decoupling of network infrastructure and resources
from service provisioning is considered a design princi-
ple by several entities, initiatives and research projects
involved/contributing in the 5G architecture definition and
standardization [5]–[7] with Network Function Virtualization
and Software Defined Networking being two key technical
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enablers. In this context, a key 5G concept is that of net-
work slicing [6], which allows to create logically separated
networks (slices) over the set of shared physical network
resources where each such slice will be tailored to the service
requirements of a specific tenant (i.e., a business entity which
provides eMBB/URLLC/mMTC services to end users).

Apart from the architectural aspects of 5G, there is a need
to address its economic viability [5] which, by far, has been
studied from the point of view of a single MNO [8]–[10].
However, one of the implications of the 5G architecture is
the emergence of new stakeholders that play different roles
in the mobile network market such as, e.g., infrastructure
providers and mobile service providers, in addition to the
so-called tenants (see, e.g., [6], [10]). The techno-economic
interactions among these new stakeholders (such as resource
demand and pricing, provider selection, etc.) give rise to
new competitive scenarios for the mobile network market
requiring suitable models to be studied, which is the object
of this work.

In this paper, we devise a mathematical model to capture
the technological and economic features of the considered
scenarios and the techno-economic interactions among stake-
holders. We feed the model with realistic technological and
economic parameters describing different network configu-
rations (either 4G or 5G) and end user services (5G usage
scenarios). Then, the developed model and data are used to
deeply analyze the interactions among stakeholders of the
same type and those playing different roles and how their
features, both technological and economic, influence their
behavior and the resulting mobile market setting.

In this work, we consider two types of stakeholders: Infras-
tructure Providers (InPs) and Service Providers (SPs), while
end users are represented implicitly. An InP is an entity which
owns spectrum licenses, deploys and manages the infrastruc-
ture of the mobile network and rents/sells its resources to
SPs, but does not provision services for end users. In turn,
an SP1 is an entity which does not own network resources
but provisions services to end users through leased/acquired
resources. Here the resource sold by InPs (acquired by SPs)
is the cell capacity at base station (BS) level and the problem
we address is the pricing of the cell capacity from the InPs’
perspective and the selection of an InP from which to acquire
cell capacity from the SPs’ perspective.

Specifically, we consider a dense urban area where there
are multiple InPs that ownmobile networks and multiple SPs,
each provisioning a single type of service to a given number
of end users in the area. The SPs provision services for their
own end users in the cell area by acquiring cell capacity
from only one of the InPs (i.e., from the BS of one of the
InPs) while each InP can host multiple SPs. All InPs and
SPs are considered profit-maximizers, i.e., each InP offers
a cell capacity unit price that maximizes its profit from the

1An SP is equivalent to a tenant in the 5G literature terminology. For
instance, in [11], a tenant is either an MVNO, a vertical industry or an Over
The Top provider (OTT). In this paper, we have opted for the term SP since
the focus of our work is not on the 5G architecture.

amount of cell capacity sold to SPs that select the InP, while
each SP selects an InP from which to acquire cell capacity
so as to maximize its profit (revenue from own users given
the acquired cell capacity minus cost of the latter). As the
cell capacity of each InP is fixed and finite, SPs compete
among them in selecting an InP from which to acquire cell
capacity, whereas InPs compete among them over the cell
capacity unit prices to be selected by SPs. In this setting,
we formulate the problem of cell capacity pricing from the
InP perspective and InP selection from the SP perspective as a
multi-leadermulti-follower extension of the basic (one-leader
one-follower) Stackelberg game [12]; we will refer to the
proposed model as the multi-leader-follower game (MLFG)
as in [13].

We have applied the proposed MLFG to several realistic
scenarios in which services provisioned by SPs are inspired
from usage scenarios for IMT for 2020 and beyond [4] and
characterized by their respective performance requirements
(such as user target rates, connection densities, etc.) as in [14],
while we vary the InPs’ network technology (whether 4G
or 5G) and their spectrum bandwidth availability. To devise
meaningful pricing strategies for the InPs across the different
scenarios, we propose an InP cost model that accounts for
the InP’s network technology type and available spectrum
bandwidth based on [10], whereas the SP revenue function
is based on a noted function in literature [15] that allows to
represent how the end user responds to the fee offered by its
SP based on the utility achieved from resources assigned by
the latter [15]. The proposed MLFG has been instrumental to
derive insights concerning these scenarios. Indeed, for all the
considered instances, it is possible to compute either an equi-
librium or an approximation of the equilibrium. Results show
that the technological features of the InPs have a significant
impact on their competitiveness.

The layout of this paper is the following. In Section II,
we identify and review works in the mobile networks lit-
erature which are related to ours in terms of methodology
and/or in application. The proposed framework and the math-
ematical models behind it are presented in Section III. Then,
in Section IVwe explain how the framework has been applied
in the context of migrating from 4G to 5G through the
characterization of InPs and services provisioned by the SPs
and how we set up several scenarios/problem instances for
our computational tests. Numerical results concerning these
problem instances are presented and analyzed in Section V,
whereas conclusions are drawn in Section VI.

II. RELATED WORK
Stackelberg games are widely used in the literature to
model the interaction among multiple self-interested enti-
ties in the field of resource management problems in 5G
networks [16]; specific application arena include Heteroge-
nous Networks (HetNets) [17], [18], edge caching [19],
edge computing [20], device-to-device communications [21],
cognitive networks [22], Cloud Radio Access Networks
(C-RANs) [23].
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Whilst the aforementioned work is similar to ours
only in terms of the adopted methodology, the work
in [24]–[32] share with ours the same context and applica-
tion arena targeting the techno-economic interactions aris-
ing among multiple stakeholders of mobile radio networks.
Among [24]–[32], [25]–[29] also resort to variants of the
Stackelberg game.

Reference [24] resorts to congestion games to address
the problem of partitioning the RAN resources of a Telco
Operator (TO) (analogous to an InP in our framework) among
multiple MVNOs (analogous to SPs in our framework), each
with a fixed number of users. In details, the TO’s RAN con-
sists of a set of heterogeneous Remote Radio Heads (RRHs)
which the TO leases to MVNOs at a fixed RRH-specific
price. Then, each MVNO decides how to distribute its own
set of users over these RRHs so as to minimize its total cost.
Our work differs in the following aspects: (i) in [24] MVNOs
compete over a set of RRHs whereas our framework applies
to the single BS and (ii) the congestion game proposed by [24]
models competition only among MVNOs while the TO is
not a player of the game; differently, our MLFG allows to
model all involved InPs and SPs as players of the game and
in particular thus capturing competition also among multiple
InPs (while a single TO is considered in [24]).

In [25], an InP owns a virtualized RAN which hosts multi-
ple MVNOs (analogous to SPs in our framework) each with
a fixed number of users. The InP faces the problem of pricing
and allocating its available BS resources among the users of
all MVNOs so as to maximize its own profit, while satisfying
Service Level Agreements signed with the MVNOs which
are given in terms of a minimum number of subcarriers per
MVNO and a maximum total rate over all MVNO users. The
problem is formulated as a one-leader multi-follower Stack-
elberg game (OLMFSG) with the InP acting as the leader
and MVNOs acting as followers. A single InP is considered,
whereas we model competition among multiple InPs.

In [26], multiple service providers with distinct wireless
access technologies (either a Wireless Metropolitan Area
Network (WMAN), a cellular network or a Wireless Local
Area Network (WLAN)) and fixed amount of available band-
width compete among them over prices per unit of bandwidth
to be selected by users in a common coverage area. The user
sensitivity to changes in price and the user churn among
service providers are incorporated in the service providers’
payoff functions. The authors propose multiple formulations
for the problem, among which a one-leader two-follower
Stackelberg game, assuming one of the service providers
announces its price before the others. The most significa-
tive differences with our approach are: (i) in our framework
the selection of an InP by SPs is modeled explicitly as a
game (subgame of the proposed MLFG), whereas in [26] the
selection of a service provider by users is modeled implicitly
(through the service provider payoff function) and (ii) in
the MLFG of our framework, InPs announce their prices
simultaneously, whereas in the Stackelberg game proposed
in [26] one of the service providers moves first.

Rose et al. ( [28]) address the problem of service selection
from the end user perspective and service pricing from a
Network Service Provider (NSP) perspective. They consider
multiple NSPs, each providing multiple types of services,
and multiple users with different Quality of Service (QoS)
evaluation. The NSPs price their offered services so as to
maximize their profit, while each user selects a unique service
from a single NSP so as to maximize its payoff given by the
difference between its evaluation of the QoS of the selected
service and its price. The problem is formulated as a MLFG
with NSPs acting as leaders (by announcing the prices of
their offered services) and users as followers (each select-
ing a service and an NSP in response to the service prices
offered by NSPs). A similar modeling approach is used in
[27] which though focuses on the emerging machine type
communications (MTC) and introduces in the framework
MTC service providers. Differently than our approach, [28]
and [27] assume a continuum of end users (whichmakes each
subgame of stage 2 of the MLFG therein a non-atomic game)
while the set of SPs in our work is assumed discrete and finite.

Along the same lines, [29] proposes a similarMLFGwhich
however also accounts for a Small Cell Provider (SCP) (anal-
ogous to an InP in our framework), which leases small cell
BSs to the NSPs. The interaction among the SCP and the
NSPs is modeled through an additional OLMFSG in which
the SCP acts as the leader by announcing the spectrum price
per small cell BS andNSPs are followers deciding the amount
of spectrum to purchase to maximize their individual payoffs.
The work in [29] is substantially different from ours: (i) a
single SCP is considered in [29], while we have multiple
InPs; (ii) since the SCP available spectrum is not bounded
in [29], given the spectrum price offered by the SCP, each
NSP can derive its optimal amount of spectrum indepen-
dently, i.e., there is no real competition among the NSPs at
stage 2 of the OLMFSG; (iii) while in [29] end users select
a service from one of the NSPs, in our framework the user –
SP association is given.2

In [32], the available Physical Resource Blocks (PRBs)
of a BS in a C-RAN have to be split among an eMBB,
a mMTC slice and an URLLC slice, each requesting a mini-
mum amount. The authors model this problem as bankruptcy
game and apply the Shapley value to determine the number of
PRBs assigned to each slice. The problem bears similarities
with a subproblem of our framework, namely the InP capacity
assignment problem (see Section III-C) in which each InP has
a fixed amount of capacity per BS cell and SPs that choose
to be served by a given InP (each providing either eMBB
or mMTC services to a specific market segment of users)
request a minimum and maximum of capacity per cell from
the latter. While [32] opts for a cooperative game approach

2In our work, the interaction between an SP and its set of users is modeled
through a noted function in literature [15] which represents the user response
to the fee offered by the SP based on the utility perceived by the user from
the amount of resources allocated by the SP. Hence, the optimal user fee is
affected by the equilibrium of the MLFG or vice versa the user response to
the fee offered by the SP affects its strategy in the MLFG.
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for the resource assignment problem, in our framework we
propose a two-step lexicographic optimization problem as the
assignment is handled in a centralized fashion by the InP,
which aims to maximize the total amount of assigned (sold)
cell capacity.

Even though our proposed framework is per se generic
and bears conceptual and formulation similarities with [28]
and [29], one of the core contributions of this work is the use
of the proposed framework as a means to investigate realistic
scenarios in terms of network technologies and related costs,
mobile services and related performance requirements, and
user tariffing in the context of migrating from 4G to 5G.
To this extent, inspired from the usage scenarios for IMT
for 2020 and beyond [4], we build up a methodology to
evaluate the techno-economic impact of different dimension-
ing and architectural choices for 5G network. Along these
lines, [8]–[10] also target a financially sustainable design
and development of 5G networks to meet user requirements
and envisioned demand for connectivity. However, [8]–[10]
focus on the dimensioning of a single 5G network, while
we address competition among multiple InPs with individual
4G/5G mobile networks.

III. FRAMEWORK
To present our framework, we start by describing the problem
it addresses in Section III-A. Next, we dwell on the inter-
actions between an SP and its end users in Section III-B
and between an InP and its hosted SPs in III-C. Specifically,
in Section III-B we explain the utility function representing
the QoS requirements of the service provisioned by each SP
and define the SP revenue function based on a noted function
in literature which relates the end user fee to its perceived
utility, whereas in III-C we propose an optimization problem
to model how an InP splits its available capacity among its
hosted SPs given their requirements. Then, in Section III-D
we formulate the addressed problem as a MLFG.

A. PROBLEM STATEMENT
We consider a mobile ecosystem such that the network infras-
tructure and its resources are decoupled from service provi-
sioning for end users, which gives rise to two types of actors:
InPs and SPs. An InP is the entity that deploys and maintains
the cellular network whose resources it then sells/rents to
one or multiple SPs. In turn, an SP provisions services for
end users through resources acquired/rented from one of the
InPs. From a technical point of view, an InP can support
multi-tenancy, i.e., it can host multiple SPs over its network
infrastructure and resources by relying on the network slicing
paradigm [6]. We assume that InPs do not have end users of
their own, whereas SPs do not own any network infrastruc-
ture.

We consider a geographical area with multiple InPs with
individual RANs, and multiple SPs that provision mobile
services to end users through RAN resources acquired from
InPs. The RAN of each InP consists of a set of BSs and their
respective back-hauling links to connect the former with the

core network. The specific architecture of the BS is abstracted
away to keep the modeling framework as general as
possible.3

The InPs’ BSs are assumed to be co-located and their
respective cells to overlap, hence we focus on the area of a
single BS cell provisioned by all InPs simultaneously through
their individual BSs. In turn, this means that an SP can select
any of the InPs to serve its user demand within the cell area.
The BS cell of a given InP is characterized by an average
capacity which depends on the InP’s network technology
and configuration and its available spectrum resources. The
network resources requested by an SP from an InP for a given
cell are expressed in terms of average cell capacity.

Each InP offers its available cell capacity at a certain unit
price lower bounded by its unit cost. Based on the InPs’
available cell capacities and their offered unit prices, each SP
selects an InP from which to acquire cell capacity so as to
maximize its profit (difference between revenues from own
users and cost incurred from the selected InP, both depending
on the amount of acquired cell capacity). The objective of
each InP is to maximize the profit from the total amount
of cell capacity sold to SPs selecting it. It follows that SPs
compete among them for the InPs’ cell capacities (as these
are finite), while InPs compete among them in cell capacity
unit prices to be selected by SPs. Given that InPs and SPs are
all self-interested payoff-maximizers, actions taken by any of
the actors affect all the others (e.g., by lowering its offered
unit price, an InP may be able to attract more SPs or sell
more cell capacity to SPs that select it) and we assume that
InPs announce their cell capacity unit prices simultaneously
and SPs simultaneously select their serving InPs based on
these announced prices, then we resort to hierarchical games
tomodel the problem. Specifically, we formulate this problem
as a multi-leader-follower game which is an extension of
the basic (one-leader one-follower) Stackelberg game. In the
proposed model, InPs act as leaders and SPs act as followers.
The strategy of each leader is the price per unit of cell capacity
which maximizes its profit from the total amount of sold
capacity, whereas the strategy of each follower is the choice
of an InP which maximizes its profit.

B. SP SERVICE CHARACTERIZATION AND REVENUE
FUNCTION
Let V denote the set of SPs. Each SP v is assumed to provision
a single type of service and all end users of v, i.e., users
subscribing to the service provisioned by v, are assumed
identical. The QoS requirements of the service provisioned
by v are given in terms of a minimum and a target user rate
(both equal for all users of v). Then, the level of satisfaction
of a user of v depends on the rate perceived by the user w.r.t.
these minimum and target rates: we represent it by the utility
function described in Section III-B.1. In turn, we adopt the

3The proposed model remains valid under different realization of the
5G BSs (e.g., a single Active Antenna Unit, a Radio Unit coupled with a
Distributed Unit, etc.).
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acceptance probability function proposed in [15] to model
the user response to a fee offered by its SP depending on
its achieved utility, as described in Section III-B.2. Based on
these two functions, in Section III-B.3 we define the optimal
SP revenue in terms of the amount of capacity acquired from
its selected InP.

1) USER UTILITY FUNCTION
Let xv denote the amount of cell capacity acquired by SP v
from its selected InP. Notice that the cell capacity of an InP
is intended as its total cell rate (i.e., the product between
its spectral efficiency and bandwidth ) hence xv can be a
portion of/all the cell rate of the InP selected by v. Let Nv
denote the number of users of v and ηv the activity factor
of each user of v. We assume that SP v splits xv uniformly
among its identical Nv users. Let Ñv denote the number of
simultaneously active users of v which we determine4 as
Ñv = max{1, ηvNv}, then each user of v perceives a rate equal
to xv/Ñv. The level of satisfaction of a user of v from xv/Ñv
is represented by a variant of the normalized sigmoid utility
function [15], defined as

uv(xv) =


0, if 0 ≤ xv ≤ ÑvX v,(

xv/Ñv−X v
Xv−X v

)ξv
1+

(
xv/Ñv−X v
Xv−X v

)ξv , if xv > ÑvX v,
(1)

where X v denotes the minimum user rate characterizing the
service provisioned by v, Xv denotes the user rate which pro-
vides a utility value equal to 0.5, i.e., uv(ÑvXv) = 0.5, while
X v represents the target user rate of the service provisioned
by v, that is the rate value that would make a user of v fully
satisfied in practice,5 i.e., uv(ÑvX v) = U , where 0 < U < 1
and U ≈ 1. It follows that

Xv = Xv +
(
X v − X v

) (1− U
U

)1/ξv
,

where ξv denotes the utility elasticity to xv (the higher the
value of ξv, the more step-like the shape of the utility func-
tion).

2) ACCEPTANCE PROBABILITY FUNCTION
Let pv denote the fee offered by SP v to each of its users and let
av(uv(xv), pv) denote the user acceptance probability function
proposed in [15] and defined as

av(uv(xv), pv) = 1− e−Avuv(xv)
µvp−εvv . (2)

av(uv(xv), pv) relates uv(xv), i.e., the level of utility achieved
by a user of v when SP v acquires xv units of capacity (see
Equation (1)), and pv, where µv and εv denote the user sensi-
tivity to changes in utility and to changes in the offered fee,
respectively, whereas Av is a normalizing constant. Assume

4The max operator in Ñv = max{1, ηvNv} makes sure that when ηvNv <
1, the rate perceived by a user of v, i.e., xv/Ñv, does not exceed the total
available capacity/rate xv of SP v.

5The utility function uv(xv) is such that limxv→∞ uv(xv) = 1.

users of SP v, characterized by µv and εv, achieve the max-
imum level of utility uv and are offered the fee pv. Let qv
denote the probability with which these users reject6 pv, i.e.,

qv = 1− av(uv, pv) = e−Avu
µv
v p−εvv ,

hence the normalizing constant Av = −u
−µv
v pεvv log

(
qv
)
and,

as a result, av(uv(xv), pv) can be rewritten as

av(uv(xv), pv) = 1− q
(uv/uv)µv(pv/pv)

−εv

v . (3)

3) SP REVENUE FUNCTION
Being av(uv(xv), pv) the probability that a user of SP v accepts
the offered fee pv when it achieves the level of utility uv(xv),
then av(uv(xv), pv)pv represents the fee accepted by the user
or, in other words, the expected revenue of v from the single
user when v acquires xv units of capacity. Then, as the number
of users of SP v is equal to Nv, the total revenue of SP v from
xv units of capacity, when users are offered the fee pv, can be
determined as

rv(xv, pv) = Nvav(uv(xv), pv)pv. (4)

Let p∗v (uv(xv)) denote the value of pv which maxi-
mizes rv(xv, pv) for a given xv and let r∗v (xv) be the
total optimal revenue of SP v for xv, i.e. r∗v (xv) =

Nvav(uv(xv), p∗v (uv(xv)))p
∗
v (uv(xv)).

If xv ≤ ÑvX v, then rv(xv, pv) = 0 for any pv > 0 as
uv(xv) = 0 (see Equation 1) and av(0, pv) = 0 for any
pv > 07 if 0 < Av < ∞, 0 < µv < ∞ and 0 < εv < ∞

(see Equation 2 and Appendix A for the assumptions on Av,
µv and εv). This means that p∗v (uv(xv)) is indeterminate for
xv ≤ ÑvX v, but r

∗
v (xv) = 0.

Instead, for xv > ÑvX v, which implies uv(xv) > 0 (see
Equation 1), we show in Appendix A that, when 0 < Av <
∞, 0 < uv(xv) < ∞, 0 < µv < ∞ and 1 < εv < ∞,
we have

p∗v (uv(xv)) = pv

 log(qv)

W−1
(
−

1
εv
e−

1
εv

)
+

1
εv


1
εv [

uv(xv)
uv

]µv
εv
,

(5)

where W−1 denotes the lower branch of the Lambert W
function for the real numbers domain. It follows that for
xv > ÑvX v, 0 < Av < ∞, 0 < µv < ∞ and 0 < εv < ∞,
we have

av(uv(xv), p∗v (uv(xv))) = 1− e
W−1

(
−

1
εv
e−

1
εv

)
+

1
εv
, (6)

6The reference rejection probability qv can be determined by polling a
large set of users of SP v with known εv and µv on whether they accept the
fee pv when they achieve the maximum level of utility uv. Then, qv is set
equal to the fraction of users which reject pv [15], [33].

7Notice that even for 0 < Av < ∞, 0 < µv < ∞ and 0 < εv < ∞,
av(0, 0) is indeterminate (see Equation 2). However, in practice, pv = 0
means that SP v obtains zero revenue hence we are interested in pv > 0.
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that is, the acceptance probability at p∗v (uv(xv)) is a func-
tion of only εv and independent of uv(xv). Let a∗v =

av(uv(xv), p∗v (uv(xv))) = 1 − e
W−1

(
−

1
εv
e−

1
εv

)
+

1
εv and av =

1 − qv. Hence, for 0 < Av < ∞, 0 < µv < ∞ and
1 < εv <∞, we have

r∗v (xv) =



0, if 0 ≤ xv ≤ ÑvX v,

Nva∗vpv

(
log(1− av)
log(1− a∗v )

) 1
εv

(
uv(xv)
uv

)µv
εv
, if xv > ÑvX v.

(7)

C. INP CAPACITY ASSIGNMENT PROBLEM
In the proposedMLFG, the strategy of each SP consists solely
in the choice of InP fromwhich to acquire capacity. However,
the amount of cell capacity acquired by an SP affects both
its revenue (as explained in Section III-B) and its total cost
(product of InP unit price with the amount of cell capacity
acquired by the SP), hence its payoff (difference between
the two). In these lines, given that SPs are rational, none of
them can accept an amount of cell capacity which provides
a negative payoff. We therefore assume that, given the cell
capacity unit price offered by an InP, each SP selecting the
InP communicates a minimum and a maximum amount of
cell capacity that the SP finds suitable, i.e., the minimum
amount of cell capacity that guarantees a non-negative pay-
off and the payoff-maximizing amount. Based on such cell
capacity ranges, the InP determines which of the SPs that
select it to serve and how to split its available cell capac-
ity among them so as to maximize its own profit (payoff)
while satisfying their cell capacity ranges. We refer to this
procedure as the capacity assignment problem and formu-
late it as an optimization problem detailed in the following
paragraphs.

First, we explain how an SP determines its suitable cell
capacity range for a given cell capacity unit price. Con-
sider an SP v and a cell capacity unit price P > 0 and
let:

X v(P) =


0, if r∗v (xv)− Pxv ≤ 0, ∀ xv ≥ ÑvX v,

argmax
xv≥ÑvX v

(
r∗v (xv)− Pxv

)
,

if ∃ xv > ÑvX v | r
∗
v (xv)− Pxv > 0,

(8)

X v(P) =


0 if X v(P) = 0,
xv ∈ [ÑvX v,X v(P)] | r

∗
v (xv)− Pxv = 0,

if X v(P) > 0,

(9)

where r∗v (xv)− Pxv is the profit of SP v when it purchases xv
units of cell capacity at a unit price P. Notice that we consider
X v > 0 for each v ∈ V . For X v > 0, r∗v (xv) = 0 holds
for any xv ∈ (0, ÑvX v] (see Equations (1) and (7)), which
implies r∗v (x) − Px < 0 for any x ∈ (0, ÑvX v] as P > 0

(being the cell capacity unit price). Therefore, we look for
the payoff-maximizing cell capacity of v, denoted as X v(P),
for x ≥ ÑvX v (see Equation 8). If r∗v (xv) − Pxv ≤ 0 for
any xv ≥ ÑvX v, then we impose X v(P) = 0 otherwise,
if it exists xv > ÑvX v such that r∗v (xv) − Pxv > 0, then
X v(P) > ÑvX v > 0.
In turn, X v(P) (see Equation (9)) denotes the minimum

amount of cell capacity that provides v with a non-negative
payoff. If r∗v (xv) − Pxv ≤ 0 for any xv ≥ ÑvX v, for which
we imposed X v(P) = 0, then we set X v(P) = 0 as well.
Otherwise, if X v(P) > ÑvX v > 0, then X v(P) is set equal to
the unique8 root of equation r∗v (xv)− Pxv = 0 in the interval
[ÑvX v,X v(P)]. Hence, one has 0 < ÑvX v < X v(P) < X v(P).
In summary, for the considered SP payoff function, for X v >

0 and for any unit price P > 0, either X v(P) = X v(P) = 0 or
X v(P) > X v(P) > 0.
Let K denote the set of InPs and Ck the cell capacity

of an InP k . Ck is assumed to be a fixed positive quantity.
Now consider an InP k which offers a cell capacity unit
price Pk > 0. Suppose that k is selected by the set of
SPs Vk ⊆ V . Recall that X v(Pk ) and X v(Pk ) denote the
the minimum and maximum amount of capacity requested
by SP v at the cell capacity unit price Pk , respectively. Let
V̂k = {v ∈ Vk | X v(Pk ) > X v(Pk ) > 0}. The InP
assigns a null capacity to any SP v ∈ Vk \ V̂k as X v(Pk ) =
X v(Pk ) = 0. In turn, for V̂k 6= ∅, the capacity assignment
problem is formalized as follows: as Ck is fixed and finite,
given the cell capacity ranges of all SPs in Vk , InP k has to
decide:

(1) which SPs in Vk to serve, represented by the binary
variables zvk , for any v ∈ Vk ,

(2) how much capacity to allocate to each SP v ∈ Vk ,
represented by non-negative variables xvk ,

so that its profit, Pk
(∑

v∈Vk xvk
)
, is maximized while the cell

capacity ranges of served SPs are satisfied (i.e., if zvk = 1,
X v(Pk ) ≤ xvk ≤ X v(Pk ), otherwise xvk = 0) and its
available capacity is not exceeded, i.e.,

∑
v∈Vk xvk ≤ Ck .

As Pk is fixed in the context of the capacity assignment
problem, then the objective function of InP k reduces to∑

v∈Vk xvk .
We opted for a two-step lexicographic approach to formu-

late the capacity assignment problem. In the first step, InP k
solves problem (10)–(14) to determine the maximum amount
of cell capacity it can sell, i.e., C ′k =

∑
v∈Vk x

′
vk where

x ′vk denotes the value of variable xvk in the optimal solution
of (10)–(14).

max
∑
v∈Vk

xvk (10)

xvk ≥ X v(Pk )zvk , ∀v ∈ Vk , (11)

xvk ≤ X v(Pk )zvk , ∀v ∈ Vk , (12)

8This is always the case for the considered SP payoff function for each v ∈
V and for each considered instance. A few examples of the payoff function
are provided in Appendix B.
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∑
v∈Vk

xvk ≤ Ck , (13)

xvk ≥ 0, zvk ∈ {0, 1}, ∀v ∈ Vk . (14)

However, there may be multiple equivalent optimal solu-
tions to problem (10)–(14) such that

∑
v∈Vk x

′
vk = C ′k ; these

solutions are equivalent from the InP perspective but not
necessarily from the SPs’ perspective (which may obtain a
different amount of capacity in each of these solutions and
hence a possibly different payoff value). When the first step
of the capacity assignment problem, i.e., problem (10)–(14),
does not have a unique solution, then the InP solves the sec-
ond step of the capacity assignment problem, represented by
problem (15)–(20):

min ζk −
∑
v∈Vk

zvk (15)

xvk ≥ X v(Pk )zvk , ∀v ∈ Vk , (16)

xvk ≤ X v(Pk )zvk , ∀v ∈ Vk , (17)∑
v∈Vk

xvk = C ′k , (18)

ζk ≥ zvk − xvk/X v(Pk ), ∀v ∈ Vk | X v(Pk ) > 0,

(19)

xvk ≥ 0, zvk ∈ {0, 1}, ∀v ∈ Vk , ζk ≥ 0. (20)

The aim of the second step is to select among the multiple
optimal solutions of the first step, one which satisfies a fair-
ness criterion from the SPs’ perspective while using up C ′k
entirely (see Equation (18)) as C ′k is the optimal amount of
the total assigned cell capacity for InP k determined in the
first step. The fairness criterion consists of minimizing the
highest among all SPs in Vk of the relative difference between
the maximum amount of capacity requested by an SP (i.e.,
its payoff-maximizing capacity) and the amount assigned to
the SP by the InP. In other words, the InP’s capacity assign-
ment accounts for the most ‘‘unsatisfied’’ SP among all.
The highest relative difference is represented by the variable
0 ≤ ζk ≤ 1 and modeled through constraints (19). Consider
an SP v with X v(Pk ) = X v(Pk ) = 0 (which means that
it is unprofitable for v to purchase capacity from InP k at
a unit price Pk ): the corresponding optimal value of xvk is
equal to zero due to constraints (16) and (17), and since v
is ‘‘fully-satisfied’’, we exclude it from the calculation of ζk
(see constraints (19)). In turn, for an SP v with X v(Pk ) >
X v(Pk ) > 0, if xvk = 0 (which implies zvk = 0 due
to constraints (16)), the right hand side of constraints (19)
equals 0, i.e., an SP which is willing to purchase capacity
from InP k at a unit price Pk but it is not assigned any capacity
is also considered as fully-satisfied to avoid ζk being stuck to
its upper bound value equal to 1 regardless of the assignment
of the other SPs. Therefore, only SPs v ∈ Vk such that
X v(Pk ) > X v(Pk ) > 0 and xvk > 0 (and hence zvk = 1
due to constraints (17)) influence the value of ζk . The second
term in the objective function, i.e.,

∑
v∈Vk zvk , is introduced to

deal with equivalent optimal solutions, although uniqueness
cannot be guaranteed. Since ζk ≤ 1, an increase by one
of the number of served SPs outweighs the increase of ζk
from splitting the capacity over a larger set of SPs. Therefore,
by minimizing ζk −

∑
v∈Vk zvk , we select optimal solutions

which are characterized by the largest possible number of
served SPs for the fixed capacity C ′k , while the capacity
assignment follows the min-max fairness criterion. Notice
that for an SP v with X v(Pk ) = X v(Pk ) = 0, although in
the optimal solution xvk = 0, zvk is set to one by the objective
function. However, this does not affect the optimal solution as
such v does not use up any capacity given that its respective
xvk is equal to zero in optimal solution.

D. MULTI-LEADER-FOLLOWER GAME
As mentioned, all InPs’ BSs are co-located hence InPs com-
pete among them to be selected by SPs on a per BS cell basis,
which means that the proposed framework applies to each
BS cell independently. We assume that each InP k announces
its cell capacity unit price Pk to the SPs independently from
all other InPs but simultaneously to them. In turn, once the
InP unit price profile, P = {Pk}k∈K, is known by the SPs,
we further assume that also each SP v acts independently but
simultaneously to all other SPs in deciding from which InP
to acquire capacity in order to serve its users’ demand in the
area of the considered cell. All involved actors are assumed
rational and self-interested, i.e., each of them aims to maxi-
mize its individual payoff. Moreover, actions of any actor can
affect all other actors, e.g., the InP choice of an SP can affect
not only the InPs’ payoffs but also the SPs’ payoffs given that
the cell capacity of each InP is finite and has to be split among
SPs selecting the InP. With this setting in mind, we propose a
Multi-Leader-Follower game to model the interaction among
InPs and SPs. In the proposed model, InPs act as leaders
(i.e., as the subset of players that move first) by announcing
their unit prices to the SPs, whereas SPs act as followers
as they choose an InP from which to acquire capacity only
after the InPs’ unit prices have been announced. Formally,
this game is a two stage game with observable actions [34].
The game is also of imperfect information since within
a stage players move simultaneously, i.e., at stage 1 InPs
announce their unit prices simultaneously and at stage 2, for
a given InP unit price profile, SPs make their InP choices
simultaneously.

As previously argued, since the cell capacity of each InP
is fixed and finite and each InP splits its available capacity
among SPs that select it, the InP choice of an SP can affect the
choices of all other SPs. Hence, for a given InP unit price pro-
file (P = {Pk}k∈K) the independent but simultaneous choice
of an InP by each SP can be represented by a simultaneous
noncooperative game in pure strategies described by the tuple
GV (P) = {V, {Yv}v∈V , {gv}v∈V }, where the set of players
coincides with the set V of SPs, Yv denotes the strategy set of
player v representing its choice of an InP, whereas gv denotes
the payoff of v which is defined for each SP strategy profile
and depends on the InP unit price profile (i.e., gv = gv(P, y)).
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Further, each InP k can anticipate9 the outcome of GV (P) for
any P, i.e., k can anticipate the subset of SPs that will select
k at the Nash Equilibrium(a) of GV (P) and consequently
determine its payoff for P. Therefore, InPs compete among
them in cell capacity unit prices to be selected by the SPs: this
can be represented by another simultaneous noncooperative
game described by the tuple GK

= {K, {Pk}k∈K, {Gk}k∈K},
where the set of players coincides with the set K of InPs,
Pk denotes the strategy set of player k representing a unit
price range, whereas Gk denotes the payoff of k which is
defined for each InP strategy profile (i.e., Gk : P → R
where P =

∏
k∈K Pk ). We now detail GV (P) and GK which

hereon we will refer to as the SPs’ game and InPs’ game,
respectively.

1) SPS’ GAME
As detailed in Section III-B, each SP provides a single type
of mobile service to a fixed number of end users. As none
of SPs owns any network infrastructure/resources, then each
SP, to provision the mobile service for its users in the area
of a cell, acquires an aggregate amount of cell capacity from
one of the InPs which it splits among all of its users in the
cell area; the users are then charged by the SP based on the
utility achieved from the amount of allocated capacity which
results in a total amount of revenue per cell for the SP (see
Section III-B.3). Therefore, the goal of the SP is to select an
InP from which to acquire cell capacity in order to maximize
its profit (payoff) given by the difference between the cell
revenues incurred from the amount of cell capacity assigned
by the selected InP and the cost of the latter.

For each InP unit price profile P ∈ P , when selecting the
InP from which to acquire capacity, SPs contend among them
for the InPs’ fixed and finite capacities; this gives rise to the
SPs’ game described by GV (P). Formally, the strategy of an
SP v is modeled by a set of binary variables yv = (yvk )k∈K
such that yvk ∈ {0, 1} for any k ∈ K and

∑
k∈K yvk = 1.

Let y = {yv}v∈V denote a strategy profile of GV (P). Then, let
xvk (Pk , y) denote the amount of cell capacity obtained by SP
v from InP k at unit price Pk given the SP strategy profile y: if
v does not select k in y (i.e., yvk = 0) then clearly xvk (Pk , y) =
0, otherwise if v selects k in y (i.e., yvk = 1) then xvk (Pk , y)
is equal to the value of variable xvk in the optimal solution of
problem (15)–(20) when the capacity assignment problem is
solved by InP k for the set Vk = {v ∈ V : yvk = 1}, given

9The equilibrium(a) of the MLFG are determined by means of the sub-
game perfect equilibrium solution concept which is an extension of the back-
ward induction solution concept for the original one-leader, one-follower
Stackelberg game. The idea behind backward induction is that the leader
assumes that the follower is rational and it anticipates the follower’s best
response to each action of its own. Therefore, the leader’s strategy consists
of selecting the action that maximizes its own payoff given the best response
of the follower. In case of the MLFG we propose here, leaders anticipate the
outcome of the followers’ game, i.e., its Nash equilibrium(a), for any action
profile of their own, which is, in turn, the main idea behind the sub-game
perfect equilibrium solution concept. Details concerning the calculation of
the equilibrium(a) of the MLFG for the considered problem instances are
presented in Section IV-E.

the cell capacity ranges [X v(Pk ),X v(Pk )] for its offered unit
price Pk (see Section III-C)).

The payoff of v from y is defined as

gv(P, y) =
∑
k∈K

(
r∗v (xvk (Pk , y))− Pkxvk (Pk , y)

)
, (21)

where r∗v (xvk (Pk , y)) is the total optimal revenue of SP v
(see Equation (7) and Section III-B.3) for the amount of
cell capacity xvk (Pk , y), whereas Pkxvk (Pk , y) is the cost
incurred by SP v from purchasing the amount of cell capacity
xvk (Pk , y) at unit price Pk , therefore gv(P, y) is given in terms
of the total profit10 of v.

By definition, a strategy profile y̆ = [y̆v, y̆−v], where y−v
denotes the strategies of all SPs but v, is a Nash Equilib-
rium (NE) of the SPs’ game GV (P) if for each SP v ∈ V ,
y̆v = argmaxyv∈Yv

gv(P, [yv, y̆−v]), i.e., if no SP has an
incentive to unilaterally deviate from y̆. Since there is one
SPs’ game GV (P) for each InP unit price profile P ∈ P ,
hereon wewill use the notation y̆(P) to denote the NE strategy
profile(s) of GV (P).

2) INPS’ GAME
Each InP unit price profile P ∈ P may result in a distinct NE
of the SPs’ game, i.e., in a different partition of the set of SPs
over the set of InPs and consequently in different profits for
the InPs. To put it differently, InPs compete among them in
cell capacity unit prices to be selected by the SPs, which we
modeled as the game GK

= {K, {Pk}k∈K, {Gk}k∈K}, namely
the InPs’ game. The strategy set of each player k consists of a
unit price range, i.e., Pk = [Pk ,P] where Pk denotes the cell
capacity unit cost for InP k and P denotes the minimum unit
price for which no SP is willing to buy capacity. A strategy of
InP k is then a cell capacity unit price Pk ∈ Pk . We impose
Pk ≥ Pk as we assumed InPs to be rational, i.e., they will not
accept gains lower than their costs and similarly, as all SPs
are also assumed to be rational, they will not purchase cell
capacity at a unit price resulting in a negative payoff; in other
words, any InP k offering Pk ≥ P, would not sell any cell
capacity. The payoff of player k from the strategy (unit price)
profile P = {Pk}k∈K is defined as

Gk (P) = Pk

(∑
v∈V

xvk (Pk , y̆(P))

)
, (22)

that is, as the product between the cell capacity unit price
of InP k and the total amount of capacity sold to SPs that
select k at the NE y̆(P) of the SPs’ game GV (P)). Recall that,
under the assumption that all SPs are rational, each InP can
anticipate y̆(P) of GV (P). If for someP ∈ P , the NE ofGV (P)
is not unique, we assume InPs are pessimistic and each of
them independently considers the worst payoff achieved over

10As for each SP v ∈ V ,
∑

k∈K yvk = 1, then r∗v (xvk (Pk , y)) −
Pkxvk (Pk , y) 6= 0 for at most one InP k ∈ K.
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all the NE of GV (P). In turn, if GV (P) has no NE in pure
strategies, we would look for its NE in mixed strategies.11

A strategy profile P̆ = [P̆k , P̆−k ], where P̆−k denotes
the unit prices offered by all InPs but k , is an NE of the
InPs’ game GK if P̆k = argmaxPk∈Pk

Gk ([Pk , P̆−k ]) for any
k ∈ K, i.e., if no InP has an incentive to unilaterally deviate
from P̆.

IV. SCENARIOS AND COMPUTATIONAL TESTS
In this section, we describe the scenarios that we have
addressed by means of the proposed framework. First,
we explain how we set up different types of InPs based
on their network technology, available spectrum bandwidth,
etc., and propose a cost model largely based on [10] to
derive a sensible cell capacity unit cost for each InP type
(Section IV-A). In Sections IV-B and IV-Cwe dwell on the set
of service types that we have set up based on usage scenarios
for IMT for 2020 and beyond [4] and on the set of SPs
providing such services; in particular, we report how these
services have been characterized based on Key Performance
Indicators (KPI) requirements from [14] and how SPs set up
their user fees based on their service characteristics and user
types. The set of scenarios (problem instances) addressed in
our computational tests is defined in Section IV-D, whereas
implementation details concerning these computational tests
are reported in Section IV-E.

A. InPs
The considered set K of InPs consists of InPs which coex-
ist in a dense urban area where each of them has either
(i) deployed a legacy (pre-5G) heterogeneous network of
macro cells (MCs) and small cells (SCs) prior to the begin-
ning of the studied period and does not upgrade to 5G
in the meantime or (ii) just deployed a 5G heterogeneous
network of MCs and SCs. We refer to (i) and (ii) as InP
types and denote them by L and N , respectively. The type
of each InP k is then represented by a binary parameter
λk , which equals 1 if k is of type L and 0 if k is of
type N .

We assume that in the considered dense urban area both
MCs and SCs of different InPs are colocated. In these lines,
at the beginning of the studied period, a site is present in a
MC candidate site (and can be used by any of the InPs) if at
least one of the InPs has previously deployed a MC BS in
it; instead, a site is present in a SC candidate site and can be
used by a given InP if the InP itself has previously deployed

11If there were no NE in pure strategies for GV (P) for some P ∈ P ,
then we would look for its NE in mixed strategies: formally, we would relax
variables yv, ∀v ∈ V representing the InP choice of SP v (see Section III-
D.1), i.e., an SP’s mixed strategy for the game GV (P) would be represented
by variables γ v = {γvk }k∈K | 0 ≤ γvk ≤ 1, ∀k ∈ K,

∑
k∈K γvk =

1, ∀v ∈ V and the expected payoff of v from γ given P, g̃v(P, γ ) =∑
y∈P P(y|γ )gv(P, y) where P(y|γ ) is the probability of occurrence of the

outcome represented by the pure strategy profile y (i.e., a partitioning of the
set of SPs over the set of InPs) given γ (the InPs’ expected payoff from
the equilibrium mixed strategy profile γ̆ would be calculated in a similar
fashion). However, for all considered instances (see Section V-B), there is at
least one NE in pure strategies for GV (P), ∀P ∈ P .

a SC BS in it. Let πMC,k (πSC,k ) denote the probability that
InP k has not deployed a MC(SC) BS in a MC(SC) candidate
site12 prior the beginning of the studied period. Then, as MC
sites are shared, πMC =

∏
k∈K πMC,k is the probability that

none of the InPs has deployed a MC BS in a MC candidate
site prior the beginning of the studied period, i.e., at the
beginning of the studied period, a MC site has to be built
with probability πMC . In turn, since SC sites are not shared,
at the beginning of the studied period, InP k has to build a
SC site in a SC candidate site with probability πSC,k . For
an InP k of type L, we consider πMC,k = πSC,k = 0,
i.e., we assume k has deployed legacy MCs(SCs) BSs in
all available MC(SC) candidate sites. Instead for an InP k
of type N , πMC,k = πSC,k = 1 imply that InP k has
not previously deployed a legacy network, whereas 0 ≤
πMC,k , πSC,k < 1 means that InP k has previously deployed
a legacy network and can reuse its sites. However, we assume
that, at the beginning of the studied period, type N InPs
will deploy 5G MC and SC BSs in all available MC and SC
candidate sites and that such InPs will compete with the other
InPs solely through their new (5G) network while simply
reusing sites of their previously deployed legacy networks
(if any).

For MC sites we have considered 3-sector antennas as
in [10], [35], [36], whereas for SC sites, omnidirectional (i.e.,
1-sector) ones.

Let Bk denote the total available bandwidth of InP k and
B̂k ∈ [0,Bk ] the amount of bandwidth associated with a
spectrum license whose cost has already been amortized at
the beginning of the studied period, while the remaining
amount of bandwidth Bk − B̂k corresponds to a spectrum
license acquired at the beginning of the studied period. In par-
ticular, B̂k = Bk if InP k is of type L and B̂k = 0 if k
is of type N and has no legacy network. We assume that
for each InP k , Bk is dynamically shared between the MC
and the SC layers and, within the MC/SC layer, the band-
width is also dynamically shared (and not a priori parti-
tioned) between the Downlink (DL) and Uplink (UL) of
each MC sector/SC. Further, as we consider a very dense
deployment of SCs, MCs can be assumed idle, hence Bk
is then dynamically shared between the DL and the UL of
each SC.

We have made the simplifying assumption that the DL and
UL spectral efficiencies are equal. For InP k , let νMC,k (νSC,k )
denote the MC(SC) average spectral efficiency13 of both
DL and UL. We assume InPs compete among them to be
selected by SPs on a per SC basis,14 hence the capacity Ck
characterizing InP k is set equal to its total (DL+UL) average
capacity of a SC, i.e., Ck = νSC,kBk .

12πMC,k (πSC,k ) is intended as an average probability for the considered
area, hence it is the same for all MC(SC) candidate sites.

13We refer to the average spectral efficiency definition in [37] or equiva-
lently to the cell spectral efficiency definition in [38].

14When the average spectral efficiency is considered and the SPs’ users
can be assumed uniformly distributed over the considered geographical area,
the same solution should apply to all SCs in the area.
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The cost per unit of capacity characterizing InP k , i.e., Pk ,
is then set equal to the monthly15 cost per unit of capacity
provided in the area of a SC, i.e.,

Pk =
1

12L Ck

[
(1− λk)

(
ccpxSC,k + (ASC/AMC ) c

cpx
MC,k

)
+copxSC,kL + (ASC/AMC ) c

opx
MC,kL + c

spec
SC,k

]
, (23)

where L denotes the duration of the studied period in years,
ccpxMC,k (c

cpx
SC,k ) and c

opx
MC,k (c

opx
SC,k ) denote the total CAPEX and

total annual OPEX incurred by InP k per MC sector (SC
site),16 AMC (ASC ) denotes the area of a MC sector (SC),
respectively, whereas cspecSC,k denotes the spectrum license cost
normalized to the area of the SC and to the duration of the
studied period. The per sector MC cost terms (ccpxMC,k and
copxMC,k ) are multiplied by ASC/AMC , i.e., the inverse of the
number of SCs per MC sector, to uniformly split the cost of
the MC sector among all SCs that overlay the MC sector. The
(1 − λk ) term sets the CAPEX terms to zero for an InP k of
type L (for which λk = 1) ; however, k will incur the OPEX
of its legacy network. Instead, an InP of type N (for which
λk = 0), incurs both CAPEX and OPEX terms as it deploys
its 5G network at the beginning of the study period.

In details, ccpxMC,k , c
cpx
SC,k , c

opx
MC,k , c

opx
SC,k and cspecSC,k are deter-

mined as follows:

ccpxMC,k =
1
3

[
(1/|K|) πMCcc,sMC + c

c,a
MC,k + c

c,f
MC,k+

+dBk/B0e c
c,rf
MC,k+dmk (Bk/B0)ec

c,bp
MC,0 + c

c,bh
MC,k

]
,

(24)

copxMC,k =
1
3

[
(1/|K|)co,sMC + c

o,r&u
MC + co,vMC+

+4l&m
MC

(
dBk/B0ec

c,rf
MC,k + dmk (Bk/B0)ec

c,bp
MC,0

)
+co,bhMC,k

]
, (25)

ccpxSC,k = πSC,kc
c,s
SC + c

c,a
SC,k + c

c,f
SC,k + c

c,bh
SC,k , (26)

copxSC,k = co,sSC + c
o,r&u
SC + co,vSC +4

l&m
SC cc,aSC,k + c

o,bh
SC,k , (27)

cspecSC,k = cspec0 (Bk − B̂k )AMCL, (28)

where the cost terms that make up ccpxMC,k , c
cpx
SC,k , c

opx
MC,k and

copxSC,k and values given to these cost terms are based on the
cost model and respective values in [10]. Notice that in Equa-
tions (24) and (25), the 1/3 multiplier has been introduced
to derive the cost per MC sector since each MC cost term
therein refers to the total cost of all three sectors of a 3-
sector MC site. As for Equations (26) and (27), the values
obtained from [10] for the cost terms cc,sSC , c

c,f
SC,k , c

o,s
SC , c

o,r&u
SC ,

co,vSC (which will be defined in the consecutive paragraphs) are

15Pk is defined as a monthly cost to match the timescale of the SPs’ user
fee (see Section IV-C). Consequently, the InP price strategy Pk ≥ Pk (see
Section III-D.2, is a monthly price per unit of average SC capacity.) In these
lines, the payoff of each InP k ∈ K, i.e., Gk , (as defined by Equation (22))
and the payoff of each SP v ∈ V , i.e., gv, (as defined by Equation (21)) also
correspond to a one-month period.

16Notice that for SCs, we refer to the site costs since we consider 1-sector
SC sites.

costs per site for 2-sector small cell sites but also for 1-sector
picocell sites whereas the values for cc,aSC,k are costs per sector
for 2-sector small cell sites, hence we deemed all these values
to be reasonable also for the 1-sector SC sites considered here
without introducing any multipliers.

We now define the individual cost terms involved in Equa-
tions (24)–(28) and explain how their values have been
set in order to characterize the InPs considered here. First,
cc,sMC (c

c,s
SC ) denotes the MC(SC) site civil works and acquisi-

tion cost. cc,sMC is weighted by πMC and divided by the number
of InPs since we assume that each MC site will be shared
by all InPs.17 In turn, for each InP k , cc,sSC is weighted by the
probability that k has to build a SC by itself at the beginning of
the studied period (πSC,k ) given that SC sites are not shared.
In these lines, also the MC site rental cost co,sMC is uniformly
split among all InPs (see Equation (25)), whereas the SC site
rental cost co,sSC is not (see Equation (27)).
cc,aMC,k (c

c,a
SC,k ) is the MC(SC) antenna cost for InP k .

cc,fMC,k (c
c,f
SC,k ) are the feeder (cable connecting active antenna

to equipment cabinet), install and test and commission cost
per MC(SC) site for InP k . cc,rfMC,k is a baseline Radio Fre-
quency (RF) front end cost per MC site for a baseline band-
width B0 = 20 MHz for InP k which has to be scaled by
dBk/B0e (i.e., the ratio between the total bandwidth of InP
k and the baseline bandwidth), whereas cc,bpMC,0 is a baseline
baseband processing cost for 3 sectors of aB0 = 20MHz 2×2
MIMO channel (see Section 11.5.1.3 in [10]) that needs to be
scaled by dmk (Bk/B0)e, where mk is a factor18 that allows
to estimate the relative amount of base band processing for
InP k for B0 = 20 MHz units of bandwidth given its antenna
MIMOorder w.r.t. to the baseline (i.e., theB0 = 20MHz 2×2
MIMO channel). Notice that we have introduced the ceiling
operator in the scaling factors of cc,rfMC,k and c

c,bp
MC,0 in order to

be conservative as in [10] there is no explicit expression of
the cost scaling operation for none of the two.
In the following, we explain how starting from the cost

model in [10], we set the values of cc,aMC,k , c
c,f
MC,k , c

c,rf
MC,k , mk ,

cc,aSC,k and c
c,f
SC,k for each InP k depending on its type. For an

InP k of type L (λk = 1), we have considered the following
values for theMC and SC average spectral efficiency for both
DL and UL: νk,MC = 2.2 bps/Hz and νSC,k = 2.6 bps/Hz,
which are the required DL average spectral efficiency val-
ues for IMT-Advanced systems for base urban coverage and
microcellular environments, respectively [38]. Instead, for an
InP k of type N (λk = 0), we have set νMC,k = 6.6 bps/Hz
and νSC,k = 7.8 bps/Hz as ITU-R expects the average spec-
tral efficiency for IMT for 2020 and beyond to be three times
higher than for IMT-Advanced [4], [37]. Since the 5G radio

17Notice that if there is at least one InP k with λk = 1, for which πMC,k =
0, and hence πMC = mink∈K πMC,k = 0, a site is already present in each
MC candidate site hence cc,sMC is not incurred.

18Let Mk denote the product of the number of MIMO streams with the
number of the spatial beams (see Section 11.4.2. in [10]) that correspond
to MC antenna MIMO order for InP k and let M0 denote the value of this
product for the baseline 2×2MIMO channel whereM0 = 2 (see Table 11-9
in [10]). We then set mk =Mk/M0 (see Section 11.5.1.3 in [10]).
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TABLE 1. InP related parameters.

interface has not been defined yet, we cannot anticipate the
spectral efficiency improvements it will bring about, hence
we have assumed that the required spectral efficiency for IMT
for 2020 and beyond will be achieved through high order
MIMO antennas, although there are several factors that affect
the achieved spectral efficiency [39]. We have considered
the antenna configurations (MIMO order + frequency band)
presented in [10] and, when possible, for each InP k we have
selected antenna configurations that would best match its
MC(SC) average spectral efficiency νMC,k (νSC,k ), otherwise
we have associated19 InPs of type L/N with the least/most
complex (and hence expensive) antenna configurations while
some of the cost terms for InPs of typeN have also been over-
estimated so as to account for the factor-of-three difference
between the average spectral efficiency of typeN andL InPs.
For instance, to choose theMC antenna configurations among
those listed in [10], we were mainly driven by their respective
average spectral efficiency values: the different 2× 2 MIMO
operation modes provide average spectral efficiency values
in the range 2.23 – 2.88 bps/Hz whereas 64 × 2 MIMO
ones provide average spectral efficiency values in the range
5.53 – 7.14 bps/Hz which makes the former suitable for an
InP k of type L (νMC,k = 2.2 bps/Hz), whereas the latter
suitable for an InP k of type N (νMC,k = 6.6 bps/Hz).
Instead, for SCs, as the average spectral efficiencies of the
two configurations listed in [10] are not provided, we asso-
ciate InPs of type L/N with the lowest/highest MIMO order
configuration. Let M denote the MIMO order of an antenna.
Specifically, for each InP k of type L, we have assumed that
its MCs operate only at sub-1GHz and low frequency bands
with M = 2 antennas, whereas its SCs operate at low and
medium unpaired bands with M = 2 antennas. Instead, for
each InP of type N , we have assumed that its MCs operate
both at sub-1GHz and low frequencies with M = 4 antennas

19It is worth pointing out that the aforementioned association of InPs to
antenna configurations based on their types has not been used for a network
deployment simulation but it only serves to obtain an estimate of the cost
incurred by an InP for providing a certain average cell capacity based on its
available bandwidth and average spectral efficiency.

and at medium frequencies with M = 64 antennas, whereas
its SCs operate at low andmedium frequency bandswithM =
4 antennas. Values of cc,aMC,k , c

c,f
MC,k , c

c,rf
MC,k , mk , c

c,a
SC,k and

cc,fSC,k depending on the antenna configuration(s) associated
with the type of InP k are then set as reported in Table 2
based on [10]. Some details concerning these values follow.
According to [10], for sub-1GHz and low frequencies multi-
band MC antennas are available, hence an InP k of type
L (λk = 1), deploys only one M = 2 antenna per MC
site. Instead, as MCs of an InP k of type N operate at two
frequency band groups (i.e., sub-1GHz and low frequency
bands and medium frequency bands) that require individual
radio equipment, we set cc,aMC,k equal to the sum of the antenna

cost of the two frequency band groups and cc,fMC,k equal to
the sum of feeder, install and test and commission cost of
the two frequency band groups. In turn, dBk/B0ec

c,rf
MC,k and

dmk (Bk/B0)ec
c,bp
MC,0 for k of type N have been overestimated

by setting cc,rfMC,k and mk equal to the respective values for
M = 64 antennas at medium frequency bands (which are
both higher than the respective values forM = 4 antennas at
sub-1GHz and low frequency bands).
co,r&uMC (co,r&uSC ) denotes the annual rates and utilities for a

MC(SC) site, whereas co,vMC (c
o,v
SC ) the annual vendor service

fee. The annual licensing and maintenance cost per MC(SC)
site are calculated as fraction4l&m

MC (4l&m
SC ) of the active equip-

ment cost which in case of MC sites corresponds to the sum
of the total RF front end cost (d(Bk/B0)c

c,rf
MC,ke) and the total

base band processing cost (dmk (Bk/B0)c
c,bp
MC,0e) whereas in

case of SC sites it corresponds to the antenna cost (cc,aSC,k ) as
the RF front end and the baseband processing unit are part of
the integrated active equipment [10].
In particular, the MC(SC) CAPEX and OPEX backhauling

cost of InP k , cc,bhMC,k (c
c,bh
SC,k ), c

o,bh
MC,k (c

o,bh
SC,k ) depend on the type

of backhauling selected by k . We have considered the set
of backhauling options presented in [10] which we denote
as T . For each option t ∈ T , the capacity (Cbh

t ), CAPEX
(cc,bht ) and annual OPEX (co,bht ) per backhauling link are
reported in Table 3. We assume that each InP has deployed
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TABLE 2. Cost model parameters.

TABLE 3. Capacity and cost of different backhauling options [10].

individual backhauling links for the SCs and MCs, i.e., there
is no aggregation of the traffic of the SCs at the underlying
MC site. Then, each InP k determines its best (minimum cost)
option for the SCs, denoted by t∗SC,k , as

t∗SC,k = argmin
t∈T

{⌈
νSC,k Bk
Cbh
t

⌉
(cc,bht + Lco,bht )

}
, (29)

hence cc,bhSC,k =

⌈(
νSC,kBk

)
/Cbh

t∗SC,k

⌉
cc,bht∗SC,k

and co,bhSC,k =⌈(
νSC,kBk

)
/Cbh

t∗SC,k

⌉
co,bht∗SC,k

. Similarly, the best backhauling
option t∗MC,k for the MC sites (i.e., for all three sectors per
site) for InP k is determined as

t∗MC,k = argmin
t∈T

{⌈
3νMC,k Bk

Cbh
t

⌉
(cc,bht + Lco,bht )

}
, (30)

therefore, cc,bhMC,k =

⌈(
3νMC,kBk

)
/Cbh

t∗MC,k

⌉
cc,bht∗MC,k

and co,bhMC,k =⌈(
3νMC,kBk

)
/Cbh

t∗SC,k

⌉
co,bht∗MC,k

.

Finally, in Equation (28), cspec0 denotes the reference annual
spectrum license cost per unit of bandwidth and unit of geo-
graphical area which, multiplied by the amount of bandwidth
associated with the spectrum license acquired at the begin-
ning of the studied period (Bk − B̂k ), the area of the SC (ASC )
and the studied period (L), provides the spectrum license cost
cspecSC,k per SC for the studied period. cspec0 was derived from the
outcome of the 5G spectrum auction in the UK [40] by first
calculating the average cost per MHz of the total auctioned
spectrum and then dividing the latter with the area of the UK
and the license duration (20 years) [41].

Values given to the cost terms and related parameters
throughout Equations (24)–(28) are summarized in Table 2.
Notice that we have not considered cost inflation over time
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TABLE 4. Parameters characterizing the service and the users of each SP.

and that all values obtained from [10] and [40], originally in
GBP currency, have been converted to EUR using a conver-
sion rate 1.11 EUR/GBP.

B. SERVICE TYPES
In this work, we address the provision of two types of 5G
services motivated by two usage scenarios identified by
ITU-R for IMT for 2020 [4], namely eMBB and mMTC.
We have characterized these services using KPIs of the
5GPPP project FANTASTIC-5G ( [14]) for use cases defined
therein. Specifically, for eMBB we consider the KPIs of
use case 7 (dense urban society below 6 GHz) in [14],
whereas for mMTC, KPIs of use case 3 (sensor networks)
in [14]. Let deMBB(dmMTC ) denote the density of devices
that request eMBB(mMTC) services. We have set deMBB =

25000 devices/km2 and dmMTC = 600000 devices/km2

according to the device density values considered in [14] for
the respective use cases. The average number of devices in
the area of one SC that request services of a given type can
be determined as the product of the device density with the
area of the SC, i.e., deMBBASC for eMMB and dmMTCASC for
mMTC. In turn, the area of a MC sector (AMC ) and the area
of a SC (ASC ), have been derived from their respective inter
site distances, DMC and DSC . As mentioned, each MC site
has three sectors. We also assume that the cells of a MC site
(one per sector) are hexagonal and thatMC sites are located at
the corner of these cells, therefore the MC inter site distance
(DMC ) is equal to three times the side of a hexagonal cell [10],
[35], [36]. Instead, SC antennas are assumed to be omnidi-
rectional hence the SC inter site distance (DSC ) is equal to
twice the cell radius. Therefore AMC = (1/(2

√
3))D2

MC and
ASC = (1/4)πD2

SC . Values DMC = 0.5 km and DSC = 0.05
km have been used as suggested in [14] for a urban area for
both use cases 3 and 7 therein.

C. SPs
We consider three market segments for eMBB services, each
served by a unique SP, while a fourth SP provisions mMTC
services. eMBB services are characterized only by their
DL demand; the UL demand, being generally much lower,
is assumed to be equal to zero. Instead, mMTC services are
characterized only by their UL demand, as they are mainly
UL biased [14], while their DL demand is set equal to zero.
Values given to parameters characterizing the service and the
users of each SP are reported in Table 4.
Concerning the user utility function (see Section III-B.1),

for SPs providing eMBB services, we set X v equal to the

required value for the user experienced data rate20 in the DL
for use case 7 in [14] (same for all market segments), whereas
X v varies across the eMBB market segments as reported
in Table 4 assuming users of different market segments have
different target rates. For the fourth SP (which provides
mMTC services), we set X 4 and X 4 equal to the minimum
and maximum required value for the user experienced data
rate in the UL for use case 3 in [14], respectively. Further,
the elasticity parameter ξv was set to 2 for all eMBB SPs
(minimum value considered in [15]) and to 20 for the mMTC
SP (maximumvalue considered in [15]) to account for the fact
that the eMBB traffic is more elastic than the mMTC one.

As for the acceptance probability function (see
Section III-B.2), we set the user sensitivity to changes in
utility equal to the value considered in [15] for all SPs,
i.e., µv = 2, but we vary the user sensitivity to changes in the
offered fee (εv) across SPs as reported in Table 4. We assume
that mMTC users have a high sensitivity to changes in the
offered fee (ε4 = 4, which is the value considered in [15]),
while the eMBBmarket segments served by SPs 1, 2 and 3 are
assumed to have low, medium and high sensitivity to changes
in the offered fee, respectively, represented by values ε1 = 2,
ε2 = 3 and ε3 = 4. Given that the considered utility function
uv is such that 0 ≤ uv(xv) ≤ 1 for any xv (see Equation (1)),
then, by definition, the maximum utility level is equal to 1 for
all SPs, i.e., uv = 1. It is reasonable to assume that each SP v
will tailor its reference offered fee pv to the service require-
ments of its own users (represented by the utility function
here), hence we set pv = 0.4Xv (1+ 1/ξv). Recall that Xv is
the rate value that provides a user of SP v with a utility value
equal to 0.5 and thatXv = Xv+

(
X v − X v

) (
(1−U )/U

)1/ξv ,
where U = 0.999 has been considered (see Section III-B.1).
We set the values of qv as reported in Table 4. We make
the following assumptions on the behavior of the rejection
probability qv as a function of µv, εv, uv and pv:

(i) for any two SPs v,w ∈ V , such that µv = µw, εv = εw,
uv = uw, we assume qv = qw even if pv 6= pw, i.e., when
users of v andw are equally sensitive to changes in utility
and in the offered fee and they perceive a maximum
level of utility, we expect them to reject the considered
reference offered fee pv and pw, respectively, with the
same probability, since pv and pw reflect their respective
service requirements;

20In [14], the user experienced data rate is defined as the 5 percentile user
rate hence we use its required value as a minimum for the average user rate.
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TABLE 5. Instances and respective labels.

(ii) for any given µv, uv and pv, we expect qv to be
non-decreasing in εv, limεv→0 qv(µv, εv, uv, pv) = 0 and
limεv→∞ qv(µv, εv, uv, pv) = 1 for each v ∈ V .

In [42]–[46], the normalizing constant A (see Equation (2)
and Section III-B.2) is set equal to 0.1 for ε = 4,µ = 2, p = 1
and u = 1, therefore the corresponding reference rejection
probability q = e−A ≈ 0.9. We then set qv = 0.9 for any
SP v with εv = 4, µv = 2, uv = 1 and the considered pv,
in line with assumption (i), whereas for SPs with εv equal to
3 and 2 we set qv equal to 0.6 and 0.3, respectively, as per
assumption (ii).

Concerning the number of users or, alternatively, devices21

subscribing to each SP, first let σv denote the market share of
SP v for the service offered by v. We assume that the eMBB
market segment served by SP 1 makes up 20% of the eMBB
market (i.e., σ1 = 0.2), whereas the eMBB market segments
served by SPs 2 and 3 make up 30% and 50%, respectively
(i.e., σ2 = 0.3 and σ3 = 0.5). SP 4 is assumed to serve the
entire mMTC market (i.e., σ4 = 1). Then, the number of
devices in the area of a SC that have subscribed to each SP are:
Nv = σvdeMBBASC , for any v ∈ {1, 2, 3} (eMBB SPs), and
N4 = σ4 dmMTCASC (mMTC SP), where deMBB and dmMTC
denote the eMBB and mMTC device density, respectively,
whereas ASC the area of a SC (see Section IV-B). Further,
for eMBB SPs we consider a device activity factor equal to
0.1, i.e., ηv = 0.1 for any v ∈ {1, 2, 3} as in [5], [14], whereas
for the mMTC SP we assume η4 = 0.01 (as sensors tend to
become active less often).

D. INSTANCES
In our numerical tests, for InPs of typeN , i.e., for InPs which
deploy a 5G network, we have considered two particular
cases, labeled as N (1) and N (2). Specifically, N (1) refers to
an InP k for which:
(1) Bk ≥ B̂k = 20 MHz, i.e., k has amortized the spectrum

license cost of 20 MHz of bandwidth from its total
available (Bk ) and it may have acquired a new spectrum
license (if Bk − B̂k > 0);

(2) πMC,k = 0.3 and πSC,k = 0.5, i.e., k has not deployed
a legacy MC BS in a MC candidate site with probability
equal to 0.3 and analogously for SCs for which such
probability is assumed equal to 0.5.

In turn, N (2) refers to an InP k for which:
(1) Bk > B̂k = 0, i.e., k does not own any spectrum license

whose cost has been amortized but has acquired a new
spectrum license of Bk units of bandwidth;

21We use the terms device and user interchangeably.

(2) πMC,k = πSC,k = 1, i.e., no legacy MC/SC BSs of k are
present in any of the MC/SC candidate sites or, in other
words, k has not previously deployed a legacy network.

Instead, as mentioned in Section IV-A, for an InP k of type L
which does not upgrade to 5G we assume:

(1) Bk = B̂k > 0, i.e., k has amortized the spectrum license
cost of all its available bandwidth, meaning that k does
not acquire any new spectrum licenses;

(2) πMC,k = πSC,k = 0, i.e., k has deployed legacy MC/SC
BSs in all available MC/SC candidate sites hence it does
not deploy additional MCs and SCs during the studied
period.

We then set up several instances with two InPs (|K| = 2)
and four SPs (|V| = 4). Across these instances, we vary
the type and total available bandwidth of the two InPs, but
consider the same set of four SPs (as described in Section IV-
C). The instances are described and labeled in Table 5 where,
e.g., for the instance labeled as A10, the first InP is of type
N (1) and its total available bandwidthB1 is equal to 100MHz,
whereas the second InP is of type L and B2 = 100 MHz.

E. COMPUTATIONAL TESTS
The proposed framework was implemented in Matlab, whose
solvers have been used in the implementation to calculate
X vk (Pk ) and X vk (Pk ) according to Equations (8) and (9),
respectively, and to determine an optimal solution of the
capacity assignment problem formulated as a two-step opti-
mization problem (see Section III-C).
The value of P (i.e., the minimum monthly price per unit

of average SC capacity which is unprofitable for all SPs) has
been determined as follows: for each SP v, let Pv denote the
minimum value of P for which X v(P) = 0 (see Equation (8))
and let P

◦

v denote an upper bound for Pv (which we calculate
through a heuristic that provides P

◦

v ≤ Pv + 0.001); we then
set P = maxv∈V P

◦

v .
To solve the MLFG numerically, we have discretized

the continuous InP price strategy sets Pk = [Pk ,P], (see
Section III-D.2), i.e., hereon, Pk = {Pk , . . . ,P}, for any
k ∈ K. Consequently, the resulting set of InP price profiles
P =

∏
k∈K Pk is also discrete and finite. We determine the

Subgame Perfect Equilibrium(a) (SPE) [34] of the two-stage
MLFG as follows:

(1) for each InP price profile P ∈ P , we look for the
NE in pure strategies of the corresponding SPs’ game,
i.e., for y̆(P) of GV (P), (see Section III-D.1) from which
we can calculate the payoff Gk (P) of each InP for the
price profile P according to Equation (22) – if there are

162926 VOLUME 7, 2019



L. Cano et al.: Modeling the Techno-Economic Interactions of Infrastructure and SPs in 5G Networks With a MLFG

TABLE 6. Summary of notation used in Tables 7–14.

multiple NE in pure strategies for GV (P), then Gk (P) is
set equal to the minimum payoff attained by k among all
these NE;

(2) we look for theNE in pure strategies22 of the InPs’ game,
i.e., for P̆ of GK (see Section III-D.2).

The NE of GV (P) and of GK were determined through
exhaustive search. In the definition of the NE in pure strate-
gies for GK and for GV (P) we have introduced an absolute
margin1 = 10−6 EUR (recall that the payoffs Gk and gv are
all given in EUR). For instance, the InP price profile P̆ is an
NE of the GK iff

Gk ([P̆k , P̆−k ]) ≥ Gk ([Pk , P̆−k )]−1,

∀ Pk ∈ Pk , ∀ k ∈ K, (31)

where P̆−k denotes the prices of all other InPs but k . 1 was
introduced to account for the inaccuracy caused by inherent
tolerances of the Matlab solvers.

Concerning the discretization of the originally continuous
InP unit price strategy sets Pk = [Pk ,P], we initially created
a unit price strategy set consisting of 30 logarithmically-
spaced values in the range [Pk ,P]. The MLFG resulting from
these discrete InP unit price strategy sets has at least one SPE
for all instances but B4 and B5. Instead, for both B4 and
B5, although there is at least one NE in pure strategies for
each SPs’ game, there is no NE in pure strategies for the
InPs’ game and thus no SPE for the MLFG. Then, for both
B4 and B5, for each InP k , we created an alternative unit
price strategy set consisting of 60 values in the range [Pk ,P]
with the majority of these values in price ranges where we
expected the NE of GK to be based on the best response map-
pings of GK resulting from the initial discrete InP unit price
strategy sets (see Section V-B). As there was no NE for GK

neither for B4 nor for B5 even for the MLFG resulting from
the alternative discrete InP unit price strategy sets, we settled
on suggesting as a solution for GK an InP unit price profile
P� with a small (0.53% for B4 and 3.89% for B5) maximum

22As mentioned, the price strategy set Pk of each InP k ∈ K is discrete
which means that the InPs’ game GK is formally a non-cooperative game in
strategic form, hence we look for its NE in pure strategies.

relative payoff difference from the InPs’ best response (see
Equation (40) and Section V-B for details).

V. NUMERICAL RESULTS ANALYSIS
In this section, we report and analyze numerical results
concerning the equilibrium(a) of the considered problem
for the instances defined in Section IV-D. To start with,
in Section V-A we explain the notation used in reporting
these results. Then, in Section V-B we discuss the existence
and multiplicity of equilibria across these instances. Instead,
in Section V-C we analyze the impact of the InPs’ network
technology and available spectrum bandwidth on the equilib-
rium strategies of the players, i.e., on the capacity unit price
offered by the each InP and the InP choice of each SP.

A. NOTATION SUMMARY
For the sake of brevity, hereon we will simplify the terminol-
ogy as follows:

• the term equilibrium will refer to the equilibrium of the
overall game, i.e., to the sub-game perfect equilibrium
of the MLFG which consists of the Nash Equilibrium
InP capacity unit price profile of the InPs’ game, i.e., P̆
of GK and of the Nash Equilibrium SPs’ choice of InP
of the SPs’ game resulting from P̆, i.e., y̆(P̆) of GV (P̆),
where both are Nash Equilibria in pure strategies;

• the term capacity will refer to the average SC capacity
of an InP;

• the term spectral efficiency will refer to the average SC
spectral efficiency of an InP;

• the term unit cost will refer to the total monthly cost per
unit of average SC capacity of an InP;

• the term unit price will refer to the monthly price per
unit of average SC capacity offered by an InP at the
equilibrium.

For all considered instances A1–A11 and B1–B11,
the values of the main parameters characterizing the InPs
and the SPs and the equilibrium outcomes are reported
in Tables 7–14, where Tables 7, 9, 11 and 13 concern the
InPs, whereas Tables 8, 10, 12 and 14, the SPs. The defini-
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TABLE 7. Key equilibrium outcomes related to the InPs — instances A1–A5.

TABLE 8. Key equilibrium outcomes related to the SPs — instances A1–A5.

TABLE 9. Key equilibrium outcomes related to the InPs — instances A6–A11.

tions and unit of measurements of the notation used across
Tables 7–14 are provided in Table 6. When reporting numer-
ical values in the text, the respective units of measurement
have been omitted. Notice also that:
• in Tables 8, 10, 12 and 14, for each SP v (column
two), column three reports the InP selected by v at the
equilibrium, i.e., k for which y̆vk (P̆) = 1; in particular,
the symbol – has been reported in all the columns start-
ing from the third one for each SP for which it is not
profitable to purchase capacity from any of the InPs at
their equilibrium capacity unit price and hence it cannot
provide services to its users;

• in Tables 7–14 values for Pk , P̆k , Ğk , a
∗
vp
∗
v (ŭv), ğv and

r̆∗v /x̆vk are reported rounded to two decimals, whereas
values for Ck , C̆ ′k , X v(P̆k ), x̆vk , X v(P̆k ) and ŭv are

reported rounded to three decimals to highlight the dif-
ferences;

• in Tables 8, 10, 12 and 14, when the reported values for
x̆4k across different instances are distinct but the respec-
tive reported values for ŭ4 are equal among them and/or
the respective reported values for a∗4p

∗

4(ŭ4) are equal
among them, this is due to the aforementioned rounding.
Consider e.g., instances A7 and A8 in Table 10: for A7,
x̆4k = 10.343, whereas for A8, x̆4k = 10.355, while for
both of them ŭ4 = 0.987 and a∗4p

∗

4(ŭ4) = 0.12. In fact,
distinct values of x̆4k for the two instances imply distinct
values of the respective ŭ4, but the latter differ from
one another not before the fourth decimal; similarly,
the respective values of a∗4p

∗

4(ŭ4) differ not before the
third decimal.
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TABLE 10. Key equilibrium outcomes related to the SPs — instances A6–A11.

TABLE 11. Key equilibrium outcomes related to the InPs — instances B1–B5.

B. EXISTENCE AND MULTIPLICITY OF EQUILIBRIA
For the considered instances, it is always possible to find
an equilibrium when the InPs are different, either for the
technology or for the available spectrum bandwidth. Instead,
if the InPs are very similar, it might be difficult to find
an equilibrium, unless the spectrum bandwidth is very low
or very high. Concerning the equilibria multiplicity, which
results23 from the equilibria multiplicity of the InPs’ game
at stage 1 and/or of the SPs’ game stage 2, the multiple
equilibria are always equivalent for all players (i.e., for
all InPs and all SPs) since each player obtains the same
payoff in all of them, hence they represent the same sys-

23Let nK denote the number of NE in pure strategies of GK where
nK ≥ 1, and let P̆i denote the unit price profile of the i-th NE of GK where
1 ≤ i ≤ nK. Then let nVi denote the number of NE in pure strategies of
GV (P̆i) where nVi ≥ 1. The number of sub-game perfect equilibria of the

MLFG is then equal to
∑nK

i=1 n
V
i .

tem behavior; at stage 1, the equilibria multiplicity occurs
because there is an InP which is not selected by any SP
for any offered unit price, whereas at stage 2 it occurs
because some SPs are not provided with capacity in any
of the equilibria, therefore it is not relevant which InP they
select.

Specifically, no equilibrium was found for instances
B4 and B5 (see Section IV-E); however, for both of them,
it is possible to determine an approximate equilibrium as
explained in Appendix C. In turn, a single equilibrium was
found for instances A8–A11 and B7–B11 andmultiple equiv-
alent ones for the rest of the instances. As for the equilibria
equivalence for instances with multiple equilibria, some illus-
trative examples follow.

Consider instance A7 (see Tables 9 and 10) for which the
equilibria multiplicity derives from stage 2. In details, for
A7, the InPs’ game at stage 1 has a unique NE P̆ = (P̆1 =
1.87, P̆2 = 1.80), whereas the SPs’ game at stage 2 for P̆ has
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TABLE 12. Key equilibrium outcomes related to the SPs — instances B1–B5.

TABLE 13. Key equilibrium outcomes related to the InPs — instances B6–B11.

two NE denoted by (i) and (ii) in Table 10: in (i) SP 3 selects
InP 1, whereas in (ii) it selects InP 2, while in both (i) and
(ii) SP 1 selects InP 2 whereas SPs 2 and 4 select InP 1.
In (i), SP 3 requests a minimum amount of capacity equal to
173.051 and a maximum of 175.857 from InP 1 given P̆1 =
1.87 whereas in (ii) SP 3 requests a minimum of 160.391
and a maximum of 176.817 from InP 2 given P̆2 = 1.80.
However, SP 3 is allocated a null capacity in both (i) and (ii);
in fact, in (i), InP 1 (which serves SPs 2 and 4) does not have
enough spare capacity to serve SP 3 (C1 − C̆ ′1 = 97.257 <
X3(P̆1) = 173.051), whereas in (ii) InP 2 has allocated all
its available capacity to SP 1 (x̆12 = C̆ ′2 = C2 = 260).
Formally, the unique NE of of the game at stage 1 and the
NE (i) and (ii) of the game at stage 2 imply two equilibria
for instance A7. However, it can easily be seen that these two
equilibria are equivalent for all SPs: each of the SPs 1, 2 and
4 is served by the same InP, at the same unit price and with
the same amount of capacity in both equilibria hence each of
them obtains the same payoff in both, while SP 3 is not served
in neither equilibria resulting in a null payoff in both. The

two equilibria are equivalent also from the InPs’ perspective:
each InP sells the same amount of capacity at the same
unit price in both equilibria thus obtaining the same payoff
in both.

For instances A1, A2 and B1 as well, the equilibria mul-
tiplicity derives from stage 2. However, for these instances,
unlike for A7, the multiplicity of NE for the stage 2 game
is due to there being at least one SP for which it is not
profitable to buy capacity from any InP, hence each such SP is
indifferent to the InP choice. Consider, for instance, instance
B1: it is SPs 1, 2 and 3 forwhich it is not profitable to purchase
capacity from any of the InPs, while SP 4 selects and is fully
served by InP 2 (see Table 12). Formally, there are 8 equilibria
for B1 since the stage 1 game has a unique NE (see Table 11),
whereas the stage 2 game has 8 NE resulting from SPs 1,
2 and 3 selecting either InP 1 or InP 2 but acquiring a null
capacity from either, while in all these NE SP 4 is served
with the same amount of capacity and at the same unit price
by InP 2. Clearly, payoff-wise, these equilibria are equivalent
for all SPs and all InPs.
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TABLE 14. Key equilibrium outcomes related to the SPs — instances B6–B11.

For instances A5 and B6 the equilibria multiplicity derives
instead from stage 1. Let us consider instance A5 (similarly
then for B6). For A5, GK has multiple NE which are all unit
price profiles P̆ = (P̆1, P̆2) such that P̆1 = 1.77, whereas
P̆2 can take any value in the considered discrete unit price
strategy set of InP 2, i.e., P2 = {P2 = 2.24, . . . ,P = 14.86}
(see Table 7). Although each such P̆ induces a distinct stage
2 game GV (P̆), all these stage 2 games have the same unique
NE reported in Table 8 in which all SPs select and are served
by InP 1, hence InP 2 sells a null capacity and obtains a null
payoff. Thus, formally, there are |P2| equilibria for instance
A5, but each player obtains the same payoff in all of them.

In turn, instances A3, A4, A6, B2 and B3 have multiple NE
at both stages. For the NE multiplicity at stage 1 (stage 2),
similar observations to those made for instances A5 and A6
(A1, A2 and B1) apply from which one can easily see the
equivalence among the resulting equilibria. Nevertheless, it is
worth clarifying that for A3, A4, A6, B2 and B3, each distinct
NE unit price profile at stage 1 results in the same set of
NE at stage 2, which are per se equivalent among them. For
example, instance A3 has 2|P2| equilibria since each NE unit
price profile P̆ = (P̆1, P̆2) with P̆1 = 1.99 and P̆2 ∈ P2 =

{P2 = 8.90, . . . ,P = 14.86} at stage one (see Table 7) results
in two NE at stage 2, due to SP 3 not finding it profitable to
purchase capacity from any of InPs hence being indifferent to
the InP choice (see Table 8).

C. TECHNOLOGY AND SPECTRUM AVAILABILITY IMPACT
ON COMPETITION AMONG INPS
Recall that for each InP k , 1) its network technology type and
2) its available spectrum bandwidth (Bk ) affect its average

SC capacity (Ck ) and its total cost per unit of average SC
capacity (Pk ) as explained in Section IV-A. In the following
paragraphs we will then analyze the impact of 1) and 2) on
the competition among InPs to be selected by SPs.

Let us first consider instances A1–A11 for which InP 1
has a new (5G) network (type N (1)) whereas InP 2 has a
legacy (4G) network (type L), while their available spec-
trum bandwidths vary across the instances. As for instances
A1–A5 (see Tables 7 and 8), InP 2 does not sell capacity to
any SP, thus obtaining a null payoff, in all the instances but
A2, even when SPs are not fully satisfied from InP 1 (e.g.,
in case of instance A5). InP 1, instead, always serves at least
one SP (but in instance A2). Indeed, for A1, A3, A4 and A5,
InP 1 is preferred to InP 2 by at least one SP because InP 1
can offer a lower unit price since it is more cost-efficient,
i.e., it has a lower unit cost (P1 < P2) and because it has
sufficient available capacity. InP 1 has a lower unit cost and
a higher capacity than InP 2 due to InP 1 having a higher
spectral efficiency (resulting in a higher cell capacity for
equal amounts of spectrum bandwidth) and due to B1 ≥ B2.
However, notice that for equal amounts of bandwidth, InP 1
incurs a higher total cost per cell than InP 2 to attain a higher
spectral efficiency and the total cell cost increases with the
spectrum bandwidth. Instead for instance A2, B2 = 3B1
henceC1 = C2 whileP1 > P2 (i.e.,P1C1 > P2 C2), meaning
that the legacy (4G) InP 2, which owns the triple of spectrum
holdings of the new (5G) InP 1, provides the same amount of
capacity as the latter but more cost-efficiently.

As for the SPs, when the spectrum bandwidth is low, and
the unit costs and hence the (equilibrium) unit prices are
high, only SP 4 is served and provided with the maximum
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amount of requested capacity from the selected InP (instances
A1 and A2). With the increasing spectrum bandwidth and
decreasing unit costs and hence unit prices (instances A3 and
A4), other SPs are served and provided with the maximum
requested capacity. Finally, in instance A5 all the SPs are
served. Although the maximum requested capacity is not
provided to any of them by InP 1, they all obtain a higher
payoff from selecting InP 1 due to its lower unit price.

Instances A6–A11 are such that for all of them B2 =
100 MHz (see Table 5) and hence C2 = 260 (see
Table 9) given that InP 2 is of type L. Instead, B1 increases
with a step of 20 MHz from A6 to A11 starting from
B1 = 20 MHz for A1 (see Table 5), therefore C1
increases accordingly from 156 for A6 to 936 for A11
(see Table 9) given that InP 1 is of type N (1). Among
A6–A11, only for instance A6 the legacy (4G) InP is more
cost-efficient than the new (5G) InP (i.e., P2 < P1) and
has a higher capacity (i.e., C2 > C1). Indeed, InP 1 always
provides capacity to at least one SP, but in instance A6. On
the contrary, for A7–A11 one has P1 < P2 and C1 > C2.
With the increasing spectrum bandwidth of InP 1 and its
decreasing unit price, InP 1 serves an increasing number of
SPs. When the spectrum bandwidths are comparable or InP 1
has a greater amount (A10 and A11), InP 1 serves all the
SPs. In general, InP 1 is able to offer a unit price higher than
its unit cost, while InP 2 is always selling at a unit price
equal to its unit cost but for instance A6. InP 1 does not
sell all its available capacity but in instance A9, when it first
serves SP 1, which is served by InP 2 as long as the spectrum
bandwidth of InP 1 is below 80 Mhz.

As for the SPs, SP 1 and SP 4 are always served. SP 2 and
SP 3 are not served in instance A6 as they cannot afford
the offered unit prices. Instead, in instance A7, SP 3 can
actually afford the unit prices of both InPs but it is not
served as neither InP has sufficient available capacity to sat-
isfy its minimum requested capacity. When an SP is served,
it is usually provided with the maximum requested capacity.
Exceptions are SP 1 in instanceA7 andA8,where SP 1 cannot
be provided with the maximum requested capacity due to
the limited capacity of InP 2, and instance A9, where the
available capacity of InP 1 makes it impossible for it to serve
completely the three SPs that select it.

Instances B1–B11 (see Tables 11–14) are analogous to the
respective A1–A11 in terms of spectrum bandwidth avail-
abilities of the two InPs, but for B1–B11 both InPs have
deployed a new (5G) network and InP 1 is of typeN (2), i.e., a
sheer new entrant, whereas InP 2 is of type N (1), i.e., InP 2
reuses available sites and spectrum licenses from its legacy
(4G) network when it upgrades to the new (5G) network.
In particular, for B1–B11, when the spectrum bandwidths of
the two InPs are equal (i.e.,B1 = B2) then also their capacities
are equal (i.e., C1 = C2), which is the case for instances B1,
B4, B5 and B10. However, for these latter instances, the unit
cost of InP 1 is slightly higher than the one of InP 2 (i.e.,
P1 > P2), reflecting the disadvantage of InP 1 for being a
new entrant.

For instances B1–B5, when the capacity is low and the unit
cost high, the least cost-efficient InP sells no capacity and
hence obtains a null payoff: this is the case of InP 1 in B1 and
B2, and of InP 2 in instance B3. Moreover, for B2 and B3,
the least cost-efficient InP induces no competition (similarly
to A3, A4 and A5), therefore the unit price of the other (most
cost-efficient) InP is determined solely by the SPs’ demand
and its own available capacity. Concerning the SPs, some of
them are not served across B1–B3 because neither P̆1 nor P̆2
are profitable for them.

As for instances B4 and B5, we recall that we did not find a
NE for the InPs’ game, hence we suggested as a solution the
unit price profile P� = (P�1,P

�

2) which is calculated accord-
ing to Equation (40) and it can be considered an approximate
NE (see Appendix C). In these lines, for both instances,
values reported under P̆1 and P̆2 in Table 11, which are
marked by the symbol �, are in fact the values of P�1 and P�2 ,
respectively. For B4, the SPs’ game for P� has two distinct
NE in pure strategies denoted as (i) and (ii) when reported
in Tables 11 and 12. This NE multiplicity is due to the fact
that the two InPs are very similar (P�1 = 1.23, P�2 = 1.22 and
C1 = C2 = 468). However, neither NE is preferred by all
InPs or all SPs. In fact, in both (i) and (ii) SP 4 is served by
InP 2 at the same unit price (P�2 = 1.22) and with the same
amount of capacity (x̆42 = 10.558) hence SP 4 is indifferent
between the two NE. Instead, SPs 2 and 3 prefer (ii), in the
sense that they attain a higher payoff from (ii), whereas SP 1
prefers (i) which means that SPs 1, 2 and 3 are all better off
in the NE in which they are served by the cheapest InP.24 In
turn, InP 1 prefers (i), whereas InP 2 prefers (ii) since each
InP is able to sell more capacity and hence attain a higher
payoff when serving both SPs 2 and 3 instead of SP 1. For
instance B5 instead, the SPs’ game for P� has a unique NE.
In particular, this P� is such that P�1 = 1.09 > P�2 = 0.94
despite P1 = 0.94 > P2 = 0.90 which shows that InP 1
leverages the fact that C2 is not sufficiently large for all SPs
to be served by InP 2. In fact, even though P�1 > P�2 , at the
unique NE of SPs’ game for P�, SP 3 selects and is served
by InP 1 from which it obtains x̆31 = 190.370 at P�1 = 1.09.
If SP 3 were to select InP 2 while SPs 1, 2 and 4 still selected
and were served by InP 2, then InP 2 would split C2 = 624
among all SPs and SP 3 would obtain an amount of capacity
equal to 147.825 at P�2 = 0.94 which would lower its payoff
value by 35.86% w.r.t. the value attained in the NE.

Concerning instances B6–B11, it results that InP 1
becomes more cost-efficient than InP 2 only for instance
B11 for which B2 > B1. Nevertheless, InP 2 is unaffected
by the presence of InP 1 only for instance B6 for which

24In fact, as reported in Table 12, SPs 1, 2 and 3 attain a higher payoff
when served by InP 2 since in addition to InP 2 offering a lower unit price
than InP 1 (i.e., P�2 < P�1 ), the maximum amount of capacity requested by
SPs 1, 2 and 3 at P�2 is higher than the respective one at P�1 (i.e., Xv(P�2 ) >
Xv(P�1 ), ∀v ∈ {1, 2, 3}) and C2 is sufficiently large for InP 2 to provide each
SP that selects it in each of these NE with its maximum requested capacity
(i.e., x̆12 = X1(P

�

2 ) in NE (i) and x̆22 = X2(P
�

2 ) and x̆32 = X3(P
�

2 ) in
NE (ii)).
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InP 1 has only 20 MHz of spectrum bandwidth resulting in
a high unit cost (P1 = 3.55 as opposed to P2 = 0.73).
Specifically, for B6, all SPs select and are served by InP 2 and
P̆2 is determined solely by the SPs’ demand and the available
capacity of InP 2. Instead, in instances B7–B8, although all
SPs still select and are served by InP 2, the unit price offered
by InP 2 at the equilibrium is dictated by the unit cost of InP 1
(P̆2 is the highest discrete unit price value lower than P1).
Indeed, as the spectrum bandwidth of InP 1 increases, its
capacity increases whereas its unit cost decreases making
InP 1 more competitive hence forcing InP 2 to lower its
offered unit price which in turn increases the amount of
capacity requested by the SPs. When the spectrum band-
widths are comparable or InP 1 has a greater amount (B10–
B11), the SPs move from InP 2 to InP 1 and InP 2 is forced
to sell at its unit cost. As for the SPs, they are always fully
served, but in instance B9, where SPs 1, 2 and 3 select InP
2 which is not able to fully serve them whereas SP 4 opts
for InP 1, despite its higher unit price, so as to obtain all the
requested capacity.

On the overall, we notice that there is more head-to-head
competition when InPs are of the same type. Indeed, more
recent 5G InPs are preferred w.r.t. older ones (4G ones), but
if the latter provide much more spectrum bandwidth, thus
resulting more cost-efficient. In this case 5G InP is either less
cost-efficient or does not have sufficient capacity for all SPs.
Further, there should be sufficient bandwidth even for a 5G
InP to be affordable for all 5G services given realistic user
fees.

VI. CONCLUSION
In this work, we address a mobile ecosystem in which the
network infrastructure and resources are decoupled from ser-
vices provisioned for end users giving rise to two types of
stakeholders: InPs and SPs. InPs deploy and manage the
mobile network and sell their resources to SPs through which
the latter provision services for the end users. We consider a
case in which there are multiple InPs and multiple SPs and
the resource sold/purchased by InPs/SPs is the amount of
capacity per BS cell assuming the cell area is provisioned by
each InP through its individual BS. We model the problem
of cell capacity pricing from the InP perspective and of the
choice of an InP from which to acquire capacity from the SP
perspective as a multi-leader-follower game. The proposed
model has been applied in the context of migration from 4G
to 5G for several scenarios in which InPs are characterized
by different network technologies and available spectrum
bandwidths, whereas SPs provide different 5G mobile ser-
vices. To set up realistic scenarios, the InP cost structure
and the service characterization are based on recent 5G
literature.

The analysis of the obtained equilibria shows that more
recent InPs are preferred w.r.t. older ones. Older InPs can be
competitive if they provide much more spectrum bandwidth,
thus resulting more cost-efficient. When the InPs have the
same technology, the new entrant ones are less preferred.

Indeed, they incur a slightly higher unit cost thus being less
competitive.

APPENDIX A
OPTIMAL USER FEE DERIVATION
In the following, we derive the optimal user fee from the SP
perspective, i.e., the fee offered to a user by its SP so that the
SP revenue is maximized. We show that this fee is a function
of the level of utility perceived by the user which is per se
a function of the amount of capacity allocated to the user
by the SP. As explained in Section III-B, each SP v ∈ V
splits its available cell capacity xv uniformly among its users
and the utility perceived by the single user from the allocated
capacity, i.e., uv(xv) is represented by Equation (1). Further,
if a user of SP v perceiving the utility uv(xv) is offered a fee
pv, it will accept it with a probability av(pv, uv(xv)) given by
Equation (2) (or equivalently (3)), therefore, av(pv, uv(xv))pv
represents the fee accepted by the user. It follows that, for
a given amount of cell capacity xv, which implies a level
of utility for the single user equal to uv(xv), the optimal
user fee for SP v is the value of the pv which maximizes
av(pv, uv(xv))pv.
For ease of notation, hereon, we drop the argument xv of the

utility function uv(xv) as we derive the optimal offered fee for
a fixed level of utility. We also drop the SP subscript v from
all parameters and variables since the optimal fee derivation is
analogous for all SPs. We assume 0 < ε <∞, 0 < µ <∞,
0 < p < ∞, 0 < u < ∞, 0 < q < 1, 0 < p < ∞,
and 0 < u < ∞. It can be easily argued that these are all
sensible assumptions. First, recall that an SP polls a large set
of its own users characterized by ε andµ (i.e., the sensitivities
to changes in price and utility, respectively) on whether they
accept the fee pwhen they perceive amaximum level of utility
(u) and then it sets q equal to the fraction of users that reject
it. As explained in Section III-B.2, the normalizing constant
A = −pεu−µ log(q), therefore for the assumed values of
p, ε, u, µ and q, we have 0 < A < ∞. Recall also that
a(p, u) = 1−e−Ap

−εuµ
= 1−q(p/p)

ε(u/u)µ given the definition
of A (as detailed in Section III-B.2). Concerning ε and µ,
they are both assumed positive constants in [15] and positive
bounded values are considered in literature ( [15], [33], [42]–
[46]). In fact, ε and µ should be estimated through realistic
measurements [15], hence, in practice, it cannot be that ε =
∞ orµ = ∞ as users cannot be infinitely sensitive to changes
in the offered fee or the perceived utility. Consider the equiv-
alent definition of a(p, u), i.e., a(p, u) = 1− q(p/p)

ε(u/u)µ and
suppose that 0 < µ < ∞, 0 < p < ∞, 0 < u < ∞,
0 < q < 1, 0 < p < ∞, and 0 < u < ∞ but ε = ∞.
It follows that

a(p, u) =


1 if p < p,
0 if p > p,
indeterminate otherwise,

hence a(p, u)p is maximized by a fee equal to p − 1, where
1 is an infinitely small positive constant. Now, suppose that
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0 < ε < ∞, 0 < p < ∞, 0 < u < ∞, 0 < q < 1,
0 < p <∞, and 0 < u <∞ but µ = ∞. It follows that

a(p, u) =


0 if u < u,
1 if u > u,
indeterminate otherwise,

therefore, if u < u, a(p, u)p = 0 for any offered price p 6= ∞,
i.e., any p 6= ∞ generates zero revenue for the SP, whereas
for u > u, a(p, u)p is maximized by any p 6= ∞. Further,
if u = 0 (where by definition u is the maximum utility
perceived by the user), then it would make no sense to look
for the optimal fee, as no rational user would be willing to
pay for a service which provides no utility. For the considered
utility function (see Equation (1)), u ≤ 1 hence u <∞. Even
if we were to consider a different utility function, it would
still be reasonable to assume that u <∞ since the utility is a
function of the allocated capacity which is per se physically
limited. As for p, the value p = ∞ is impractical whereas
p = 0 would result in q = 0 (as no rational user would reject
a service providing a maximum level of utility uwhen offered
for free) and therefore a(p, u) = 1 − q(p/p)

ε(u/u)µ would be
indeterminate for any value of u and p, which means that the
SP cannot make use of the acceptance probability function if
it were to poll its users with p = 0. Next, for 0 < ε <∞, 0 <
µ <∞, 0 < p <∞, and 0 < u <∞, q = 0 would result in
a(p, u) = 1 − q(p/p)

ε(u/u)µ
= 1, ∀u ∈ (0,∞), ∀p ∈ (0,∞)

and vice versa, q = 1 would result in a(p, u) = 0, ∀u ∈
(0,∞), ∀p ∈ (0,∞), which means that in both cases the
SP cannot make use of the acceptance probability function.
In practice, if an SP estimated q = 0 (q = 1), we would
expect it to re-poll the users with a higher (lower) value of p
until it attains25 a value of q in (0,1). As for p, while p = ∞ is
impractical, for the assumed parameter values, p = 0 would
instead result in a(p, u) = 1,∀u ∈ (0,∞) and, as a result,
in a(p, u)p = 0,∀u ∈ (0,∞) which is the minimal value
of a(p, u)p, hence we look for p ∈ (0,∞). Finally, we have
assumed 0 < u < ∞, where u < ∞ can be justified in the
same fashion as u < ∞ since by definition u ≤ u, whereas
u = 0 is not of interest: for the assumed parameter values,
when u = 0, a(p, u) = 0, ∀p ∈ (0,∞), and, as a result,
a(p, u)p = 0, ∀p ∈ (0,∞), i.e., there is no optimal fee as the
SP incurs no revenue when the user achieves no utility.

Now, for a given u, we look for p which maximizes
a(p, u)p, which we denote as p∗(u). Recall that a(p, u) =
1− e−Ap

−εuµ (see Equation (2)), therefore to determine p∗(u)
we solve

∂
(
(1− e−Ap

−εuµ )p
)

∂p
= 0,

that is, the equation

1− e−Ap
−εuµ
− εAp−εuµe−Ap

−εuµ
= 0. (32)

25In practice, it should be unlikely for the SP to attain q = 0 for p→∞.
Instead, if the SP attained q = 1 for p→ 0, it means the service it proposes
has no market.

First, let z = εAp−εuµ+1. Equation (32) becomes equivalent
to

1− ze(1−z)/ε = 0. (33)

Then let y = −z/ε which allows to rewrite (33) as

yey = (−1/ε)e(−1/ε). (34)

If we denote a solution of Equation (34) by y∗, then the
optimal offered price for the given level of utility u, i.e., p∗(u),
corresponding to y∗ is

p∗(u) =
[(
Auµ

)
/
(
−y∗ − 1/ε

)]1/ε
. (35)

It follows that the acceptance probability of p∗(u), given u, is

a(p∗(u), u) = 1− e−A(p
∗(u))−εuµ

= 1− e−AA
−1(−y∗−1/ε)u−µuµ

= 1− ey
∗
+1/ε. (36)

Notice that a(p∗(u), u) is independent of u and it only depends
on ε (as from (34) y∗ only depends on ε) hence, hereon,
we refer to a(p∗(u), u) by a∗. Equation (34) has one eas-
ily identifiable solution, y∗ = −1/ε, for which, however,
p∗(u) = ∞ as A 6= 0, u 6= 0, µ 6= ∞ and 0 < ε < ∞

(see Equation (35)), whereas a∗ = 0 (see Equation (36))
and, as a result a∗p∗(u) = 0 ×∞ (i.e., the optimal accepted
fee is indeterminate). However, depending on the value of ε,
y∗ = −1/εmay not be the only solution of (34). To determine
all solutions of Equation (34), we proceed as follows. Let
α = (−1/ε)e−1/ε. Equation (34) becomes equivalent to

yey = α, (37)

whose solutions are given by the noted Lambert W function.
As here y = −z/ε = −Ap−εuµ − 1/ε ∈ R, we consider
the real-valued variant of the Lambert W function which we
denote as W : α → y, where α ∈ [−1/e,+∞). The lower
bound of α is due to the fact that the minimum value of the
function f (y) = yey, attained at y = −1, is equal to −1/e.
Since α = −(1/ε)e−1/ε and 0 < ε < ∞, here we also have
that α < 0. W is single valued for α = −1/e, whereas for
α ∈ (−1/e, 0), it is double-valued as illustrated by Figure 1.
The upper branch of W (for which W ≥ −1), is denoted as
W0, whereas the lower branch (for which W ≤ −1) as W−1,
where bothW0 andW−1 are per se single-valued functions of
α. It follows that for ε = 1, which implies a value of α =
(−1/ε)e−1/ε = −1/e, Equation (37) admits a single solution
y∗ = W (−1/e) = W0(−1/e) = W−1(−1/e) = −1 (see
Figure 1) which coincides with the solution y∗ = −1/ε =
−1 of the equivalent Equation (34) obtained by inspection.
Instead, for ε ∈ (0,∞) with ε 6= 1, for which α ∈ (−1/e, 0),
Equation (37) admits two solutions: y∗0 = W0(α) and y∗−1 =
W−1(α). In summary, based on the value of ε which results
in α = −(1/ε)e−(1/ε), there are three cases concerning the
solution(s) of Equation (37):

1) For ε = 1, which implies α = − (1/ε) e−(1/ε) =
−1/e, Equation (37) admits a single solution
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FIGURE 1. Lambert W function for α ∈ [−1/e,0).

y∗ = W (−1/e) = W0(−1/e) = W−1(−1/e) = −1
(see Figure 1)). From (35), the optimal fee for the given
level of utility u corresponding to y∗ = −1, i.e.,

p∗(u) =
[(
Auµ

)
/
(
−y∗ − 1/ε

)]1/ε
=
(
Auµ

)
/ (1− 1)

= ∞,

as A > 0, u > 0, µ < ∞. Then from (36), the accep-
tance probability of p∗(u) for the given level of utility
u, i.e.,

a∗ = 1− ey
∗
+1/ε
= 1− e−1+1 = 0

and, as a result, a∗p∗(u) = 0 × ∞, i.e, the optimal
accepted fee for the given level of utility u is indeter-
minate.

2) For 0 < ε < 1, which implies α = − (1/ε) e−(1/ε) ∈
(−1/e, 0) and henceW (α) being double-valued, Equa-
tion (37) admits two solutions: y∗0 = W0(α) > −1 and
y∗
−1 = W−1(α) = −1/ε < −1. Let a∗0 denote the
acceptance probability of p∗0(u) for the given level of
utility u and, analogously, a∗

−1, the acceptance proba-
bility of p∗

−1(u) for u. From (35), we have

p∗0(u) =
[(
Auµ

)
/
(
−y∗0 − 1/ε

)]1/ε
=
[(
Auµ

)
/ (−W0(α)− 1/ε)

]1/ε
.

Due26 to −1 < W0(α) < 0 and 0 < ε < 1, which
imply −∞ < −W0(α) − 1/ε < 0 and given that 0 <
A <∞, 0 < u <∞, µ <∞ and 0 < ε < 1, then

p∗0(u) ∈


(0,∞) if 1/ε is an even integer,
(−∞, 0) if 1/ε is an odd integer,
C otherwise,

26Recall that here α < 0 and since W0(α) is strictly increasing in α, then
W0(α) < W0(0) = 0.

which means that if 1/ε is not an even integer, then
p∗0(u) is an infeasible solution. From (36),

a∗0 = 1− ey
∗

0+1/ε = 1− eW0(α)+1/ε ∈ (−∞, 0)

as 0 < W0(α)+ 1/ε <∞ for which 1 < eW0(α)+1/ε <

∞. As−∞ < a∗0 < 0, we can conclude that even when
1/ε is an even integer, p∗0(u) is infeasible as it cannot be
accepted with a negative probability.
As for y∗

−1 = W−1(α) = −1/ε, we have that

p∗
−1(u) =

[(
Auµ

)
/
(
−y∗
−1 − 1/ε

)]1/ε
=
[(
Auµ

)
/ (1/ε − 1/ε)

]1/ε
= ∞

as A > 0, u > 0, µ <∞ and 0 < ε < 1 whereas

a∗
−1 = 1− ey

∗

−1+1/ε = 1− e−1/ε+1/ε = 0,

and, as a result, a∗
−1p
∗

−1 = 0×∞.
3) For 1 < ε < ∞, α = − (1/ε) e−(1/ε) ∈ (−1/e, 0),

therefore W (α) is double-valued and consequently
Equation (37) admits two solutions: y∗0 = W0(α) =
−1/ε > −1 and y∗

−1 = W−1(α) < −1. As for case 2,
a∗0 and a∗

−1 denote the acceptance probability of p∗0(u)
and p∗0(u), respectively, for the given level of utility u.
From (35) and (36), we get

p∗0(u) =
[(
Auµ

)
/
(
−y∗0 − 1/ε

)]1/ε
=
[(
Auµ

)
/ (1/ε − 1/ε)

]1/ε
= ∞

as A > 0, u > 0, µ <∞ and 1 < ε <∞, while

a∗0 = 1− ey
∗

0+1/ε = 1− e−1/ε+1/ε = 0,

hence a∗0p
∗

0 = 0×∞.
Concerning the solution y∗

−1 = W−1(α),

p∗
−1(u) =

[(
Auµ

)
/
(
−y∗
−1 − 1/ε

)]1/ε
=
[(
Auµ

)
/ (−W−1(α)− 1/ε)

]1/ε
∈ (0,∞),

as 0 < A <∞, 0 < u <∞, µ <∞, 0 < −W−1(α)−
1/ε <∞ (due27 to−∞ < W−1(α) < −1 and 1 < ε <

∞) and ε > 0. In turn, as −∞ < W−1(α) + 1/ε < 0
and, as a result, 0 < eW−1(α)+1/ε < 1,

a∗
−1 = 1− ey

∗

−1+1/ε = 1− eW−1(α)+1/ε ∈ (0, 1).

Then, due to 0 < p∗
−1(u) < ∞ and 0 < a∗

−1 < 1,
0 < a∗

−1p
∗

−1(u) <∞.

p∗(u) =

 Auµ

−W−1
(
−

1
ε
e−

1
ε

)
−

1
ε

 1
ε

= p

 log(q)

W−1
(
−

1
ε
e−

1
ε

)
+

1
ε

 1
ε (u

u

)µ
ε
∈ (0,∞),

27Recall that here α < 0 and sinceW−1(α) is strictly decreasing in α then
W−1(α) > limα→0− W−1(α) = −∞.
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which is accepted with a probability

a(p∗(u), u) = 1− e
W−1

(
−

1
ε
e−

1
ε

)
+

1
ε
∈ (0, 1),

hence the optimal accepted fee a(p∗(u), u)p∗(u) ∈ (0,∞).

APPENDIX B
EXAMPLES OF THE SPS’ PAYOFF FUNCTION
The payoff of an SP (defined in Equation (21)) is the dif-
ference between its revenue (see Equations (7) and (1)) and
its cost for a given amount of acquired cell capacity at a
given cell capacity unit price. We drop the SP subscript v
from the aforementioned formulas and write in extensive
form the SP payoff as function of the amount of acquired
cell capacity x at a given cell capacity unit price P as
follows:

g(x) =



−Px, if 0 ≤ x ≤ ÑX ,

Na∗p
[
log(1− a)
log(1− a∗)

]1/ε (1
u

)µ/ε


(
x/Ñ−X
X−X

)ξ
1+

(
x/Ñ−X
X−X

)ξ

µ/ε

− Px,

if x > ÑX .
(38)

Letµ = ε = 2,Na∗p
(

log(1−a)
log(1−a∗)

)1/ε
= 1, u = 1, Ñ = 1,X =

1 and X = 10. For these values of parameters, in Figures 2
and 3 we plot g(x) in terms of x for all combinations of two
different values for each of the remaining parameters: i.e., for
values 2 and 20 for ξ (the utility elasticity) and for values
0.03 and 0.1 for P (the cell capacity unit price). Values 2 and
20 are the minimum and maximum values considered for ξ in
this work (see Section IV-C) and also in literature [15]. As for
P, given the considered values for all other parameters, values
0.03 and 0.1 are simply two values that allow to illustrate
the two different cases concerning the calculation of the
minimum and maximum amount of cell capacity requested
by the SP for a given cell capacity unit price P, i.e., X (P) and
X (P), where

X (P) =

 0, if g(x) ≤ 0, ∀x ≥ ÑX ,
argmax
x≥ÑX

g(x), if ∃ x > ÑX | g(x) > 0,

X (P) =

{
0, if X (P) = 0,
x ∈ [ÑX ,X (P)] | g(x) = 0, if X (P) > 0.

Notice that for 0 < x ≤ ÑX , one has g(x) < 0 as in this
range g(x) = −Px (see Equation (38), Figures 2 and 3).
Hence, we look for X (P) and X (P) for x > ÑX . From
Figures 2b and 3b, we can see that for both values of ξ ,
when P = 0.1, g(x) < 0, ∀x ≥ ÑX , as a result, we force
X (P) = X (P) = 0. Instead, from Figures 2a and 3a we
can see that, for both values of ξ when P = 0.03, one
has:

FIGURE 2. SP payoff function examples for utility elasticity ξ = 2.

(1) there exists x > ÑX such that g(x) > 0, therefore,
X (P) > ÑX > 0 and g(X (P)) > 0;

(2) g(x) has a unique zero in [ÑX ,X (P)], hence there is a
unique value for X (P);

(3) X (P) > X (P) > ÑX > 0, as g(ÑX ) < 0 whereas
g(X (P)) > 0.

APPENDIX C
APPROXIMATED EQUILIBRIA
For the InPs’ game GK, since there are two players (InPs)
for each considered instance, the existence and multiplicity
of its NE in pure strategies can be also depicted graphically
through the InPs’ best response functions. The best response
P∗k of any InP k is the set of strategies

P∗k (P−k ) = {Pk ∈ Pk |
Gk ([Pk ,P−k ]) ≥ max

P′k∈Pk

Gk ([P′k ,P−k ])−1},

∀ P−k ∈
∏

j∈K\{k}
Pj, (39)
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FIGURE 3. SP payoff function examples for utility elasticity ξ = 20.

that is, P∗k (P−k ) is the set of all InP k unit prices that
maximize its payoff within a margin28 1 (see Section IV-E)
given P−k , i.e., given the unit prices offered by all other InPs
but k .
For two illustrative instances, A5 and B9, in Figures 4a

and 4b, we have plotted in blue (∗markers) the best response
function of InP 2, that is the payoff-maximizing unit price(s)
for InP 2 for each possible unit price that InP 1 can offer
(i.e., P∗2 (P1) for any P1 ∈ P1 = {P1, . . . ,P}) and in red
(◦ markers) the best response function of InP 1, that is the
payoff-maximizing unit price(s) for InP 1 for each possible
unit price that InP 2 can offer (i.e.,P∗1 (P2) for any P2 ∈ P2 =

{P2, . . . ,P}). The NE InP unit price profile(s) P̆ of the InPs’
game for A5 and B9 are then represented by the intersections
between P∗1 and P∗2 in Figures 4a and 4b, respectively. For
instance A5 (see Figure 4a), as also reported in Table 7, there

28The absolute payoff margin 1 = 10−6 EUR introduced in the NE
definition (see Equation (31)) to deal with numerical issues brought about
by solver tolerances (as explained in Section IV-E) has been applied to best
response definition accordingly.

FIGURE 4. InPs’ best response functions for GK — example of multiple
NE (a) and unique NE (b).

are |P2| = 30 NE such that P̆1 = 1.77 and P̆2 ∈ P2 = {P2 =
2.24, . . . ,P = 14.86}. In fact, as previously mentioned, all
these NE are equivalent for both InPs in terms of achieved
payoffs (Ğ1 = 1105.80, Ğ2 = 0) EUR/month: in each such
NE, i.e., for each such P̆, InP 1 offers the unit price P̆1 = 1.77
(which is strictly lower than P2 = 2.24, i.e., the lowest unit
price that InP 2 can offer) and is selected by all four SPs in the
unique NE of the respective GV (P̆) (see Table 8), while InP 2,
not being selected by any SP and therefore not selling any
capacity even when it offers P̆2 = P2, is indifferent between
all unit prices it can offer, each proving it with zero payoff
(i.e., for InP 2 any unit price P2 ∈ P2 is a best response to
P̆1). Instead, for instance B9 (see Figure 4b) there is a single
intersection between P∗1 and P∗2 , therefore a unique NE for
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GK, P̆ = (P̆1 = 0.94, P̆2 = 0.90), as reported in Table 13
as well; at the unique NE of the respective GV (P̆), InP 1 is
selected only by SP 4 to which it sells capacity at its minimum
unit price P̆1 = P1 = 0.94, i.e., at a unit price equal to its
unit cost, while all the other SPs (1, 2 and 3) select the more
cost-efficient InP (2) which at the equilibrium offers a unit
price P2 < P̆2 < P1 (see Tables 13 and 14).

As anticipated in Section IV-E, for instances B4 and B5,
there is no NE in pure strategies for the InPs’ game GK

resulting from the initial discrete InP unit price strategy sets
Pk (each made up of 30 logarithmically-spaced discrete val-
ues in [Pk ,P]), although there is at least one NE in pure
strategy for each SPs’ game GV (P) for any P ∈ P . For this
setting, the absence of NE for GK for B4 and B5 can be
witnessed in Figures 5a and 5b, respectively, where the InPs’
best response functions, i.e., P∗1 and P∗2 , do not intersect.
If we were to linearly interpolate P∗1 and P∗2 depicted

in Figure 5a and determine the intersection of their interpo-
lations, then, for instance B4, we would expect the NE InP
unit prices to be within the following ranges: P̆1 ∈ [P1 =
1.23, 1.34] and P̆2 ∈ [P2 = 1.18, 1.29]. Analogously for
B5 (see Figure 5b), we would expect P̆1 ∈ [1.03, 1.13] and
P̆2 ∈ [P2 = 0.90, 0.99]. On this basis, for each InP k ∈ K,
we set up29 an alternative unit price strategy set Pk made up
of 60 discrete values in [Pk ,P] such that the vast majority of
these values lie in the respective aforementioned range where
we expect the NE unit price to be for InP k . However, even
for the MFSG resulting from these alternative discrete InP
unit price strategy sets, for both B4 and B5, there still is no
NE in pure strategies for GK although there is at least one NE
in pure strategies for GV (P) for any P ∈ P . In absence of
an NE for GK, we consider as a solution for GK the InP unit
price profile(s) denoted by P� and determined as

P� = argmin
P=[Pk ,P−k ]∈P

[
max
k∈K

δk ([Pk ,P−k ])
]
, (40)

where

δk ([Pk ,P−k ]) =

max
P′k∈Pk

Gk ([P′k ,P−k ])− Gk ([Pk ,P−k ])

max
P′k∈Pk

Gk ([P′k ,P−k ])

is the relative difference between the payoff of InP k from
P = [Pk ,P−k ] and the maximum payoff that k can obtain
by unilaterally deviating from P. In Equation (40), we set
P� equal to the InP unit price profile(s) which provide the
minimum value for maxk∈K δk ([Pk ,P−k ]).30

29The alternative discrete InP unit price strategy sets were set up as
follows. For instance B4, P1 consists of: 50 linearly-spaced values in [P1 =
1.23, 1.34], 5 linearly-spaced values in [1.35, 2.06] and 5 linearly-spaced
values in [2.07,P = 14.86] whereas P2 consists of: 50 linearly-spaced
in values in [P2 = 1.18, 1.29], 5 linearly-spaced values in [1.3, 2.18] and
5 linearly-spaced values in [2.19,P = 14.86]. For instance B5, P1 consists
of: P1 = 0.94, (P1 + 1.03)/2, 50 linearly-spaced values in [1.03, 1.13],
3 linearly-spaced values in [1.14, 1.83] and 5 linearly-spaced values in
[1.84,P = 14.86] whereas P2 consists of: 50 linearly-spaced values in
[P2 = 0.90, 0.99], 5 linearly-spaced values in [1, 1.95] and 5 linearly-spaced
values in [1.96,P = 14.86].

30If GK had a NE P̆, then P� = P̆ and min
P∈P

max
k∈K

δk (P) = 0.

FIGURE 5. InP best response functions for GK — initial,
logarithmically-spaced sets Pk for any k ∈K.

For both B4 and B5, we have calculated P� for the MFSG
resulting from the alternative Pk described above (i.e., for
the Pk , ∀k ∈ K made up of 60 discrete values in [Pk ,P]
with the vast majority of these values where we expect the
NE to be by looking at Figures 5a and 5b, respectively).
It results that for both B4 and B5 there is a unique P�. For
B4, P� = (P�1 = 1.23,P�2 = 1.22) with maxk∈K δk (P�) =
0.53, whereas for B5, P� = (P�1 = 1.09,P�2 = 0.94)
with maxk∈K δk (P�) = 3.89, hence we deemed these P� as
reasonable solutions for GK. Notice also that, although these
P� are not NE of GK for B4 and B5, it turns out that for
B4, P�1 = 1.23 ∈ [P1 = 1.23, 1.34] and P�2 = 1.22 ∈
[P2 = 1.18, 1.29], and for B5, P�1 = 1.09 ∈ [1.03, 1.13]
and P�2 = 0.94 ∈ [P2 = 0.90, 0.99], which are the InP unit
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price ranges where we would expect the NE of GK to be by
looking at the best response functions of GK for the initial
MFSG illustrated in Figures 5a and 5b, respectively.

For both B4 and B5, the respective values of P�1 /P
�

2 are
reported in Table 11 under P̆1/P̆2, whereas the outcomes of
the respective SPs’ game GV (P�) in Table 12. In particular,
for B4, GV (P�) turns out to have two distinct NE in pure
strategies denoted by (i) and (ii) in Tables 11 and 12 and
analyzed in Section V-C.
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