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If (G, K) is a Gelfand pair, with G a Lie group of polynomial 
growth and K a compact subgroup of G, the Gelfand spectrum 
Σ of the bi-K-invariant algebra L1(K\G/K) admits natural 
embeddings into R� spaces as a closed subset.
For any such embedding, define S(Σ) as the space of 
restrictions to Σ of Schwartz functions on R�. We call 
Schwartz correspondence for (G, K) the property that the 
spherical transform is an isomorphism of S(K\G/K) onto 
S(Σ).
In all the cases studied so far, Schwartz correspondence has 
been proved to hold true. These include all pairs with G = K�

H and K abelian and a large number of pairs with G = K�H
and H nilpotent.
We prove Schwartz correspondence for the pair (U2 �

M2(C), U2), where M2(C) is the complex motion group and 
U2 = K acts on it by conjugation. Our proof goes through 
a detailed analysis of (M2(C), U2) as a strong Gelfand pair 
and reduction of the problem to Schwartz correspondence for 
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each K-type τ ∈ K̂ with appropriate control of the estimates 
in terms of τ .

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Let (G, K) be a Gelfand pair, with G a connected Lie group and K a compact 
subgroup of it. By definition, this means that the convolution algebra L1(K\G/K) of 
bi-K-invariant integrable functions on G is commutative, or, equivalently, that the com-
position algebra D(G/K) of G-invariant differential operators on G/K is commutative.

The Gelfand spectrum Σ of L1(K\G/K) is the space of bounded spherical functions 
on G with the topology induced by the weak* topology on L∞(K\G/K). For each choice 
of a finite generating subset D = {D1, . . . , D�} of D(G/K), Σ can be homeomorphically 
embedded with closed image ΣD into C�, by assigning to each bounded spherical function 
ϕ = ϕξ ∈ Σ the �-tuple ξ = (ξ1, . . . , ξ�) if Djϕ = ξjϕ for j = 1, . . . , � [6]. We call ΣD the 
embedded spectrum of L1(K\G/K) relative to the generating system D and regard the 
spherical transform Gf of f ∈ L1(K\G/K) as a map defined on ΣD by

Gf(ξ) =
∫
G

f(x)ϕξ(x−1) dx ξ ∈ ΣD.

If G has polynomial volume growth and the generators Dj ∈ D are taken essentially 
self-adjoint, the eigenvalues are real, so that ΣD ⊂ R�. We refer to [3] for a presentation 
of Gelfand pairs of polynomial growth and the proofs of various preliminary results that 
will be needed in this paper.

We say that Schwartz correspondence holds for a Gelfand pair (G, K) of polynomial 
growth if the following property is satisfied:

(S) The spherical transform maps the bi-K-invariant Schwartz space S(K\G/K) iso-
morphically onto the space S(ΣD) of restrictions to ΣD of Schwartz functions on R�.

This is an intrinsic property of the pair because it does not depend on the choice 
of the generating system D [2,3,8]. It has been proved to be satisfied by all Gelfand 
pairs (G, K) with polynomial growth on which it has been tested so far. These include 
compact pairs (i.e., with G compact) [3], various families of nilpotent pairs (i.e., with 
G = K � N and N nilpotent) [1,2,7–9], and pairs with G = K � H and K abelian [3].

In this paper we go one step ahead, considering an example of Gelfand pair of poly-
nomial growth that is not of the above mentioned types.

In order to locate this example in a more general perspective, it is convenient to 
recall the notion of strong Gelfand pair and the general structure of Gelfand pairs with 
polynomial growth.
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Given a Lie group G and K ⊂ G compact, we denote by Int(K) the group of inner 
automorphisms of G induced by elements of K and say that a function is K-central if 
it is Int(K)-invariant. The pair (G, K) is said to be a strong Gelfand pair if the algebra 
L1(G)Int(K) of K-central integrable functions is commutative.

Since L1(K\G/K) ⊂ L1(G)Int(K), a strong Gelfand pair is obviously a Gelfand pair. 
Moreover, (G, K) is strong Gelfand if and only if 

(
Int(K) � G, Int(K)

)
is Gelfand (see 

[3,15] and Section 2.2 for details).
When (G, K) is a strong Gelfand pair, we must distinguish between the differ-

ent notions of spherical functions, Gelfand spectrum and Schwartz correspondence 
for the (non-strong) pairs (G, K) and 

(
Int(K) � G, Int(K)

)
. In particular, we say 

that property (S) holds for the strong pair (G, K) if it holds for the associated pair (
Int(K) � G, Int(K)

)
. Explicitly, this means that the spherical transform maps the K-

central Schwartz space S(G)Int(K) isomorphically onto S(ΣD), where ΣD is an embedded 
spectrum of L1(G)Int(K).

It follows from Vinberg’s structure theorem [18, Thm. 13.3.20] and classification [19]
that the list of irreducible strong Gelfand pairs (G, K) of polynomial growth consists of 
the three families

(SOn � Rn, SOn) , (Un � Cn, Un) , (Un � Hn, Un) , (1.1)

where Hn is the (2n + 1)-dimensional Heisenberg group.
Irreducibility of (G, K) means that there is no nontrivial decomposition G = G1×G2, 

K = K1 ×K2 with Ki ⊂ Gi for i = 1, 2. A simple adaptation of the proof of Prop. 3.2 
in [9] allows us to deduce property (S) for a reducible strong Gelfand pair from its 
validity for each irreducible component. Moreover, the positive results for the Schwartz 
correspondence in [3] include the lowest dimensional cases in (1.1), where K ∼= U1 is 
abelian. So attention must be focused on the irreducible strong pairs in (1.1) with K
nonabelian.

We will use the notation Mn(R) = SOn � Rn and Mn(C) = Un � Cn, for the real 
and complex motion groups, respectively.

The main result of this paper is the following.

Theorem 1.1. Property (S) holds for the strong Gelfand pair 
(
M2(C), U2

)
.

The proof of Theorem 1.1 is based on decomposition into K-types, a notion that we 
now briefly explain.

If (G, K) is a strong Gelfand pair, the algebra L1(G)Int(K) splits as the direct sum of 
the subalgebras L1(G)Int(K)

τ , τ ∈ K̂, of K-central functions f which are of K-type τ (see 
Section 2 for definitions). Correspondingly, the spectrum Σ of L1(G)Int(K) decomposes as 
the disjoint union of the spectra Στ of L1(G)Int(K)

τ . It follows that the spherical transform 
Gτ on L1(G)Int(K)

τ is given by

Gτf = (Gf)|Στ .
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The following general principle allows us to reduce verification of property (S) for a 
strong Gelfand pair (G, K) to a Schwartz extension property for single K-type compo-
nents.

Theorem 1.2 ([3, Prop. 5.2 and Thm. 7.1]). Property (S) holds for a strong Gelfand pair 
(G, K) of polynomial growth if and only if the following condition is satisfied:

(S’) given f ∈ S(G)Int(K) and N ∈ N, for each K-type component fτ of f , τ ∈ K̂, Gfτ
admits a Schwartz extension gNτ such that ‖gNτ ‖(N) is rapidly decaying in τ .

The notion of rapid decay in τ will be defined in Section 4.5, see Remark 4.7.
Restricting to our case, (G, K) =

(
M2(C), U2

)
, and denoting by Vτ the represen-

tation space of a given τ ∈ K̂, S(G)Int(K)
τ is isomorphic, as a topological algebra, to 

S
(
C2, End(Vτ )

)K consisting of K-equivariant End(Vτ )-valued Schwartz functions on C2. 
This isomorphism, introduced in Lemma 4.1, is quite standard in spherical analysis on 
semisimple groups [3,5,15,17].

The End(Vτ )-valued model has various advantages. Since functions are defined on C2

standard Fourier analysis becomes available. Moreover, exploiting the algebraic proper-
ties of the representation τ we can express any F ∈ S

(
C2, End(Vτ )

)K as

F =
n∑

j=0
Dj

ngj , (1.2)

where n = dimVτ , Dn is the matrix valued differential operator defined in (4.9) and the 
gj are K-invariant scalar-valued Schwartz functions on C2 (cf. Corollary 5.6).

Formula (1.2) together with property (S) for the ordinary (non-strong) Gelfand pair 
(G, K) =

(
M2(C), U2

)
, proved in [2, Theorem 6.1] and applied here to the functions 

gj , gives a Schwartz extension of the Gelfand transform of F (cf. Corollary 6.3). This 
argument proves that, given f ∈ S(G)Int(K), the spherical transform Gτfτ of each K-
type fτ admits a Schwartz extension.

However, the norm estimates that one can deduce do not guarantee the rapid decay 
requested by property (S’). To overcome this problem we use another method to extend 
each Gτfτ to a Schwartz function. This seems to make the previous part of the proof 
useless, but this is not the case, because there is a crucial point in the proof where 
one needs to know that certain linear systems are solvable (cf. Lemma 7.4), and this is 
guaranteed by a priori knowledge that a Schwartz extension exists.

The latter construction is based on a Whitney-type extension argument, in the spirit 
of the previous proofs of Schwartz correspondence [2,7–9].

Despite the fact that 
(
M2(C), U2

)
is only a special case, the proof requires nonethe-

less a considerable machinery of both analytic and algebraic nature. The same tools of 
representation theory of SU2 that are used here can be adapted to prove Schwartz cor-
respondence for the pairs 

(
Mn(R), SOn

)
with n = 3, 4. However, even these simple cases 
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require some extra arguments on the analytic side and we treat them in a forthcoming 
paper. We believe that the difficulties in extending our method to highter dimensional 
cases, such as (Mn(C), Un) with n ≥ 3, should mostly be of algebraic nature.

The paper is organized as follows.
In Sections 2 and 3 we establish the basic terminology, summarize the basic relations 

among the defined objects, set up notation for the representations τ = τm,n of K = U2, 
and introduce the complex motion group G = M2(C). We also describe the algebra 
D(G)Int(K) for this case, selecting a privileged system of four generators, D1, . . . , D4, the 
last two being generators of D(K)Int(K), the centre of D(K).

In Section 4 we establish the isomorphism Aτ from L1(G)Int(K)
τ to L1(C2, End(Vτ ))K

and describe the operator algebra 
(
D(C2) ⊗End(Vτ )

)K . In particular, under conjugation 
by Aτ , the operators D3, D4 are mapped into scalar multiples of the identity, so that 
the two operators AτDiA

−1
τ , i = 1, 2, are sufficient to generate 

(
D(C2) ⊗End(Vτ )

)K . In 
Section 4.5, we describe, for D = {D1, . . . , D4}, the embedded spectrum ΣD ⊂ R4. For 
τ = τm,n, the image Στ

D of Στ under this embedding is the intersection of ΣD with the 
affine two-dimensional subspace with equations ξ3 = n2 + 2n and ξ4 = m.

In Section 5, we describe Στ
D as the union of n + 1 half lines in the ξ1, ξ2 plane, 

exiting from the origin and only depending on n. Moreover, we study the structure of 
K-equivariant End(Vτ )-valued functions and obtain formula (1.2).

In Section 6 we prove Schwartz correspondence for Gτ and that the inverse transforms 
G−1
τ satisfy norm estimates that grow at most polynomially in τ . These estimates are 

used in the subsequent section.
Finally, in Section 7 we produce our Whitney-type extension and prove condition (S’).
We wish to thank the referee whose comments helped us to considerably improve the 

presentation of this work.

2. Gelfand pairs and strong Gelfand pairs

In this section we collect the main notation and conventions that will be used in the 
paper, recalling some basic facts at the same time.

2.1. Underlying notation and definitions

Let G be a Lie group, K a compact group and σ an action of K on G. We introduce 
the following notation.

• If X(G) is a space of scalar-valued functions on G, X(G)σ(K) denotes the subspace 
of σ(K)-invariant elements. We simply write X(G)K if there is no ambiguity on the 
action σ.

• In particular, if K ⊆ G and Int(K) denotes the group of conjugations by elements 
of K, X(G)Int(K) is the space of K-central functions on G.
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• A locally integrable function f on G is called of K-type τ , with τ ∈ K̂, if f = f ∗K
(dτχτ ), where dτ and χτ are dimension and character of τ . The symbol X(G)Int(K)

τ

denotes the subspace of K-central functions of K-type τ in X(G).
• More generally, if Vπ is a finite-dimensional representation space of K and X(G, Vπ)

is a space of Vπ-valued functions on G, we denote by X(G, Vπ)K the space of K-
equivariant elements F of X(G, Vπ), i.e., such that, for all x ∈ G and k ∈ K, 
F
(
σ(k)x

)
= π(k)F (x).

• By D(G) we denote the algebra of left-invariant differential operators on G.
By D(G)Int(K) ∼= U(g)Ad(K) we denote the subalgebra of those which are also invari-
ant under Int(K).

• By D(G/K) ∼= U(g)Ad(K)/
(
U(g)Ad(K) ∩ U(g)k

)
we denote the algebra of G-invariant 

differential operators on G/K.

The following properties hold [15]:

(i) for each τ ∈ K̂, L1(G)Int(K)
τ is an algebra;

(ii)
∑

τ L
1(G)Int(K)

τ is dense in L1(G)Int(K) and given f =
∑
τ
fτ , g =

∑
τ
gτ with fτ , gτ ∈

L1(G)Int(K)
τ , then

f ∗ g =
∑
τ

fτ ∗ gτ ;

in particular, fτ ∗ gτ ′ = 0 if τ �∼ τ ′;
(iii) with τ0 denoting the trivial representation of K, L1(G)Int(K)

τ0 = L1(K\G/K);
(iv) if G = K � H, the quotient G/K is naturally identified with H itself and, under 

this identification, L1(K\G/K) ∼= L1(H)K , and D(G/K) ∼= D(H)K , the algebra 
of left- and K-invariant differential operators on H.

2.2. Gelfand pairs, strong Gelfand pairs

Definition 2.1. Let G be a Lie group and K a compact subgroup of G.

(a) (G, K) is called a Gelfand pair if the algebra L1(K\G/K) is commutative;
(b) (G, K) is called a strong Gelfand pair if the algebra L1(G)Int(K) is commutative;
(c) for τ ∈ K̂, (G, K, τ) is called a commutative triple if the algebra L1(G)Int(K)

τ of 
K-central functions of K-type τ is commutative.

It follows from (iv) above that, if K ⊂ G and acts on G as Int(K), then 
(
Int(K) �

G, Int(K)) is a Gelfand pair if and only if (G, K) is a strong Gelfand pair.
In the literature it is more common to find the pair 

(
Int(K) �G, Int(K)) replaced by 

(K ×G, diagK). The two pairs are equivalent because the semi-direct product K �G is 
isomorphic to the direct product K ×G via the map ι : K ×G → Int(K) � G given by
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ι(k, g) = (k, gk−1) ,

which identifies diagK ⊂ K ×G with Int(K) � {e}.
As a consequence of (i)-(iii), we have the following implications:

(G,K) strong Gelfand pair�	
(G,K, τ) commutative triple for every τ

⎫⎬
⎭ =⇒

⎧⎨
⎩

(G,K) Gelfand pair�	
(G,K, τ0) commutative triple

(2.1)
Each of the three types of commutative structure listed in Definition 2.1 has its own 

kind of spherical functions, defined as the normalized joint eigenfunctions of the appro-
priate differential operators and with the appropriate invariance properties. Precisely,

(a’) if (G, K) is a Gelfand pair, the bi-K-invariant eigenfunctions of all operators in 
D(G/K), taking value 1 at the identity element;

(b’) if (G, K) is a strong Gelfand pair, the K-central eigenfunctions of all operators in 
D(G)Int(K), taking value 1 at the identity element;

(c’) if (G, K, τ) is a commutative triple, the K-central eigenfunctions of K-type τ of all 
operators in D(G)Int(K), taking value 1 at the identity element.

2.3. Spherical transforms

We refer to [15] and the references therein for the material in this section. The bounded
spherical functions defined in (a’), resp. (b’), (c’), determine the multiplicative functionals 
on the corresponding L1 algebra in (a), resp. (b), (c), via the formula

f �−→
∫
G

f(x)ϕ(x−1) dx (ϕ spherical).

In each case, the bounded spherical functions form the Gelfand spectrum of the cor-
responding L1 algebra. Each Gelfand spectrum is endowed with the weak* topology 
induced from L∞(G), coinciding with the compact-open topology.

For given f , the map ϕ �−→
∫
G
f(x)ϕ(x−1) dx, defined on the spectrum Σ, is the 

spherical transform of f in the given structure.
If D = {D1, . . . , D�} is a system of generators of the appropriate algebra of differential 

operators in (a’)-(c’), we denote by ΣD ⊂ C� the corresponding embedded spectrum, 
where each bounded spherical function is represented by the �-tuple of its eigenvalues 
w.r. to the elements of D.

Then Σ and ΣD are homeomorphic and ΣD is closed in C� [6]. If G has polynomial 
growth and the � generators are symmetric, then ΣD ⊂ R� [3, Lemma 4.1].

Assume that (G, K) is a strong Gelfand pair, as we will do in the course of this paper. 
We denote by Σ its spectrum and, for τ ∈ K̂, we denote by Στ the Gelfand spectrum 
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of the commutative triple (G, K, τ). In particular, Στ0 is the Gelfand spectrum of the 
underlying (non-strong) Gelfand pair (G, K).

By [15, Proposition 7.3] each ϕ ∈ Σ has a K-type, so that

Σ =
⋃
τ∈K̂

Στ ,

where the union is disjoint and each term is open and closed.
By G : L1(G)Int(K) −→ C0(Σ) we denote the spherical transform of the strong Gelfand 

pair (G, K), i.e. of the (non-strong) pair (Int(K) �G, Int(K)). Then its restriction Gτ from 
L1(G)Int(K)

τ to C0(Στ ) is the spherical transform of the commutative triple (G, K, τ), and 
Gτ0 the spherical transform of the (non-strong) Gelfand pair (G, K).

2.4. Notation for U2 and its irreducible representations

First of all, we denote by τn the irreducible representation of SU2 of dimension n + 1
and by Vn the (abstract) representation space for τn. We will often use the realization 
of Vn as the space P(n,0)(C2) of holomorphic polynomials on C2 that are homogeneous 
of degree n, with

[
τn(k)p

]
(z) = p(k−1z) , k ∈ SU2 .

We then define, for n ≥ 0 and m ∈ n + 2Z, the representation τm,n of U2 on Vn such 
that, for k = eiθk′ with k′ ∈ SU2,

τm,n(k) = e−imθτn(k′) .

For Vn = P(n,0)(C2), this takes the form

[
τm,n(k)p

]
(z) = e−imθp(k′−1

z) = (det k)(n−m)/2 p(k−1z) , k ∈ U2 . (2.2)

In particular,

[
τn,n(k)p

]
(z) = p(k−1z) , k ∈ U2 .

The set

E =
{
(m,n) : n ≥ 0 , n−m ∈ 2Z

}
, (2.3)

parametrizes Û2 via (2.2).
We also fix the basis of su2

X1 =
[
i 0
0 −i

]
, X2 =

[
0 1
−1 0

]
, X3 =

[
0 i
i 0

]
,
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and set X4 = iI to complete a basis of u2.
Choosing t = RX1 as a maximal toral subalgebra of su2, the elements X2 ± iX3 of 

suC2 are root vectors, relative to the roots ∓2i respectively.
Moreover, each monomial zj1z

n−j
2 , j = 0, . . . , n is a weight vector for the representation 

τn, with weight (n − 2j)i. With respect to the Fischer inner product

〈p, q〉n = 1
n! p(∂z)q

∗ where q∗(z) = q(z̄) ,

the normalized monomials

ejn(z) =
(
n

j

)1/2

zj1z
n−j
2 j = 0, . . . , n (2.4)

form an orthonormal basis of Vn.

3. The complex motion group M2(C) and the strong Gelfand pair 
(
M2(C), U2

)
The complex motion group M2(C) is the semidirect product U2�C2, where the action 

of U2 on C2 is the natural one.
It is easy to check that 

(
M2(C), U2, τm,n

)
is a commutative triple for every m, n (see 

e.g. [15, Thm. 10.1, Cor. 10.4]). By (2.1), this gives

Proposition 3.1. The pair 
(
M2(C), U2

)
is a strong Gelfand pair.

We write elements of M2(C) as pairs (k, z) ∈ U2 ×C2 with product

(k, z)(k′, z′) = (kk′, z + kz′) .

The adjoint action of U2 on the Lie algebra m2(C) ∼= u2 ×C2 is

Ad(k)(U, z) = (kUk−1, kz) ,

which splits m2(C) as su2 ×R(iI) ×C2. We decompose U ∈ u2 as X + itI with X ∈ su2
and 2it = trU with t ∈ R.

By [8, Thm. 7.5] we deduce the following.

Proposition 3.2.

(i) The algebra of Ad(U2)-invariant polynomials on m2(C) is freely generated by the 
four polynomials

p1 = |z|2 , p2 = z∗Xz , p3 = detX = |X|2 , p4 = t ,

where z is represented by the column vector 
[
z1
z

]
.

2
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(ii) The algebra D(M2(C))Int(U2) is freely generated by

D1 = Δz , D3 = Ω , D4 = iX4 ,

and

D2 = i
(
Δz2 − Δz1

)
X1 − 4

(
∂z̄1∂z2 − ∂z1∂z̄2

)
X2 + 4i

(
∂z1∂z̄2 + ∂z̄1∂z2

)
X3 ,

where Ω = −X2
1 −X2

2 −X3
3 is the Casimir operator on SU2 and

Δz = Δz1 + Δz2 , Δzi = −4∂zi∂z̄i .

Proof. For the proof of (i) see [8, Thm. 7.5].
In order to obtain generators Dj of D(M2(C))Int(U2), we apply the symmetrization λ′

in [15, formula (2.4)] to the pj ’s. Allowing multiplication by scalar coefficients in order 
to obtain symmetric operators, positive when they have a sign, we set

D1 = Δz , D3 = Ω , D4 = iX4 ,

where Ω = −X2
1 −X2

2 −X3
3 is the Casimir operator on SU2 and

Δz = Δz1 + Δz2 , Δzi = −4∂zi∂z̄i .

To obtain D2, observe that, if p(x, z) =
∑

j qj(x)rj(Re z, Im z), the symmetrization λ′

on M2(C) is symmetrization on U2 followed by symmetrization on C2 on each summand, 
i.e.,

λ′(p)f(k, z) =
∑
j

rj(∂Rew, ∂Imw)|w=0qj(∂x)|x=0f
(
(k, z)(e, w)(expK x, 0)

)
. �

(3.1)

Remark 3.3. It is worth noticing that 
(
SM2(C), SU2

)
, where SM2(C) = SU2 � C2, is a 

Gelfand pair but not a strong one. To see this, one can use the representation theoretic 
argument in [15, Cor. 10.4] or, alternatively, observe that the polynomial

q(X, z) = tzJXz , where J =
[

0 1
−1 0

]

on su2 ×C2 is SU2-invariant, but its symmetrization

λ′(q) = −2i∂z1∂z2X1 − (∂2
z1 + ∂2

z2)X2 + i(∂2
z1 − ∂2

z2)X3

does not commute with D2.
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4. K-type subalgebras and End(Vn)-valued spherical analysis

This section deals with the isomorphisms between K-type subalgebras and their 
matrix-valued realizations. We start recalling some general facts, which can be found 
in [17, vol. II, Ch. 6] and in [5,15]. Then we specialize them to the case of the com-
plex motion group. The aforementioned isomorphisms are extended to the differential 
operators in D to produce “End(Vn)-valued” differential operators on C2 with a suit-
able invariance. We then show how these isomorphisms relate spherical functions of the 
appropriate commutative L1-algebras. Finally, we determine the embeddings of spectra 
Στ in R2.

4.1. General facts

Given a Lie group G together with a compact subgroup K and a representation τ ∈ K̂, 
there is a one-to-one correspondence between K-central scalar-valued functions f on G of 
K-type τ and bi-τ -equivariant integrable functions F from G to End(Vτ ), i.e., verifying 
the identity

F (k1xk2) = τ(k−1
2 )F (x)τ(k−1

1 ) , ∀ k1, k2 ∈ K ∀x ∈ G. (4.1)

This correspondence is given by

f �−→ F (x) =
∫
K

f(xk)τ(k) dk , F �−→ f(x) = dτ trF (x) , (4.2)

preserves integrability and respects convolution, once this is defined on End(Vτ )-valued 
functions as

F1 ∗ F2(x) =
∫
G

F2(y−1x)F1(y) dy .

Assume now that G = K � H and denote by h �→ kh the action of k ∈ K on the 
group H. If F satisfies (4.1), its restriction F� to H satisfies the identity

F�(kh) = F (e, kh) = F ((k, e)(e, h)(k−1, e)) = τ(k)F�(h)τ(k−1) , ∀ k ∈ K , (4.3)

and completely determines F via (4.1).
In the semidirect product case, the correspondence in (4.2) between f and F takes 

the following explicit form:

f(k, h) = dτ
∑
i,j

fij(h)(τ(k))ij , (4.4)

where fij(h) are the components of F (e, h) and (τ(k))ij the coefficients of τ in some 
orthonormal basis of Vτ .



12 F. Astengo et al. / Journal of Functional Analysis 285 (2023) 110068

 

4.2. The special case G = M2(C), K = U2

For notational convenience, from now on we will use the symbol G for M2(C) and 
K for U2. It follows from the definition (2.2) of τm,n that the equivariance condition 
(4.3) does not depend on m. This allows us to introduce the representation τ̃n of K on 
End(Vn) defined by

τ̃n(k)A = τm,n(k)Aτm,n(k−1) ∀k ∈ K, ∀A ∈ End(Vn) (4.5)

and to write the equivariance condition (4.3) for a function F : C2 −→ End(Vn) in the 
form

F (eiθkz) = τ̃n(eiθk)F (z) = τn(k)F (z)τn(k−1) ∀θ ∈ R ∀ k ∈ SU2 ∀z ∈ C2 .

(4.6)
We denote by L1(C2, End(Vn)

)K , and similarly for other function spaces, the subspace 
of K-equivariant functions.

Adapting (4.2) to the case of the complex motion group we obtain the following

Lemma 4.1. The two maps

Am,n : f(k, z) �−→ F (z) = τm,n

(
f(·, z)

)
=

∫
K
f(k, z)τm,n(k) dk

A−1
m,n : F (z) �−→ f(k, z) = (n + 1)tr

(
τm,n(k−1)F (z)

)
establish a one-to-one correspondence between locally integrable K-central functions f on 
G of K-type τm,n and locally integrable K-equivariant End(Vn)-valued functions on C2.

In particular, Am,n is an isomorphism of algebras from L1(G)Int(K)
τm,n onto

L1(C2, End(Vn)
)K and 

√
n + 1Am,n is unitary from L2(G)Int(K)

τm,n onto L2(C2, End(Vn)
)K ,

where

‖F‖2
2 =

∫
C2

∥∥F (z)
∥∥2
HS

dz . (4.7)

Remark 4.2. It follows from Lemma 4.1 that the algebras L1(G)Int(K)
τm,n are all isomorphic 

to L1(C2, End(Vn)
)K , which is independent from m. This is coherent with the fact that, 

for every m ∈ Z, the map

μm,n : f(k, z) �−→ (det k)(m−n)/2f(k, z)

is an isomorphism from L1(G)Int(K)
τn,n onto L1(G)Int(K)

τm,n which intertwines the action of G
and satisfies Am,n ◦ μm,n = An,n.
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Remark 4.3. For n = 0, and in particular for the trivial representation τ0,0, Lemma 4.1
establishes the trivial fact that K-invariant (scalar) functions on C2 coincide with re-
strictions to {e} ×C2 of bi-K-invariant functions on G and that, via this identification, 
L1(K\G/K) is isomorphic to L1(C2)K .

4.3. Equivariant differential operators

We denote by 
(
D(C2) ⊗ End(Vn)

)K the algebra of “End(Vn)-valued” differential op-
erators on C2 which commute with translations and with the action of U2 on smooth 
End(Vn)-valued functions F on C2 given by

k : F �−→ F k(z) = τm,n(k)F (k−1z)τm,n(k)−1 .

We recall the linear symmetrization λ′ : P(u2 × C2) −→ D(G) defined in (3.1) for 
polynomials in separate variables. The following statement, proved in [15, Cor. 2.3 and 
Prop. 2.4], gives the conjugation formula for λ′(p) under Am,n.

Lemma 4.4. Let p(x, z) =
∑

j qj(x)rj(z) be a polynomial on u2 × C2. Defining q̌j(x) =
qj(−x), we have the identity

Am,nλ
′(p)A−1

m,n =
∑
j

rj(∂) ⊗ dτm,n

(
λK(q̌j)

)
.

Conjugation by Am,n is a homomorphism of D(G)Int(K) onto 
(
D(C2) ⊗ End(Vn)

)K
and its kernel consists of the operators which vanish on functions of K-type τm,n.

In particular, this lemma establishes the correspondence

D1 ←→ Δz ⊗ I

D2 ←→ i
(
Δz2 − Δz1

)
⊗ dτn(X1) − 4

(
∂z̄1∂z2 − ∂z1∂z̄2

)
⊗ dτn(X2)

+ 4i
(
∂z1∂z̄2 + ∂z̄1∂z2

)
⊗ dτn(X3)

D3 ←→ dτm,n(Ω) = 1 ⊗ (n2 + 2n)I

D4 ←→ dτm,n(iX4) = 1 ⊗mI .

(4.8)

Since the operators D1, . . . , D4 generate D(G)Int(K), by Lemma 4.4 and (4.8), we 
conclude that 

(
D(C2) ⊗ End(Vn)

)K is generated (as algebra) by the operators

Am,nD1A
−1
m,n = Δz , Am,nD2A

−1
m,n

def= Dn . (4.9)

Since X1, X2, X3 ∈ su2, the operator Am,nD2A
−1
m,n does not depend on m.

For completeness we show that Δz and Dn are not free generators.
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Lemma 4.5. The operators Δj
zDk

n with j ∈ N and 0 ≤ k ≤ n form a basis of 
(
D(C2) ⊗

End(Vn)
)K .

Proof. Taking Fourier transform in z, the symbol D̂n of Dn can be expressed as an 
(n + 1) × (n + 1) matrix with polynomial entries in the dual variable ζ. The coefficients 
qn,k of the characteristic equation

det
(
λI − D̂n(ζ)

)
= λn+1 +

n∑
k=0

λkqn,k(ζ) = 0 (4.10)

are K-invariant polynomials, hence polynomials pn,k in |ζ|2. Applying the Cayley-
Hamilton theorem and undoing Fourier transform,

Dn+1
n =

n∑
k=0

Dk
npn,k(Δz) .

It remains to prove that D̂n does not solve any equation of smaller degree in λ than 
(4.10). This follows from the fact that, by (4.8),

D̂n(0, 1) = idτn(X1) = diag(−n, . . . ,−n + 2�, . . . , n) , (4.11)

and the matrix has n + 1 distinct eigenvalues. �
4.4. End(Vn)-valued spherical functions

As recalled in Section 2.3 the characters of L1(G)Int(K)
τm,n are given by integration against 

the bounded spherical functions of K-type τm,n.
Since, by Lemma 4.1, Am,n is an algebra isomorphism, one can see that the characters 

of L1(C2, End(Vn)
)K have the form

F −→ (n + 1)
∫
C2

tr
(
F (z)Am,nϕ(−z)

)
dz , (4.12)

where ϕ is a bounded spherical function of the strong Gelfand pair (G, K) of K-type 
τm,n.

It is easy to prove that ϕ(k, 0) = 1
n+1 χτm,n

(k), so that Am,nϕ(0) = 1
(n+1)2 I.

Definition 4.6. We call End(Vn)-valued spherical functions the functions

Φ(z) = (n + 1)2(Am,nϕ)(z) , (4.13)

where ϕ is a spherical function of the strong Gelfand pair (G, K) of K-type τm,n.
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More frequently, cf. [17, vol. II, ch. 6], these are called τm,n-spherical functions and 
the scalar-valued ones τm,n-spherical trace functions.

By Remark 4.2, the definition does not depend on m. More precisely, ϕ is a spherical 
function of K-type τn,n if and only if μm,nϕ is a spherical function of K-type τm,n. In 
this case Am,nμm,nϕ = An,nϕ.

Moreover, comparing (4.12) and (4.13) we conclude that the bounded End(Vn)-valued 
spherical functions are the K-equivariant functions Φ which define nontrivial multiplica-
tive functionals on L1(C2, End(Vn)

)K through the formula

F �−→ 1
n + 1

∫
C2

tr
(
F (z)Φ(−z)

)
dz . (4.14)

Finally, by [15, Corollary 6.2], the End(Vn)-valued spherical functions are charac-
terized by the property of being the joint eigenfunctions Φ of Δz and Dn which are 
K-equivariant, with Φ(0) = I.

4.5. Embedded spectra

We fix here the notation for the embeddings of spectra mentioned in the introduc-
tion. In Proposition 3.2, we have fixed a system D = {D1, D2, D3, D4} of generators 
of D(G)K . By [13], the Dj , that we have chosen to be symmetric, are essentially self-
adjoint. As mentioned in the Introduction, this has the advantage that the eigenvalues 
of the spherical functions are all real.

Given a bounded spherical function ϕ of the strong Gelfand pair (G, K), the symbol 
ξ(ϕ) stands for the quadruple (ξ1, ξ2, ξ3, ξ4) ∈ R4 of eigenvalues of ϕ with respect to 
D1, D2, D3, D4 respectively. Moreover we recall that ΣD is the embedded spectrum

ΣD =
{
ξ(ϕ) ∈ R4 : ϕ ∈ Σ

}
.

By (4.8), if ϕ is of K-type τm,n then

ξ(ϕ) = (ξ1, ξ2, n2 + 2n,m) ;

moreover, by Lemma 4.4 the first two components ξ1, ξ2 are the eigenvalues of Φ =
(n + 1)2Am,nϕ under the action of Δz and Dn respectively. In accordance with [3, Sect. 
6], we set

Σn
D =

{
(ξ1, ξ2) : (ξ1, ξ2, n2 + 2n,m) ∈ ΣD

}
,

which is independent of m by Remark 4.2 and will be described in Proposition 5.4. 
Finally,

ΣD =
⋃

Σn
D ×

{
(n2 + 2n,m)

}
, (4.15)
(m,n)∈E
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where E =
{
(m, n) : n ≥ 0 , n −m ∈ 2Z

}
has been introduced in Section 2.4.

Remark 4.7. Since the type τ of a given spherical function is identified by (ξ3, ξ4), rapid 
decay in τ = τm,n is to be understood as rapid decay in (ξ3, ξ4) = (n2 +2n, m), therefore 
in (n, m).

Coherently with the notation in Section 2.3, we shall consider the spherical transform 
Gτm,n

f , of f ∈ L1(G)Int(K)
τm,n , as a function defined on Σn

D ⊂ R2. For better clarity, we will 
use the slightly different notation Gn for the spherical transform of L1(C2, End(Vn)

)K
defined by (4.14).

In order to prove Schwartz correspondence for each K-type spherical transform 
Gτm,n

, it is convenient to adopt the End(Vn)-valued model, replacing S(G)Int(K)
τm,n with 

S
(
C2, End(Vn)

)K . This allows us to take advantage of the algebraic structure of End(Vn)
and to completely disregard the parameter m.

5. Gelfand spectrum of L1(C2, End(Vn)
)K and decomposition of End(Vn)-valued 

functions

In this section we study End(Vn)-valued K-equivariant functions, i.e., functions F :
C2 −→ End(Vn) satisfying (4.6). A crucial rôle will be played by the operator Dn defined 
in (4.9).

The main results are an explicit formula for the spherical functions and their eigenval-
ues (Proposition 5.4) and the decomposition (1.2) of a function F ∈ S

(
C2, End(Vn)

)K
as the sum of terms of the form Dj

ngj where the scalar valued functions gj are in S(C2)K
(Corollary 5.6).

To achieve these results, the first ingredient will be the decomposition (5.3) of End(Vn)
into its invariant irreducible subspaces relative to the representation τ̃n defined in (4.5).

Denoting by

B1
n = D̂n(0, 1) = idτn(X1) = diag(−n, . . . ,−n + 2�, . . . , n) (5.1)

the matrix introduced in (4.11), we will determine which polynomials in B1
n belong to 

the irreducible subspaces of End(Vn).
Via Fourier transform, we will then be able to describe the equivariant Schwartz 

functions taking values in each irreducible subspace of End(Vn).
Throughout this section we exploit the following basic fact, which explains the im-

portance of diagonal matrices in our analysis.
Recall the diffeomorphism

z = (z1, z2) �−→ kz =
[

z̄2 z1
−z̄ z

]
(5.2)
1 2
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which identifies the unit sphere S3 with the group SU2 and denote by o the base point 
(0, 1).

Then we can write any z ∈ C2 as z = rz′ with r ∈ R and z′ ∈ S3 and when 
F : C2 −→ End(Vn) is a K-equivariant function, by (4.6)

F (z) = F (rkz′o) = τn(kz′)F (ro) τn(k−1
z′ ).

Since o is stable under the action of matrices of the form 
(
e2iθ 0
0 1

)
= eiθ exp(θX1), 

we also have that

F (ro) = F (r eiθ exp(θX1)o)

= τn(exp(θX1))F (ro) τn(exp(−θX1))
∀r, θ ∈ R .

Differentiating with respect to θ we obtain that the matrix F (ro) commutes with 
the matrix dτn(X1), which is diagonal with distinct eigenvalues. We conclude that the 
matrix F (ro) is diagonal. Moreover, by equivariance,

F (−ro) = F (ro)

and the matrices F (ro) with r ≥ 0 determine F uniquely.

5.1. Decomposition of End(Vn)

Identifying End(Vn) with V ′
n ⊗ Vn, the representation τ̃n in (4.5) is equivalent to the 

tensor product τ ′m,n ⊗ τm,n, where τ ′m,n ∼ τ−m,n is the contragredient representation of 
τm,n.

Since the centre of K = U(2) acts trivially on End(Vn), we restrict τ̃n to SU2. We 
have

τ̃n |SU2
∼ τ ′n ⊗ τn ∼ τ2n ⊕ τ2n−2 ⊕ · · · ⊕ τ2 ⊕ τ0 ,

and, correspondingly,

End(Vn) = Wn
n ⊕Wn−1

n ⊕ · · · ⊕W0
n , (5.3)

where dimW�
n = 2� + 1.

Since the matrix B1
n defined in (5.1) has distinct eigenvalues, any diagonal matrix 

B = diag(b0, b1, . . . , bn), can be written as a polynomial in B1
n. Indeed, there is a unique 

polynomial p of degree at most n such that p(−n + 2�) = b�, � = 0, . . . , n. Then B =
p
(
B1

n

)
.

Lemma 5.1. For every � = 0, . . . , n, let B�
n be the subspace of diagonal matrices in W�

n.
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(i) The subspace B�
n is one-dimensional.

(ii) The subspace B1
n consists of the scalar multiples of B1

n.
(iii) For general �, there is a monic polynomial q�n of degree � such that B�

n consists of 
the scalar multiples of the matrix

B�
n = q�n(B1

n). (5.4)

(iv) For a polynomial p of degree at most n, p(B1
n) ∈

∑
�≤j W�

n if and only if deg (p) ≤ j.

Proof. Since dτn(X1) has distinct eigenvalues, diagonal matrices are those that commute 
with dτn(X1). Since τ̃n restricted to W�

n is equivalent to τ2�, it contains the null weight 
with multiplicity one, and this proves (i).

Consider now the τ̃n-invariant subspace W generated by dτn(X1). Then

W = spanC

{
τn(k)dτn(X1)τn(k)−1 : k ∈ SU2

}
= dτn(suC2 ) ,

which is a 3-dimensional invariant subspace. So it must coincide with the component W1
n

in (5.3). This proves (ii).
The statements (iii) and (iv) are trivial for � = 0 and have been proved above for 

� = 1. For � ≥ 2, item (iv) follows by induction from the fact that τ̃n|W�−1
n

∼ τ2�−2 and 
the decomposition

τ2�−2 ⊗ τ2 ∼ τ2� ⊕ τ2�−2 ⊕ τ2�−4

in irreducible summands with multiplicity one for τ2�. Finally, if p(t) = t q�−1
n (t), then p

is monic, has degree � and p(B1
n) is a diagonal matrix in W�

n⊕· · ·⊕W0
n with a nontrivial 

component in W�
n, that we call q�n(B1

n). Hence (p − q�n)(B1
n) is in 

∑
j∈L Wj

n, which, by 
the inductive hypothesis, is a polynomial in B1

n of degree at most � − 1. Then q�n has 
degree � and its leading term is the same as p, so it is monic. �
5.2. Equivariant polynomials

Suppose now P : C2 → End(Vn) is a K-equivariant polynomial. Then the homoge-
neous component of P of bi-degree (d1, d2) is also equivariant, and trivial if d1 �= d2.

Assume therefore that P ∈ Pd,d, i.e., homogeneous of bi-degree (d, d). By homogeneity, 
P is uniquely determined by its restriction to the unit sphere. Moreover, for what we 
have seen at the beginning of this section, the matrix B = P (o) is diagonal and

P (z) = |z|2dτn(kz′)Bτn(k−1
z′ ) (5.5)

where z′ = z/|z| for z �= (0, 0) and the matrix kz′ is defined in formula (5.2).
Conversely, given B = diag(b0, b1, . . . , bn), we will determine for what values of d

formula (5.5) defines a polynomial. The answer to this question goes together with the 
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issue of describing the equivariant polynomials taking values in a given W�
n. In this 

respect the following remarks are quite obvious, after Lemma 5.1, for an End(Vn)-valued 
equivariant polynomial P :

• P can be uniquely decomposed as the sum of W�
n-valued ones;

• P takes values in W�
n if and only if P (o) ∈ W�

n.

For B = diag(b0, b1, . . . , bn) we denote by d(B) ≤ n the degree of the polynomial 
p such that B = p(B1

n). From Lemma 5.1, it follows that d(B) ≤ j if and only if 
B ∈

∑
�≤j W�

n.
For B as above, and d in N, we set

Qd
B(z) = |z|2dτn(kz′)Bτn(k−1

z′ ) , z = |z|z′ . (5.6)

Lemma 5.2.

(i) For a diagonal B, the function Qd
B can be continued to an End(Vn)-valued equiv-

ariant polynomial if and only if d ≥ d(B). In this case, the polynomial Qd
B is 

homogeneous of bi-degree (d, d).
(ii) Every W�

n-valued equivariant polynomial has the form p
(
|z|2

)
Q�

B�
n
(z), where p is a 

scalar-valued polynomial in one variable.

Proof. (i) Since any diagonal matrix B is a linear combination of the matrices B�
n, it is 

enough to treat the case where B = B�
n = q�n(B1

n).
Assume that, for a given d, Qd

B�
n

extends to a polynomial. Recalling that W�
n ∼ V2�

and denoting by I�
n : W�

n → V2� a unitary operator intertwining τ̃n and τ2�, let Q̃d be 
the V2�-valued polynomial defined by the rule

Q̃d(z) = I�
n(Qd

B�
n
(z)) ∀z ∈ C2 .

Then Q̃d is τ2�-equivariant and it suffices to prove the necessity of the condition d ≥ �

for Q̃d. Since Qd
B�

n
(o) = τ̃n(exp tX1)Qd

B�
n
(o) we have

Q̃d(o) = I�
n(τ̃n(exp tX1)Qd

B�
n
(o)) = τ2�(exp tX1)Q̃d(o) ,

so that Q̃d(o) is a 0-weight vector for τ2�. In the polynomial model of Section 2.4, 
Q̃d(o) ∈ V2� has then the form

[
Q̃d(o)

]
(w) = cw�

1 w
�
2

for some constant c. It follows that, if |z′| = 1,
[
Q̃d(z′)

]
(w) =

[
τ2�(kz′)Q̃d(o)

]
(w) = c (z′2w1 − z′1w2)�(z̄′1w1 + z̄′2w2)� ,
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and the homogeneous extension of bi-degree (d, d) with z in C2 is
[
Q̃d(z)

]
(w) = c|z|2(d−�)(z2w1 − z1w2)�(z̄1w1 + z̄2w2)� .

It is a polynomial in z if and only if d ≥ �.
As for ii), if P is a polynomial, then P is W�

n-valued if and only if P (o) is in W�
n. 

Therefore P (o) is a constant multiple of B�
n. �

Lemma 5.2 gives a recipe to find a new basis for P
(
C2, End(Vn)

)K and, at the same 

time, it proves that the operators Δz and Dn generate the algebra 
(
(D(C2) ⊗End(Vn)

)K , 
independently of [8]. We state these facts in Corollary 5.3, where we use the following 
notation. Let F̂ be the Fourier transform of F ∈ L1(C2, End(Vn)

)K , defined component-
wise by

F̂ (ζ) =
∫
C2

F (z) e−i〈z,ζ〉 dz

and let P be an End(Vn)-valued polynomial on C2. Then P (∂) is the operator defined 
by the rule

P̂ (∂)F (ζ) = P (ζ)F̂ (ζ) ζ ∈ C2.

In particular, if P (z) = zα z̄βI, then P (∂) = (−2i∂z̄)α (−2i∂z)βI.

Corollary 5.3.

(i) The polynomials Q�
B�

n
, where � = 0, 1, . . . , n, form a basis of P

(
C2, End(Vn)

)K as 
P(C2)K-module.

(ii) A set of generators of the algebra 
(
D(C2) ⊗ End(Vn)

)K is

D =
{

Δz = Q1
B0

n
(∂), Dn = Q1

B1
n
(∂)

}
.

5.3. End(Vn)-valued spherical functions

For ξ ≥ 0 we denote by ϕξ the spherical function of (G, K), understood as a Gelfand 
pair, with eigenvalue ξ relative to Δz. It is well known that it can be expressed in terms of 
the Bessel function J1 but, for our purposes, it will be enough to consider its expression 
as

ϕξ(z) =
∫
S3

e−i
√
ξ 〈z,ζ〉 dσ(ζ) ∀z ∈ C2 , (5.7)

where σ is the normalized surface measure of the unit sphere S3.
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Proposition 5.4. The spectrum Σn
D is the union of n + 1 half-lines,

Σn
D =

{(
ξ, (−n + 2j)ξ

)
: ξ ≥ 0 , j = 0, . . . , n

}
.

If ξ = 0, the only pair of eigenvalues (0, 0) is attained by the constant spherical function 
Φ0,0(z) = I.

For ξ > 0, the spherical function corresponding to the pair of eigenvalues 
(
ξ, (−n +

2j)ξ
)

is

Φξ,j(z) = (n + 1)
∫
S3

e−i
√
ξ 〈z,ζ〉Qn

Ejj
(ζ) dσ(ζ), (5.8)

where Ejj is the matrix with null entries except the jj-entry which equals 1.

Proof. By [15, (11.2) and Thm. 11.1], the bounded spherical function of the triple 
(G, K, τn,n) can be constructed according to the following recipe.

Fix ro, with r =
√
ξ ≥ 0, as base point in the K-orbit rS3 in C2, let Kr be the 

stabilizer of ro in K, decompose Vn into its (inequivalent) irreducible components Wr,j

under Kr, and define

Φξ,j(z) = n + 1
dimWr,j

∫
K

e−ir〈kz,o〉τn,n(k−1)Pr,jτn,n(k) dk ,

where Pr,j is the orthogonal projection onto Wr,j.
If r = 0, Kr = K and we obtain constant function, Φ0(z) = I.

If r > 0, Kr is the torus of diagonal matrices 
(
eiθ 0
0 1

)
, so each Wr,j is the one-

dimensional span of ejn in (2.4), for j = 0, . . . , n.
Consequently, Pr,j is represented by the matrix Ejj in the basis {ejn} and, by (5.5)

and (5.7) for r =
√
ξ we obtain

Φξ,j(z) = (n + 1)
∫
K

e−ir〈kz,o〉τn,n(k−1)Ejjτn,n(k) dk

= (n + 1)
∫
K

e−ir〈z,k−1o〉Qn
Ejj

(k−1o) dk

= (n + 1)
∫
S3

e−ir〈z,ζ〉Qn
Ejj

(ζ) dσ(ζ) .

This proves that Φξ,0, . . .Φξ,n are the bounded spherical functions whose eigenvalue 
relative to Δz is ξ. It remains to determine the eigenvalue relative to Dn for each of 
them. Noting that
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Φξ,j(z) = (n + 1)
(
Qn

Ejj
(∂)ϕ1

)
(
√
ξz) = (n + 1) ξ−n

(
Qn

Ejj
(∂)ϕξ

)
(z)

and taking into account that B1
nEjj = (−n + 2j)Ejj , we have

DnΦξ,j = (n + 1) ξ−n Q1
B1

n
(∂)Qn

Ejj
(∂)ϕξ

= (n + 1) ξ−n Qn+1
B1

nEjj
(∂)ϕξ

= (n + 1) ξ−n (−n + 2j)Qn+1
Ejj

(∂)ϕξ

= (n + 1) ξ−n (−n + 2j)Qn
Ejj

(∂)Δzϕξ

= (−n + 2j)ξ (n + 1) ξ−n Qn
Ejj

(∂)ϕξ

= (−n + 2j)ξ Φξ,j . �
5.4. End(Vn)–valued equivariant functions as derivatives of scalar valued functions

In this subsection we obtain the decomposition (1.2) for functions in S
(
C2, End(Vn)

)K .
Suppose that F is an End(Vn)–valued equivariant function. Then we can decompose 

F into the sum

F =
n∑

�=0

F�

where each F� is W�
n–valued. We are going to prove that W�

n-valued functions turn out 
to be of a special form.

For our purposes it is convenient to consider on S
(
C2, End(Vn)

)K the following family 
of norms

‖F‖(M) = max
0≤q≤M

‖(1 + | · |2)M Δq
zF‖2, (5.9)

where the L2 norm of End(Vn)–valued functions is defined in (4.7).
For the sake of brevity, we denote by Q�

n the polynomial Q�
B�

n
defined in (5.6).

Proposition 5.5. Let F be in S(C2, W�
n)K . Then there exists a unique scalar valued g ∈

S(C2)K such that

F = Q�
n(∂)g = q�n(Dn)g .

Moreover, for any M there exists M ′ ≥ M + � such that

‖g‖(M) ≤ CM ‖F‖(M ′) .
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Proof. As explained at the beginning of this section, for every r ∈ R the matrix F (ro)
is diagonal and equal to F (−ro).

As F (ro) is in W�
n, by Lemma 5.1(i) we can write F (ro) = f(r) B�

n for some scalar 
f(r). Clearly the so-obtained function f is in S(R) and even.

Suppose that Pd is the homogeneous term of degree d in the Taylor expansion of F cen-
tred at the origin. Then Pd is K-equivariant and W�

n-valued. It follows from Lemma 5.2
(i) that Pd = 0 if d < 2� and P2� is a constant multiple of Q�

n. Hence

f(r) = c� r
2� + o(r2�) r → 0 .

By Hadamard’s division Lemma [14] there exists an even smooth function h0 on R
such that f(r) = r2� h0(r) and h0(0) = c�, therefore, for z = |z|z′,

F (z) = h0(|z|) |z|2� τn(kz′)B�
nτn(kz′)∗ = h(z)Q�

n(z) ,

where h is a scalar invariant Schwartz function on C2 and for any M ′

‖h‖(M ′) ≤ CM ′ ‖h0‖(M ′) ≤ CM ′ ‖f‖(M ′+�) ≤ CM ′ ‖F‖(M ′+�) .

Since the Fourier transform commutes with the action of K, the same kind of result holds 
for the Fourier transform of F . Therefore there exists an invariant Schwartz function γ
on C2 such that

F̂ (ζ) = Q�
n(ζ) γ(ζ) ,

and, taking inverse Fourier transforms,

F (z) = Q�
n(∂) g(z),

with

‖g‖(M ′) ≤ CM ′ ‖γ‖(M ′) ≤ CM ′ ‖F̂‖(M ′+�) ≤ CM ′ ‖F‖(M ′+�).

Uniqueness of the function g follows by K-invariance and the identity

F̂ (ro) = B�
n r

2� ĝ(ro) ∀r ∈ R. �
Corollary 5.6. Let F be in S(C2, End(Vn))K . Then F can be expressed in a unique way 
as

F =
n∑

Di
ngi ,
i=0
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with scalar valued functions gi ∈ S(C2)K . Moreover, for any M there exists M ′ ≥ M +n

such that, for every i,

‖gi‖(M) ≤ CM ‖F‖(M ′) .

6. Schwartz correspondence for S
(
C2, End(Vn)

)K
According to formula (4.14), we denote by GnF the spherical transform of a function 

F in L1(C2, End(Vn)
)K given by

GnF (ξ, ξ(−n + 2j)) = 1
n + 1

∫
C2

tr
(
F (z)Φξ,j(−z)

)
dz ∀ξ ≥ 0, j = 0, 1, . . . , n .

The first two subsections will provide the proof of the following theorem.

Theorem 6.1. The map Gn is an isomorphism of S
(
C2, End(Vn)

)K onto S(Σn
D).

This theorem proves the Schwartz extension property for single K-type components, 
but the estimates that come along with this method do not imply the rapid τ -decay 
requested by condition (S’).

Actually, a posteriori, once property (S) for the strong Gelfand pair (G, K) will be 
established, we will obtain better estimates for Gn, see Corollary 7.9.

At this stage we can prove, however, that the inverse transform G−1
n satisfies Schwartz 

norm estimates that grow at most polynomially in τ . This fact is established in Section 6.3
and is needed in the final construction (see Theorem 7.8).

6.1. Schwartz extensions of GnF

We begin by proving that Gn maps S
(
C2, End(Vn)

)K into S(Σn
D) and that it is con-

tinuous. For j = 0, 1, . . . , n denote tj = −n + 2j.

Lemma 6.2. Let F be in S
(
C2, End(Vn)

)K . Then the following hold.

(i) F̂ (
√

ξ o) ejn = GnF
(
ξ, tjξ

)
ejn ∀ξ ≥ 0, j = 0, 1, . . . , n.

(ii) There exist γ0, . . . , γn in S(R) such that

GnF
(
ξ, tjξ

)
=

n∑
(ξ tj)k γk(ξ) ∀ξ ≥ 0, j = 0, 1, . . . , n. (6.1)
k=0
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Proof. Let F be in S
(
C2, End(Vn)

)K . By (5.8), we have

GnF (ξ, ξtj) = 1
n + 1

∫
C2

tr
(
F (z)Φξ,j(−z)

)
dz

=
∫
C2

∫
S3

e−i
√
ξ〈z,ζ〉tr

(
F (z)Qn

Ejj
(ζ)

)
dσ(ζ) dz

=
∫
S3

tr
(
F̂ (
√

ξ ζ)Qn
Ejj

(ζ)
)
dσ(ζ)

= tr
(
F̂ (
√
ξo)Ejj

)
=
(
F̂ (
√
ξo)

)
jj

and (i) follows.

Next, by Corollary 5.6 there exist g0, . . . , gn in S(R) such that F =
n∑

k=0

Dk
ngk.

Applying the standard Fourier transform on C2 to this equality we obtain

(
F̂ (
√
ξo)

)
jj

=
n∑

k=0

(ξtj)k ĝk(
√

ξo).

By the Schwartz correspondence for the ordinary Gelfand pair (M2(C2), U2) there 
exist γ0, γ1, . . . , γn ∈ S(R) such that γk(ξ) = ĝk(

√
ξo), ξ ≥ 0, and item (ii) follows. �

Corollary 6.3. Let F be in S
(
C2, End(Vn)

)K . Then there exists g ∈ S(R2) such that 
g|Σn

D
= GnF . Moreover, for every M there exist M ′ > M + n and a constant CM,n such 

that

‖g‖(M) ≤ CM,n‖F‖(M ′).

Proof. Notice that Σn
D is contained in Cn =

{
(ξ1, ξ2) ∈ R2 : |ξ2| ≤ nξ1, ξ1 ≥ 0

}
. Let 

ηn be a smooth function on R2 with bounded derivatives of any order which takes value 
1 on Cn and vanishes outside Cn − (ε, 0), for some ε > 0.

Let F be in S
(
C2, End(Vn)

)K and let γ0, . . . , γn in S(R) be as in (6.1). Then the 
function g defined on R2 by

g(ξ1, ξ2) = ηn(ξ1, ξ2)
n∑

k=0

ξk2 γk(ξ1) ∀(ξ1, ξ2) ∈ R,

satisfies the required properties. �
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6.2. Surjectivity of Gn and Schwartz correspondence for S
(
C2, End(Vn)

)K
We conclude the proof of Theorem 6.1 by proving that the continuous linear map Gn :

S
(
C2, End(Vn)

)K −→ S(Σn
D) is surjective. This fact could be deduced from a general 

result in [12, Prop. 4.2.1] for weighted subcoercive systems of left-invariant differential 
operators on Lie groups with polynomial growth. However, we give an independent and 
relatively simple proof, well adapted to our case.

Proposition 6.4. Let g be in S(R2). Then there exists F in S
(
C2, End(Vn)

)K such that 
GnF = g|Σn

D
.

Proof. For j = 0, 1, . . . , n let tj = (−n + 2j) and fix ξ > 0. Denote by pξ the polynomial 
such that pξ(tj) = g

(
ξ, ξtj

)
, j = 0, 1, . . . , n... Using Newton’s interpolation formula, we 

write

pξ(t) = μ0(ξ)+ξ μ1(ξ)(t− t0)+ξ2μ2(ξ)(t− t0)(t− t1)+ · · ·+ξnμn(ξ)(t− t0) · · · (t− tn−1).

Then by the Hermite–Genocchi formula [4], which we express in the equivalent form 
for equidistant points, we have

μ�(ξ) = 1
�!

1∫
0

1∫
0

· · ·
1∫

0

∂
(�)
2 g(ξ, ξ(−n + 2u1 + · · · + 2u�)) du� · · · du2 du1 ∀ξ > 0,

� = 0, 1, . . . , n.
Via this formula we extend μ0, μ1 . . . , μn to Schwartz functions on R and we can write

g(ξ, ξtj) =
∑

0≤k≤�≤n

bk,� (tjξ)kξ�−k μ�(ξ), ∀ξ ≥ 0, j = 0, 1, . . . , n,

for some complex numbers bk,�, where 0 ≤ k ≤ � ≤ n.
Define

f�(z) = 1
(2π)4

∫
C2

μ�(|ζ|2) ei〈z,ζ〉 dζ,

then μ� = G0f�, � = 0, 1, . . . , n and the function

F =
∑

0≤k≤�≤n

bk,�Dk
nΔ�−k

z f�

satisfies the required properties. �
Proof of Theorem 6.1. By Corollary 6.3 Gn maps S

(
C2, End(Vn)

)K into S(Σn) continu-
ously and, by Proposition 6.4, it is surjective. It follows from the open mapping theorem 
for Fréchet spaces [16] that also G−1

n is continuous. �
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6.3. Norm estimates for G−1
n with polynomial growth

In this subsection we prove that the inverse transform G−1
n satisfies norm estimates 

with polynomial growth in n. These will be needed in the proof of Theorem 7.8.
Because of our choice (5.9) of Schwartz norms on S

(
C2, End(Vn)

)K , in order to esti-
mate the norms of G−1

n : S(Σn
D) −→ S

(
C2, End(Vn)

)K we need to study the action of 
the Laplacian Δz on K-equivariant End(Vn)-valued functions.

Identifying the unit sphere S3 with the group SU2 as in (5.2), the expression of the 
Laplacian in polar coordinates takes the form

Δz = −∂2
r − 3

r
∂r + 1

r2 Ω, (6.2)

where Ω = −X2
1 − X2

2 − X3
3 is the Casimir operator on SU2. In the next lemma we 

determine the action of the operator Ω on smooth, equivariant End(Vn)–valued functions.

Lemma 6.5. Let F be in S
(
C2, End(Vn)

)K with F (0, ·) = diag(f0, . . . fn), then

(ΩF )(ro)ejn =
(
(t2j − n2 − 2n)(fj+1 − 2fj + fj−1) + 2tj(fj+1 − fj−1)

)
(r)ejn

where tj = −n + 2j, j = 0, 1, . . . , n.

Proof. Let F be in S
(
C2, End(Vn)

)K . By K–equivariance, we have

Ω
(
τn(k)F (ro)τn(k)∗

)
=τn(k) CF (ro) τn(k)∗ ∀r > 0, ∀k ∈ SU2 .

Notice that

Ω = −X2
1 −X2

2 −X3
3 = −X2

1 − 2iX1 − (X2 + iX3)(X2 − iX3),

= −X2
1 + 2iX1 − (X2 − iX3)(X2 + iX3)

and that, for every X ∈ su2, we have

Xτn(k) = τn(k) dτn(X) and Xτ∗n(k) = −dτn(X) τ∗n(k).

Hence we obtain

Ωτn(k) = τn(k) dτn(Ω), Ωτn(k)∗ = dτn(Ω)τ∗n(k).

Moreover dτn(Ω) and idτn(X1) = B1
n commute with ΩF (ro) so that

(Ωτn(k)) F (ro) τn(k)∗ + τn(k) F (ro) (Ωτn(k)∗) = 2 τn(k) dτn(Ω)F (ro) τn(k)∗

and
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(X1τn(k)) F (ro) (X1τn(k)∗) = τn(k)(B1
n)2 F (ro)τn(k)∗.

Therefore, by Leibniz rule,

(ΩF )(ro) = 2
(
dτn(Ω) − (B1

n)2
)
F (ro) + ΛF (ro)Λ∗ + Λ∗F (ro)Λ

where

Λ = dτn(X2 + iX3) so that Λ∗ = −dτn(X2 − iX3).

Recalling that dτn(Ω) = (n2 + 2n)I and B1
ne

j
n = tj e

j
n, we only need to evaluate 

ΛF (ro)Λ∗ + Λ∗F (ro)Λ. Since

Λejn = 2
√

(j + 1)(n− j) ej+1
n , Λ∗ejn = 2

√
�(n− j + 1) ej−1

n ,

then

(
ΛF (ro)Λ∗ + Λ∗F (ro)Λ

)
ejn

= −4j(n− j + 1)fj−1(r)ejn − 4(j + 1)(n− j)fj+1(r)ejn

=
(
(t2j − 2tj − n2 − 2n

)
fj−1 +

(
t2j + 2tj − n2 − 2n

)
fj+1

)
(r)ejn ,

and this proves the lemma. �
Proposition 6.6. For every M ∈ N there exists NM ∈ N such that, for every n and every 
g in S(R2),

‖G−1
n (g|Σn

D
)‖(M) ≤ CM,n‖g‖(NM ),

where the constant CM,n has polynomial growth in n.

Proof. Let g be in S(R2). By Proposition 6.4 and Lemma 6.2 we know that Gn is bijective 
and that the function F = G−1

n (g|Σn
D

) ∈ S
(
C2, End(Vn)

)K satisfies the equality

F̂ (
√
ξ o)ejn = g

(
ξ, (−n + 2j)ξ

)
ejn ∀ξ ≥ 0 0 ≤ j ≤ n .
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We have

‖(1 + | · |2)M Δq
zF̂‖2

2 =
∫
C2

(1 + |ζ|2)2M
∥∥∥Δq

zF̂ (ζ)
∥∥∥2

HS
dζ

= |S3|
+∞∫
0

∫
K

∥∥∥Δq
zF̂ (k · ro)

∥∥∥2

HS
dk (1 + r2)2M r3 dr

= |S3|
+∞∫
0

(1 + r2)2M
n∑

j=0

∣∣∣∣(Δq
zF̂ (ro)

)
jj

∣∣∣∣2 r3 dr.

We now compute ΔzF̂ (ro) using the polar decomposition (6.2) and Lemma 6.5. The 
action of ∂2

r + 3
r∂r on the function

r �−→ F̂ (ro) = diag
(
g(r2, r2t0), . . . g(r2, r2tn)

)
is given by

(
∂2
r + 3

r
∂r

)
g(r2, r2tj) =

(
8(∂1 + tj∂2)g + 4r2(∂1 + tj∂2)2g

)
(r2, r2tj).

In order to compute the action of the Casimir operator Ω, we apply formula (6.5) with 
fj(r) = g(r2, r2tj). The Taylor expansion in the second variable of g gives, with ξ = r2,

fj±k(
√
ξ) = g(ξ, ξ(tj ± 2k))

=
p∑

s=0

∂s
2g (ξ, ξtj)

s! (±2kξ)s + (±2kξ)p+1
1∫

0

∂p+1
2 g (ξ, ξ(tj ± 2ku))

p! (1 − u)p du ,

so that

(fj+1 − 2fj + fj−1)(
√

ξ) = g(ξ, ξtj + 2ξ) − g(ξ, ξtj) + g(ξ, ξtj − 2ξ)

= (2ξ)2
1∫

0

(
∂2
2g (ξ, ξ(tj + 2u)) + ∂2

2g (ξ, ξ(tj − 2u))
)

(1 − u) du,

and

(fj+1 − fj−1)(
√

ξ) = g(ξ, ξtj + 2ξ) − g(ξ, ξtj − 2ξ)

= 2ξ
1∫
(∂2g (ξ, ξ(tj + 2u)) + ∂2g (ξ, ξ(tj − 2u))) du .
0
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Therefore, by (6.2) and Lemma 6.5,

−
(
ΔzF̂ (ro)

)
jj

=
(
∂2
r + 3

r
∂r

)
(g(r2, r2tj)) −

1
r2 (ΩF̂ )(ro)

=
(
4r2(∂1 + tj∂2)2g + 8(∂1 + tj∂2)g

)
(r2, r2tj)

− 4r2(t2j − n2 − 2n)
1∫

0

(
∂2
2g
(
r2, r2(tj + 2u)

)
+ ∂2

2g
(
r2, r2(tj − 2u)

))
(1 − u) du

− 4tj
1∫

0

(
∂2g

(
r2, r2(tj + 2u)

)
+ ∂2g

(
r2, r2(tj − 2u)

))
du .

Since |tj | ≤ n, j = 0, 1, . . . , n, by iteration, we obtain

∣∣∣(Δq
zF̂ (ro)

)
jj

∣∣∣ ≤ Cq (1 + r2q)n2q
2q∑
s=1

sup
u∈R

∣∣∂sg(r2, r2u)
∣∣ .

Therefore

‖(1 + | · |2)M Δq
zF̂‖2 ≤ Cq,M n2q+1 max

0≤|β|≤2q
‖(1 + | · |2)M ′

∂βg‖∞

for some M ′ > M . Therefore for every M ∈ N there exists NM ∈ N such that

‖F‖(M) ≤ CM‖F̂‖(M) ≤ CM,n‖g‖(NM ) ,

where CM,n has polynomial growth in n. �
7. Schwartz correspondence for S

(
M2(C)

)Int(U2)

In this section we prove property (S’) of Theorem 1.2, which implies Schwartz corre-
spondence for the strong Gelfand pair (G, K).

We first rephrase our result for Gn on S
(
C2, End(Vn)

)K in terms of the Gelfand 
transform Gτm,n

on S(G)Int(K). Then for each K-type fm,n = fτm,n
of f ∈ S(G)Int(K), we 

obtain the infinite jet at the origin for the transform Gτm,n
fm,n and prove, in Lemma 7.4

that its coefficients have at most polynomial growth in m, n.
Next, in Lemma 7.6, we obtain by Whitney extension a Schwartz function on R2

which has infinite order of contact with Gτm,n
fm,n at the origin. In Proposition 7.7 we 

give an explicit formula for a Schwartz extension of this difference.
Finally we assemble all these steps proving property (S’) in Theorem 7.8. Since the 

Schwartz norms of the fm,n have rapid decay in (m, n), it is important to verify that 
each operation brings in multiplicative factors that grow polynomially in n. One of them 
involves the Schwartz norm estimates for the inverse spherical transform G−1

n for matrix-
valued equivariant functions.
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7.1. Schwartz correspondence for Gτm,n

In order to relate our previous result for matrix-valued equivariant functions with the 
corresponding result for functions of a given type (m, n), we quantify the relation between 
the Schwartz norms of a function f of a given type (m, n) and of the corresponding matrix 
valued function Am,nf .

As M -order Schwartz norm of a function f in S(G)Int(K) we take

‖f‖(M) = max
q,r,s=0...M

‖(1 + |z|2)M Ds
4D

r
3D

q
1f‖2

where D1 = Δz, D3 = Ω and D4 = iX4.

Lemma 7.1. Let (m, n) be in the set E defined in (2.3). The following estimates hold

‖Am,nf‖(M) ≤
1√
n + 1

‖f‖(M) , ∀f ∈ S(G)Int(K)
τm,n

,

and conversely,

‖A−1
m,nF‖(M) ≤ (1 + |m|)M (1 + n)2M+1/2 ‖F‖(M) ∀F ∈ S

(
C2,End(Vn)

)K
.

Proof. Note that when f is of type (m, n),

D3f = (n2 + 2n)f D4f = mf.

The estimates follow easily from the fact that 
√
n + 1Am,n is an isometry on the 

corresponding L2-spaces. �
By (4.15), ΣD decomposes as the union of

Σm,n
D = Σn

D ×
{
(n2 + 2n,m)

}
, (m,n) ∈ E .

At this stage we abandon the End(Vn)-valued picture, and reinterpret Corollary 6.3
and Propositions 6.4, 6.6 in the following form, using the fact that Gτm,n

= Gn ◦Am,n.

Corollary 7.2.

(i) Given τm,n ∈ K̂ and f ∈ S(G)Int(K)
τm,n , the spherical transform Gf , which is supported 

on Σn
D ×

{
(n2 +2n, m)

}
, admits a Schwartz extension to R2 ×

{
(n2 +2n, m)

}
, and 

hence a Schwartz extension to R4 which vanishes on the other components of ΣD.
(ii) For every (m, n) ∈ E, the transform Gτm,n

is an isomorphism from S(G)Int(K)
τm,n to 

S(Σn
D).
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(iii) For every M ∈ N there exists NM ∈ N such that, for every (m, n) ∈ E and every 
g in S(R2),

‖G−1
τm,n

(g|Σn
D

)‖(M) ≤ CM,m,n‖g‖(NM ),

where the constants CM,m,n have polynomial growth in (m, n).

If we consider now a general f ∈ S(G)Int(K),

f =
∑

(m,n)∈E

fm,n ,

we cannot prove, on the basis of the results in Section 6, that the Schwartz extensions to 
R4 given in Corollary 7.2(i) for the individual Gfm,n add up to give a Schwartz function.

In order to do so, we need to proceed to a new construction of Schwartz extensions, 
possibly different from those already available, which gives, for any finite number of 
Schwartz norms, rapid decay as n goes to infinity (rapid decay in m for fixed n is 
trivial).

As we already noticed, this new construction does not replace the work done in Sec-
tion 6 because it requires to know in advance that a Schwartz extension whatsoever 
exists for each (m, n).

7.2. Jets with polynomial growth for each K-type

For f ∈ S(G)Int(K)
τm,n , we have a simple estimate on the directional derivatives of Gτm,n

f

in the n + 1 directions of the half-lines forming Σn
D.

Lemma 7.3. For d ∈ N, there exist constants Cd and Nd independent of (m, n) such that

∣∣(d/dξ1)dGτm,n
f
(
ξ1, (−n + 2j)ξ1

)∣∣ ≤ Cd ‖f‖(Nd) , ∀f ∈ S(G)Int(K)
τm,n

for all ξ1 ≥ 0.

Proof. From (4.12) it follows that

Gτm,n
f
(
ξ1, (−n + 2j)ξ1

)
= Gn(Am,nf)

(
ξ1, (−n + 2j)ξ1

)
.

Since Φξ1,j is even in z, we obtain from (5.8) that, for ξ1 > 0,

Φξ1,j(z) = (n + 1)
∫
S3

cos(
√
ξ〈z, ζ〉)Qn

Ejj
(ζ) dσ(ζ) ,

and therefore
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∥∥(d/dξ1)dΦξ,j(z)
∥∥
HS

≤ (n + 1) |z|2d sup
x≥0

|(d/dx)d cos
√
x|

∥∥∥∥∥∥
∫
S3

Qn
Ejj

(ζ) dσ(ζ)

∥∥∥∥∥∥
HS

≤ Cd (n + 1) |z|2d .

The conclusion follows taking Nd sufficiently large and by Lemma 7.1. �
Assume now that g = Gτm,n

f admits a smooth extension u on R2 with Taylor series 
in (0, 0)

∑
p,q

ap,q
p!q! ξ

p
1ξ

q
2 .

Letting

cd,j = (d/dξ1)d|ξ1=0
Gτm,n

f
(
ξ1, (−n + 2j)ξ1

)
,

the following relations must hold for all d ∈ N and j = 0, . . . , n:

cd,j =
∑

p+q=d

(−n + 2j)q
(
d

q

)
ap,q .

For each d we obtain an (n + 1) × (d + 1) linear system Bdad = cd, where

ad =
(
ad,0, . . . ,

(
d
q

)
ad−q,q, . . . , a0,d

)
,

cd = (cd,0, . . . , cd,n) ,

Bd = (bj,q) =
(
(−n + 2j)q

)
.

Lemma 7.4. For every d ∈ N the system Bdad = cd admits a solution ad such that
(
d

q

)
|ad−q,q| ≤ Cd (1 + n)1+d/2 ‖f‖(Nd) ,

with Cd independent of n.

Proof. Assume d ≥ n. Observing that all (n +1) × (n +1) minors of consecutive columns 
of Bd are essentially Vandermonde determinants, we have that the matrix Bd has rank 
n + 1 and the system is solvable, with infinite solutions if d > n. This case however can 
be reduced to the case d = n by looking for a solution ad with ad−q,q = 0 for q > n. By 
Cramer’s rule,

(
d

q

)
|ad−q,q| ≤

n∑
|cd,j |

∣∣∣∣Vj,q

V

∣∣∣∣ , (7.1)

j=0
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where V is the full Vandermonde determinant with nodes tj = −n + 2j and Vj,q are its 
cofactors. Expressing Vj,q in terms of Schur polynomials, cf. [10], we have

∣∣∣∣Vj,q

V

∣∣∣∣ =
∣∣∣∣ ∑
k1<k2<···<kn−q , k� �=j

tk1tk2 · · · tkn−q∏
i�=j(ti − tj)

∣∣∣∣ ≤ ∑
k1<k2<···<kn−q , k� �=j

∣∣∣∣∣ tk1tk2 · · · tkn−q∏
i�=j(ti − tj)

∣∣∣∣∣ .

The numerator is controlled by the product of all the nonvanishing terms, i.e.

∣∣tk0tk1 · · · tkn−q

∣∣ ≤ ∏
j �=n

2

|tj | =
∏
j �=n

2

| − n + 2j| = (n!!)2 .

The smallest denominator occurs for j central, i.e., j = n/2 when n is even and j =
(n − 1)/2 when n is odd, so that

∏
i�=j

∣∣ti − tj
∣∣ =

i=j−1∏
i=0

(2j − 2i)
i=n∏

i=j+1
(2i− 2j) = (2j)!! (2n− 2j)!! ≥ (n!!)2

and ∣∣∣∣∣ tk1tk2 · · · tkn−q∏
i�=j(ti − tj)

∣∣∣∣∣ ≤ 1 .

Therefore |Vj,q/V | ≤
(
n
q

)
≤ (n + 1)n/2.

Finally, by formula (7.1) and Lemma 7.3, when d ≥ n,

(
d

q

)
|ad−q,q| ≤ (n + 1)1+n/2 max

0≤j≤n
|cd,j | ≤ Cd (n + 1)1+d/2 ‖f‖(Nd) .

Assuming now d < n, Theorem 6.1 guarantees that the system Bdad = cd is solvable. 
Since all the maximal minors of Bd are nonvanishing Vandermonde determinants, the 
solution is unique and we can apply Cramer’s rule to the square submatrix formed by 
the d + 1 central rows of Bd.

If d and n have the same parity, the system is exactly the same considered above, 
only with d in place of n. Therefore, since d < n,

(
d

q

)
|ad−q,q| ≤ Cd (d + 1)1+d/2 ‖f‖(Nd) ≤ Cd (n + 1)1+d/2 ‖f‖(Nd) .

If d and n have different parities, the system is slightly different, but a repetition of 
the previous arguments leads to the same conclusion. �

Combining together the two Lemmas 7.3 and 7.4, we obtain the following asymptotic 
expansion
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Corollary 7.5. Let f ∈ S(G)Int(K)
τm,n . For every (m, n) ∈ E and d ∈ N, there exist coeffi-

cients ad−q,q, q = 0, . . . , d, and Nd ∈ N such that, for all j = 0, . . . , n,

(i)
(
d
q

)
|ad−q,q| ≤ Cd n

1+d/2 ‖f‖(Nd)

(ii) (d/dξ1)d|ξ1=0
Gτm,n

f
(
ξ1, (−n + 2j)ξ1

)
=

d∑
q=0

(−n + 2j)q
(
d

q

)
ad−q,q; equivalently, for 

ξ = (ξ1, ξ2) ∈ Σn
D,

Gτm,n
f(ξ) ∼

ξ→0

∞∑
d=0

1
d!

d∑
q=0

(
d

q

)
ad−q,qξ

d−q
1 ξq2 . (7.2)

7.3. Jets and smooth extensions on the full spectrum

We consider now a single K-type and construct smooth functions on R2, supported 
on the unit disk and with Taylor development (7.2) at 0.

The standard way to do so, cf. [11, Theorem 1.2.6], consists in defining

h(ξ) =
∑
d∈N

ϕ(ξ/εd)
1
d!

d∑
q=0

(
d

q

)
ad−q,qξ

d−q
1 ξq2 =

∑
d∈N

hd(ξ) , (7.3)

where ϕ ∈ C∞
c is supported for |ξ| ≤ 1 and is equal to 1 for |ξ| ≤ 1/2 and the coefficients 

εd ∈ (0, 1] are so chosen that the series in the right-hand side converges normally in 
every CN -norm.

We follow this procedure keeping track at the same time of the norm estimates and 
of their dependence on the parameters m, n.

Lemma 7.6. Let f ∈ S(G)Int(K)
τm,n with Taylor development (7.2) and M ∈ N. There exists 

a function h = hm,n,M ∈ C∞
c (R2) as in (7.3) supported in the unit disc and such that, 

for every k ≤ M ,

‖h‖Ck ≤ AM n1+M/2 ‖f‖(NM ) + rm,n , (7.4)

where AM > 0 is independent of m, n and rm,n is independent of f and rapidly decaying 
in (m, n).

Proof. In (7.3) let ψd,q(ξ) = ϕ(ξ)ξd−q
1 ξq2 , so that hd(ξ) =

1
d!

d∑
q=0

(
d

q

)
ad−q,q ε

d
d ψd,q(ξ/εd).

By Corollary 7.5, for every k ∈ N,

‖hd‖Ck ≤ Cd

d! n
1+d/2‖f‖(Nd)ε

d−k
d

d∑
‖ψd,q‖Ck .
q=0
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With αd = Cd

∑d
q=0 ‖ψd,q‖Cd−1 , we choose

εd,m,n,M =

⎧⎨
⎩1 if d ≤ M

1
(n+|m|)!(1+αd‖f‖(Nd)) if d > M .

Then,

∑
d>M

‖hd‖Cd−1 ≤
∑
d≥M

n1+d/2

d!(n + |m|)! ≤
ne

√
n

(n + |m|)!
def= rm,n .

This implies that the series 
∑

d∈N ‖hd‖Ck converges for every k, so that h ∈ C∞.
Notice that in Lemma 7.3 the sequence {Nd} can be chosen to be increasing. Then, 

for k ≤ M ,

∑
d≤M

‖hd‖Ck ≤
∑
d≤M

‖hd‖CM ≤
∑
d≤M

n1+d/2 ‖f‖(Nd)
Cd

d!

d∑
q=0

‖ψd,q‖CM

≤ AM n1+M/2 ‖f‖(NM ),

where AM =
∑
d≤M

Cd

d!

d∑
q=0

‖ψd,q‖CM . This implies (7.4). Rapid decay of rm,n is trivial. �

7.4. Extension of spherical transforms rapidly vanishing at 0

From the previous Lemma we obtain, for each fm,n ∈ S(G)Int(K)
τm,n , Schwartz functions 

{hm,n,M}M on the spectrum Σn
D with infinite order of contact with Gτm,n

fm,n at the 
origin. The following proposition gives an explicit formula for a Schwartz extension to 
R2 of the difference Gτm,n

fm,n − hm,n,M .

Proposition 7.7. Suppose that u in S(G)Int(K)
τm,n is such that

(
d

dξ1

)q

|ξ1=0

Gτm,n
u(ξ1, ξ1(−n + 2j)) = 0 ∀j = 0, . . . , n, ∀q ≥ 0.

Then there exists vm,n in S(R2) such that

vm,n(ξ1, ξ1(−n + 2j)) = Gτm,n
u(ξ1, ξ1(−n + 2j)) , ∀ξ1 ≥ 0 ,

and for every N ≥ 0 there exist constants CN , N ′ depending only on N such that

‖vm,n‖(N) ≤ CN ‖uτm,n
‖(N ′).
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Proof. Let η be a bump function in C∞
c (R) supported in 

[
− 1

2 , 
1
2
]

and equal to 1 in a 
neighbourhood of the origin. Define the function v = vm,n on R2 by the rule

v(ξ1, ξ2) =

⎧⎪⎪⎨
⎪⎪⎩

n∑
j=0

Gτm,n
u(ξ1, ξ1(−n + 2j)) η

(
ξ2−ξ1(−n+2j)

ξ1

)
ξ1 > 0

0 ξ1 ≤ 0.

It is straightforward to show that v extends Gτm,n
u to R2. We now check the required 

norm estimates.
For every j = 0, 1, · · · , n, define

ηj(x) = η (x− (−n + 2j)) , ∀x ∈ R

gj(ξ1) = gj,m,n(ξ1) = Gτm,n
u(ξ1, ξ1(−n + 2j)), ∀ξ1 ≥ 0

and note that for every ξ1 > 0

∂p
ξ1
∂q
ξ2
v(ξ1, ξ2) =

n∑
j=0

∂p
ξ1

(
gj(ξ1) ξ−q

1 η
(q)
j

(
ξ2
ξ1

))

=
n∑

j=0

p∑
s=0

(
p

s

)
g
(p−s)
j (ξ1) ∂s

ξ1

(
ξ−q
1 η

(q)
j

(
ξ2
ξ1

))
.

Moreover, one can check by induction that, for appropriate coefficients cr,s depending 
only on p, q,

∂s
ξ1

(
ξ−q
1 η

(q)
j

(
ξ2
ξ1

))
=

s∑
r=0

cr,s ξ
−s−q
1

(
ξ2
ξ1

)r

η
(q+r)
j

(
ξ2
ξ1

)
,

so that

∂p
ξ1
∂q
ξ2
v(ξ1, ξ2) =

n∑
j=0

p∑
s=0

s∑
r=0

(
p

s

)
cr,s ξ

−s−q
1 g

(p−s)
j (ξ1)

(
ξ2
ξ1

)r

η
(q+r)
j

(
ξ2
ξ1

)
.

Since Gτm,n
u vanishes rapidly at the origin, for any integer q ≥ 0 there exists θq ∈ (0, 1)

such that for any ξ1 ≥ 0

ξ−q
1 g

(p)
j,m,n(ξ1) = 1

q! g
(p+q)
j,m,n (θqξ1).

Since for j = 0, 1, . . . the function t �−→ tr η
(q+r)
j (t) is still a bump function, in view 

of Lemma 7.3, v ∈ C∞(R2) and the required norm estimates follow. �
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We can now conclude that property (S’) in Theorem 1.2 is satisfied, so proving our 
main result Theorem 1.1.

Theorem 7.8. Let f be in S(G)Int(K) and N in N. Then, for every (m, n) ∈ E, Gτm,n
fm,n

admits a Schwartz extension uN
m,n from Σn

D to R2 such that ‖uN
m,n‖(N) is rapidly decaying 

in (m, n).

Proof. For M to be chosen afterwards, let hm,n,M be the function defined in Lemma 7.6. 
Since any Schwartz norm of fm,n is rapidly decaying in (m, n), the M -Schwartz 
norm of hm,n,M is also rapidly decaying in (m, n). Moreover, let gm,n = gm,n,M =
G−1
τm,n

(
hm,n,M |Σn

D

)
. Then gm,n is a Schwartz function on G of type τm,n and

(
d

dξ1

)q

|ξ1=0

Gτm,n
(fm,n − gm,n)(ξ1, ξ1(−2j + n)) = 0 ∀j = 0, . . . , n, ∀q ≥ 0.

By Proposition 7.7, there exists vm,n = vm,n,M in S(R2) such that

vm,n(ξ1, ξ1(−n+ 2j)) = Gτm,n
(fm,n − gm,n)(ξ1, ξ1(−n+ 2j)) ∀ξ1 ≥ 0, j = 0, . . . , n.

Applying Corollary 7.2 (iii), we obtain

‖vm,n,M‖(N) ≤ CN ‖fm,n − gm,n,M‖(N ′)

≤ CN

(
‖fm,n‖(N ′) + ‖G−1

τm,n

(
hm,n,M |Σn

D

)
‖(N ′)

)
≤ CN ‖fm,n‖(N ′) + Cm,n,N‖hm,n,M‖(N ′′)

where N ′, N ′′ depend only on N and the constant Cm,n,N has polynomial growth in 
(m, n).

Choosing M bigger than N and N ′′ and letting

uN
m,n = vm,n,M + hm,n,M

we obtain a Schwartz extension to R2 whose N -Schwartz norm is rapidly decaying in 
(m, n). �

For completeness, we derive from Theorem 1.1 that the transforms Gn satisfy norm 
estimates that grow at most polynomially in n.

Corollary 7.9. For every M ∈ N there exist NM , QM ∈ N and CM > 0 such that, 
for every n ∈ N and F ∈ S

(
C2, End(Vn)

)K , the spherical transform GnF extends to 
gM,n ∈ S(R2) satisfying

‖gM,n‖(M) ≤ CM (n + 1)QM ‖F‖(NM ) . (7.5)
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Proof. To simplify the reading of the proof, we denote Schwartz norms as ‖ ‖(N,R2), 
‖ ‖(N,R4), etc., with explicit mention of the domain. It is also convenient to replace the L2-
based Schwartz norms used so far, cf. (5.9), with the L∞-based ones. This equivalence is a 
well-known fact and it is also easy to prove that, in the case of End(Vn)-valued functions, 
the constants involved in the equivalence have polynomial growth in n. Therefore the 
validity of the statement and of the other inequalities can be referred to any choice of 
Schwartz norms.

Given F ∈ S
(
C2, End(Vn)

)K , let f = A−1
n,nF ∈ S(G)Int(K)

τn,n . By Theorem 1.1, given 
M ∈ N, its (strong) spherical transform Gf defined on ΣD admits a Schwartz extension 
hM on R4 such that

‖hM‖(M,R4) ≤ CM ‖f‖(NM ,G) ,

with NM and CM independent of n. Decompose ξ ∈ R4 as (ξ′, ξ′′) with ξ′ = (ξ1, ξ2) and 
define ξ′′n =

(
n(n + 2), n

)
.

Since Gf |Σn
D

= Gτn,n
f = GnF , the function gM,n defined by

gM,n(ξ′) = hM (ξ′, ξ′′n) ∀ξ′ ∈ R2

extends GnF and

‖gM,n‖(M,R2) ≤ ‖hM‖(M,R4) .

On the other hand, by Lemma 7.1, there exists QM such that

‖f‖(NM ,G) = ‖A−1
n,nF‖(NM ,G) ≤ (n + 1)QM ‖F‖(NM ,C2) .

Therefore

‖gM,n‖(M,R2) ≤ CM (n + 1)QM ‖F‖(NM ,C2) . �
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