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Proving chaos for a system of coupled logistic maps

In the work we prove the presence of chaotic dynamics, for suitable values of the model

parameters, for the discrete-time system, composed of two coupled logistic maps, as for-

mulated in Yousefi et al. [Discrete Dyn. Nat. Soc. 5, 161–177 (2000)] and describing two

interdependent economies, characterized by two competitive markets each, with a demand

link between them. In particular, we rely on the SAP (Stretching Along the Paths) method,

based on a stretching relation for maps defined on sets homeomorphic to the unit square

and expanding the paths along one direction. Such technique is topological in nature and

allows to establish the existence of a semiconjugacy between the considered dynamical

system and the Bernoulli shift, so that the main features related to chaos of the latter (e.g.,

the positivity of the topological entropy) are transmitted to the former. In more detail, we

apply the SAP method both to the first and to the second iterate of the map associated

with our system and we show how dealing with the second iterate, although being more

demanding in terms of computations, allows for a larger freedom in the sign and in the vari-

ation range of the linking parameters for which chaos emerges. Moreover, the latter choice

guarantees a good agreement with the numerical simulations, that highlight the presence of

a chaotic attractor under the conditions derived for the applicability of the SAP technique

to the second iterate of the map.

a)Past position: Master Degree in Mathematics, University of Milano - Bicocca
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In the manuscript we rigorously prove the presence of complex dynamics for the coupled lo-

gistic map, as formulated in1, by means of the Stretching Along the Paths (henceforth, SAP)

method, which is a topological technique that has been developed in the planar case in2,3 and

then extended to the N-dimensional framework, with N ≥ 3, in4. Despite in the Introduction

of1 Yousefi et al., referring to their system composed of two logistic maps, coupled by linear

terms, say that “To the best of our knowledge, so far, this kind of system has not been subjected

to mathematical investigations at an advanced level. Any such investigation must incorporate two

different aspects, namely the global dynamics of diffeomorphisms and the theory of critical lines

developed in Mira et al.5”, we here follow, in view of showing the presence of chaos in that

setting, a different approach which, being topological in nature, does not require any differ-

entiability condition. Moreover, the SAP technique has proven to be successfully applicable

both in discrete-6–8 and in continuous-time contexts (see e.g.9–11). The versatility of the SAP

method comes from the fact that it does not call for a direct proof of chaos according to one

of the many existing definitions, which are often difficult, or impossible to handle in practical

contexts. Namely, the SAP technique, in agreement with a canonical strategy in the chaos

literature (cf. for instance12,13), allows to establish a semiconjugacy between the function

under investigation, or one of its iterates, and the Bernoulli shift on two (or more) symbols,

which displays many chaotic features, such as topological transitivity, sensitivity on initial

conditions and positive topological entropy. In that indirect manner, it is possible to con-

clude that the considered dynamical system satisfies all the properties of the Bernoulli shift

that are preserved by the semiconjugacy relation. This is the strategy that we shall employ

along the manuscript, where, after determining the parameter conditions that ensure the

emergence of chaotic dynamics when applying the SAP method to the first iterate of the map

associated with the system considered in1, we apply the SAP method to the second iterate of

the same map in order to weaken those conditions, both in regard to the sign and the varia-

tion range of the parameters involved. Furthermore, the application of the SAP method to

the second iterate of the map generating the dynamics allows us to obtain a good agreement

with the numerical simulations, that confirm the presence of a chaotic attractor under the

conditions derived for the applicability of the SAP technique to the second iterate of the map,

but not to the first iterate, in which case chaotic sets are not attractive. To the best of our

knowledge, the one we provide is the first discrete-time application of the SAP technique in

which numerical simulations highlight the presence of a chaotic attractor.
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I. INTRODUCTION

The present work aims at providing a topological proof of the existence of chaotic dynamics

for the discrete-time system composed of two coupled logistic maps, according to the formulation

given in1, which describes two interdependent economies, characterized by two competitive mar-

kets each, with a demand link between them.

Indeed, our study belongs to the vast literature that, starting from the 80s, investigates via simula-

tive (see e.g.14–16) or analytical (cf. for instance17) methods the dynamic effect of various, linear

or nonlinear, coupling formulations between two or more logistic maps.18 The study of coupled

logistic maps went on in the past decades (see e.g.19–23) and still in very recent times many authors

have been dealing with such topic, either in its simplest form encompassing just two functions, for

instance in order to study, mainly by means of analytical tools, its bifurcations, like done in24,25, as

well as in26,27 in the presence of noise, or in more complex versions, encompassing noise signals

and networks, like in28–30, mostly from a numerical viewpoint. In agreement with the former, more

theoretical literature strand, in this work we rigorously prove the presence of complex dynamics

for the coupled logistic map, as formulated in1, by means of the Stretching Along the Paths (hence-

forth, SAP) method, which is a topological technique that has been developed in the planar case

in2,3 and then extended to the N-dimensional framework, with N ≥ 3, in4. It allows to detect the

existence of fixed points, periodic points, and chaos for maps for which it is known, or for which

it is possible to show, that they are expansive (thus stretching the paths) along one direction and

contractive along the remaining N−1 directions, being defined on subsets of RN homeomorphic to

the N-dimensional cube, which we will call generalized rectangles for N = 2. In the planar case,

the SAP method consists in finding a generalized rectangle which, when appropriately oriented by

choosing two disjoint arcs in its boundary, contains at least two disjoint compact subsets on which

a suitable stretching relation is fulfilled between the generalized rectangle and itself, while keeping

its orientation unchanged, so that the generalized rectangle is stretched at least twice across itself

by the considered map. The possibility of detecting, by means of analytical conditions, such a

generalized rectangle depends on the geometry associated with the iterates of the map governing

the dynamics, and in particular on the way in which sets are deformed by its forward iterates.

Namely, this task turns out to be easy when the function under consideration produces a stretching
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and a folding on some set similar to that impressed by the original Smale Horseshoe in31 on the

unit square (see also Ch. 23 in32 for a detailed construction and description of the features for a

simplified version of it).33

Starting from2,3, the SAP method has been used both in discrete- and continuous-time models.

In the latter case, a field of application is given by Hamiltonian systems with a nonisochronous

center in which it is sensible to assume a periodic variation in some of the model coefficients,

so as to enter the geometrical framework of “Linked Twist Maps” (henceforth, LTMs), where the

SAP method is applied to the Poincaré map associated with the considered system, and this leads

again to the study of a discrete-time setting. We refer the interested reader e.g. to9–11,34–36 for

continuous-time planar applications of the SAP method, and to37,38 for 3D continuous-time ap-

plications of it to non-Hamiltonian systems. On the other hand, to the best of our knowledge, the

only applications of the SAP technique to discrete-time models can be found in6–8, where 1D39,

2D (in6) and 3D (in7,8) economic settings are considered. In more detail, in7,8 different triopoly

game models with heterogeneous players, taken respectively from40 and41,42, are analyzed, while

in6 OLG models with and without production (taken e.g. from43,44), as well as the duopoly game

model with heterogeneous players taken from45, are considered.

Following the approach employed in6–8, along the manuscript we show how to apply the SAP

method to the model in1 so as to detect chaotic dynamics therein. In particular, the possibility

of finding a generalized rectangle for which the stretching relation is satisfied with respect to two

disjoint compact subsets of it depends, in addition to the value assumed by the usual parame-

ter present in the two logistic maps, on the sign and on the value of the parameters describing

the link between the two economies. Specifically, when dealing with the first iterate of the map

generating the dynamics, we obtain that the SAP method can be applied only when one of the

linking parameters is negative. In order to overcome such limitation, we also consider the second

iterate of the same map and we show that applying the SAP method to it, although being more

demanding in terms of computations, allows for a larger freedom in the sign and in the variabil-

ity range of the linking parameters for which chaos emerges. In addition to this, the application

of the SAP method to the second iterate of the map generating the dynamics guarantees a good

agreement with the numerical simulations, that confirm the presence of a chaotic attractor under

the conditions derived for the applicability of the SAP technique to the second iterate of the map,

but not to the first iterate, in which case chaotic sets are not attractive. Namely, in general the

SAP method ensures the existence of chaotic sets, but not their attractiveness, as discussed in6.
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To the best of our knowledge, the one provided here is the first application of the SAP technique

to a discrete-time framework in which numerical simulations highlight the presence of a chaotic

attractor, thanks to the careful way in which our method is employed, justifying the cumbersome

computations involved.

We finally stress that the analysis we shall perform and the kind of obtained results would be valid

also when investigating the analogous system composed of three coupled logistic maps. In more

detail, in order to have the stretching relation, on which the SAP method is based, satisfied re-

quires to assume that there are, for the function associated with the 3D system, two compressive

directions and that the third one is expansive. However, in order not to overburden the paper, we

prefer to focus on the planar framework only, making just some remarks along the manuscript on

how our findings would look like in the three-dimensional setting, also by means of a few illus-

trations, which confirm the presence of a chaotic attractor when the SAP method is applicable to

prove the existence of chaotic sets for the second iterate of the function associated with the three-

dimensional dynamical system.

The remainder of the paper is organized as follows. In Sec. II we recall the main definitions and

results connected with the SAP method. In Sec. III we briefly introduce the model that we are

going to analyze. In Sec. IV we show how to apply the SAP method to the first iterate of the map

generating the dynamics. In Sec. V we explain how to apply the SAP technique to the second

iterate. In Sec. VI we conclude.

II. RECALLING THE STRETCHING ALONG THE PATHS METHOD

The Stretching Along the Paths (henceforth, SAP) method is a topological technique that allows

to detect the existence of chaotic dynamics for maps, defined on subsets of RN homeomorphic to

the N-dimensional cube, for which it is known, or it is possible to show, that they are expansive

along one direction and contractive along the remaining N− 1 directions. It has been developed

in the planar case in2,3 and extended in4 to the N-dimensional framework, with N ≥ 3. The SAP

method, which is based on the stretching relation in Definition II.1 below and on its properties,

has been applied both to discrete-time (cf.6–8) and to continuous-time (see e.g.9,34,35,37,38) 2D and

3D systems.

For brevity’s sake, in what follows we recall just the definitions and the results about the SAP

relation that are needed in view of some remarks about the related literature, and that we will use
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in our applications in Sec. IV and in Sec. V, focusing on the 2D framework. Further details and

more general planar formulations can be found e.g. in46,47. We will make some comments about

the 1D setting at the end of the present section, while we refer the reader to8 for the theoretical

results in the 3D framework, since along the paper the three-dimensional model will be considered

just in a marginal way.

A path in R2 is a continuous map γ : [t0, t1]→ R2, for some t0 < t1. Without loss of generality, we

usually take the unit interval [0,1] as domain of γ, and we denote by γ := γ([0,1]) its image. A

subpath ν of γ is the restriction of γ to a compact subinterval of its domain. A generalized rectangle

is a subset R of R2 which is homeomorphic to the unit square [0,1]2 through a homeomorphism

H : R2 ⊇ [0,1]2→R ⊆ R2. A generalized rectangle is oriented by choosing two disjoint arcs in

its boundary, that will be named left and right sides of the generalized rectangle. Indeed, we call

R−` := H({0}× [0,1]) the left side of R and R−r := H({1}× [0,1]) its right side and an oriented

rectangle of R2 is a pair R̃ := (R,R−), where R is a generalized rectangle and R− :=R−` ∪R−r .

Moreover, we call R+
d := H([0,1]×{0}) the down side of R and R+

u := H([0,1]×{1}) its up

side.48

The stretching along the paths (SAP) relation for maps between oriented rectangles is recalled in

the following:

Definition II.1 Given the oriented rectangles Ã := (A ,A −) and B̃ := (B,B−) of R2, let K ⊆

A be a compact set and F : A → R2 be a function. We say that

(K,F) stretches Ã to B̃ along the paths,

and write

(K,F) : Ã m−→B̃, (2.1)

if it holds that:

• F is continuous on K ;

• for every path γ : [0,1]→A with γ(0) and γ(1) belonging to the different components of

A −, there exists [t ′, t ′′]⊆ [0,1] such that γ([t ′, t ′′])⊆K and F(γ([t ′, t ′′]))⊆B, with F(γ(t ′))

and F(γ(t ′′)) belonging to the different components of B−.

Thanks to Lemma 2.11 in46, when the SAP relation in (2.1) is fulfilled, there exists a compact,

connected set C contained in K and joining A +
d to A +

u (see Fig. 1 for a graphical illustration,

where, for simplicity’s sake, we let C coincide with K).
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FIG. 1. We illustrate the stretching relation (K,F) : Ã m−→B̃ between the generalized rectangles Ã :=

(A ,A −) and B̃ := (B,B−). We use the same color to draw an object in A (on the left) and its image

through F (on the right). In particular, given the generic path γ joining the left and the right sides of A , we

draw in light blue its subpath ν in K, whose image through F, still colored in light blue, joins the boundary

sets B−` and B−r of B.

Moreover, according to Theorem 2.1 in6, when the stretching relation in (2.1) is satisfied with

Ã = B̃, so that A = B and the orientation of the two generalized rectangles coincides, too, a

fixed point localized in the compact set K exists. Under the same assumptions, since the stretching

relation is preserved under composition of maps (see Lemma 2.2 in47), dealing with the forward

iterates of a function allows to show the existence of periodic points of any period.49 We further

stress that, despite the similarity between the SAP relation and the crossing property by Kennedy

and Yorke in13, where connections and preconnections play the role of our paths and subpaths,

the latter approach, also due to the generality of the spaces considered, does not guarantee the

existence of fixed points and periodic points when the crossing property in13 is fulfilled between

a domain and itself, as shown by Example 10 therein. In particular, such difference affects the

definition of chaos that it is possible to deal with by using the two methods. Indeed, under the

assumptions of Theorem II.1, in agreement with points (ii) and (iii) of that result, rather than

the classical characterization of chaos in the coin-tossing sense by Kirchgraber and Stoffer in50

- considered also, among others, in13,51 - according to which the iterates of the map generating

the system dynamics mimic the sequences of two symbols, we can also require that periodic se-

quences of symbols are realized by means of periodic itineraries of the map. See6, and in particular

Definition 2.2 and the proof of Theorem 2.2 therein, for additional details.

Furthermore, notice that if it holds that (K,F) : Ã m−→B̃ for some K ⊂A and F is continuous on
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A , then it is true that (A ,F) : Ã m−→B̃, as well. However, in order e.g. to localize fixed points

when Ã = B̃ in agreement with Theorem 2.1 in6, we are interested in finding the smallest, rather

than the largest, compact set on which the stretching relation is fulfilled. Such need arises also

when trying to prove the presence of chaos, in which case the stretching relation in (2.1) has to be

satisfied at least with respect to two pairwise disjoint compact sets playing the role of K.52 Indeed,

the result that we will use in Sec. IV and Sec. V reads as follows:

Theorem II.1 Let R̃ :=(R,R−) be an oriented rectangle of R2 and let F : R→R2 be a function.

If K0 and K1 are disjoint compact subsets of R such that

(Ki,F) : R̃ m−→R̃, for i = 0,1, (2.2)

then F induces chaotic dynamics on two symbols on R relatively to K0 and K1, i.e., setting K :=

K0∪K1 and introducing the nonempty compact set

Y :=
∞⋂

n=0

F−n(K),

there exists a nonempty compact set X ⊆ Y ⊆ K, such that:

(i) F(X) = X ;

(ii) F�X is semiconjugate to the one-sided Bernoulli shift on two symbols σ , that is, there exists

a continuous map π from X onto53 Σ
⊕
2 := {0,1}N, endowed with the distance

d̂(s′,s′′) := ∑
i∈N

|s′i− s′′i |
2i+1 ,

for s′=(s′i)i∈N and s′′=(s′′i )i∈N ∈Σ
⊕
2 , such that π ◦F =σ ◦π, where σ : Σ

⊕
2 →Σ

⊕
2 , σ((si)i) :=

(si+1)i, ∀i ∈ N ;

(iii) the set of the periodic points of F �Y is dense in X and the preimage π−1(s) ⊆ X of every

k-periodic sequence s = (si)i∈N ∈ Σ
⊕
2 contains at least one k-periodic point.

Furthermore, from conclusion (ii) it follows that:

(iv)

htop(F)≥ htop(F �X)≥ htop(σ) = log(2),

where htop is the topological entropy (see54 for a definition);

9



Proving chaos for a system of coupled logistic maps

(v) there exists a compact invariant set V ⊆ X such that F |V is semiconjugate to the one-sided

Bernoulli shift on two symbols, topologically transitive and displays sensitive dependence

on initial conditions.

Proof. The result immediately follows by combining Definition 2.2 in6 with Theorems 2.2 and

2.3 therein. �

Given Theorem II.1, the SAP method, that allows to prove the presence of chaotic dynamics for

a continuous planar map, consists in finding a generalized rectangle inside its domain which, if

suitably oriented, contains (at least) two disjoint compact subsets on which the stretching relations

in (2.2) are fulfilled. This means that we need to detect a generalized rectangle that is stretched at

least twice across itself by the map under analysis, when keeping its orientation unchanged (see

Note 49). If we succeed in such task, all the features related to chaos listed in Theorem II.1 will

follow for our system. In particular, since for any continuous self-map Φ of a compact topological

space it holds that htop(Φ
n) = nhtop(Φ) for n≥ 1, where htop(Φ) denotes the topological entropy

of Φ and Φn is its n-th iterate (cf. Theorem 2 in54), in order to show the existence of chaos for a

map, at least in the sense of positive topological entropy, recalling also (iv) in Theorem II.1, it is

sufficient to prove that one of its forward iterates is semiconjugate to the Bernoulli shift on two (or

more) symbols (see12), for instance by applying the SAP technique to that forward iterate.55 This

is the strategy that we will follow in Sec. V, where we shall apply the SAP method to the second

iterate of the map G associated with System (3.1), so as to obtain weaker parameter conditions

with respect to those, that will be found in Sec. IV, ensuring the emergence of chaotic dynamics

when dealing with the first iterate of G. Moreover, we will see that the consideration of G2 allows

to detect attractive chaotic sets, while the numerical simulations we performed do not highlight

the presence of chaotic attractors when dealing with G. Namely, in general, as discussed in6, via

Theorem II.1 we only prove the existence of an invariant, chaotic set, not its attractiveness.

We conclude the present discussion with some comments, motivated by what we will show in Sec.

IV, about how the SAP method looks like when dealing with 1D maps. Namely, a pair Ĩ = (I, I−),

where I = [a,b]⊂ R is a compact interval and I− = {a,b} is the set of its endpoints, may be seen

as a degenerate oriented rectangle. Accordingly, the stretching property (K, f ) : Ĩ m−→Ĩ, with K ⊆ I

compact set on which the function f : I→R is continuous, is equivalent to the fact that K contains

a compact interval I0 such that f (I0) = I. Hence, in the one-dimensional case, the stretching along

the paths relation coincides with the classical covering relation considered e.g. in56, i.e., in the

10



Proving chaos for a system of coupled logistic maps

1D framework (K, f ) : Ĩ m−→Ĩ becomes I f -covers I. Moreover, noticing that, in the just described

scenario, we actually have (I0, f ) : Ĩ m−→Ĩ, then, if I contains two disjoint compact intervals I0 and

I1 on which f is continuous and such that f (I j) = I, for j ∈ {0,1}, we enter the setting of Theorem

II.1, with Ĩ playing the role of R̃ and with K j = I j , so that the conclusions listed therein about the

chaotic features of the system hold true in the one-dimensional framework, too. Indeed, according

to the results in Sec. 5 in4, Theorem II.1 holds true when dealing with oriented N-dimensional

rectangles for any N ≥ 3, in addition to the cases N = 1 and N = 2.

III. THE MODEL

Following Yousefi et al. in1, in the next sections we will deal with the discrete-time system
x(t +1) = µ1 x(t)(1− x(t))+ γ1 y(t)

y(t +1) = µ2 y(t)(1− y(t))+ γ2 x(t)

(3.1)

composed of two coupled logistic maps, for µ1, µ2 ∈ [0,4] and γ1, γ2 ∈ R.

We recall that, according to the construction in1, the model above describes two interdependent

economies, characterized by two competitive markets each, with a demand link between them.

In particular, the variables x and y, being related to production, cannot be negative. As concerns

γ1 and γ2, due to their interconnecting role between the two economies, they are called coupling

coefficients in1 and are therein interpreted as trade policy parameters. Because of their different

economic meaning, we stress that the linking parameters in57–60 can take just non-negative values,

while in1 γ1 and γ2 can be larger or smaller than 0. If γ1 = γ2 = 0, no trade is present, with the two

markets being totally disconnected, and the model becomes
x(t +1) = µ1x(t)(1− x(t))

y(t +1) = µ2y(t)(1− y(t))

(3.2)

The choice made in1 of focusing on µ1, µ2 ∈ [0,4], rather than on larger sets of positive values for

µ1, µ2, comes from the fact that the 1D logistic map

g(x) = µx(1− x) (3.3)

is a unimodal function taking non-negative values for x ∈ [0,1] only. Since g has a unique maxi-

mum point located in x = 1
2 , with g(1

2) =
µ

4 , the logistic function maps the interval [0,1] into itself
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just for µ ∈ [0,4], while for µ > 4 the forward iterates of almost all initial points limit to −∞ (cf.

Fig. 2 and the explanations in Sec. IV).

Calling G = (G1,G2) : R2
+ → R2 the continuous function associated with System (3.1), whose

components are

G1(x,y) := µ1 x(1− x)+ γ1 y,

G2(x,y) := µ2 y(1− y)+ γ2 x,

(3.4)

where we set R2
+ := {(x,y)∈R2 : x≥ 0, y≥ 0}, we are going to show how to apply the Stretching

Along the Paths method, whose main features have been recalled in Sec. II, to the first iterate of

G in Sec. IV, and to its second iterate in Sec. V.

IV. THE ANALYSIS OF THE FIRST ITERATE

Focusing, in the present section, on the first iterate of the map G = (G1,G2) : R2
+ → R2 in

(3.4), we stress that even if, in principle, G1 and G2 can be negative, we will restrict our attention

on parameter values and subsets of R2
+ for which G1 and G2 are nonnegative, as required by the

economic meaning of the variables. Namely, according to Theorem II.1, if the SAP relations in

(2.2) are satisfied for G, there exists a nonempty set on which the map is chaotic and, thanks to the

parameter conditions that we will impose in the statement of Proposition IV.1, the chaotic invariant

set will lie entirely in the first quadrant. In more detail, we are going to investigate for which model

parameter values the SAP relations in (2.2) are satisfied for the map G when taking a generalized

rectangle in the family R of (standard) rectangles of the first quadrant, whose elements are given

by

R = R(c) = [0,1]× [0,c],

and when orienting it by setting

R−` := {0}× [0,c] and R−r := {1}× [0,c]. (4.1)

Such choice for the rectangle is motivated by the simplicity in the computations that are required

for the verification of (2.2), when imposing that G produces a folding on R. Moreover, recalling

that the 1D logistic map g in (3.3) takes non-negative values just for x∈ [0,1], in order to try to have

G1 and G2 nonnegative on R, we will confine ourselves to c ∈ (0,1], so that R ⊆ [0,1]× [0,1]. In

particular, we will see in the proof of Proposition IV.1 that some of the parameter conditions which
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FIG. 2. The graph of g in (3.3) for µ > 4. Since g(1
2) =

µ

4 > 1, there exist two disjoint compact subintervals

I0 and I1 of I = [0,1] such that g(I j) = I for j ∈ {0,1}. Notice however that g(I)* I.

imply the presence of chaotic dynamics change according to whether c ∈
(
0, 1

2

)
or c ∈

[1
2 ,1
]
, as a

consequence of the fact that g has a unique maximum point located in x = 1
2 (cf. (4.3) and (4.4)).

Nonetheless, for all c ∈ (0,1] it happens that the SAP relations in (2.2) are satisfied for the map G

just when one parameter between µ1 (if the expansion occurs along the x-direction, as considered

in Proposition IV.1) and µ2 (if the expansion occurs along the y-direction, cf. Note 63) exceeds

4. We stress that this issue is not related to the choice of the domain on which the SAP method

is applied, being instead a consequence of the fact that, as observed in Sec. 3 in6, it is possible

to prove that for g in (3.3) the stretching along the paths relation, which in the 1D framework

coincides with the classical covering relation considered e.g. in56 (cf. the end of Sec. II), is

satisfied with respect to two disjoint compact subintervals I0 and I1 of I = [0,1] just when µ > 4

(see Fig. 2), so that g does not map the interval [0,1] into itself and almost all orbits starting from

I negatively diverge. Such weak point will be fixed in Sec. V, where, dealing with G2, we will

see that the SAP technique can be applied with both µ1 and µ2 lying in [0,4], so that, differently

from what occurs with G, the chaotic set, whose existence is guaranteed by Theorem II.1, will be

attractive, as confirmed by the numerical simulations in Fig. 7 which highlight the existence of a

chaotic attractor.

Despite this drawback arising with the application of the SAP method to G, we chose to present the

corresponding result in Proposition IV.1 because it allows to understand how the SAP technique

works in a simpler setting, which will then be modified, probably becoming less intuitive, when

dealing with G2 in Sec. V. In particular, in Proposition IV.1 we focus on nonnull values for the

13
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coupling coefficients γ1 and γ2, since we are interested in understanding the role they play in the

emergence on chaotic dynamics.

Proposition IV.1 For the model parameters satisfying the next conditions

µ1 > 4, µ2 < 2,
1
c

(
1− µ1

4

)
< γ1 < 0, (4.2)

as well as

0 < γ2 ≤ c(1−µ2(1− c)) (4.3)

for c ∈ (0, 1
2), or

0 < γ2 ≤ c− µ2

4
(4.4)

for c ∈ [1
2 ,1], the function G in (3.4) induces chaotic dynamics on two symbols on R = R(c) =

[0,1]× [0,c] relatively to two suitable disjoint compact subsets K0 and K1 of R, and thus all the

properties listed in Theorem II.1 are satisfied for G.

Proof. In order to apply Theorem II.1 to reach the desired conclusions, we have to check that there

exist two disjoint compact subsets K0 and K1 of R with respect to which the stretching relations

(Ki,G) : R̃ m−→R̃ for i = 0,1 (4.5)

are fulfilled, where we recall that R̃ := (R,R−), with R− := R−` ∪R−r , and R−` and R−r as

introduced in (4.1).

We split our proof into two main steps.

Step 1: Firstly, we show that the conditions in (4.2) guarantee the validity of the following prop-

erties for G1

G1(0,y)≤ 0, G1(1,y)≤ 0, G1

(
1
2
,y
)
> 1, ∀y ∈ [0,c], (4.6)

according to which a stretching and a folding61 along the x-direction occurs, and we prove that,

depending on the value of c, the conditions in (4.3) or in (4.4) imply the next features for G2

min
(x,y)∈R

G2(x,y)≥ 0, max
(x,y)∈R

G2(x,y)≤ c, (4.7)

that describe a compression62 along the y-direction.63

Step 2: As a second and final stage in the process, we will verify that, under (4.6) and (4.7), the

SAP relations in (4.5) are fulfilled relatively to two suitably defined disjoint compact subsets K0

and K1 of R (cf. (4.8)).
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In regard to Step 1, as concerns (4.6) we notice that, for every y ∈ [0,c], we have G1(0,y) =

G1(1,y)= γ1 y which is non-positive for γ1≤ 0. Discarding null values for the coupling coefficients

γ1 and γ2, we then obtain γ1 < 0 as sufficient condition for G1(0,y) ≤ 0 and G1(1,y) ≤ 0. With a

negative value for γ1, for y∈ [0,c] it holds that G1
(1

2 ,y
)
= µ1

4 +γ1 y≥ µ1
4 +γ1 c, that is larger than 1

for 0> γ1 >
1
c

(
1− µ1

4

)
, which is possible just with µ1 > 4. Hence, the first and the third conditions

in (4.2) imply (4.6). Turning now to (4.7), we start by noticing that G2 admits a minimum and a

maximum value on R due to Weierstrass Theorem. Since the gradient of G2 never vanishes when

γ2 is nonnull, by Fermat Theorem the minimum and maximum points of G2 need to belong to the

boundary of R. In particular, G2(x,0) = γ2 x is non-negative for γ2 > 0 and in such case we also

have 0 ≤ G2(x,c) = µ2 c(1− c)+ γ2 x ≤ µ2 c(1− c)+ γ2, recalling that x ∈ [0,1]. Moreover, for

y ∈ [0,c], if c ∈ (0, 1
2), then 0≤ G2(0,y) = µ2 y(1− y)≤ µ2 c(1− c) and 0≤ G2(1,y) = µ2 y(1−

y)+ γ2 ≤ µ2 c(1− c)+ γ2, while, if c ∈ [1
2 ,1], then 0≤ G2(0,y)≤ µ2

4 and 0≤ G2(1,y)≤ µ2
4 + γ2.

Hence, for c ∈ (0, 1
2) it holds that min(x,y)∈R G2(x,y)≥ 0 and max(x,y)∈R G2(x,y) = µ2 c(1− c)+

γ2, so that (4.7) is implied by (4.3). If instead c ∈ [1
2 ,1] we have min(x,y)∈R G2(x,y) ≥ 0 and

max(x,y)∈R G2(x,y) =
µ2
4 + γ2, so that (4.7) is implied by (4.4). This concludes the first half of the

proof.

As concerns the second half of it, in order to check that under (4.6) and (4.7) the SAP relations in

(4.5) are fulfilled, we set

R0 :=
[

0,
1
2

]
× [0,c], R1 :=

[
1
2
,1
]
× [0,c]

and define

K0 := R0∩G−1(R), K1 := R1∩G−1(R). (4.8)

Notice that K0 and K1 are compact subsets of R because they are closed subsets of the compact

sets R0 and R1, respectively. Furthermore, K0 and K1 are disjoint because they could intersect

just along the vertical segment S :=
{1

2

}
× [0,c], but, by the third condition in (4.6), S is mapped

by G outside R. We also remark that G is continuous on K0 and on K1, since it is continuous

on R2
+. Moreover, let us take a generic path γ : [0,1]→ R with γ(0) and γ(1) belonging to the

different components of R−. Then, by (4.6) and (4.7), as well as by the definition of K0 and

K1 in (4.8), there exist two disjoint subintervals [t ′0, t
′′
0 ], [t

′
1, t
′′
1 ]⊆ [0,1] such that γ([t ′i , t

′′
i ])⊆ Ki and

G(γ([t ′i , t
′′
i ]))⊆R for i∈ {0,1}, with G(γ(t ′i)) and G(γ(t ′′i )) belonging to the different components

of R−. Recalling Definition II.1, the proof of (4.5), and thus of our result, is complete. �
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We remark that the parameter conditions in (4.3) (valid for c ∈
(
0, 1

2

)
) and in (4.4) (valid for

c ∈
[1

2 ,1
]
) coincide for c = 1

2 and that, in such case, together with (4.2), they read as

µ1 > 4, µ2 < 2, 2
(

1− µ1

4

)
< γ1 < 0, 0 < γ2 ≤

1
2
− µ2

4
. (4.9)

Looking at (4.2) and (4.4), we also notice that the set of values for γ2 for which there is chaos

according to Proposition IV.1 is larger when c is close to 1, but the set of admissible values for

γ1, due to its negativity, shrinks with an increase in c. In view of mediating between such two

opposite tendencies, we will consider c = 1
2 in Fig. 3, where for µ1 = 4.5, µ2 = 1.5, γ1 = −0.2

and γ2 = 0.1 we illustrate in (a) how the rectangle R = R
(1

2

)
is transformed by G and in (b) we

show the compact sets K0 and K1, defined as in (4.8), for which the stretching relations in (4.5)

hold true. Notice that for the chosen parameter values the conditions in (4.9) are indeed satisfied.

(a) (b)

FIG. 3. For µ1 = 4.5, µ2 = 1.5, γ1 = −0.2 and γ2 = 0.1, we show in (a) that G in (3.4) stretches along the

x-direction and folds R = [0,1]×
[
0, 1

2

]
so that G(R) intersects R twice, in such a way that the stretching

relations in (4.5) are fulfilled with K0 and K1 defined as in (4.8) and depicted in (b), when R is oriented as

in (4.1). Notice that, by construction, K0 and K1 are separated by the vertical segment S :=
{1

2

}
×
[
0, 1

2

]
(in yellow), which is mapped by G outside R. In (a) we used the same color to draw a line segment and its

image through G. Moreover, in order to better illustrate how G(R) is obtained starting from R, we showed

in (a) how G acts on a grid covering R.

We conclude the present section about the analysis of G in (3.4) by stressing that, similar to

what happens when applying the SAP method to the first iterate of the map associated with the 2D

System (3.1), in which, as discussed before Proposition IV.1, one parameter between µ1 and µ2

has to be larger than 4, also with a 3D formulation of G the same issue arises, and thus the chaotic
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set, whose existence is guaranteed by the three-dimensional counterpart of Theorem II.1,64 is not

attractive, since almost all the trajectories diverge.

Indeed, abstracting from its economic interpretation given in1, the simplest way to extend (3.4)

to a 3D framework probably consists in dealing with the continuous function Ĝ = (Ĝ1, Ĝ2, Ĝ3) :

R3
+→ R3, whose components are65

Ĝ1(x,y,z) := µ1 x(1− x)+ γ11 y+ γ12 z,

Ĝ2(x,y,z) := µ2 y(1− y)+ γ21 x+ γ22 z,

Ĝ3(x,y,z) := µ3 z(1− z)+ γ31 x+ γ32 y,

(4.10)

where R3
+ := {(x,y,z) ∈ R3 : x≥ 0, y≥ 0, z≥ 0} is the first octant of R3.

In order to verify that the 3D version of the stretching relations66 in (4.5) for Ĝ, we need to assume

that two out of the x-, y- and z-directions are compressive, and that the remaining one is expansive.

Just the expansion along one direction, whatever it is, requires the corresponding value for the µi

parameter, i ∈ {1,2,3}, to exceed 4. In fact, the analysis performed above and the kind of findings

obtained in the present section would be valid also when studying System (4.10). In more detail,

its investigation would follow similar lines to7,8, where the SAP method has been applied to 3D

discrete-time settings. However, in order not to overburden the paper, we prefer to focus on the 2D

framework only. One more aspect supporting our choice lies in the fact that the described weak

point connected with the application of the SAP method to the dynamical system generated by Ĝ

could be fixed by dealing with its second iterate, similar to what we shall do in the 2D framework

in Sec. V, where we will consider G2, with G as in (3.4). Since working with the second iterate

of Ĝ would lead to cumbersome computations, in the next section we will confine ourselves to the

study of the two-dimensional setting, just showing some illustrations of the 3D framework in Figs.

8 and 9.

V. DEALING WITH THE SECOND ITERATE

In view of trying to find more general conditions on the model parameters than those derived in

Proposition IV.1 but still guaranteeing the emergence of chaotic dynamics, in the present section

we apply the SAP method to the second iterate of G in (3.4).

As an intermediate step in order to explain how this can be performed, we start by focusing on

17



Proving chaos for a system of coupled logistic maps

the case in which the two economies are totally disconnected, so that we consider (3.2) in place

of (3.1) and we are thus led to deal with the logistic map g(x) in (3.3), together with its second

iterate. Using then a pertubative method, grounded on what learned in the 1D framework and

in which the value of the linking parameters is gradually increased, we will be able to exploit a

similar geometry also in the two-dimensional framework.67

We have seen in Fig. 2 the way the 1D version of the SAP method, described at the end of

Sec. II, can be applied to g on the interval [0,1], in which case its maximum value has to exceed

1, condition requiring µ > 4. However, in such manner the forward iterates of almost all initial

points limit to −∞. On the other hand, as observed in Sec. 3 in6 (cf. Fig. 2 therein), when dealing

with the second iterate of g it is possible to apply the SAP method on a subset of [0,1] for µ < 4, as

well. We analyze more closely the needed geometry with the aid of Fig. 4, in which we show two

disjoint compact subintervals68 JL and JR of [0,1] such that g2(Ji) := J ⊃ JL ∪ JR for i ∈ {L,R}.

Thanks to this construction, the one-dimensional version of the stretching conditions in (2.2) is

satisfied for g2 and all the features related to chaos listed in Theorem II.1 are fulfilled for the

second iterate of g. In particular, from (iv) in Theorem II.1 it holds that htop(g2)≥ log(2), where

in general htop(Φ) denotes the topological entropy of Φ for any continuous self-function69 Φ of a

compact topological space Z. Then, since htop(g2) = 2htop(g) by Theorem 2 in54, it follows that

htop(g) ≥ log(
√

2) and thus the topological entropy of g is positive. We recall that the positivity

of the topological entropy for a map is generally considered as one of the trademarks of chaos for

the associated dynamical system.

In view of exploiting a construction similar to that in Fig. 4 also in the 2D framework, we need to

look better at how the subintervals JL and JR of [0,1] are obtained in that picture. To such aim, we

notice that the expression for the second iterate of the logistic map reads as

g2(x) = µ
2x(1− x)(1−µx+µx2), (5.1)

and it is then a function vanishing for x = 0 and x = 1, whose graph on the interval [0,1] is

symmetric with respect to x = 1
2 , since a direct check shows that g2(1

2 −α) = g2(1
2 +α), for

every α ∈ [0, 1
2 ]. Moreover, studying its derivative, we find that g2 admits xML := 1

2 −
1
2

√
1− 2

µ
,

x = 1
2 and xMR := 1

2 +
1
2

√
1− 2

µ
as critical points. Since xML and xMR are well-defined and not

coinciding just for µ > 2, it holds that g2 for µ ≤ 2 is a unimodal function with a maximum

point in x = 1
2 , looking then similar to g in Fig. 2, while, for µ > 2, g2 has a minimum point

in x = 1
2 , and two symmetric maximum points in x = xML and x = xMR. In particular, it holds that
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FIG. 4. The graph of g2 in (5.1) for µ∗ < µ < 4 and εd > 0 small enough, so that the compact disjoint

subintervals JL := [xML ,xmL ] and JR := [xmR ,xMR ] of J := [m+εd ,M]⊂ [0,1] satisfy the condition g2(Ji) = J

for i ∈ {L,R}.

m := g2(1
2) =

µ2

4

(
1− µ

4

)
> 0 and M := g2(xML) = g2(xMR) =

µ

4 < 1 for µ < 4. Turning back to Fig.

4, we notice that for µ < 4, in order for JL and JR to be disjoint, we can choose the right endpoint

of JL and the left endpoint of JR to be the solutions, that we will call xmL and xmR, closest to x = 1
2

to the equation g2(x) = m+ εd, with εd a small, positive quantity. The left endpoint of JL and

the right endpoint of JR will instead coincide with xML and xMR, respectively, i.e., JL := [xML ,xmL ]

and JR := [xmR,xMR], so that g2(Ji) := J = [m+ εd,M], for i ∈ {L,R}. As mentioned above, in

order to have the one-dimensional version of (2.2) satisfied for g2, so that all the properties listed

in Theorem II.1 are fulfilled, we need that J contains both JL and JR. Let us then investigate

for which parameter values (maintaining that εd > 0 is small enough) the analytical conditions

guaranteeing that J ⊃ JL∪ JR, i.e., m+ εd < xML and xMR < M, are fulfilled. Direct computations

allow to conclude that when εd = 0 both conditions are satisfied for µ > µ∗ := 3.83188. Hence,

by continuity, if εd > 0 is sufficiently small, the conditions above hold true for large enough values

of µ, which however can be less than 4. Indeed, in Fig. 4 we considered µ = 3.85 and εd = 0.1, so

that JL = [xML ,xmL ] = [0.1534,0.4730] and JR = [xmR,xMR] = [0.5270,0.8466] are both contained

in J = [m+ εd,M] = [0.1490,0.9625].

In order to try to exploit a similar construction in the 2D framework with the second iterate of G
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in (3.4), let us at first notice that it can be written as G2 = (G2
1,G

2
1), with

G2
1(x,y) := g2

µ1
(x)+ γ1 [µ1y(1− γ1y−2µ1x(1− x))+µ2y(1− y)+ γ2x] ,

G2
2(x,y) := g2

µ2
(y)+ γ2 [µ2x(1− γ2x−2µ2y(1− y))+µ1x(1− x)+ γ1y] ,

where, recalling (5.1), we set g2
µi
(z) := µ2

i z(1−z)(1−µiz+µiz2) with (i,z)∈ {(1,x),(2,y)}. This

means that, assuming that γ1 and γ2 are small in absolute value, we can see G2
1(x,y) and G2

2(x,y) as

perturbations of g2
µ1
(x) and g2

µ2
(y), respectively, and thus we can transfer to G2 what we observed

about the second iterate of the logistic map.

In particular, in view of obtaining that a suitable generalized rectangle is transformed by G2 so

that a stretching and a folding occurs along e.g. the x-direction, while a compression is produced

along the y-direction, we will assume that µ1 > 3.83188, so that for G2
1 a geometrical configuration

similar to that in Fig. 4, though two-dimensional, emerges, while it is more convenient to suppose

that µ2 is lower than 2, so that computations are simplified by the fact that g2
µ2
(y) is unimodal. In

regard to the choice of the generalized rectangle Q, due to the presence of the coupling coefficients

γ1 and γ2 and of their perturbing effect with respect to the 1D framework, rather than considering

the square J1× J1, with J1 = [m1 + εd,M1] where we set m1 := µ2
1

4

(
1− µ1

4

)
, M1 := µ1

4 and εd is a

small positive quantity, we will deal with the square J̄1× J̄1, with J̄1 := [m1 + εd,M1− εu] where

εu > 0 introduces a little distance for the right endpoint of J̄1 from the maximum value of g2
µ1
(x).

As we shall see below, this precaution, together with suitable conditions which may vary according

to the considered parameter configuration (cf. (5.5), (5.6) and (5.7)), allow for a double crossing,

from left to right, between G2(Q) and Q := J̄1× J̄1, when suitably choosing εd > 0 and εu > 0,

and on orienting Q by setting

Q−` := {M1− εu}× [m1 + εd,M1− εu], Q−r := {m1 + εd}× [m1 + εd,M1− εu] (5.2)

so as to obtain the oriented rectangle Q̃ := (Q,Q−), with Q− :=Q−` ∪Q−r . The need of defining

as left/right sides of Q what are usually called the right/left sides of the square comes from the

fact that G2
1, when it is expansive, produces a stretching along the x-direction whose orientation is

reversed with respect to that produced by G1, as it is evident comparing Fig. 3 with Figs. 5 and

6. Such difference is reflected by the conditions in (5.5) and (5.7), that replace (4.6). However, as

stressed in Sec. II, those left/right names for the sides of an oriented rectangle are not binding from

a geometric viewpoint, being purely conventional. We also remark that, in view of minimizing the

differences with respect to the proof of Proposition IV.1, we shall define below Q0 and Q1, as well
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as H0 and H1 in (5.4), similar to (4.8), without inverting them, since there is not a fixed ordering

to be assigned to the compact sets on which the stretching relations are satisfied.

To try to reach our conclusions about G2, let us observe the structure of the proof of Proposition

IV.1, that will essentially remain unchanged when dealing with the second iterate of G, even if

in the latter case we will have to focus on some specific parameter configurations. Indeed, it is

analytically unfeasible to take into account all the possibilities concerning the sign of the various

factors that emerge in the expressions for G2
1 and G2

2, when imposing some conditions that those

components have to satisfy. Moreover, the conditions needed to apply the SAP method partially

change with the considered parameter values. The strategy to prove the presence of chaos for G2

is still that of applying Theorem II.1, which requires that there exist two disjoint compact subsets

H0 and H1 of Q with respect to which the stretching relations

(Hi,G2) : Q̃ m−→Q̃ for i = 0,1 (5.3)

are fulfilled. The kind of arguments employed in Step 2 of the proof of Proposition IV.1 can be

applied in the present context, too, and mainly require to adjust notation, when defining

Q0 :=
[

m1 + εd,
1
2

]
× [m1 + εd,M1− εu], Q1 :=

[
1
2
,M1− εu

]
× [m1 + εd,M1− εu]

and

H0 := Q0∩
(
G2)−1

(Q), H1 := Q1∩
(
G2)−1

(Q), (5.4)

after having imposed conditions on G2
1 and G2

2 bearing some resemblance to (4.6) and (4.7), but

adapted to the features of G2, and being also parameter dependent to a certain degree. As concerns

Step 1, rather than providing, like it was in the proof of Proposition IV.1, parameter conditions

which guarantee that the components of the map satisfy suitable properties, we focus on two

parameter configurations that mainly differ in the sign of γ1, and we investigate how G2
1 and G2

2

have to behave in order to have (5.3) fulfilled for Q̃, with εd and εu fixed in advance. In more

detail, for both parameter configurations, we will first deal with the case γ1 = γ2 = 0, so that the

two economies are isolated, and we then impose conditions on G2
1 and G2

2 that ensure the validity

of the SAP relations in (5.3) when focusing on sufficiently small (positive or negative) values of

γ1 and γ2, by exploiting the continuity of G2
1 and G2

2.

Analysis with the first parameter configuration

The first parameter set we consider is given by µ1 = 3.96, µ2 = 2, γ1 = −0.025, γ2 = 0.16. As

shown in Fig. 5, the SAP technique can be applied to Q := J̄1× J̄1 when choosing εd = 0.085
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and εu = 0.12, so that Q = [0.124,0.870]× [0.124,0.870]. Let us try to understand why it is so,

disregarding for the moment the values of γ1 and γ2, that can be assumed to be equal to 0, so that

we are in the isolated economy scenario. Focusing at first on the expansive direction, i.e., the

horizontal one, we notice that, since µ1 > 2, then g2
µ1
(x) has a minimum point in x = 1

2 and two

maximum points in xML , xMR that, in agreement with the construction in Fig. 4, are internal to J̄1 =

[m1+εd,M1−εu], since it holds that m1+εd = 0.124 < xML = 0.148 < xMR = 0.852 < M1−εu =

0.870. In order to observe an expansion and a folding for G2 along the x-direction when the two

economies are isolated,70 we could impose g2
µ1
(1

2)< m1+εd and g2
µ1
(xML) = g2

µ1
(xMR)> M1−εu.

However, due to the closeness of the maximum points of g2
µ1

to the endpoints of J̄1, rather than the

latter condition, for simplicity’s sake we will consider the stronger g2
µ1
(m1+εd)> M1−εu, which

also implies that g2
µ1
(M1− εu)> M1− εu, recalling that g2

µ(x) is symmetric with respect to x = 1
2

for any µ > 0 and observing that xML− (m1 + εd) = 0.024 > M1− εu− xMR = 0.018.

Assuming that γ1 and γ2 are small in absolute value but nonnull71, in place of (4.6) we impose

G2
1

(
1
2
,y
)
< m1 + εd, G2

1(m1 + εd,y)≥M1− εu, ∀y ∈ J̄1, (5.5)

meaning that, employing a notation analogous to that used in the proof of Proposition IV.1, the

vertical segment S :=
{1

2

}
× [m1 + εd,M1− εu] (depicted in yellow in Fig. 5 (b)) is mapped by G2

1

on the left of Q, while, recalling the definitions in (5.2), we require that Q−r (depicted in brown in

Fig. 5 (b)), and thus Q−` (depicted in red in Fig. 5 (b)), are mapped by G2
1 on the right of Q.

In particular, focusing on the case γ1 = −0.025 and γ2 = 0.16, as concerns the first condition in

(5.5) we have that G2
1(

1
2 ,y) is increasing for y ∈ J̄1, since d

dyG2
1(

1
2 ,y) = γ1

(
µ1(1− µ1

2 −2γ1y)+µ2

(1−2y)
)

is positive for y > µ1(1−
µ1
2 )+µ2

2(γ1µ1+µ2)
=−0.495, since in the considered scenario γ1 is negative.

Hence, G2
1(

1
2 ,y)< m1 + εd on J̄1 is equivalent to G2

1(
1
2 ,M1− εu)< m1 + εd. In regard to G2

1(m1 +

εd,y) ≥M1− εu on J̄1, studying the sign of d
dyG2

1(m1 + εd,y), we obtain a minimum point in y =

ym := µ1(1−2µ1(m1+εd)(1−m1−εd))+µ2
2(γ1µ1+µ2)

= 0.670. Thus, the second condition in (5.5) is equivalent to

G2
1(m1+εd,ym)≥M1−εu. Notice that both the derived conditions are satisfied in our framework,

since G2
1
(1

2 ,M1− εu
)
= 0.114<m1+εd = 0.124 and G2

1 (m1 + εd,ym)= 0.949>M1−εu = 0.870.

Turning now to the compressive direction, i.e., the vertical one, we remark that, assuming for the

moment γ1 = γ2 = 0, since µ2 = 2, then g2
µ2
(y) is a unimodal map, with a maximum point in y = 1

2

and two minimum points in the endpoints of J̄1. More precisely, since 1
2 −m1− εd = 0.376 >

M1− εu− 1
2 = 0.370 and thus, recalling that g2

µ2
(y) is symmetric with respect to y = 1

2 , we have

g2
µ2
(m1 + εd) < g2

µ2
(M1− εu), to witness a contraction for G2 along the y-direction when the two
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(a) (b) (c)

FIG. 5. For µ1 = 3.96, µ2 = 2, γ1 = −0.025 and γ2 = 0.16, we show in (b) that, for G in (3.4) and for the

square Q := J̄1× J̄1 = [0.124,0.870]× [0.124,0.870] depicted in (a) it holds that G2(Q) intersects Q twice

in such a way that the stretching relations in (5.3) are fulfilled for G2 with H0 and H1 defined as in (5.4) and

drawn in (c), when Q is oriented as in (5.2). In (b) we used the same color to draw suitable line segments

and their image through G2.

economies are isolated, we impose, in addition to g2
µ2
(1

2)< M1−εu, also g2
µ2
(m1+εd)> m1+εd,

which implies g2
µ2
(M1− εu)> m1 + εd.

Assuming that γ1 and γ2 are small in absolute value but nonnull, in place of (4.7) we set

G2
2(x,m1 + εd)≥ m1 + εd, G2

2

(
x,

1
2

)
≤M1− εu, ∀x ∈ J̄1, (5.6)

so that G2
2(Q) is contained in the infinite horizontal strip R× [m1 + εd,M1− εu], that contains

Q as well. Recalling that γ1 = −0.025 and γ2 = 0.16 in the considered parameter set, since
d
dxG2

2(x,m1 + εd) = γ2
(
µ2(1−2µ2(m1 + εd)(1−m1− εd)−2γ2x)+ µ1(1−2x)

)
, then G2

2(x,m1 +

εd) has a maximum point in x = µ2(1−2µ2(m1+εd)(1−m1−εd))+µ1
2(µ1+γ2µ2)

= 0.595, while the minimum points

are located in the endpoints of J̄1. In particular, since G2
2(m1 + εd,m1 + εd) = 0.431 < G2

2(M1−

εu,m1 + εd) = 0.530, it holds that the condition G2
2(x,m1 + εd) ≥ m1 + εd on J̄1 is equivalent to

G2
2(m1+εd,m1+εd)≥m1+εd. In regard to G2

2
(
x, 1

2

)
≤M1−εu for every x∈ J̄1, a study of the sign

of d
dxG2

2
(
x, 1

2

)
shows that G2

2
(
x, 1

2

)
has a maximum point in x= xM := µ2(1−

µ2
2 )+µ1

2(µ1+γ2µ2)
= 0.463. Hence,

the second inequality in (5.6) is equivalent to G2
2
(
xM, 1

2

)
≤M1− εu. The obtained conditions are

satisfied in the considered framework, since G2
2(m1+εd,m1+εd) = 0.431 > m1+εd = 0.124 and

G2
2
(
xM, 1

2

)
= 0.645 < M1− εu = 0.870.

Analysis with the second parameter configuration

Turning now to the second parameter set,72 i.e., µ1 = 3.832, µ2 = 1.7, γ1 = 0.1, γ2 = 0.2, the

SAP method can be applied to Q := J̄1× J̄1 when choosing εd = 0.02 and εu = 0.17, so that
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Q = [0.174,0.788]× [0.174,0.788], as illustrated in Fig. 6. Indeed assuming for the moment

that we are in the isolated economy scenario, i.e., that γ1 = γ2 = 0, let us start by focusing on

the horizontal, expansive direction. Since µ1 is larger than 2, then g2
µ1
(x) has a minimum point

in x = 1
2 and two maximum points in xML , xMR, that this time are however external to J̄1 = [m1 +

εd,M1−εu], since it holds that xML = 0.154 < m1+εd = 0.174 < M1−εu = 0.788 < xMR = 0.846.

Despite such difference with the construction in Fig. 4, caused by a larger value for εu with

respect to the first parameter set, as shown in Fig. 6 (a) a double covering of J̄1 is produced by g2
µ1

when g2
µ1
(1

2) < m1 + εd and g2
µ1
(M1− εu) > M1− εu, since the latter condition also implies that

g2
µ1
(m1 + εd) > M1− εu, due to the symmetry of g2

µ(x) with respect to x = 1
2 for any µ > 0 and

observing that 1
2 − (m1 + εd) = 0.326 > M1− εu− 1

2 = 0.288. The conditions g2
µ1
(1

2) < m1 + εd

and g2
µ1
(M1−εu)> M1−εu then generate an expansion for G2 along the x-direction when the two

economies are isolated.

Supposing that γ1 and γ2 are small in absolute value, we impose

G2
1

(
1
2
,y
)
< m1 + εd, G2

1(M1− εu,y)≥M1− εu, ∀y ∈ J̄1, (5.7)

so that S :=
{1

2

}
× [m1 + εd,M1− εu] (depicted in yellow in Fig. 6 (b)) is mapped by G2

1 on the

left of Q−r (depicted in brown in Fig. 6 (b)), while Q−` (depicted in red in Fig. 6 (b)), and thus

Q−r , are mapped by G2
1 on the right of Q, recalling the definitions in (5.2). Since in the present

scenario γ1 = 0.1 and γ2 = 0.2, in regard to the first condition in (5.7), we notice that G2
1
(1

2 ,y
)

is

decreasing on J̄1 because d
dyG2

1(
1
2 ,y), which has the same expression reported in the lines below

(5.5), is negative for y >
µ1(1−

µ1
2 )+µ2

2(γ1µ1+µ2)
= −0.434. Hence, G2

1
(1

2 ,y
)
< m1 + εd on J̄1 is equivalent

to G2
1(

1
2 ,m1 + εd) < m1 + εd. As concerns G2

1(M1− εu,y) ≥M1− εu on J̄1, a study of the sign of
d
dyG2

1(M1− εu,y) = γ1
(
µ1(1− 2µ1(M1− εu)(1−M1 + εu)− 2γ1y)+ µ2(1− 2y)

)
shows that it is

negative for y > µ1(1−2µ1(M1−εu)(1−M1+εu))+µ2
2(γ1µ1+µ2)

= 0.150, and thus the second inequality in (5.7) is

equivalent to G2
1(M1−εu,M1−εu)≥M1−εu. We stress that both the found conditions are fulfilled

since G2
1(

1
2 ,m1 + εd) = 0.126 < m1 + εd = 0.174 and G2

1(M1− εu,M1− εu) = 0.818 > M1− εu =

0.788.

Dealing now with the compressive, vertical direction, for the time being with γ1 = γ2 = 0, since

µ2 = 1.7, like with the first parameter set it happens that g2
µ2
(y) admits a maximum point in y = 1

2

and two minimum points in the endpoints of J̄1. More precisely, recalling that 1
2 − (m1 + εd) =

0.326 > M1− εu− 1
2 = 0.288 and that g2

µ2
(y) is symmetric with respect to y = 1

2 , it holds that

g2
µ2
(m1+εd)< g2

µ2
(M1−εu). Thus, to witness a contraction for G2 along the y-direction when the
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two economies are isolated, like with the first parameter set, in addition to g2
µ2
(1

2) < M1− εu, we

impose g2
µ2
(m1 + εd)> m1 + εd, which implies g2

µ2
(M1− εu)> m1 + εd.

Hence, supposing that γ1 and γ2 are positive but small, we impose again the conditions in (5.6),

which however have to be checked in relation to the new parameter configuration. As concerns

G2
2(x,m1 + εd)≥ m1 + εd on J̄1, we have seen just after (5.6) that G2

2(x,m1 + εd) has a maximum

point in x = µ2(1−2µ2(m1+εd)(1−m1−εd))+µ1
2(µ1+γ2µ2)

, that now coincides with x = 0.563, while the minimum

points are located in the endpoints of J̄1. In particular, since G2
2(m1 + εd,m1 + εd) = 0.456 <

G2
2(M1−εu,m1+εd)= 0.540, it holds that G2

2(x,m1+εd)≥m1+εd on J̄1 is equivalent to G2
2(m1+

εd,m1+εd)≥m1+εd. Finally, considering G2
2
(
x, 1

2

)
≤M1−εu for every x ∈ J̄1, we have already

seen that a study of the sign of d
dxG2

2
(
x, 1

2

)
shows that G2

2
(
x, 1

2

)
has a maximum point in x = xM :=

µ2(1−
µ2
2 )+µ1

2(µ1+γ2µ2)
, that now coincides with x = 0.490. Thus, the second condition in (5.6) is equivalent

to G2
2
(
xM, 1

2

)
≤M1− εu. The derived conditions are satisfied in the considered framework, since

G2
2(m1 + εd,m1 + εd) = 0.456 > m1 + εd = 0.174 and G2

2
(
xM, 1

2

)
= 0.626 < M1− εu = 0.788.

(a) (b) (c)

FIG. 6. For µ1 = 3.832, µ2 = 1.7, γ1 = 0.1 and γ2 = 0.2, we find in (b) a confirmation that the stretching

relations in (5.3) are fulfilled for G2, with G in (3.4), and for the square Q := J̄1× J̄1 = [0.174,0.788]×

[0.174,0.788] depicted in (a) and oriented as in (5.2), with H0 and H1 defined as in (5.4) and drawn in (c).

The analysis above is meant to give an idea of the variety in the conditions (cf. (5.5), (5.6), (5.7),

and what they are equivalent to in the various frameworks) that need to be imposed in order to

apply the SAP method according to the considered parameter configuration, despite the similarity

between the geometry in Figs. 5 and 6. The horseshoe shape of G2(Q) therein is common to

the chaotic attractors that emerge in the two investigated scenarios and that are illustrated in Fig.

7 (a) and (b), respectively, where the initial conditions are x(0) = 0.7 and y(0) = 0.2. We stress

that, to the best of our knowledge, the ones provided above are the first applications of the SAP
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method to two-dimensional discrete-time frameworks in which chaotic attractors emerge. Namely,

according to Theorem II.1, if the SAP relations in (2.2) are satisfied for a certain map F, there

exists a nonempty invariant set on which the function is chaotic, but nothing can be inferred about

the attractiveness of the chaotic set in general,73 and we have to rely on numerical simulations

to investigate such feature. In the considered frameworks, the theoretical results obtained for G2

are supported by the performed simulative exercises, which highlight the presence of the chaotic

attractors in Fig. 7 when the SAP method is applicable.

(a) (b)

FIG. 7. For G2, with G in (3.4), we show in (a) the chaotic attractor corresponding to µ1 = 3.96, µ2 = 2, γ1 =

−0.025, γ2 = 0.16 and in (b) the chaotic attractor corresponding to µ1 = 3.832, µ2 = 1.7, γ1 = 0.1, γ2 = 0.2.

We conclude by remarking that, due to the formulation of the 3D setting described at the end

of Sec. IV, the three-dimensional version of the SAP method (cf. Definition 2.1 in8 for the

SAP relation between oriented 3D-rectangles, called oriented parallelepipeds therein, as well as

Theorem 2.1 in8, and the comments below it) can be easily applied to the second iterate of Ĝ

in (4.10) on the cube C := J̄1× J̄1× J̄1 = [0.124,0.870]× [0.124,0.870]× [0.124,0.870], when

modifying the first parameter configuration considered above for G2, and on C = [0.174,0.788]×

[0.174,0.788]× [0.174,0.788], perturbing the second parameter set. In particular, it is possible to

choose parameter sets with µi < 4 for i∈ {1,2,3}, so that chaotic attractors can emerge by dealing

with the dynamical system generated by Ĝ2. For instance, we could start from the two parameter

configurations considered above and take µ3 < 2 close or equal to µ2, γ11 = γ1, γ21 = γ2, γ31

close or equal to γ2, as well as small, positive or negative, values for γi2, i ∈ {1,2,3}, so that

Ĝ2, which in this way is a three-dimensional perturbation of G2, produces an expansion along

the x-direction, and a contraction along the y- and z-directions. A different possibility consists in

imposing symmetry between the second and the third components of Ĝ2, by choosing µ2 = µ3, as
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well as γ11 = γ12 =
γ1
2 , γi1 = γi2 =

γ2
2 , for i∈ {2,3}. The numerical exercises we performed confirm

that, starting from both the above considered parameter configurations, each solution is successful

in view of applying the SAP method to Ĝ2, witnessing chaotic attractors in the simulations. For

brevity’s sake, we do not show the results in all four cases, illustrating in Fig. 8 the effect of

the symmetry strategy when dealing with the first parameter set and in Fig. 9 the effect of the

perturbation strategy with reference to the second parameter set. The chaotic attractors in Figs.

8 and 9 are obtained with x(0) = 0.7, y(0) = 0.2 and z(0) = 0.3 as initial conditions. Similar to

what observed above for the two-dimensional settings, we recall that, for the 3D discrete-time

applications of the SAP method provided in the literature (see7,8), no chaotic attractors emerged,

since in those frameworks the SAP technique was applied to the first, rather than to the second,

iterate of the map generating the dynamics.

(a) (b) (c) (d)

FIG. 8. For Ĝ in (4.10) with µ1 = 3.96, µ2 = 2, µ3 = 1.8, γ11 = γ12 =−0.012, γ21 = γ22 = γ31 = γ32 = 0.08,

and the cube C := J̄1× J̄1× J̄1 = [0.124,0.870]× [0.124,0.870]× [0.124,0.870], we show in (a) that Ĝ2(C ),

thanks to its horseshoe shape, crosses C horizontally twice, so that it can be proven that the 3D version of the

SAP method is applicable to deduce the existence of chaos. We used the same color to draw suitable faces

of C and their image through Ĝ2. Keeping the parameter configuration unchanged, we show the projections,

in (b) onto the xy-plane, in (c) onto the xz-plane and in (d) onto the yz-plane, of the corresponding chaotic

attractor.
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(a) (b) (c) (d)

FIG. 9. For Ĝ in (4.10) with µ1 = 3.832, µ2 = 1.7, µ3 = 1.5, γ11 = 0.1, γ12 = −0.01, γ21 = 0.2, γ22 =

0.01, γ31 = 0.2, γ32 = −0.01, and the cube C := J̄1 × J̄1 × J̄1 = [0.174,0.788] × [0.174,0.788] ×

[0.174,0.788], we show in (a) that Ĝ2(C ) crosses C horizontally twice, so that it can be proven that the

3D version of the SAP method is applicable to deduce the existence of chaos. For the same parameter

configuration, we show the projections, in (b) onto the xy-plane, in (c) onto the xz-plane and in (d) onto the

yz-plane, of the corresponding chaotic attractor.

VI. CONCLUSION

In the present work we have shown how to apply the Stretching Along the Paths (SAP) method

to prove the existence of chaotic dynamics for the 2D discrete-time model considered in1, com-

posed of two logistic maps, coupled by linear terms. As we have seen, the SAP technique, being

topological in nature, does not require any differentiability condition. Moreover, it does not call

for a direct proof of chaos according to one of the many existing definitions, which are often diffi-

cult, or impossible to handle in practical contexts.

In greater detail, along the manuscript, after determining the parameter conditions that ensure the

emergence of chaotic dynamics when applying the SAP method to the first iterate of the map as-

sociated with the system considered in1, we applied the SAP method to the second iterate of the

same map in order to weaken those conditions, both in regard to the sign and the variation range

of the parameters involved. Furthermore, the application of the SAP method to the second iterate

of the map generating the dynamics allowed us to obtain a good agreement with the numerical

simulations, that confirm the presence of a chaotic attractor under the conditions derived for the

applicability of the SAP technique to the second iterate of the map, but not to the first iterate, in

which case chaotic sets are not attractive. Namely, in general the SAP method ensures the exis-

tence of chaotic sets, but not their attractiveness, as discussed in6. To the best of our knowledge,

the one we provided is the first two-dimensional discrete-time application of the SAP technique in
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which numerical simulations highlight the presence of a chaotic attractor.

Since, as shown at the end of Sec. V, the same agreement between theoretical and simulative

results occurs also with the 3D version of the considered model, composed by three coupled lo-

gistic maps, just when dealing with the second iterate of the function generating the dynamics, it

would be interesting to understand whether, considering the second iterate of the maps associated

with the 2D settings in6 and with the 3D frameworks in7,8, numerical simulations would confirm

the presence of chaotic attractors when the model parameters satisfy the conditions for the appli-

cability of the SAP method, recalling that in those contexts no chaotic attractors emerged when

the SAP technique was applied to the first iterate of the map generating the dynamics. We will

perform such investigation in a future work.
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