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Abstract We present a novel technique, called DSVP (Dis-
crimination through Singular Vectors Projections), to dis-
criminate spurious events within a dataset. The purpose of
this paper is to lay down a general procedure which can be
tailored for a broad variety of applications. After describ-
ing the general concept, we apply the algorithm to the prob-
lem of identifying nearly coincident events in low tempera-
ture microcalorimeters in order to push the time resolution
close to its intrinsic limit. In fact, from simulated datasets
it was possible to achieve an effective time resolution even
shorter than the sampling time of the system considered. The
obtained results are contextualized in the framework of the
HOLMES experiment, which aims at directly measuring the
neutrino mass with the calorimetric approach, allowing to
significally improve its statistical sensitivity.

1 Introduction

The demand for increasing sensitivities of nowadays exper-
iments requires the development of complex analysis tools
to respond to several demands, according to the design and
goals of the experiment. In many experiments, a crucial fac-
tor in achieving a high sensitivity is the ability to discriminate
spurious events. This is a particularly relevant feature to keep
into account for experiments where the statistics of the spuri-
ous events might be comparable with, or even overcome, the
statistics of the proper events. This is the case, for instance, of
the direct measurement of the neutrino mass with the calori-
metric approach [1].
So far, few techniques are currently employed for the purpose
of discriminating the spurious events from the proper ones,
and they all require that events belonging to these two fam-
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ilies must differ in some way from each other. In this paper
we outline a novel technique, called DSVP (Discrimination
through Singular Vectors Projections), based on a previous
work by Alpert et al. [2]. Besides its effectiveness, one of the
main advantage of this method, is that it does not rely on any
particular assumption about the structure of the events, thus
in principle it can be applied in various scenarios almost in
a semi-automatic way.
In Sect. 2 we illustrate the DSVP method while in the sec-
ond part of the article (Sect. 3 and 4 ) we show an applica-
tion of this technique in the context of a direct calorimetric
neutrino mass measurements. In particular, we will focus
on the simulated data sets representing the one foreseen for
detectors used in the HOLMES experiment [3], for which the
expected main source of background will be unrecognized
pile-up events.

2 The DSVP technique

The aim of the DSVP algorithm is to discriminate as many as
possible undesirable events (i.e. spurious events which differ
from a reference signal) present in a given dataset, using
the information about the mean ’morphology’ of the events
present in the dataset.
In order to apply the DSVP technique, the following elements
are required:

– The measured dataset,M. Thisn×d matrix consists of the
dataset of interest, where each row is an event described
by d variables. Namely, the events can be seen as points
in the R

d space. From now on, we call the good events
in the dataset A events, while B events are the ones to be
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rejected. We assume that the A events are more numerous
respect to the B ones (NA > NB).1

– The expected number of B events NB that the algorithm
should discard at most.

– A training dataset, T, such that NA � NB . The events of
this n′ × d matrix can be distributed in a different region
of Rd respect to the events in M. For instance, in the case
of microcalorimeter signals, the events in T can lie in a
different energy range respect to the events in M.

We will use the training datasetT to define a new vector space
which will help us to highlight the features that distinguish
an A event from a B one. This new vector space, called from
now the projections space, has dimension k, with k � d.
The events can be represented as points in the Rk projection
space, so that the A events are distributed differently respect
to the B ones. The idea is to find a model (i.e. hypersurfaces)
describing the distribution of the A points in M in this new
space, so that the B points can be identified as the ones with
a larger distance from what predicted by the model.
In order to find the model we need to ’clean’ the dataset first,
obtaining a subset of M, M′ ⊂ M, which contains mostly A
events at the expense of deleting also some A events.
The next step is to represent the events inM′ in the projection
space and to find the model parameters which describes the
distribution of the M′ (∼ A) events.
We then define the discrimination parameter and its threshold
to recognize an A event from a B one in R

k .
Finally, we take the original dataset M, represent the events
in the projection space, find the discrimination parameter and
discard all the events that have a value of the discrimination
parameter above the threshold found.
The procedure (dataset ’cleaning’, model and threshold def-
inition and B discrimination) is then repeated with the sur-
vived events. At each iteration, the M dataset will contain a
smaller fraction of B events.
In the following sections, each steps of the algorithm are
described in detail.

2.1 Raw cleaning with PCA

In the first step, the aim is to create a suitable dataset for
modeling the distribution of A events in the M matrix, low-
ering the ratio NB/NA at the expense of deleting also A
events. Knowing that NA > NB , the mean ’morphology’ of
the events is closer to the A ones. We can define a suitable
parameter using the Principal Component Analysis (PCA)
[4] to discard mainly B events.
The procedure used is equal to the one described in [2], which
will be reported for completeness. The singular value decom-
position (SVD) [5] is computed for the n×d matrixM, which

1 See Sect. 2.1.

is decomposed in a product of three matrices M = UDVT.
The columns ofU andV are the left and right singular vectors
respectively, while the entries of the diagonal matrix D are
the singular values. The singular values are ordered from 1
to d in order of importance. Only the first j < d columns of
D are non-neglibile. It is convenient to define a new matrix
Û which contains only the first j columns of U subtracted by
their means which is equivalent to centering the data matrix,
as required by the PCA.
The columns of Û are vectors of length n. Basically, they
represent the projections of the mean-centered events con-
tained in M on the right singular vectors (i.e. the columns
of V, which are called principal vectors in the PCA frame-
work) with the first column of Û expressing the projections
on the first right singular vector and so on. The columns of V
are vectors of dimension d which represent the direction of
greatest variance of the data in M. Thanks to the properties
of the PCA, an appropriate combination of the projections
can be of use to define a parameter, called norm2, which
indicates how close an event is to the mean ’morphology’ of
the events in M.
The precision matrix (σ 2)−1 is computed from the j × j

empirical covariance σ 2 = Û
T
Û and it is used to evaluate

the parameter norm2 for each event i = 1, . . . , n in the
matrix M

norm2
i = Ûi,∗(σ 2)−1Û

T
i,∗ (1)

Suppose that we have a guess of how many B events are
expected in the dataset. We call this number Nguess

B . B events
deviate disproportionately from the mean in this covariance-
adjusted sense, so we discard those with largest norm2 and
repeat the procedure on the remaining data a total of l times,
removing on the l-th iteration a number of events equal to
Nguess
B /2l with the largest norm2. In our tests, we use l = 5.

The iterations guarantee that the mean morphology of the
events are closer and closer to the A events each cycle, as B
events are increasingly eliminated.
After the PCA, we have eliminated

N PCA
del =

∑

l

N guess
B

2l
(2)

events, where the B events are the ones predominantly
discarded. The remaining events after the PCA are m =
n − N PCA

del . We call M′ the m × d the matrix of the survived
events, which is mostly composed of A events.

2.2 Define a model for the A-events

To discriminate the undesirable events, we now need to define
a model which describes the distribution of the A points (the
ones belonging to M′) in the projection space.
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Fig. 1 An example of distribution of the points in T in the projection
space from Sect. 3. In this particular case, the projection space is in R

4.
We decided to set k′ = 2, thus describing the points distribution in R

4

with two curves: p3 = f3(p1, p2) and p4 = f4(p1, p2)

First, we need to define this space. We decompose the T
matrix using the SVD. Because the training matrix T is
mainly composed by A events, we assume that its first k sig-
nificant right singular vectors {v1, v2, . . . , vk} can constitute
a base of the projection space.
The events in M′ are projected onto these vectors. From now
on, each event in M′ will be described by k < d variables, its
projections onto the right singular vector of T. We indicate
all the coordinates of the M′ points along the i-th base vector
of the projection space as pi = M′ · vi.
To describe the points distribution in the new vector space, the
projections p are classified into two groups: the k′ indepen-
dent projections, indicated as pind and the dependent ones,
pdep.

{p}k = p1, . . . , pk′︸ ︷︷ ︸
pind

, pk′+1, . . . , pk︸ ︷︷ ︸
pdep

. (3)

The dependent projections can be expressed as a function
of the independent ones. There is no general rule to identify
which projection is “independent” and which one is not, since
it is related to the specific problem. The training dataset can
be used to identify the dependencies among the projections,
as shown in Fig. 1.
The distribution of the dependent projections can now be
easily described in a R

k′+1 subspace by a set of f curves

pi = fi (pind) ; i = k′ + 1, . . . , k. (4)

Knowing precisely the set of curves { f }, we will be able to
differentiate between the two distribution of events, because
the projection of the B events will not follow the same curves
as the one of the A events.
Usually the functional form of the different f is unknown.
However, we can approximate each f curve with a Taylor
expansion and let a (weighted) linear regression find the best

parameters of the expansion. In particular, we use a mod-
ified version of the random sample consensus (RANSAC)
algorithm [6].2

The set of curves { f } which describes the M′ events in the
projection space is what we called the model.

2.3 Find a discrimination threshold

The difference between the measured dependent projections
and the ones expected from the model is evaluated for each
event in the M′ matrix. A residual norm is defined as

d =

√√√√√
k∑

j=k′+1

(p j − f j (pind))2. (5)

In order to discriminate between the A events, the one with
the lowest residual norm, and the B, we need to define a
threshold value, dthr . Due to the fact that the M′ dataset is
mainly made of A events the threshold is chosen as the highest
value of d plus the standard deviation of the d distribution

dthr = max{d} + std{d}. (6)

This threshold definition should ensure to include not only
the A events inM′, but also the A events in the original dataset
M which were eliminated by the ’PCA cleaning’ described
in Sect. 2.1. Nevertheless, this definition of threshold might
need to be redefined to account for the specific problem con-
sidered.

2.4 Apply the model

Now all the components to make the algorithm work are
present: a base for the projection space, a set of curves to
model the points distribution in that space and a discrimina-
tion threshold.
We will now use these tools on the original dataset M,
namely:

1. Take the inner product of the events in M with the base
of the projection space, determining pk .

2. Evaluate the residual norm d using the curves describing
the A projections distributions.

3. The events with a residual norm above the threshold are
discarded.

After the third step, we will have discarded Ndel events. The
events deleted by the third step will be almost, if not all,

2 Due to the fact that the number of outliers (B events) from
step Sect.2.1 is expected to be negligible, any type of weighted linear
regression can in principle be used.
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(a) (b)

(c) (d)

Fig. 2 a Each event (row) of the matrix M is initially described by 400
variables, i.e., samples; we can represent each event as shown in figure
or as points in R

400. M contains two different types of events: single
pulses (A) of energy E and pile-up pulses with different arrival time
(B) with energies E1 and E2 such that E1 + E2 = E . b The events of
M are represented in the projections space. In this space, the two types

of events follow two different distributions. c In the left (right) panel
the matrix M (M′) is represented in the projection space. It is possible
to appreciate how the PCA has drastically reduced the fraction of pile-
up. d The curve f3 = f3(p1, p2), which describes the distribution of
the events in M′, is used to discriminate between the single pulse and
pile-up pulses

spurious B events. All the previous steps (PCA, model and
threshold definition) are now repeated with a reduced number
of expected B events, N B′ = N B − Ndel . The iterations
successively improve the representation of A events, as B
events are increasingly eliminated. The algorithm stops when
Ndel = 0 or when N B′ = 0.
Figure 2 shows a visual representation of some of the steps
of the DSVP technique. As an example the figure reports sig-
nals from a TES microcalorimeter, as explained in Sect. 3.2.
This particular case was chosen because there are just three
non-negligible singular values, therefore the points in the
projection space can be easily shown on a 3D plot.
The method was implemented in python, taking advantage of
many of the fast modules of NumPy and SciPy. The major-
ity of the computational time is taken by the Raw cleaning
with PCA part, due to the fact that the SVD on the matrix M
is performed five times for each iteration. Nevertheless, the

algorithm is quite fast, taking ∼ 7 min to compute nine iter-
ations on a matrix M composed of 1,20,000 rows and 1024
columns of float32 numbers, using only one (six years old)
CPU with a base clock of 2.6 GHz.

3 HOLMES and pile-up discrimination

The algorithm described in Sect. 2 is now applied in the
framework of HOLMES. The HOLMES experiment will per-
form a direct measurement of the neutrino mass with a sen-
sitivity of the order of 1 eV, measuring the energy released in
the electron capture (EC) of 163Ho, as proposed by De Rujula
and Lusignoli in [7]. It will also demonstrate the scalability of
the calorimetric technique for a next generation experiments
that could go beyond the current best expected sensitivity
of 0.1 eV [8]. In order to reach this sensitivity, HOLMES
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Fig. 3 Expected neutrino mass sentivity for the HOLMES experiment.
The right panel shows the sensitivity compared to the detectors energy
resolution at different pile-up fraction. We called the pile-up fraction
on the whole energy spectrum f totpp

will use low temperature TES microlorimeters with 163Ho
implanted in their absorbers, with an activity of 300 Hz per
detector.
The effect of a non-zero neutrino mass on the 163Ho EC
decay spectrum can be appreciated only in a energy region
very close to the end point, where the count rate is low and the
fraction of nearly-coincident events, called pile-up events, to
single events is greater than one. If a pile-up event is com-
posed of two events of energies E1 and E2 which occur within
a time interval shorter than the time resolution of the detector,
it is recorded as a single event with energy E � E1 + E2.
Thus, if not correctly identified, pile-up events will distort
the decay spectrum of 163Ho, lowering the sensitivity to mν .
The neutrino mass sensitivity of HOLMES has been evalu-
ated through Monte Carlo simulations [9], see Fig. 3. Once
fixed the number of recorded events to 3 × 1013, the simula-
tions have shown that the sensitivity on neutrino mass is not
strongly dependent on the energy resolution of the detector
(as long as �E < 10 eV), but rather on the pile-up fraction
f pp, i.e. the ratio between the number of pile-up events to
single events. Its reduction is crucial for the success of the
experiment.
Using the terminology of Sect. 2, in the HOLMES experi-
ment an A event is a signal caused by a single energy depo-
sition in the microcalorimeter detector, while a B event is
a signal caused by nearly coincident events. Each signal is
a collection of records Ii of the current flowing through the
detector sampled at an instant ti = i × tsamp, where tsamp

is the sampling time of the readout system. An example of a
microcalorimeter signal is shown in Fig. 2a. With the current
setup, the sampling time is fixed at 2 µs.
We tested the algorithm robustness and efficiency through
many simulations which aim at emulating the results expected
by the HOLMES experiment. The HOLMES TES microcalorime-

ters do not have the 163Ho implanted yet, therefore a real data
test will be done at later times.

3.1 Energy spectrum and ROI definitions

163Ho decays via electron capture to an atomic excited state
of 163Dy which relaxes mostly emitting atomic electrons
(i.e. the fluorescence yield is less than 10−3 [7]). The de-
excitation energy Ec spectrum probability density is propor-
tional to

dλEC

dEc
∝

√
(Q − Ec)2 − m2

ν (7)

where mν is the effective neutrino mass. The pulses are gen-
erated according to the spectrum in [7] with Q = 2.833 keV
[10], mν = 0 and with energy between 2.650 keV and 2.900
keV. Second order effects like shake-up and shake-off [11]
have not been considered in this work. Despite the optimal
region of interest (ROI) aimed at determining the neutrino
mass will be determined only when actual data will be col-
lected, this energy range can be considered as a reasonable
ROI.
Each detector must be treated separately with the DSVP tech-
nique in order to account for their slightly different character-
istics. Thus, to create a statistic expected for a single detector
with a target activity of 300 Hz over two years of data taking,
we generated 40000 (∼ 80000) single (double) pulse events.
The arrival time of the pile-up pulses is uniformly distributed
between 0 and 10 µs.

3.2 Detector models

For this study we modeled three different TES microcalorime-
ters with the one-body model [12] or with the two-body dan-
gling model [13]. In both cases the current pulse profile is
obtained by solving the system of the electro-thermal dif-
ferential equations applying the fourth-order Runge-Kutta
method (RK4) and considering the transition resistance as
proposed by [14] for taking into account the TES non-linear
behavior. To these pulses a noise waveform, generated as an
autoregressive moving average ARMA (p,q) process with a
power spectrum given by the Irwin-Hilton model, is added.
To test the DSVP effectiveness with slightly different signal
shapes, the physical parameters in the differential equations
are chosen to describe three types of detectors (Fig. 4):

(a) the detectors in [2] which are characterized by a non linear
response and one thermal body.

(b) the target detectors of HOLMES [15] have nearly-linear
response and behave according to a two thermal body
model.
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(a)

(b)

Fig. 4 Pulse profiles corresponding to different energies from 0.5 to
5 keV for two different detectors with non-linear (det. a), and nearly-
linear response (det. b). In order to compare the signals, all the pulses
are normalized by dividing their amplitude by the energy

(c) same nominal design as (b) except for the production
process, causing a significantly weaker link toward the
thermal bath. Thus, the signals have a slower decay time
and a lower signal amplitude respect to (b). Despite this
difference, the detectors show a linear response to energy
deposition with a two-body feature.

The detectors of type (b) are the most promising for the
HOLMES goals. Therefore, for this detector three differ-
ent configurations were tested, in which the rise time was
changed, adjusting the inductance of the circuit and keeping
the other detector parameters constant.

3.3 DSVP and HOLMES

We indicate the ratio between the number of pile-up pulses
and the number of single pulses in the ROI as f RO I

pp . From
simulations, setting a time resolution of 10 µs a value of
f RO I
pp � 2 is expected. In order to apply the algorithm, theM

matrix, which contains the ROI events, must have NA > NB ,
thus f RO I

pp needs to be lowered below one. To reduce this ratio
many different strategies can be adopted. In the following a
non exhaustive list is reported.

– Adding an additional calibration source By adding a
source characterized by a monochromatic X-ray emission
in the ROI, the number of single pulses in the ROI can
be increased while keeping the number of pile-up pulses
unchanged. This approach can be very useful because it
reshapes the energy spectrum, potentially reducing the
probability of discarting single events with energy very

Fig. 5 De-excitation simulated spectra of 163Ho with f totpp = 3×10−3.
Near the end-point the single pulse counts are outnumbered by pile-up
counts

close to the end-point. A similar approach was investi-
gated by Alpert [2].

– Volumetric cuts The events of the training dataset T are
distributed in a finite volume in the k-dimensional pro-
jection space. The single pulses in the ROI reasonably lie
within the same portion of space, while the pile-up are
expected to be distributed in a different region. Thus if we
select only the points in the projection space lying inside
the volume which includes the training dataset, we could
easily eliminate a large fraction of pile-up events. Before
evaluating their projection on theT right singular vectors,
theT and ROI events are normalized to set their amplitude
equal to one. Then, we define the region in the k-space in
which the T events are distributed. We increase it by a lit-
tle amount in order to account small non-linearity effects.
Finally, we select only the events in the ROI included
inside this region. This method can achieve good time
resolution, but it works only if the detector response does
not depart from linearity too much, so in our simulation
in detectors (b), (c) but not (a) .

– Filtering Few filtering techniques allow to achieve effec-
tive time resolution close to the sampling time. Among
these, a particular Wiener filter, as described in [16], is
probably the best technique to achieve this goal.

For the HOLMES purposes, in order to fulfill the NA > NB

condition in the ROI the most suitable and practical method
are the ’wiener filter’ and the ’volumetric cuts’. As indicated
in Table 1, applying these algorithms to the ROI events, the
f RO I
pp can be reduced around 0.6. Most of our simulations

are therefore aimed to test their applications. Nevertheless,
in Sect. 4.2 the performance of the DSVP technique with an
external calibration source is also shown.
As shown in Fig. 5, we use the events at M1 peak (E ∼ 2 keV)
as training region T. This is also the energy range in which
the average signal for the Wiener filter is defined. The M1
peak is the most suitable region for two reasons: it is the peak
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Table 1 Effective time resolution of the DSVP with Wiener Filter and
Volumetric cuts. We indicated with (*) the algorithm used in that simu-
lation to lower the ratio of f RO I

pp below one. For simplicity, we always

set NB equal to the exact number of pile-up pulses in the ROI. The errors
associated with the DSVP τe f f are ≤ 5% and are due to the random
nature of the modified minimization RANSAC algorithm

Detector type Rise Time (µs) tsample (µs) τe f f Wiener Filter τe f f Volumetric cuts τe f f with DSVP

b. 11 2 2.26 2.12 (*) 1.55

b. 17 2 2.37 (*) 2.60 1.55

b. 22 2 2.94 2.90 (*) 2.01

b. 17 1 1.66 (*) 2.00 0.94

a. 10 2 1.82 (*) – 1.24

c. 19 2 2.70 (*) 3.54 1.82

Fig. 6 Left panel: ROI energy spectrum before and after the applica-
tion of the WF/Volumetric cuts and the DSVP technique. Light line
represents the energy spectrum with τe f f of 10 µs, while the solid line
with a τe f f of 1.7 µs. Right panel: The dependence of τe f f and the

average percentage of false positive F+ from the input parameter NB
(Nin), which is normalized by the number of pile-up pulses present in
the ROI (Ntrue)

Fig. 7 Left panel: ROI energy spectrum with Pd Lα peaks before and
after the application of the DSVP technique. The initial f RO I

pp was set

to 0.58. Right panel: The dependence of τe f f from the f RO I
pp is shown

for the detector b. with a rise time of 17 µs and a sampling time of 2
µs. In this case, NB was equal to the number of pile-up pulses in the
ROI
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closest to the ROI, thus reducing the non-linearity effects on
the filters and on the discrimination algorithm and it fulfills
the condition of NB � NA. The f pp in this sector is expected
to be of the order of ∼ 10−3, which can be further reduced
with a raw cleaning with PCA, as described in Sect. 2.1.

4 Simulation results

To quantify the efficiency of the pile-up discrimination algo-
rithms, we define an effective time resolution τe f f as the
ratio of the number of retained piled-up records to single-
pulse records after the algorithm divided by the same ratio
referred to raw data, times 10 µs.

τe f f =
(

pup

single

)

f inal
÷

(
pup

single

)

ini tial
× 10 µs (8)

Through simulations similar to the ones in [9], [17], we have
preliminary estimated that even a small fraction of false neg-
ative modifies the single events spectrum and leads to a sys-
tematic error on the neutrino mass evaluation. We note that in
our simulations no single pulse event was mistaken as pile-
up. The DSVP technique described in Sect. 2 is designed to
leave unaffected the A events.
In applications where a more robust discrimination of the B
events is required, it is possible to adapt the algorithm toward
this goal, for example by adjusting the threshold definition
(Eq. 6), at the expenses of increasing the chance of deleting
some A events.
The energy dependence of the method must be assessed for
each specific application. In general, we would say that the
events with the energies further away than the mean energy in
the dataset M are most likely to become false positive. In the
end, the number of false positives is due to the threshold value
(Eq. 6), while their nature is due to the mean “morphology”
of the events present in the original dataset M.

4.1 DSVP with Wiener filter and Volumetric cuts

We have estimated the τe f f on the simulated data processed
with the DSVP after lowering the initial f RO I

pp using the
’wiener filter’ or the volumetric cut techniques.
Furthermore, before being processed by the DSVP algo-
rithm, the signals where also whitened, i.e. transformed to
whiten noise by a fast Cholesky-factor backsolve procedure
[18]. The results are reported in Table 1. All the simulations
showed that the DSVP is able to reach a time resolution lower
than the sampling time of the signal.
Table 1 shows that the time resolution is strongly depen-
dent on the sampling time, the faster the better, but also on
the rise time of the pulse. While the sampling frequency is
constrained by the readout resources, there is more scope to

change the rise time of the detectors, acting on the electri-
cal time constant of the biasing circuit. Changing the rise
time by a factor two may be achieved reducing the induc-
tance of the TES circuit by a similar factor. This change the
noise spectrum too but usually it does not worsen the energy
resolution.
Also, the non-linear detector response generally improves
the efficiency of pile-up recognition algorithms. When two
near-coincident energy depositions happen inside the TES,
the detector will have different starting conditions. The shape
of the pile-up pulse will be much more different from the
single pulse for a non-linear TES than for a linear one, thus
allowing the algorithms to recognize them more efficiently.
As we stressed in Sect. 2, the only external parameter required
by the DSVP algorithm is the number of events that it should
discard at most, NB . To quantify the influence of this parame-
ter on the effectiveness of the algorithm, we fixed the dataset
M and varied NB , computing the effective time resolution
each time.
Figure 6 shows that no false positive was detected even if we
get the number of event to eliminate wrong up to 50%.

4.2 DSVP with additional calibration source

We have also tested if the performance of the DSVP tech-
nique remains unchanged reducing the f RO I

pp by adding an
external source of single events with energy inside the region
of interest instead of using preliminary filters. We added a
source from Lα x-ray emission lines of Pd (2.833, 2.839
keV). Figure 7 shows that increasing the number of photons
of the Pd source (thus decreasing f RO I

pp ) the effective time
resolution of the DSVP improves. Moreover, τe f f always
remains below the sampling time even for a pile-up fraction
up to 0.9.

5 Conclusions

The DSVP algorithm represents a very powerful technique
to decrease the number of undesirable events in a dataset.
In this work we have applied this algorithm for pile-up dis-
crimination, which can lead to major improvement in exper-
imental sensitivity for experiments such as HOLMES (neu-
trino mass measurement) or CUPID (0νββ) [19]. It can also
be useful to recognize single-site events of the 0νββ inter-
actions from multi-site background events in GERDA [20].
We tested the DSVP technique for the HOLMES application
and we compared its efficiency, represented in this case by
the effective time resolution τe f f , to more ’classical’ discrim-
ination techniques, resulting in a better time resolution.
With the target detector of HOLMES, the DSVP techniques
allows us to reduce the total fraction of pile-up events from
10−3 (∼ τe f f 3 µs) to 10−4 (∼ τe f f 1.5 µs), thus improving
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the neutrino mass sensitivity from 2 eV to about 1.4 eV. To put
this result in perspective, achieving the same improvement
would require to increase the acquisition time by a factor 4:
from 3 to 12 years.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All the relevant
data and the necessary informations are reported in the figures.]
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