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Abstract
Background  Combined antiretroviral therapy (cART) dramatically improved survival in people living with HIV (PLWH) 
but is associated with weight gain (WG), raising concern for a possible obesity epidemic in PLWH. This scoping review 
aims to identify the gaps in the existing evidence on WG in PLWH and generate a future research agenda.

Methods  This review was conducted according to the methodology for scoping studies and reported according 
to the PRISMA Extension for Scoping Review checklist. Articles published in English in the last 10 years indexed in 
Pubmed, WHO Global Index Medicus, or Embase were searched using specific queries focused on WG in PLWH.

Results  Following the selection process, 175 included articles were reviewed to search for the available evidence 
on four specific topics: (I) definition of WG in PLWH, (II) pathogenesis of WG in PLWH, (III) impact of ART on WG, (IV) 
correlation of WG with clinical outcomes. A summary of the data enabled us to identify gaps and clearly define the 
following research agenda: (I) develop a data-driven definition of WG in PLWH and define noninvasive assessment 
methods for body weight and fat composition; (II) further investigate the interaction between HIV/cART and 
immunity, metabolism, and adipose tissue; (III) establish the specific role of individual drugs on WG; (IV) clarify the 
independent role of WG, cART, HIV, and metabolic factors on clinical events.

Conclusions  The proposed research agenda may help define future research and fill the knowledge gaps that have 
emerged from this review.
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Introduction
Since the beginning of the HIV epidemic, it was clear that 
both HIV and antiretrovirals (ARVs) contributed to body 
composition changes in people living with HIV (PLWH). 
The “slim disease” was the first name given to AIDS to 
identify the main clinical presentation of the wasting 
syndrome affecting PLWH [1]. The use of combined anti-
retroviral therapy (cART) has dramatically improved the 
survival of PLWH. However, earlier cART medications 
were implicated in causing lipodystrophy, characterized 
by peripheral subcutaneous lipoatrophy and central/
abdominal lipohypertrophy, and increased the risk of 
type 2 diabetes mellitus (T2DM) and cardiovascular dis-
ease (CVD).

Current cART, in particular integrase strand transfer 
inhibitors (INSTIs), are not related to peripheral lipoat-
rophy but are associated with weight gain (WG), which 
raises concern for a possible obesity epidemic in PLWH. 
Recently, tenofovir alafenamide (TAF), independent of 
INSTI use, has also been linked to WG [2–7].

The objective of this scoping review was to identify 
gaps in the existing evidence on WG in PLWH and to 
generate a research agenda on body composition changes 
in PLWH. Specifically, the following research questions 
(RQ) were addressed: (I) what is the available evidence/
consensus on the definition of WG in PLWH; (II) what is 
the available evidence on pathogenesis; (III) what is the 
available evidence on the impact of ART on WG; (IV) 
what is the available evidence on the correlation between 
WG and clinical outcomes.

Methods
This scoping review was conducted according to the 
methodological framework developed by Arksey and 
O’Malley [8] and refined by Levac and colleagues [9]. 
Reporting was performed according to the PRISMA 
Extension for Scoping Review checklist (Supplemental 
Digital Content 1), with no registration on any specific 
database for scoping reviews [10]. Articles published 
in English in the 10-year-period 2011–2021 indexed 
in Pubmed, WHO Global Index Medicus, or Embase 
were searched using specific queries focused on WG in 
PLWH. The search was performed on 31st October 2021. 
A search update was performed during October 2022, 
with the inclusion of 9 new records. The full search strat-
egy and the scoping review protocol are detailed in Sup-
plemental Digital Content 2.

Results
Selection of studies
Initial database extraction yielded 835 results (468 after 
duplicate removal). Of these, 283 were excluded, and 185 
full-text articles were assessed for eligibility, which led 
to the inclusion of 157 articles for qualitative synthesis. 

During manuscript writing, additional 18 recent relevant 
articles were retrieved by authors (Fig. 1).

Study characteristics
Among the 175 included articles, there were 139 original 
research articles, 23 reviews and 6 systematic reviews, 6 
congress abstracts/presentations and 1 report from the 
European Medicines Agency (Supplemental Digital Con-
tent 3). Unsurprisingly, most covered aspects related to 
the role of cART in WG, while other areas were less well 
represented (Table 1).

RQ1. What is the available evidence/consensus on the 
definition of WG in PLWH?
Current literature regarding WG in PLWH suggests a 
definition criterion evaluating either a continuous mea-
sure of weight or an arbitrary cut-off such as a 5% weight 
increase or a body mass index (BMI) increase of 7%. 
The former cut-off of 5% is derived from recommended 
lifestyle interventions for weight loss as treatment of 
cardiometabolic conditions in the general population 
[11]. The latter has been used to describe the toxicities 
of antipsychotic drugs [12]. A recently published paper 
from Modena HIV Metabolic Clinic (MHMC) analyzed 
54,826 weight assessments to identify WG cut off asso-
ciated with the incidence of insulin resistance. A weight 
increase by 1% reduced the total protective effect of 
INSTI by 21.1% over 1 year of follow-up, which identi-
fies a 5% weight increase as a clinically meaningful weight 
gain definition [13].

WG definition
We searched the WG definition employed in published 
articles on PLWH. Of the 157 included articles, we 
assessed 119 original research articles with relevant data 
on the definition of WG for this subtopic. WG relied on 
the assessment of weight in 52 (43.7%) studies, of BMI in 
28 (23.5%) studies, and both in 37 (31.1%) studies, while 
other definitions such as fat gain were used in 2 (1.7%) 
studies only. In most papers, WG was defined as the 
absolute or percentage change in weight or BMI from 
baseline (76 studies; 63.9%), while 17 (14.3%) studies used 
an arbitrary pre-defined criterion, and 26 (21.8%) stud-
ies used both criteria. BMI categories of overweight and 
obesity were considered in 21 (17.6%) studies, whereas 17 
(14.3%) studies considered a WG cut-off of 5–10%, and 
11 (9.2%) studies used different definitions. The main 
issues related to the definition of WG in these studies are 
discussed below.

Most studies do not evaluate WG using a standardized 
follow-up period but rather measure the linear increase 
in weight or BMI over time. However, observational data 
shows that in PLWH, weight increases annually due to 
aging, but a more rapid increase may be observed in the 
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first 6–12 months of therapy, particularly in people start-
ing or switching to INSTIs. After this period, the WG 
trend may or may not return to parallel that observed in 
the general population [6]. The choice to use the absolute 
or percentage increase in weight or BMI is arbitrary, and 
the result depends mainly on the absolute value of the 
weight or BMI at the time of initiation or change of cART. 
None of the definitions mentioned above appear to be 
data-driven or validated in PLWH, and debate continues 

on the best clinical outcome measure to define clinically 
meaningful WG. Furthermore, WG should be considered 
in the context of relevant anthropometric changes that 
differ in ethnicity, sex, and age. For example, traditional 
BMI cut-offs underestimate cardiometabolic risk in the 
Asian population [14]. Finally, it remains unclear whether 
WG is synonymous with fat gain.

Body composition and distribution of fat
Although BMI may be a convenient and simple index to 
monitor the increasing prevalence of obesity at the popu-
lation level, studies have shown that obesity defined by 
BMI is remarkably heterogeneous [15], and people with 
similar BMI can have substantially different comorbidi-
ties [16]. Data from several epidemiological studies over 
the past 30 years have shown that ectopic fat, namely 
visceral adipose tissue (VAT), epicardial adipose tissue, 
and liver fat, are independent markers of morbidity and 
mortality, and that the accumulation of abdominal sub-
cutaneous adipose tissue (SAT) is a weak indicator of CV 
risk [17, 18]. Dual-energy X-ray absorptiometry (DEXA), 
computed tomography (CT), and magnetic resonance 
imaging (MRI) should be used to assess fat and lean 
mass in both observational and clinical trials in order to 
understand the WG phenomenon better. Among the 119 
original research articles analyzed for RQ1, we identified 

Table 1  Topics of interest and distribution among included 
articles

No. stud-
ies (%)

RQ1 Definition of WG in 
PLWH

WG definition used/
metrics considered 
(ORA only)

119 (76%)

Body composition and 
distribution of fat

35 (22%)

RQ2 Pathogenesis of WG 
in PLWH

108 (69%)

RQ3 Impact of ART on WG 142 (90%)

RQ4 Correlation of WG 
with clinical outcomes 
among PLWH

89 (57%)

ART: antiretroviral therapy; ORA: original research articles; PLWH: people living 
with HIV; RQ: research question; WG: weight gain

Fig. 1  PRISMA flow diagram
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9 (7.6%) studies that assessed body composition with 
DEXA and 8 (6.7%) studies that assessed VAT compo-
nents with CT or MRI. A milestone in this research area 
was the FRAM2 study [19]. In this study, the association 
between regional and total musculoskeletal tissue and 
adipose tissue (AT) was determined by MRI after 5 years 
of follow-up. After multivariate adjustments, lower arm 
skeletal muscle, lower leg skeletal muscle, and upper 
VAT were independently associated with increased 
mortality. The ADVANCE study included an analysis of 
VAT by DEXA at 96 weeks of follow-up [20]. This study 
compared the efficacy and safety of two first-line cART 
regimens (DTG + emtricitabine and either tenofovir diso-
proxil fumarate [TDF] or tenofovir alafenamide [TAF]) 
with a third regimen (efavirenz + emtricitabine + TDF). 
In all treatment groups, the increase in fat mass was 
higher than lean mass and was distributed between trunk 
and limbs, and a similar increase in VAT and SAT was 
observed. The increase in VAT between baseline and 
week 96 was higher in women than men, although the 
difference was not statistically significant, and was higher 
in the TAF group regarding changes in mass and volume 
(p < 0.001 for all comparisons) [21]. The ACTG A5260s 
randomized clinical trial including 234 PLWH showed 
that greater trunk, limb, VAT, and SAT, assessed by CT, 
were associated with insulin resistance and increased 
systemic inflammation, implying a strong relationship 
between fat deposits and hard metabolic outcomes over 
96 weeks of follow-up [22]. Most studies evaluating the 
relationships between AT and health outcomes focus on 
the amount and distribution of AT [19, 23]. However, the 
quality of AT can also be indirectly assessed by measuring 
its density (in Hounsfield units, HU) on CT [24, 25]. As 
fat increases, the AT deposits can expand by hyperplasia 
(generation of new adipocytes of similar size), in which 
the density remains stable, or hypertrophy (existing adi-
pocytes become lipid-engorged), in which the density 
decreases [26, 27]. Conversely, with wasting, the adipo-
cytes become smaller and contain fewer lipids, which is 
reflected by an increase in density [28, 29]. Inflammation 
and fibrosis of the AT can also cause an increase in its 
density [24], which may be a marker of AT dysfunction 
[29, 30] and potentially increased cardiometabolic risk 
[26, 28]. On the other hand, lower VAT and SAT den-
sity (which reflects fat engorgement of adipocytes, likely 
without progression to significant fibrosis) was associated 
with increased cardiometabolic risk, higher levels of cir-
culating leptin, and lower levels of adiponectin [24, 31]. 
Another study that included 418 PLWH who switched 
to INSTIs showed that a higher increase in BMI over the 
4-year follow-up was associated with a lower VAT den-
sity, suggesting improved fat quality [32].

RQ2. What is the available evidence on the pathogenesis of 
WG in PLWH?
The complex, interrelated mechanisms in WG associated 
with cART in PLWH are not yet fully understood.

Role of HIV and/or inflammation
HIV-associated wasting accompanying advanced CD4 
cell depletion is characterized by an increase in basal 
metabolism, which can increase further during oppor-
tunistic infections. Anorexia, secondary to the effect of 
elevated inflammatory markers on the hypothalamus, 
also occurs at this stage of the disease [33]. ART initia-
tion reverses this metabolic state and reduces inflamma-
tion, reflecting a reduced metabolic demand in the state 
of controlled infection, possibly leading to WG. Several 
studies showed that PLWH with lower CD4 counts and 
higher viral loads (VL) at ART initiation gain more weight 
after treatment initiation [34, 35]. The Swiss HIV Cohort 
study showed that a lower CD4 nadir is a significant 
risk factor for developing general and visceral obesity; 
in particular, a 2-fold increased risk of general obesity 
was observed in patients with CD4 nadir < 100 cell/µL 
[36]. In the Italian SCOLTA cohort, patients in CDC 
stage C treated with different ARV had a higher BMI 
increase than patients in stage A and B [37]. The results 
of these studies support the hypothesis that WG may be 
interpreted, at least in part, as a “return to health” phe-
nomenon, characterized by reduced or suppressed viral 
replication, a reduced metabolic demand by the virus, 
and a better control of inflammation [38]. In a study con-
ducted among people with acute and early HIV infection, 
VL and CD4 nadir were not identified as risk factors for 
WG after ART initiation. A possible explanation for this 
unexpected finding is that the duration of infection could 
play a role in WG. Moreover, HIV-RNA and CD4 count 
in acute and early HIV infection have a unique dynamic 
that weakens their associations with weight change [39]. 
HIV-associated immune activation persists despite sup-
pressive ART. Innate and adaptive immunity cells are 
also located in the stromal vascular fraction of AT, where 
they modulate adipocyte energy storage and function, 
and inflammation [35]. Macrophages accumulate in AT 
with progressive WG. Adipocytes and macrophages pro-
duce the monocyte chemoattractant protein 1 (MCP-
1), which drives the increase in TNFα, IL-6, IL-12, and 
IL-23. A study of gluteal fold AT showed similar macro-
phage density between PLWH and HIV-negative controls 
but higher IL-6, IL-8, IL-12p40, and monocyte inflamma-
tory protein 1α (MIP1α) levels in the HIV-positive pop-
ulation [40]. In a French cohort of patients with normal 
weight at ART initiation, who achieved virologic suppres-
sion, most inflammatory biomarkers, namely CXCL8, 
sTNFR1, sTNFR2, and sCD163, were significantly higher 
in patients who became overweight or obese [41]. These 
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inflammatory biomarkers tend to decrease with ART in 
the setting of a controlled infection. Accordingly, also in 
two large randomized ACTG trials A5202 and A5257, 
it was observed that among non-obese persons, higher 
pre-treatment immune activation markers significantly 
associated with WG in course of ART, while WG attenu-
ated the decline in several immune activation markers 
following ART initiation [42]. Furthermore, it is known 
that lipopolysaccharide (LPS), which is increased in 
PLWH because of the breach of the gut barrier, facilitates 
inflammation and fibrosis of AT [43]. In animal mod-
els, LPS triggers gains in visceral AT and AT inflamma-
tion mediated via LPS’s coreceptor, CD14 [44]. LPS also 
stimulates the proliferation of pre-adipocytes through a 
CD14‐dependent mechanism, possibly through activa-
tion of JAK/STAT and AMPK via cytosolic phospholi-
pase A2 [45].

Moreover, obesity and HIV are both associated with a 
loss of gut microbial diversity and a deleterious metabo-
lome [46]. The composition and biodiversity of the gut 
microbiota have been found to correlate with changes 
in weight in experimental animals and, to a lesser degree 
of evidence, also in humans [47, 48]. The microbiota, in 
turns, may influence levels of immunoactivation and 
translocation of microbial products, as well as being an 
active participant in the process of metabolization and 
digestion of certain nutrients [47].

WG is associated with increased transforming growth 
factor-β that triggers a pro-fibrotic process to limit adipo-
cyte hypertrophy. However, ectopic fat deposition occurs 
in sites such as the liver and skeletal muscle, worsening 
the proinflammatory state, metabolic dysregulation, and 
tissue hypoxia. Different studies documented a reduction 
of AT fibrosis and several inflammatory biomarkers dur-
ing cART [43].

Role of host-related factors
Current literature regarding WG in PLWH also focuses 
on different host-related risk factors, such as age, sex, 
country of origin, and BMI at ART initiation. When con-
sidered, older age is often associated with a higher risk 
of WG [38, 49, 50]. However, a recent study showed that 
significant WG was not observed in geriatric PLWH who 
switched to a dolutegravir (DTG)-based regimen [51]. It 
cannot be excluded that the stability of weight over time 
in this study was rather the result of a relative increase 
in fat mass in a population with a high rate of lean mass 
loss, associated with age-related sarcopenia [52]. On the 
other hand, few studies have been conducted in children 
and adolescents, where WG during the growth stages 
is a desired factor and usually precedes height increase, 
while growth deficits often persist in young PLWH even 
after ART initiation, especially in low income countries 
[53]. However, in children and adolescents, no significant 

differences in WG trajectories have been reported after 
switching from other regimens to INSTIs [54–56] 
although not all studies agree [57].

The country of origin of PLWH may also impact WG. 
For example, BMI was lower in patients living in low 
and low-middle income countries in Africa and Asia and 
higher in patients from middle-high- and high-income 
countries in a systematic review and meta-analysis of 
BMI changes among treatment-naïve patients who 
started ART [58]. Similarly, in the general people living 
without HIV, rates of overweight and obesity are consid-
erably different depending on country and culture of ori-
gin, with north American men and South African women 
being the population with the highest prevalence of obe-
sity, further increasing in recent years [59]. Many studies 
focusing on WG in course of ART pointed out how black 
people could be more prone to WG in certain settings, 
however behavioral and cultural differences are poorly 
investigated in most studies and might perhaps explain 
this data, also in light of the fact that WG is desired rather 
than unwelcomed by some patients for cultural reasons 
[60, 61]. Moreover, people from the same ethnicity may 
have different prevalence of overweight at baseline and 
during ART treatment depending on the country where 
they live, for instance in Latin Americans living in Latin 
America, the prevalence of obesity has been reported 5% 
before ART and 13% after three years of ART, while the 
corresponding frequencies for Latin Americans living 
in US or Canada were 15 and 22% [62], suggesting that 
lifestyle, more than ethnicity, may be relevant for WG. 
Therefore, socioeconomic status including marital status 
could strongly impact on WG in PLWH [41, 63], but it 
is an under reported neglected measure in HIV scientific 
literature. This may be a consequence of unmeasured 
various different cultural factors, or unobserved data on 
diet, physical activity and job, which have a significant 
impact on WG.

Sex also needs to be considered in evaluating host fac-
tors determining WG in PLWH on ART. Several studies 
highlighted an increased risk of WG in women compared 
with men [4, 34, 64, 65], but this is not confirmed world-
wide, and there are conflicting results [38, 66]. Moreover, 
this is still largely unexplored in transgender PLWH.

The reason for the different incidence of WG in male 
and female are still under investigation. However, this dif-
ference reflects the epidemiology observed in the general 
population, where obesity is more prevalent in women 
than men in both developed and developing countries, 
and increase with age [67]. As estrogen promotes brown 
adipocyte differentiation while suppressing white adipose 
differentiation, some authors have hypothesized that, in 
the context of treated HIV infections, some ARVs might 
be correlated to higher effect on WG in women by inter-
acting with this pathway. According to previous study, 
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INSTIs may interrupt adipose function via inhibition of 
estrogen action, as it was found that estrogen-mediated 
pathway was blocked by DTG by 70% and DTG admin-
istration to female mice inhibited oxygen consumption 
and energy expenditure by 15% without affecting food 
consumption [68]. Moreover, different inflammatory 
patterns and trajectories of inflammatory markers in 
course of ART have been observed in female compared 
to male PLWH, suggesting once again a possible interplay 
between inflammation and WG also in such context [42].

Finally, the role of body weight before ART initiation 
in determining WG is controversial in the literature. 
A lower baseline weight is generally considered to be a 
risk factor for WG [5, 37, 38, 49, 66, 69–72]. However, a 
cohort study of PLWH found no significant difference in 
WG when stratified by baseline weight [66]. In a French 
cohort of normal-weight patients at ART initiation, 
patients who retained a normal weight had a lower base-
line BMI compared with those who became overweight 
or obese [41]. In addition, in switch studies, it appears 
that PLWH with higher BMI gain more weight, under-
scoring how, after the initial impact of ART on the virus 
and on an initial “return to health”, it may be lifestyles 
that impact more on the WG outcome [73, 74].

Another variable frequently associated with a higher 
risk of WG is smoking. In the Swiss HIV cohort study, 
smoking was significantly associated with general and 
abdominal obesity [36]. As smoking increases inflamma-
tion, it could also increase WG per se. However, smoking 
is not analyzed as a risk factor in most studies [63].

Possible pathogenetic mechanisms related to antiretroviral 
drugs
Many studies conducted in vitro in recent years have 
tried to find a biologically plausible explanation for the 
increased WG observed in course of some ARVs. One 
of the first hypothesis had been that INSTIs and, in par-
ticular, dolutegravir, could exert an inhibitory effect 
on α-melanocyte-stimulating hormone (α-MSH), an 
anorexigenic neuropeptide, by binding of melanocortin 4 
receptor, which may interfere with the regulation of food 
intake and lead to obesity [75]. However, this hypothesis 
was subsequently tested in vitro, founding that, for all 
INSTIs, drug concentrations substantially greater than 
clinical exposure are required for antagonism of the mel-
anocortin-4 receptor to occur [76].

Another possible mechanism advocated to explain the 
weight gain is the interference of ARVs in the process of 
adipogenesis and energy expenditure of adipose tissue. In 
vitro data showed that drugs little associated to weight 
gain such as efavirenz and, to a lesser extent, elvitegra-
vir, could alter adipocyte differentiation and induce pro-
inflammatory cytokines, in a concentration-dependent 
manner, delaying acquisition of adipocyte morphology 

and reducing the expression of adipogenesis marker 
genes such as PPARγ, glucose transporter GLUT4, lipo-
protein lipase, and the adipokines adiponectin and leptin 
[77]. In contrast, raltegravir, and to a greater extent, 
dolutegravir, at peak concentration have been associ-
ated with elevated adipogenesis and lipid accumulation 
in adipocyte-differentiated adipose stem cells, suggest-
ing these INSTIs may have a role in adipogenesis, lipo-
genesis, oxidative stress and insulin resistance [78]. In 
accordance with this hypothesis, raltegravir, dolutegravir, 
but also bictegravir and elvitegravir have been found to 
be able to increase adipogenesis in vitro, as demonstrated 
by the induction of higher levels of PPARɣ and C/EBP⍺ 
in adipocytes exposed to INSTIs compared to controls 
[79]. A recent study also found that PLWH on INS-
TIs, had reduced populations of metabolically activated 
CD9 + adipose tissue macrophages, that are considered 
metabolically beneficial, compared to that of uninfected 
controls (P < 0.001). Moreover, BMCs of PLWH had 
lower fatty acid metabolism compared to those of unin-
fected controls (P < 0.01) and, according to the analysis 
performed in murine macrophages, dolutegravir reduced 
lipid metabolism and increased expression of the fatty 
acid beta-oxidation enzyme Enoyl-CoA Hydratase, Short 
Chain 1 [80].

Dolutegravir has also been found to decrease oxy-
gen consumption of preadipocytes, besides reducing, in 
course of adipocyte differentiation, triglyceride accumu-
lation and adiponectin secretion, suggesting a possible 
additive mechanism of mitochondrial impairment [68, 
81]. However, it is important to point out that all these 
data are derived only from in vitro studies, and there are 
currently no in vivo studies that correlate a molecular/
cellular mechanism to the WG phenomenon, in addition 
to not always being confirmed the same results in differ-
ent laboratory studies. Research in this field still requires 
an in-depth clinical field effort with longitudinal studies 
proving the presence or absence of the supposed mecha-
nisms in people who gain or do not gain weight.

RQ3. What is the available evidence on the clinical impact 
of ART on WG?
WG in PLWH appears to be less evident in people 
treated with older NRTI and NNRTIs [70, 82–85] to 
the extent that a protective effect has been hypoth-
esized, although not demonstrated, for some drugs of 
these classes, such as EFV and TDF [86–88]. However, 
high exposure to these drugs may be related to less WG 
because of gastrointestinal symptoms inducing anorexia, 
lipoatrophy, or other unclear mechanisms. Indeed, in 
people who are extensive EFV metabolizers because of 
CYP2B6 polymorphisms, WG is similar to that observed 
with DTG [87]. Additionally, it is important to point 
out that, although EFV and TDF are less related to the 
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WG phenomenon compared with the newer ARVs, on 
the contrary, in older studies, TDF was associated with 
greater WG when compared with older ARVs, such as 
zidovudine or other nucleoside/nucleotide reverse tran-
scriptase inhibitors, while EFV compared with nevirap-
ine and even with protease inhibitors [70, 89]. This could 
suggest how, as the tolerability of ART improves, we see 
greater WG, not necessarily given by a side effect, but 
possibly related to an absence of toxicity. Regardless of 
the underlying mechanism, when a patient switches from 
an older drug to a newer ARV, WG is often significant 
[90]. For instance, PIs have been associated with higher 
WG compared with NNRTIs [69, 91–93], but the drugs 
with the highest impact on WG seem to be the newer 
ARVs, namely INSTIs and TAF [70, 72, 73, 94–96], which 
have an even more pronounced effect when they are used 
in combination [20, 97, 98]. However, it remains chal-
lenging to establish the role of a single agent in determin-
ing WG when, by definition, ART involves the use of at 
least two drugs and WG is known to have a multifactorial 
genesis. Also, it remains to be ascertained the role of a 
possible switch strategy to NNRTI or older treatments to 
contrast the phenomenon of WG. A proposal of switch-
ing from DTG to EFV and from TAF to TDF the study 
participants of the ADVANCE trial who had experienced 
the highest amount of WG, has been recently made by 
the authors of the study [99]. However, the patients them-
selves refused this proposal, besides being a step back-
ward toward less innovative and less tolerated therapies 
[99, 100]. While the removal of TAF by switching from 
a TAF containing triple therapy to DTG and lamivudine 
two-drug therapy did not impact on weight gain [101], a 
first study comparing weight trajectories in people con-
tinuing TAF versus switching to TDF has been recently 
published in a North-European retrospective cohort of 
292 patients [102]. In this study, people who remained 
on TAF increased their weight of mean + 0.9 kg after one 
year, while those switched to TDF did not experience a 
significant weight increase during the same follow up. 
However the interpretation of these results is limited 
by the small number of participants (weight analysis at 
one year made on 90 PLWH on TAF and 65 PLWH on 
TDF) and by the retrospective design, while clinical tri-
als evaluating the effect on weight of a switch strategy 
from INSTI to TAF/emtricitabine/darunavir/cobicistat 
(DEFINE trial, NCT04442737) or to Doravirine/Lami-
vudine/TDF (DeLiTE trial, NCT04665375), and from 
regimens containing both INSTIs and TAF to TDF/XTC/
doravirine (NCT04636437), are in course and actively 
enrolling, to respond to the important question of which 
strategy could be better to face the problem.

In addition, given the lack of patients’ perspective cur-
rently reported in the published literature concerning 
the switch of ARVs due to WG, a proper attention to 

this topic should be paid in future studies. Indeed, a bet-
ter evaluation of patients point of views may be of help 
to deepen the reason for switching or non-switching, to 
support the clinical decision.

Does TAF really contribute to body WG?
Randomized controlled trials, including INSTI-based 
regimens in naïve PLWH, demonstrated a greater WG in 
patients starting TAF versus TDF that varied significantly 
(from a maximum of 6 kg in 48 weeks to a minimum of 
3.6 kg in 96 weeks) largely depending on sex and race dif-
ferences in the trial populations [20, 50, 70, 103, 104]. In 
addition, the AMBER study identified a greater WG in 
naïve PLWH taking TAF than those taking TDF (2 kg ver-
sus 1 kg in 96 weeks), both in combination with daruna-
vir/cobicistat [105]. Data from observational studies also 
confirmed a possible contributing role of TAF in WG. 
In a recent analysis of the RESPOND cohort, including 
14,703 ART naïve and ART-experienced PLWH, use of 
TAF (compared with lamivudine) was independently 
associated with a > 7% increase in BMI [72]. These obser-
vations also apply to studies that only consider PLWH 
with HIV RNA < 50 copies/mL, where a greater WG is 
generally observed after switching to TAF compared to 
TDF, but not to abacavir [7, 73, 104]. One of the hypothe-
ses is that the WG reported in switch studies may be due, 
at least in part, to the loss of the protective effects of TDF 
and/or EFV rather than the effects of TAF [104]. This 
was also observed in the switch study to BIC/TAF/FTC 
[106]. In this study, weight change differed by previous 
NRTIs (+ 2.2 kg [F/TDF] and + 0.6 kg [F/TAF], p < 0.001), 
while no differences were found between BIC/TAF/FTC 
and DTG + TAF/FTC. Finally, in a pre-exposure pro-
phylaxis (PrEP) study in people living without HIV tak-
ing TAF or TDF along with FTC, there was a difference 
of + 1 kg in the TAF/FTC arm [107]. Therefore, whether 
TAF promotes WG or TDF reduces weight remains to be 
ascertained.

What is the role of INSTIs?
In recent studies, INSTIs have been associated with an 
excess WG compared with other ARV classes [90]. How-
ever, differences exist among individual INSTIs and dif-
ferent study populations, with higher WG observed with 
DTG or BIC in naïve PLWH initiating first-line ART [20, 
70, 91] than in switch studies, where results are some-
what conflicting [37, 56, 106, 108–111]. Moreover, WG 
was higher in studies performed in African and North 
American populations [20, 91, 112], and smaller in Euro-
pean cohorts [37, 51, 56, 108, 110].

The data on individual INSTIs are also controver-
sial. Initially, DTG and BIC seemed to have the highest 
impact on WG, but further studies have also suggested 
a relevant role of RAL and EVG. DTG was the first drug 
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to be associated with WG [4, 91, 113]. In a retrospec-
tive observational cohort study [114] in 1152 ART-naïve 
PLWH, adjusted mean WG after 18 months was signifi-
cantly higher with DTG (6.0  kg, 95% CI, 4.2–7.8) com-
pared with NNRTIs (2.6  kg, 95% CI, 1.5–3.6) or EVG 
(0.5 kg, 95% CI, -1.0–2.0), while no significant difference 
was found compared with RAL (3.4 kg, 95% CI, 1.8–5.0) 
or PIs (4.1 kg, 95% CI, 3.2–5.0) [114]. Similar results were 
then confirmed in the larger observational NA-ACCORD 
study [91], where PLWH starting INSTI-based regimens 
had a mean estimated 5-year WG of + 5.9 kg, compared 
with + 3.7 kg with NNRTIs and + 5.5 kg with PIs. Among 
PWLH starting INSTIs, the mean estimated 2-year WG 
was + 7.2 kg for DTG, + 5.8 kg for RAL, and + 4.1 kg for 
EVG [91].

PLWH starting DTG in clinical trials experienced WG 
ranging between + 2.1 and + 7.1 kg after 96–144 weeks if 
ART-naive [20, 70, 112, 115, 116], and between + 0.8 and 
+ 0.98  kg after 48–96 weeks, if ART-experienced [117, 
118]. This corresponds to a modest change in BMI over 
time, particularly in DTG switching strategies, with an 
unknown impact on long-term mortality or metabolic 
outcomes, especially in normal-weight people.

In studies in naïve PLWH, such as the STARTMRK, 
RAL was associated with similar increases in BMI com-
pared with EFV after 156 weeks [119]. In addition, BMI 
increased by 3.8–4.7% in ART-naïve PLWH, similarly in 
the three study arms (DRV/r or ATV/r or RAL), in the 
AIDS Clinical Trials Group (ACTG) A5260s metabolic 
substudy of the A5257 randomized trial [22]. How-
ever, an analysis of the whole cohort of the A5257 study, 
showed that the initiation of RAL was associated with 
higher weight/BMI increases than ATV/r or DRV/r in 
treatment-naïve patients with normal BMI or who were 
underweight but became overweight or obese during 
follow-up [120]. Moreover, in the large, prospective, mul-
ticohort RESPOND collaboration, which included data 
on both ART-naïve and experienced PLWH, both RAL 
and DTG were found to be associated with an increased 
risk of both > 7% and > 30% BMI, while no increased risk 
was found for EVG [72]. In a pooled analysis of ACTG 
A5142, A5202, and A5257 (only the latter study included 
a group of patients on INSTI), a significantly greater WG 
was observed in women than in men [64]. In the WIHS 
cohort, PLWH on INSTI and/or TAF with a normal BMI 
at baseline had a significant risk of WG [121].

In a non-inferiority study of DTG/ABC/3TC versus 
BIC/FTC/TAF in ART-naïve PLWH, the median WG 
after 96 weeks was 2.4 and 3.6 kg, respectively [122]. In 
another non-inferiority study of DTG + FTC/TAF ver-
sus BIC/FTC/TAF in ART-naïve persons, the median 
changes in body weight after 96 weeks were + 3.9 kg and 
+ 3.5 kg, respectively [123].

Cabotegravir (CAB) is the first long-acting injectable 
INSTI, recently approved for use in therapy and PrEP for 
HIV infection. A recent study investigating WG among 
177 people living without HIV who received at least one 
injection of CAB or placebo (134 CAB; 43 placebo) found 
no difference between the two study arms [124]. On the 
other hand, when CAB was used in switching strategies 
in PLWH, a similar WG was observed between CAB and 
comparator ARTs [125].

RQ4. What is the available evidence on the correlation of 
WG with clinical outcomes?
Cardiovascular complications
PLWH have an increased risk of CVD compared with 
people without HIV, regardless of the ART regimen 
[126]. However, the association between CV risk and 
ART-associated WG is controversial. For example, 
observational data showed that, although increases in 
BMI among ART-exposed PLWH were linked to an 
increased risk of T2DM, such changes did not show an 
association with increased CV risk [127]. In this study, 
CVD was defined as the first event from a composite 
of myocardial infarction (MI), sudden cardiac death, 
invasive CV procedure (coronary artery bypass graft or 
carotid endarterectomy), or stroke [127]. In addition, an 
increased long-term risk for major CV events was identi-
fied in PLWH who experienced a short-term gain in BMI 
(within 1 year from ART initiation), especially those with 
a baseline BMI within 18.5 and 25 kg/m2 [5]. Of note, this 
is the only study to investigate the relationship between 
WG in ART-exposed individuals and CV risk.

Diabetes
The risk of developing T2DM is associated with BMI in 
the general population [128]. The Data Collection on 
Adverse Events of Anti-HIV Drugs (D:A:D) cohort study 
on 43,278 person-years (N = 9193) reported 125 diabetes 
events with an incidence rate ratio (IRR)/unit gain in BMI 
of 1.11 (95% confidence interval 1.03 to 1.21) regardless 
of the pre-ART BMI [5]. This suggests that the short-term 
gain in BMI following ART initiation appears to increase 
the risk of T2DM independently from baseline BMI [5]. 
A meta-analysis of 41 observational studies evaluating 
PLWH who were either ART-naive or on ART found 
increased fasting blood glucose levels and an increased 
risk of developing T2DM in those treated with ART 
[129]. In the REPRIEVE study including 1848 PLWH on 
an INSTI-based regimen, INSTI use was not associated 
with a difference in mean fasting glucose, even when 
PLWH were stratified by natal sex [130]. Another meta-
analysis across 44 studies also found ART to be a risk 
factor for T2DM development in some, but not all, stud-
ies [131]. A study comparing Taiwanese PLWH on ART 
(most commonly ≥ 2 NRTIs with NNRTIs or boosted or 
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unboosted PIs) with those not on ART showed that the 
risk of developing T2DM was associated with ART use 
[132]. The interplay between WG and ART regimens in 
the development of T2DM is a complex topic. Evidence 
is emerging on the association among WG, INSTIs, and 
T2DM. In PLWH switching to INSTIs, an increase in 
HbA1c was observed [86, 133]. In another cohort study, 
participants initiating INSTIs (particularly raltegravir) 
were more likely to develop T2DM than patients starting 
NNRTIs [93]. In the EMERALD trial, TAF was signifi-
cantly associated with treatment-emergent T2DM com-
pared with TDF [134]. In a retrospective analysis of the 
ADVANCE study data, among PLWH on INSTIs, obesity 
drove an increased risk of T2DM, especially in those tak-
ing TAF/FTC + DTG, with some evidence of greater CVD 
risk [97].

Metabolic syndrome
The prevalence of metabolic syndrome (MetS), charac-
terized by central obesity and insulin resistance, is rapidly 
increasing in PLWH treated with cART [135]. Stud-
ies demonstrated that the incidence of MetS increases 
among PLWH, and its prevalence remains high after 
initiating ART [136, 137]. In the ADVANCE study, 
treatment-emergent MetS was observed, especially in 
the TAF/FTC + DTG arm and among women [20, 114]. 
However, ART is probably not the sole reason for these 
metabolic disorders since HIV is also likely to affect 
metabolism. The persistence of HIV in tissue reservoirs 
could synergize with some ART-enhancing metabolic 
disorders [138]. Mitochondrial dysfunction seems to be 
the most common underlying mechanism used by HIV 
and most ARVs to cause inflammation, insulin resistance, 
dyslipidemia, and lipodystrophy [139]. Findings indicate 
that PIs are more commonly implicated in MetS-related 
effects than other classes of ARVs, due to their ability 
to initiate many toxicities leading to MetS [138, 139]. 
Female gender, high BMI, and older age are major risk 
factors for the occurrence of MetS, and hypertriglyceri-
demia and low levels of high-density lipoproteins are the 
most common types of dyslipidemia [138].

Chronic kidney disease
PLWH have higher rates of chronic kidney disease 
(CKD), and studies have demonstrated an increased 
risk of CKD correlated with the use of ART [140–142]. 
Concerning the impact of WG on kidney function, large 
cohorts from Spain and the US found that PLWH with 
both end-stage renal disease (ESRD) and mild reduction 
of glomerular filtration rate (60–89 mL/min/1.73 m2) 
were more likely to have higher BMI at univariate analy-
sis. However, when compared with PLWH with normal 
renal function, PLWH with reduced glomerular filtration 
rates had higher BMI, among other factors such as older 

age, female gender, and NRTI or PI ritonavir-regimens 
[140, 143]. Despite the relevance of the research ques-
tion, to our knowledge, so far no study directly assessed 
the issue on how increased WG impacts renal function 
among PLWH.

Liver disease
Non-AIDS-defining comorbidities in an aging population 
such as PLWH include non-alcoholic fatty liver disease 
(NAFLD), whose prevalence in the general population 
is estimated to be around 25%, and NAFLD is related to 
increasing weight as well as the development of MetS. 
In PLWH, the prevalence of NAFLD ranges between 
13% and 73% [144, 145]. Specific HIV-related risk fac-
tors (e.g., persistent immune activation and ARV) may 
alter the course of liver disease [146]. Consistently with 
the return-to-health phenomenon, WG shortly after 
ART initiation was associated with improved survival 
in PLWH, particularly those with more advanced dis-
ease [90]. INSTIs and TAF are also associated with an 
increased risk of developing hepatic steatosis [147].

Discussion
This scoping review attempted to address four questions 
regarding WG in PLWH. For each, our literature inter-
pretation only partially answered the question but helped 
us to define the following research agenda with improved 
clarity.

Definition of WG in PLWH
We believe that the complexity of the correlations 
between fat quantity and distribution and fat and lean 
mass and their implications at the clinical level cannot 
be resolved by simply evaluating the change in weight 
or BMI. We, therefore, suggest that the following non-
exhaustive research program on how to appropriately 
define and measure WG in PLWH is addressed in future 
research: (I) develop a clinically meaningful data-driven 
definition of WG; (II) define methods of non-invasive 
assessment of weight and body composition to be used 
in clinical practice; (III) recognize the density of fat and 
lean tissue as a measure of their quality and function; 
(IV) study the interrelationship between fat and lean tis-
sue and bone in metabolic homeostasis.

Pathogenesis of WG in PLWH
Further research is needed to understand how HIV 
infection and ART influence the complex interaction 
between AT, innate and cellular immune function, and 
metabolism. For host-related factors, meta-analyses 
may help resolve the observed conflicting results. More-
over, in future research, all relevant host-related factors 
must be recorded and considered while adjusting analy-
ses for potential confounders (including smoking and 
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socioeconomic status, which are often unreported), to 
better identify, and to carefully manage with new inter-
vention strategy PLWH at higher risk of WG.

The impact of ART on WG
Further research is needed to establish how TAF and 
INSTI contribute to WG in PLWH, possibly highlight-
ing the specific role of TAF by stopping TDF and/or EFV. 
Moreover, the impact of non-pharmaceutical interven-
tion protocols against WG, like diet and physical exer-
cise, should be considered.

WG impact on clinical outcomes
Further studies are required to investigate: (I) the inde-
pendent role of WG on clinical events compared with 
other metabolic factors and ART; (II) the role of specific 
HIV-related factors versus generic factors in the develop-
ment of WG-related clinical events; (III) the association 
between ART and WG as a driver of clinical events.

Limitations
This work presents the intrinsic limitations of the scop-
ing reviews due to the related methodology. The evalua-
tion of risk of bias of included studies is not performed. 
In addition, despite some indications on WG in children 
and adolescents are reported in the text, the authors are 
aware that the inclusion criteria referred only to adults 
WG. The comment on WG in children and adolescent 
has to be interpreted as a pure consideration of the state 
of the art.

Despite not directly adding scientific knowledge to the 
field, this work highlights the current knowledge gaps in 
the topic thus providing a future research agenda to fill 
the unmet requirements.

Conclusion
This review illustrates knowledge gaps regarding WG in 
PLWH for each RQ, despite the rapidly growing number 
of articles on this topic. The literature is mainly focused 
on the role of drugs. However, the absence of a shared 
clinically meaningful definition of WG impairs compara-
bility among studies and the opportunity to derive strong 
clinical guidance. Therefore, we believe our research 
agenda may help define future research and fill the 
knowledge gaps that have emerged from this review.
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