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Abstract
Models of decision-making focusing on two-alternative choices have classically described
motor-response execution as a non-decisional stage that serially follows the termination of
decision processes. Recent evidence, however, points towards a more continuous transition
between decision and motor processes. We investigated this transition in two lexical decisions
and one object decision task. By recording the electromyographic (EMG) signal associated to the
muscle responsible of the manual responses (i.e., button press), we partitioned single-trial
reaction times into premotor (the time elapsing from stimulus onset until the onset of the EMG
burst) and motor times (the time elapsing from the onset of the EMG burst and the button-press),
with the latter measuring response execution. Responses were slower for pseudowords and
pseudo-objects compared to words and real objects. Importantly, these effects were reliable even
at the level of motor time measures. Differently, despite the reliable effect at the level of reaction
times and premotor times, there was no difference in motor times between high- and low-
frequency words. Although these results, in line with recent evidence, challenge a purely non-
cognitive characterization of motor-response execution, they further suggest that motor times
may selectively capture specific decisional components, which we identify with late-occurring

verification and/or control mechanisms.
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Statement of Significance

This study highlights specific decisional components that are still active during action. Even in
the context of simple, fast, and discrete manual responses, it appears that part of the decision is
still ongoing when we begin to move. Importantly, these motor decisional components seem to
reflect specific cognitive processes, possibly related to response monitoring and/or late
verification processes that perform an additional check on difficult items for which we have no

pre-existing representations stored in long-term memory.
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1. Introduction
Most of our everyday activities stem from cognitive evaluations of the environment yielding
decisions about how to act. The constant interaction between cognition and action is possibly
what makes human behavior so flexible and adaptable. Yet, in characterizing the relationship
between cognition and overt behavior, psychological models often maintain a temporal and
functional priority of cognition over action. This cognition-action thresholding (Calderon et al.,
2018) seems particularly clear within models of decision-making focusing on 2-alternative
choice tasks, in which decisions are based on the sampling of evidence from the stimulus
towards a specific response alternative, until reaching an action-triggering boundary.

Although the several instances of evidence-accumulation models (e.g., Brown &
Heathcote, 2005; 2008; Donkin, Brown et al., 2009, 2011; Ratcliff et al., 2004; 2016; Smith &
Vickers, 1988; Usher & McClelland, 2001; Van Zandt et al., 2000) differ significantly in terms of
their structure, parameters, and accumulation functions, they share the assumption that motor-
response execution is not part of the decisional process, but a separate, discrete stage that serially
follows the termination of upstream decisional computations.

A number of empirical findings, however, have questioned this perspective. The analysis
of continuous hand movements within choice reaching tasks (e.g., Song & Nakayama, 2009;
Spivey & Dale, 2006) shows that the direction of reaching trajectories reflects the dynamic
evolution of perceptual (e.g., Resulaj et al., 2009), attentional (e.g., Welsh & Elliot, 2004; 2005),
linguistic (e.g., Farmer et al., 2007; Spivey et al., 2005), and decision processes (e.g., McKinstry
et al., 2008; see also, e.g., Calderon et al., 2015; Chapman et al., 2010), suggesting that motor

responses may be modulated in real-time by the progressive unfolding of cognitive states.



DECISIONAL COMPONENTS OF MOTOR RESPONSES 6

Simpler and discrete responses such as the typical button presses may instead hide the
cascaded flow of information from cognitive onto motor stages (e.g., Calderon et al., 2018; see
also Weindel et al., 2021). Previous studies, in fact, offered rather inconsistent results (for a
review, see e.g., Servant et al, 2021; see also Duthil et al., 2019; Smith & Lilburn, 2020).
However, more recent works point to a continuous stream of information that progressively maps
stimulus evaluation onto the response channels even in the context of 2-alternative choice task
featuring discrete responses (button-presses). In this context, researchers have exploited the
electromyographic (EMG) signal to partition the reaction time (RT) into a premotor time (PMT),
capturing the time from stimulus onset until the onset of the EMG activity, and a motor time
(MT), reflecting the time from the onset of the EMG burst until the button-press (Botwinick &
Thompson, 1966). The latter provides a measure of response execution, thus enabling the
assessment of cognitive/decisional variables at the motor stage. Importantly, as noted by other
authors (e.g., Servant et al., 2015; 2021; Weindel et al., 2021), the excellent signal-to-noise ratio
of the EMG signal allows to extract these measures at the level of single trials, thus providing
precise chronometric indexes that are not blurred by the averaging procedures required by other
physiological signals.

This recent evidence, gathered in the field of perceptual decision-making, suggests that
factors related to the rate of sensory evidence accumulation (e.g., the levels of contrast within
Gabor patches or the levels of motion coherence in random dot motion task) consistently
influence not just PMT, but also MT (Servant et al. 2021; Weindel et al., 2021), thus
contradicting the functional characterization of motor-response execution in terms of a non-

decision stage. On the contrary, decisions may actually still be unfolding during response
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execution, with the latter being affected by the same (Servant et al. 2021) or by some (e.g.,
Weindel et al., 2021) of the variables that shapes PMTs.
The Present Study

Moving from the recent advancements reviewed above, we further investigated the
assumption of the functional segregation between decisional and motor processes within tasks
requiring a sampling of evidence from long-term memory. Specifically, we relied on lexical and
object decision paradigms, two cases of 2-alternative choice tasks in which participants have to
classify each letter string/line configuration as a function of their lexical/object status (word vs
nonword/object vs. nonobject). While during perceptual decision-making sensory-perceptual
information may be directly mapped onto motor actions through dedicated sensorimotor
pathways (e.g., Gordon et al., 2021; Cisek, 2007; Pezzullo & Cisek, 2016; Siegel et al., 2011),
during conceptual decision-making the link between perception and action is mediated by the
activation of a representation stored in memory and by high-level processes underpinning the
recognition and identification of complex and — at least for lexical decisions — symbolic stimuli.
In this context, we assessed EMG traces associated with button presses, to ascertain whether
differences in response latencies are captured solely by the premotor part of the RTs, or,
differently, whether the difference is present at the level of MTs as well.

Abrams and Balota (1991) already showed lexicality and word-frequency effects on
kinematic parameters of responses provided by moving a handle leftward or rightward (see also
Barca & Pezzulo, 2012; Bangert et al., 2012; Moreno et al., 2011). As noted above, this sort of
responses, by allowing longer and more continuous movements, also offers additional degrees of
freedom for cross-talks and strategic adjustments between decisional and action processes, as

advocated within proposals featuring an adaptive flow of information between cognition and
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action as a function of task- and response-related constraints (Calderon et al., 2018). We thus
deem important not to assume an equivalence between these more complex, continuous
responses and the more traditional experimental configuration featuring discrete button-presses,
particularly when considering that the latter is still the response modality used in most of the
cognitive and neuroscientific work on decision making.

In Experiment 1, we used the lexical decision task to investigate the cognition-action
thresholding, an assumption shared by both models of evidence accumulation and visual word
recognition. In the evidence accumulation framework both word and nonword decisions are
based on the sequential sampling of the same sources of evidence, and variations in the rate of
evidence accumulation can account for differences among different types of stimuli (e.g., Ratcliff
et al., 2004; for further discussion, Yap et al., 2015). Instead, in models of word recognition word
vs nonword decisions are linked to the amount of global and local activation within the
orthographic lexicon (e.g., Coltheart et al., 2001; Grainger & Jacobs, 1996), while nonword
responses are delivered when a temporal deadline has elapsed and the threshold of lexical
activation signaling a word response has not been reached. Importantly, by assuming thresholded
decisional process, both frameworks predict that differences in RTs between words and
nonwords should only be visible in the premotor components of response latencies. In the first
experiment, we sought to assess this assumption, which, to anticipate the results, was clearly
falsified by lexicality effects on MTs.

In the following experiments, we sought to provide a first general functional
characterization of the information processed during motor-response execution. We thus
experimentally investigated the generalizability of decisional modulations of motor-responses in

a different task, as well as across different effects. Specifically, Experiment 2 investigated an
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object decision task, to assess the generalizability of the effect beyond lexical decisions and
linguistic stimuli, and Experiment 3 exploited once more the lexical decision paradigm and
investigated the effect of lexical frequency. Other than being one of the major determinants of
lexical decision performance across languages (e.g., Yap & Balota, 2009; see also Brysbaert et
al., 2016; Ferrand et al., 2010; Keeulers et al., 2012; Yap et al., 2010), lexical frequency
represents a particularly interesting test. In the context of the sequential sampling models, this
variable is typically mapped onto the rate of evidence accumulation (e.g., Donkin, Heathcote, et
al., 2009; Gomez & Perea, 2014; Ratcliff et al., 2004; Yap et al., 2012; see also Heatchcote &
Love, 2012; Rae et al., 2014), with residual non-decisional components of effects solely
attributed to perceptual encoding stages (Donkin, Heathcote, et al., 2009; Gomez & Perea, 2014).
Differently, if evidence accumulates even after response initiation and shapes the unfolding of
the motor response (Servant et al., 2021), any robust effect stemming (at least in part) from the
rate of evidence accumulation and traditionally detected at the level of RTs should also be
sizeable on MTs. The possibility, however, is not trivial. Words and nonwords are considerably
different, as only the formers have an existing representation stored within long-term memory
systems. This decisional configuration is obviously different from perceptual decision-making
tasks. Indeed, researchers have hypothesized the presence of additional processes in the case of
nonword decisions (at least in the case of word-like nonwords, i.e., pseudowords) such as late-
occurring verification stages (Paap et al., 1982; see Perea et al., 2005; Yap et al., 2015; Ziegler et
al., 2001). One possibility is that, in case of a decision based on information sampled from
memory, these specific late-occurring stages take place, at least in part, during actual response
execution. If this is the case, one would predict lexicality, but not frequency to affect measures of

MT.
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Other than calling for specific processing stages, pseudowords and pseudo-objects may
require enhanced monitoring and control resources. For example, pseudowords are usually more
prone to errors and, in particular, fast, impulsive ones possibly related to lexical capture
phenomena (Scaltritti et al., 2021; see also Fernandez-Lopez et al., 2021) that might call for
additional monitoring and/or control processes (e.g., Ridderinkhoff, 2002; van den Wildenberg et
al., 2010). Also, pseudowords are more prone to partial errors (Scaltritti et al., 2021) — which
consist in a covert activation of the muscle associated with the incorrect choice, before the
correct response is delivered, a phenomenon clearly pointing to online monitoring and correction
mechanisms operating at the level of motor-responses (e.g., Burle et al., 2002). Importantly,
chronometric measures of MTs have been consistently associated with an online executive
process related to error detection and correction (Allain et al., 2003; see also, Rochet et al., 2014;
Smigasiewicz et al., 2020; Weindel et al., 2021). Also, recent proposals suggest that the
propagation of evidence accumulation beyond response onset actually represents a second-order
decision variable that is specifically tied to performance monitoring (Desender, Ridderinkhof, et
al., 2021). We thus explored whether those manipulations highlighting effects on the MT
components also triggered parallel modulations of the indexes of response accuracy associated
with monitoring processes.

To summarize, the following experiments had two main aims. The first was to
empirically assess a core assumption of decision-making and visual word recognition models,
according to which motor responses serially follows the termination of decisional processes.
Both types of models predict that decisional effects should not percolate onto measures of motor-
response duration. To anticipate, this prediction was falsified by our data. As a second aim, we

thus sought to provide a functional characterization of the decisional components affecting the
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motor stage, focusing in particular on late-occurring verification and/or control mechanisms.
This was achieved by comparing different experimental manipulations (lexicality and object
status vs words lexical frequency) and converging insights provided by measures of response
accuracy (partial as well as fast impulsive errors).

2. Experiment 1
2.1 Method
2.1.1 Transparency and Openness
We report how we determined our sample size, all data exclusions, all manipulations, and all
measures in the study. Data and materials for all the experiments are available at
https://osf.io/6hqk5/. Scripts and codes for the analyses are available from the first author. For all
the experiments, their design and analyses were not pre-registered. All the software, packages,
and toolboxes used to administer the experimental procedures, and for data collection, processing
and analyses are reported in the corresponding sections within the reminder of the Method
section. Data were collected in 2020 — 2021.
2.1.2 Participants
Sample size for all the experiments was decided on the basis of recent recommendations in the
field (Brysbaert, 2019). We used previous data featuring similar tasks and measures (Scaltritti et
al., 2020) and the R package simR (version 1.0.6; Green & MacLeaod, 2016; Green et al., 2016)
to run 200 simulations based on random samples (observed power). The results showed that,
with an experiment featuring 28 participants and 100 items per experimental cell, we had a 70%
chance (95% CI = 63.14% — 76.26%) to detect a significant lexicality effect (alpha = .05) on
chronometric measures of motor-response execution. As the experimental plan included new

experimental paradigms (Experiment 2), as well as potentially null effects (Experiment 3), we
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decided to increase sample size (48), as well as the number of observations (128; 64 items
repeated twice).

Forty-eight Italian native speakers took part in the experiment (33 females; Muge = 22.98;
SD,ge = 3.58). Data from 4 participants were replaced because of issues during acquisition of the
EMG signal (e.g., faulty electrodes, incorrect placement of the electrodes, detachment of the
electrodes during the experiment). Data from 3 participants were discarded during the analysis
due to an excessive number of EMG epochs rejected (see section EMG Recording and
Processing).

All participants had normal or corrected-to-normal vision and reported no history of
neurological problems or learning disabilities (these criteria were true across all the reported
experiments). Using the Edinburgh Handedness Inventory (Oldfield, 1971) 43 participants could
be classified as right-handed (M = 80.60, SD = 15.43), whereas 5 were mixed right-handed (M =
39.02, SD =10.27).

Participation was compensated with €15. All the procedures received approval from the
ethical committee of the University of Trento (protocol number 2020-028), and participants
signed an informed consent document before the experiment (these conditions apply also to
Experiment 2 and 3).

2.1.3 Stimuli

Sixty-four words were selected from the Phonltalia database version 1.10 (Goslin et al., 2013),
and 64 pseudowords were created with the help of the Wuggy software (Keeulers & Brysbaert,
2010). Words and pseudowords were comparable across a series of psycholinguistic variables

(see Table 1). Both words and pseudowords were partitioned into 2 subsets for counterbalancing
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purposes (illustrated below), and items were comparable both within and across subsets in terms

of the same variables reported in Table 1.

-- Table 1 --

2.1.4 Apparatus and procedures

Participants first completed a questionnaire collecting demographic and health-related
information. Then, after installation of the electrodes for the recording of EMG, the experiment
began. The experimental procedure and the acquisition of behavioral data were controlled via the
E-Prime 2 software (Version 2.0.10.356, Psychology Software Tools) running on a laptop.
Participants sat in front of the computer screen at a distance of about 60 cm, holding a joypad in
their hands with their thumbs resting on the upper triggers. The joypad could be held either on
the table, or resting on the participants legs, as a function of individual preferences and signal
quality (the configuration selected by the participant was typically associated with an increased
comfort and a reduction in tonic EMG noise). They were instructed to classify letter strings as
words or pseudowords using their thumbs to perform button presses. Speed and accuracy were
equally emphasized.

The experiment was divided in four blocks, and the stimulus (word vs pseudoword)-
response (right vs left hand) mapping was reversed in each following block, to ensure within
each participant an equal number of left- and right-hand responses for each category of stimuli.
The order of administration of the two stimulus-response hand mappings across blocks was
counterbalanced across participants. Each subset of item was assigned either to the first or the

second block (the assignment was counterbalanced across participants). Within participants, the
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last two blocks were exact repetitions of the first two. Repetition was introduced to increase the
number of observations, while keeping a constant number of trials across experiments and given
the limitation in the number of items available for Experiment 2.! Before each block, participants
performed eight practice trials to familiarize with the response mapping. Self-terminated breaks
were prompted halfway within each block. The whole experimental session (including
installation of the electrodes and final debriefing) lasted about 90 min.

Stimuli were presented in 25-point Courier New font, in white against a black
background. Trials started with a fixation cross (+) and its duration was chosen randomly among
5 alternatives (400, 450, 500, 550, 600 ms). Then the stimulus appeared and remained on the
screen until participant response or for a maximum of 1500 ms. A blank screen lasting 800 ms
was finally presented and served as an inter-trial interval.

2.1.5 EMG Recording and Processing

EMG activity was acquired though an eego sports system (ANT Neuro), with a sampling rate of
1000 Hz and using 2 pairs of bipolar electrodes placed about 1.5 cm apart on the thenar
eminences of both hands. An additional ground electrode was placed on the pisiform bone of the
right hand. The skin was prepared in advance using first isopropyl alcohol and then a mildly
abrasive skin preparation gel (Nuprep, Weaver and Company). EMG signal acquisition was
monitored online, and participants were asked to relax when tonic noise was detected.

Off-line signal processing was performed using EEGLAB (version 14 1 2b; Delorme &
Makeig, 2004) functions, as well as custom-made routines. A SHz high-pass filter (order 2
Butterworth) and a 50Hz notch filter were applied offline to the EMG traces. The signal was then
segmented into epochs beginning 500 ms before stimulus onset and lasting until 2100 ms

afterwards. Within each epoch, the onset of the EMG activity was detected using an algorithm
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devised following Liu and Liu (2016; see also Weindel et al., 2021). Specifically, the cumulative
sum of the absolute values of the EMG trace is first computed and then subtracted from the
straight line that joins the first and the last data-points (which would correspond to the
cumulative sum of a uniform distribution; see also Liu & Liu, 2016; Weindel et al., 2021). The
EMG onset was marked in correspondence to the sample in which the difference reached its
minimum value. Notably, the original algorithm by Liu and Liu (2016) was explicitly devised to
overcome issues related to spontaneous spike activity within clinical populations, and thus
provides a robust solution for EMG onset detection despite potential background noise.

To support artifact rejection, we applied a second algorithm, inspired by Servant and
colleagues (2021). For each epoch, we computed windows of EMG activity by identifying
samples in which activity exceeded the threshold of 3.5 SDs from the average value in the pre-
stimulus baseline period (-500 to 0 ms). Consecutive windows separated by intervals shorter than
25 ms were merged. From the resulting windows of activity, we discarded those with a duration
below 50 ms (arguably reflecting noise or random fluctuations, rather than purposeful EMG
activity) as well as windows beginning after the epoch’s RT. Epochs displaying more than 1
window of activity were marked. We then visually inspected all the epochs and retained only
those in which the EMG onset was marked in correspondence to the last window of activity
before response onset. This was done to discard onsets detected in correspondence to noise
bursts, drifts or a separate subthreshold EMG burst occurring before response onset (possibly
related to hesitations). We also excluded all the epochs in which the onset detection algorithm
failed, due to excessive noise or drift in the signal. On average, 8.76% of the epochs were
rejected. Datasets (N = 3) in which more than 25% of the epochs were rejected were excluded

from the analyses.
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The two algorithms were finally applied also to the signal corresponding to the hand not
involved in the final button-press (e.g., the right-hand channel when a left-hand button press was
delivered), in order to detect partial errors and partial correct responses (i.e., trials with an
incorrect response, but with a prior subthreshold activation of the correct response hand). Epochs
featuring one or more windows of activity were marked. Using visual inspection, epochs were
then classified as containing true partial errors or partial-correct responses when a visually
detectable subthreshold EMG activation was present, and the timing of its onset was accurately
detected. On average, partial errors occurred on 6.54% of the trials. Partial correct responses
were very few (0.5%) and thus not investigated. Epochs containing partial errors or partial-
correct responses were dropped from chronometric and accuracy analyses.

All the processing steps reported in this section were consistently applied to the other
reported experiments as well.

2.1.6 Measures

2.1.6.1 Chronometric Measures. Using the EMG traces, we partitioned each single RT
into PMT — reflecting the time elapsing from stimulus onset until the onset of the EMG burst —
and MT — capturing the time between the onset of the EMG burst and the actual button press.
The analysis of these chronometric indexes focused on pure-correct responses (i.e., correct
response with not covert-activation of the incorrect response hand).

2.1.6.2 Accuracy. These analyses focused on pure-correct and pure-error responses (i.€.,
correct responses and errors with no covert activation of the incorrect or correct response hand,
respectively). We also considered conditional-accuracy functions (CAF), reflecting variations in
accuracy as a function of response speed. Trials without responses (i.e., time-outs) were excluded

from this analysis. Within each participant and within each stimulus category (e.g., words vs
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pseudowords), trials were sorted into five quantiles as a function of their RT, with the first
quantile capturing the fastest 20% of the responses, the second quantile the next 20%, and so on
until the fifth quantile, reflecting the slowest 20% of the responses. The variable Quantile was
then treated as a fixed effect in the analyses.

2.1.6.3 Partial errors. These analyses focused on correct responses and assessed
potential variations in the likelihood of partial errors across conditions.

2.1.7 Statistical analyses

Chronometric measures were analyzed using linear mixed-effects models. Analyses on response
accuracy and partial errors were analyzed via generalized mixed-effects models due to the
binomial nature of the dependent variables. All analyses were conducted using the /me4 library
(version 1.1.27.1; Bates et al., 2015) and the afex package (version 28.1; Singman et al., 2021) in
R (version 4.2.1; R Core Team, 2021). Figures were made using the ggplot2 package (version
3.3.6; Wickham, 2016).

Fixed effects were assessed by comparing alternative models in which the effect under
examination was either present or absent. Fixed terms were retained when likelihood ratio tests
revealed that their exclusion would have determined a significant decrease in goodness-of-fit. In
case interactions resulted significant, all the lower-order terms were retained. In this first stage,
the random effect structure was limited to by-participants and by-items random intercepts. Once
we identified the significant fixed effects, we then tried to fit the structure of maximal
complexity (Barr et al., 2013), including random slopes for all the fixed terms (as well as their
correlations with the intercepts). When models failed to converge (due to over-parameterization;
e.g., Bates et al., 2018; Matuschek et al., 2017), we progressively simplified the random-effect

structure by first removing correlations among random terms (i.e., fitting zero-correlation
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models), then by removing random slopes (or intercepts) associated with the smallest amount of
variance (often corresponding to 0).

For the CAFs analyses, we focused on assessing the interaction between the variable
Quantile and the factor distinguishing between stimulus types (Lexicality in Experiment 1 and 3,
Object Type in Experiment 2, and Word Frequency in Experiment 3). If the interaction resulted
significant, we further considered non-linear relationships using second order orthogonal
polynomials to fit the Quantile variables. These non-linear terms were retained only when they
increased goodness-of-fit. To obtain model convergence, for these analyses the random effect
structure was limited to by-participants and by-items random intercepts.

For all models, information regarding the fixed effects is reported in-text. Details about
random effects for all the final models are listed in Supplemental Materials 1 (Tables S1 through
S4). Information for all the parameters of CAF models is listed in the Supplemental Materials 2
(Table S5 and Table S6). All the procedures outlined in this section were consistently applied to
all the experiments.

2.2 Results

2.2.1 Chronometric Measures

Trials with errors (4.26 % of the total), partial errors (6.54%), or an inaccurate detection of the
EMG onset (6.68%) were excluded from the analyses. Results are summarized in Figure 1A.

The Lexicality effect was significant for measures of RTs, y°(1) = 71.83, p <.001, PMTs,
2’(1)=66.03, p <.001, and, crucially, MTs, 5°(1) = 26.40, p < .001. In the final models, we were
able to retain the random effect structure of maximal complexity for all the 3 measures (Table
S1). Parameters of the fixed effects are listed in Table 3. Words were faster than pseudowords

across all the three measures.
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2.2.2 Accuracy

There was a significant effect of Lexicality, y°(1) = 7.89, p <.001. The final model (in which we
had to drop the correlation between by-participants random intercepts and random slope for the
Lexicality effect; Table S1) revealed that responses were more accurate for words compared to
pseudowords, b = 0.55, SE = 0.24, z = 2.26 (Figure 1B).

Analyses of conditional accuracy functions revealed a significant Lexicality by Quantile
interaction, x°(1) 34.26, p < .001. Fitting the Quantile variable with a quadratic orthogonal
polynomial increased goodness of fit, y°(2) = 93.44, p < .001. As visible in Figure 1B (see also
Table S5), pseudowords were specifically more prone to fast errors (i.e., errors within the first
quantile of the RTs distribution), compared to words.

2.2.3 Partial errors

There was a significant effect of Lexicality, y°(2) = 4.17, p = .04. The final model, retaining the
random effect structure of maximal complexity (Table S1), highlighted that partial errors were
less likely to occur for words compared to pseudowords, b =-0.29, SE = 0.14, z = -2.09 (Figure

10).

-- Figure 1 --

2.3 Discussion

Experiment 1 revealed that the lexicality effect (slower responses for pseudowords compared to
words) reliably affects both the pre-motor and, crucially, the motor component of RTs. This
result is at odds with the notion that decision is terminated upon motor-response initiation. Had

this been the case, there would be no reason to expect a lexicality effect on MTs.
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The lexicality effect on MTs might reflect a continuation of the evidence accumulation
processes during response execution (e.g., Servant et al., 2021). An alternative hypothesis is that
it would stem from different processes and sources of information. For example, late-occurring
verification stages, which have been hypothesized for pseudoword stimuli (e.g., Perea et al.,
2005), may still be ongoing after response initiation, thus prolonging MTs duration. Indeed, as
for pseudowords there are no representations in long-term memory, decisions may take some
extra time to verify that the string really fails to match any lexical entry. Part of this additional
search may occur during response execution.

Measures of response accuracy revealed other insights. Pseudoword responses were more
likely to yield partial errors as well as fast errors (i.e., errors occurring in the first quantile of the
CAF). Both indexes can be linked with a tendency to misidentify pseudowords as words.
Potentially, the system may react to this issue by increasing monitoring processes over these
more uncertain responses, thus yielding longer MTs (e.g., Allain et al., 2004; Burle et al., 2002).

In the following experiment, we assessed whether these phenomena are exclusively
related to lexical decision or can be reproduced with non-linguistic stimuli.

3. Experiment 2
3.1 Method
3.1.1 Participants
Forty-eight Italian native speakers participated to the experiment (41 females; Muge =21.79;
SDuge =2.91). Data from 1 participant were replaced as only a few epochs of the practice session
were recorded. Data from 3 participants were discarded during the EMG processing procedure,

due to the high number of EMG epochs rejected (> 25%). Using the Edinburgh Handedness
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Questionnaire, 42 participants were classified as right-handed (M = 84.54, SD = 14.45), 5 as
mixed-right handers (M = 38.74, SD = 1.36) and 1 as left-handed (handedness score = -60).
3.1.2 Stimuli

Sixty-four images of manmade objects were selected from the Bank of Standardized Stimuli
(BOSS; Brodeur et al., 2010; 2014). The selected pictures had moderately high values of name
agreement (.71, SD = .20; mean H-value = 1.37, SD = 0.96), and depicted highly familiar objects
(mean familiarity: 4.13, SD = .30; scale 1 to 5). The sixty-four images of pseudo-objects
consisted in the items of the Novel Object and Unusual Name (NOUN) database (Horst & Hout,
2016). All images were converted to black-and-white images? and scaled to a 400 x 400 pixels
size. The size of the files in kB, taken as a rough proxy for visual complexity (Székely & Bates,
2000) was comparable across objects and pseudo-objects (Mop; = 69.13, SDop; = 16.93; Mpseudo =
70.56; SDpseudo = 12.97; t [63] = -0.54, p = .59). Images for objects and pseudo-objects were
partitioned into 2 subsets, for counterbalancing purposes. The 2 subsets were comparable for all
the variables mentioned above.

3.1.3 Apparatus and procedures

The same as in Experiment 1. The only differences were that a) images were presented instead of
letter strings, and b) all the stimuli appeared on a white background.

3.2 Results

3.2.1 Chronometric Measures

Errors (8.47 % of the total number of trials), partial errors (12.53%), or trials with an inaccurate
detection of the EMG onset (4.79%) were excluded from the analyses. Partial correct responses

were few (1.49%) and not further analyzed. Results are summarized in Figure 2A.
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There were significant effects of Object Type (pseudo-objects vs objects) on RTs, y*(1) =
31.27, p <.001, PMTs, x°(1) = 22.51, p <.001, and also for MTs, »°(1) = 48.83, p <.001. The
final models for all the 3 measures retained the random effect structure of maximal complexity
(Table S2). Parameters of the fixed effects are listed in Table 3.

3.2.2 Accuracy

The effect of Object Type was not significant, y°(1) = 3.47, p = .06. Conditional accuracy
functions analyses revealed no Object Type by Quantile interaction, y°(1) = 1.24, p = .26 (Figure
2B).

3.2.3 Partial errors

There was no significant effect of Object Type, x°(1) = 0.18, p = .67 (Figure 2C).

-- Figure 2 --

3.3 Discussion

Experiment 2 revealed a reliable effect of object-type on MTs, which were longer for
pseudo-objects compared to real ones. This finding testifies to the generalizability of decisional
effects on MTs, beyond the context of lexical decision. However, compared to Experiment 1,
measures of response accuracy — which were exploited to functionally characterize the processes
occurring during motor-response execution — showed some intriguing differences. In particular,
we found no evidence that partial errors were more likely to occur for pseudo-objects compared
to objects, in contrast with what we found for pseudowords compared to words. Additionally, the
analysis of CAFs failed to reveal a clear object-type by quantile interaction. Although fast errors
seem qualitatively more likely to occur for pseudo-objects, the lack of a significant interaction

warrants against strong conclusions in this sense. Taken together, these results suggest that
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prolonged MTs may reflect a continuation of evidence-accumulation and/or late-occurring
verification processes triggered by stimuli with no pre-existing representation in long-term
memory (i.e., pseudo-objects).

In the third experiment, we attempted to further specify the functional characterization of
the decisional components of motor-response execution. Specifically, we manipulated word-
frequency within a lexical decision experiment. If the effects on MTs stem from a continuation of
evidence-accumulation during response execution, we would expect lexical frequency to affect
MTs. Differently, the lack of a word-frequency effect paired with a replication of the lexicality
effect would be more in line with a verification account, related to the specific features of
pseudowords stimuli.

4. Experiment 3
4.1 Method
4.1.1 Participants
Forty-eight participants took part in the experiment (38 females; Mage = 21.02; SDuge = 2.20).
Data from 3 participants were replaced because of problems during the acquisition of the signal.
Data from other 3 participants were excluded during the stage of EMG signal processing due to
the high number of EMG epoch rejected. According to the Edinburgh Handedness Questionnaire,
43 participants could be classified as right-handed (M = 83.25, SD = 14.35), 3 as mixed-right
handers (M = 50, SD = 0), 1 as a mixed left-hander (handedness score = -30), and 1 as left-
handed (score: -88.9).
4.1.2 Stimuli
Sixty-four high-frequency and 64 low-frequency words were selected from the phonltalia

database version 1.10 (Goslin et al., 2013). One-hundred and twenty-eight pseudowords were
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created with the help of the Wuggy software (Keeulers & Brysbaert, 2010). High-and low-
frequency words were comparable for several psycholinguistic variables (Table 2). The same was
true when comparing words (high- and low-frequency taken together) and pseudowords. High-
and low-frequency words were partitioned into 2 subsets for counterbalancing purposes. The
subsets were comparable in terms of the variables listed in Table 2. Pseudowords were similarly
partitioned into 2 subsets, which were comparable with those created for words across the

variables reported in Table 2.

-- Table 2 --

4.1.3 Apparatus and procedures
Apparatus and procedures were the same as in Experiment 1.
4.2 Results
4.2.1 Chronometric Measures
Errors (5.29% of the total number of trials), partial errors (13.45%), or trials with an inaccurate
detection of the EMG onset (4.16%) were excluded from the analyses. Partial correct responses
were very few (0.67%) and thus not further considered. The results are summarized in Figure 3A
and Figure 3D. Parameters of the final models are listed in Table 3.

4.2.1.1 Word Frequency. There were significant frequency effects on RTs, y°(1) = 47.65,
p <.001, and on PMTs, (1) = 48.14, p < .001. The final models, retaining the random effects
structure of maximal complexity (Table S3), revealed that both measures were significantly
longer for low- compared to high-frequency words. Differently, there was no frequency effect on

MTs, (1) =0.27, p = .60 (b = 0.71, SE = 1.45, t = 0.49). Given the theoretical relevance of this
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null effect, we estimated the corresponding Bayes Factor (BF). Specifically, we subtracted the
Bayesian Information Criterion (BIC) of the model featuring the fixed effect of word frequency
from the one taken from the null model (only random intercepts), thus obtaining the delta BIC.
The BF was then computed following the formula exp(deltaBIC/2) (Rafery, 1995; Wagenmakers,
2007). We obtained a BF = 0.042, suggesting that the data provide strong evidence for the null
hypothesis.

4.2.1.2 Lexicality. There were significant lexicality effects on RTs, y*(1) = 141.4, p
<.001, PMTs, x°(1) = 120.87, p < .001, and MTs, (1) = 111.47, p < .001. All the chronometric
measures were significantly slower for pseudowords compared to words (Table 3; for the random
effect structure, see Table S4).
4.2.2 Accuracy

4.2.2.1 Word Frequency. The frequency effect was significant, y°(1) = 39.49, p < .001.
The final model, featuring no correlations between random slopes and intercepts (Table S3),
showed that response accuracy was lower for low- compared to high-frequency words, b = -1.29,
SE =0.2, z=-6.45. Analyses of conditional accuracy functions revealed no significant
interaction between Word frequency and Quantiles, y°(1) = 0.07, p = .78 (Figure 3B).

4.2.2.2 Lexicality. There was a significant effect of lexicality, y°(1) = 4.51, p = .03.
However, once the random slopes were included in the final model (Table S4), the effect was no
longer significant, b =0.19, SE = 0.19, z = 0.98 (Figure 3E). Analyses of conditional accuracy
functions revealed a significant interaction between Lexicality and Quantiles, y°(1) = 81.11, p
<.001, driven mostly by fast and impulsive errors for pseudowords (Figure 3E; see also Table
S6).

4.2.3 Partial errors



DECISIONAL COMPONENTS OF MOTOR RESPONSES 26

4.2.3.1 Word Frequency. The effect of word frequency was significant, y°(1) = 53.76, p
<.001, with the final model indicating a higher likelihood of partial errors for low- compared to
high-frequency words, b = 0.73, SE = 0.1, z=7.59 (Figure 3C).

4.2.3.2 Lexicality. There was a significant lexicality effect, y°(1) = 4.42, p = .03. The
reduction in the likelihood of partial errors for words however appeared rather weak when
including the random slopes in the final model (Table S4), b =-0.16, SE = 0.09, z = -1.67 (Figure

3F).

-- Figure 3 --

-- Table 3 --

4.3 Discussion

The third experiment replicated the lexicality effect on MTs found in Experiment 1.
Differently, the effect of lexical frequency remained exclusively bounded to the pre-motor
component of RTs. One trivial possibility is that the lack of a frequency effect on MTs simply
reflects a power issue or a scaling effect. However, BF approximation (Wagenmakers, 2007; see
also Rafery, 1995) suggests that Experiment 3 provides strong evidence favoring the null
hypothesis, i.e., that there is no frequency effect on MTs. Moreover, albeit smaller than the
lexicality effect, the size of the word frequency effect on RTs and PMTs is fully comparable to
the object type effect reported in Experiment 2 (see Table 3, as well as Figure 2A and Figure 3A).
It thus seems that our experiment should have been able to detect a frequency effect on MTs, had

there been one.
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As we will discuss in more detail below, this dissociation across different experimental
manipulations in their ability to reach the motor stage may provide an important constraint with
respect to the functional characterization of the decisional components that are active during
motor-response execution. In fact, at least in the context of the decision paradigms we have
implemented, it seems that the critical factors in determining the effects on the motor-component
of RTs are either related to the lack of a stimulus representation in long-term memory
(pseudowords and pseudo-objects vs words and objects) and/or to the request of additional
control processes for these kinds of stimuli.

5. General Discussion
We experimentally investigated the boundaries between decision and action within conceptual 2-
alternative choice tasks featuring discrete button-press responses. Using the EMG signals, RTs
were fractioned into a premotor and a motor component (MT, Botwinick & Thompson, 1966) to
assess whether decision processes terminate before response initiation — as assumed by
prominent models of binary decision-making and lexical decision — or, instead, whether they are
still at play during motor-response execution. Our results support the latter perspective and
reveal important constraints that may further clarify the transition from decision onto action-
related processes, at least when evidence is sampled from memory, rather than from sensory
input.
5.1 Experimental Factors Affecting vs. Not-Affecting M Ts Constrain the Functional
Interpretation of Motor Responses’ Decisional Components

Experiment 1 and 3 revealed that, in lexical decision tasks, the classic lexicality effect
can be tracked also during motor-response execution. Experiment 2 additionally revealed a

similar effect in an object-decision task, suggesting that the phenomenon may not be due to



DECISIONAL COMPONENTS OF MOTOR RESPONSES 28

unidentified task-specificities of lexical decision. At first sight, these results seem to fit nicely
with the recent ones in the field of perceptual decision-making, where the modulation of MTs as
a function of the available sensory evidence has been interpreted as a signature of evidence
accumulation continuing during motor-response execution (Servant et al., 2021). However, the
results on word frequency (Experiment 3) challenge this interpretation, at least in the context of
the experimental paradigms we exploited. In fact, albeit RTs were reliably slower for low-
compared to high-frequency words, this effect remained bounded within the premotor
component of RTs (see also Supplemental Materials 3). This does not appear to be compatible
with the notion that the unfolding of motor response is shaped by an ongoing evidence
accumulation process relying on the same sources of information that are used during purely
cognitive decisional stages (Servant et al., 2021; see also Servant et al., 2015; 2016). In other
words, as lexical frequency consistently modulates the rate of evidence accumulation across
different models (e.g., Dufau et al., 2012; Heathcote & Love; Rae et al., 2014; Ratcliff et al.,
2004), if we assume that evidence accumulation continues after response onset (Servant, 2021),
why no frequency effect is detected on MTs?

In the context of perceptual decision making, and in particular when considering effects
of stimulus-response compatibility, different previous experiments have shown manipulations
that selectively affect PMT, while leaving MTs unaffected, (e.g., Burle et al., 2002; Hasbroucq et
al., 1999; Spieser et al., 2014; but see Servant et al., 2021 for a different perspective). Weindel
and colleagues (2021) have recently reported a number of findings pointing towards the
independence of PMTs and MTs. For example, whereas the manipulations of stimulus contrast
and speed-accuracy tradeoff modulated the two measures in the same direction, response

accuracy revealed opposite-going influences, with errors displaying longer PMTs and shorter
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MTs compared to correct responses. Further, response force and response side (at least in one
experiment) selectively affected MTs. According to the authors, these dissociations support the
notion that PMTs and MTs reflect different latent (cognitive) processes.

Similarly, in our experiments, the difference in propagation between frequency and
lexicality effect across the motor stages might support the notion that specific processes
modulate motor-response execution in lexical decision. In other words, these empirical
observations offer some important constraints with respect to the functional characterization of
the decisional components observed at the level of motor-response execution. Specifically, the
mismatch between the word frequency effect on the one hand, and the lexicality and the object
type effect on the other hand, suggests that decision processes may unfold in different ways as a
function of the nature of the stimuli. Slower MTs were selectively found for items with no pre-
existing representation in long-term memory stores (i.e., pseudowords and pseudo-objects).
Difterently, when a stored representation was available, albeit less accessible as in the case of
low-frequency words, the slowdown of response latencies remained confined into the PMT. This
observation paves the way for different functional interpretations of the observed phenomena, as
detailed below.

5.2 Responses to Nonwords

The differentiation between responses for items that are present vs absent in long-term
memory resonates with a critical under-investigated question for any account of lexical decision,
concerning what may constitute evidence for a nonword response. The issue has been directly
tackled by Dufau and collegues (2012), who proposed a leaky competing accumulator (LCA; see
Usher & McClelland, 2001) model featuring separate and mutually inhibiting word and nonword

nodes. Whereas word responses are driven by lexical evidence, the input of the nonword node is
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given by a constant value minus the lexical activity, thus envisaging evidence for nonword
responses as a function of the time elapsing after stimulus onset (as for deadline models)
modulated by the accumulation of lexical evidence through the competitive dynamics of leaky
accumulators. Critically, however, this model features a thresholded transition from decision to
responses, implemented as the typical action-triggering decisional boundary, that prevents any
differentiation between words and nonwords at the level of motor-time.

Davis (2010), in the context of a more general model of orthographic processing and
visual word recognition, implemented lexical decision as a process involving a competition
between two different channels, one accumulating evidence for word, and one for nonword
responses. A parameter controls lateral inhibition between channels, and the sources of input for
the word-response channel, are global and local levels of activity at the lexical level. Again, both
word and nonword responses are delivered once a decision threshold has been reached. The
model thus implements the assumption that responses are made once decisions have terminated,
which seems to be questioned by the lexicality effect detected on MTs within our Experiment 1
and 3.

Compared to these notable models, it is worth noticing that in processing word-like
nonwords, for which no memory trace is available, additional stages might be uniquely recruited
to reach a decision. A potential candidate may be a late verification stage (e.g., Perea et al.,
2005), during which the stimulus is further evaluated in comparison with (a few) lexical units
(relatively) close to it. Consistent with this proposal, for example, pseudowords derived from
high-frequency words, despite triggering higher levels of lexical activation, yield faster response
latencies (e.g., Yap et al., 2015; see also Perea et al., 2005; Ziegler et al., 2001), as they are

compared against their lexical counterparts to check for deviations from the base-stimuli.
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Assuming that these late verification processes may still be active during response execution,
they would particularly increase MTs for pseudowords (for additional exploratory analyses, see
Supplemental Materials 4). It remains to be investigated whether the increased MTs merely
reflect task-specific verification processes or are more broadly connected with mechanisms
driving memory search termination processes (e.g., Doughery et al., 2016).
5.2 Response Control and Monitoring

An alternative hypothesis we explored links the MTs to monitoring processes. Indeed,
the duration of MTs has been associated — among other factors — to an online mechanism of
executive control directed towards error detection and correction via the inhibition of the
(erroneous) motor response (Allain et al., 2004). Additionally, recent proposals suggest that
evidence-accumulation processes may proceed after a first decisional threshold is met. These
would represent a second-order, metacognitive decision variable bounded to performance
monitoring (Desender, Ridderinkhof, et al., 2021). Speculatively, MTs effects may be also linked
with this continuing process of evidence accumulation beyond a first EMG-triggering boundary,
to support an evolving monitoring process on the outcomes of first-order decisional stages
(Desender, Donner, et al., 2021; Pleskac & Busemeyer, 2010; Resulaij et al., 2009; for review
and perspectives, see Desender, Ridderinkhof, et al., 2021). Empirically, we focused on how
response accuracy changes as a function of response speed (conditional accuracy functions) —
which highlight conditions prone to fast and impulsive errors, thus calling for an allocation of
additional control processes (e.g., Ridderinkhoff, 2002; van den Wildenberg et al., 2010) — as
well as on partial errors — which reflect real-time corrections of motor responses (e.g., Burle et
al., 2002). Globally, our data offer mixed evidence of a relationship between MT effects and

monitoring-related phenomena. Concerning partial errors, a higher likelihood of these
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phenomena for a specific class of stimuli does not seem to be necessarily associated with a
slowdown in MTs. In Experiment 2, pseudo-objects revealed significantly longer MTs compared
to real objects, despite the two types of items yielded statically comparable rates of partial errors.
Further, Experiment 3 revealed an enhanced likelihood of partial error phenomena on low-
frequency words, despite the lack of any frequency effect on MTs.

The presence of fast-impulsive errors seems more promisingly associated with a
slowdown of MTs, at least in the context of the lexical decision task, where pseudowords were
consistently more prone to impulsive errors compared to real words, whereas low- and high-
frequency words were undistinguishable with respect to this index. However, results from
Experiment 2 blur the overall pattern: Albeit pseudo-objects are qualitatively more prone to fast
errors (errors in the first quantile of the conditional accuracy function), the lack of a significant
Object Type by Quantile interaction hinders any strong conclusion. Note that part of the
inconclusiveness of our data on the relation between MT and monitoring processes might be due
to the two indexes we adopted, which are either rather indirect (rates of fast errors) or focused on
late monitoring components related to the correction of an ongoing behavior (partial errors).
Other indexes, such as graded confidence ratings (Desender et al., 2018), or EEG components
such as the error-positivity (e.g., Desender, Ridderinkhof, et al., 2021) may offer more direct
measures of monitoring.

5.3. No Effect of Lexical Frequency on Motor-Times

The lack of a word-frequency effect on MTs in lexical decision is apparently at odds with
some data available in the literature. As noted in the introduction, Abrams and Balota (1991)
reported clear effects of word-frequency on responses delivered through left vs rightward

movement of a handle. In line with proposals of adaptive flow of information between cognitive
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and motor stages (Calderon et al., 2018), we consider that these more complex and time-
consuming responses may provide more room for cross-talks between decision and action.
Differently, the use of discrete responses such as the button-presses used here, other than
capitalizing on the traditional experimental setting used in most of the cognitive and
neuroscientific experiments, may reveal different insights and dissociations across experimental
factors in their ability to modulate response execution.

Further, in a previous study, we also reported that word frequency modulates EEG
indexes of effector-selective motor activity (Scaltritti et al., 2020). With respect to this issue, we
would like to notice that motor responses are a product of a complex and possibly hierarchical
series of processes, involving response selection, planning/programming, and execution (e.g.,
Rosenbaum et al., 2007; Summers & Anson, 2009). Our previous work highlighted word
frequency effect at the level of the lateralization of EEG beta activity occurring immediately
before response onset and related to the settling of abstract and high-level motor goals (e.g., de
Jong et al., 2006; Wheaton et al., 2005). The current experiments, instead, focused on pure
measures of motor execution. Different variables might thus propagate their effects at different
levels of the motor hierarchy. Importantly, a re-analysis of the previous dataset (Scaltritti et al.,
2020), revealed the same pattern highlighted in the current experiments, with fully reliable
lexicality effects on both PMT and MT measures, and a selective influence of word frequency on
PMTs (Supplemental Materials 3). Other than corroborating the present findings, these results
indeed point toward potential differences in the “cognitive” involvement of the motor-hierarchy
as a function of specific experimental manipulations and related latent decisional components.

Clearly, this line of reasoning requires additional research.
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5.4 Models of Decision Making

Although the current findings may inspire or even constrain formal models of decision
making, we are agnostic with respect to the specific instantiation within the family of evidence
accumulation models that would be better suited to capture our results. Model fits and
interpretations, however, may critically depend on the specific model, and on the specific setting
of its parameters (e.g., Donkin et al., 2011). A systematic comparison across models and
parameter settings (e.g., Heathcote & Love, 2012; Rae et al., 2014), however, is beyond the
scope of the present research.

Instead, by empirically testing the shared assumption that motor-responses serially follow
the termination of decisional stages, our investigation questions this core and general construct
on which different models rely. Although similar findings have been reported in the field of
perceptual decision making (Servant et al., 2021; Weindel et al., 2021), the assessment within
different decisional paradigms based on the processing of semantic and lexical evidence sampled
from memory revealed novel insights. Specifically, we began to assess different hypotheses
concerning the functional characterization of the decisional components that are still active
during motor-response execution. The results seem to favor the notion that these motor-
decisional components may be related with verification (e.g., Paap et al., 1982; Perea et al.,
2005) and/or control and monitoring dynamics (e.g., Allain et al., 2004; Burle et al., 2002; see
also Weindel et al., 2021). However, any commitment on our part to one of the many and diverse
extant modeling approaches (e.g., Calderon et al., 2018; Desender et al., 2021; Servant et al.,
2021) seems premature, as — we believe — the informational content of the motor component still
needs to be functionally elucidated, in order to better identify the linking function mapping the

specified psychological processes onto a formal/computational implementation.
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For example, the overly focus on the classic drift-diffusion model (Ratcliff, 1978, Ratcliff
et al., 2016) is complicated by the fact that a single parameter (7er) jointly captures early
encoding stages and motor-response execution, under the assumption that both represent non-
decisional processes. The selective contribution of the two stages to the decision process and/or
the selective influence of different experimental manipulations on stimulus encoding vs motor-
response execution is thus difficult to disentangle (e.g., Vergara-Martinez et al., 2020). Actually,
the assessment of the correspondence between the models’ parameters and the (presumed)
specific cognitive process (for example, via test of selective influence) remains a different, albeit
related, research question (as tackled, for example, in Weindel e al., 2021; see also Dulith et al.,
2019; Gomez & Perea, 2014; Heathcote & Love, 2012; Rae et al., 2014).

Differently, when considering the possibility of post-decisional process of evidence
accumulation, different frameworks have been proposed. Some authors (e.g., Servant et al.,
2021) suggest that motor responses are informed by a continuation of the same evolving
decision-variable that shapes pre-motor stages. However, the differentiation between lexicality
and word-frequency effects in their ability to affect MTs does not seem to fit with this
perspective. Instead, even when considering models in which post-decisional evidence is
explicitly linked to monitoring processes, it remains debated whether these rely on the same
sources of information (i.e., evidence) as the ones used during first-order decisional processes
(Desnder et al., 2021). We thus believe that experimental data such those highlighting the
differences across experimental factors in their ability to affect premotor vs motor components of

decision may provide a fertile and complementary ground to inform theories of decision-making.
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6. Conclusions

In conclusion, the present experiments show that motor-response execution is not
segregated from ongoing decisional dynamics. However, for conceptual decision-making tasks
relying on evidence sampled from memory, the propagation of cognitive/decision processes onto
motor responses does not seem to reflect (only) a continuous evolution of the same decision
variable informing prior non-motor stages. In fact, not all the manipulations traditionally
ascribed to the rate of evidence accumulation reveal sizeable effects at the level of MTs. It would
thus seem that the decision processes unfolding during motor responses are, at least in part,
different compared to those driving purely non-motor ones (Weindel et al., 2021). With respect to
the specific informational content of these later processes, we can presently suggest some
working hypotheses.

One possibility is that MT effects reflect, at least in part, processes related to performance
monitoring for more demanding and confusable stimuli. Although, as mentioned above, our data
fail to fully support this interpretation, a dismissal of the monitoring account seems premature at
this stage. In our current reading, however, MTs effects yielded by the comparison between
words/objects and pseudowords/pseudo-objects may reflect a byproduct of late-occurring
verification processes selectively engaged for items featuring no previous representation in long
term memory stores. More broadly, we believe our data may foster a re-consideration on the MT
measures. Clearly, MTs cannot be ascribed to purely non-decision components, suggesting that
motor-response execution itself reflects also the unfolding of evolving cognitive/decision
processes. However, our data also suggest that MTs do not simply mirror PMT/RT measures as
not all the effects detected at the level of PMTs and RTs are reflected at the level of MTs (see

also Weindel et al., 2021). More specifically, this implies that, despite MTs are permeable to
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cognitive and decisional dynamics, a) MTs might not be sensitive to all the same factors
influencing RTs, and b) not all PMT-related effects propagate onto MTs. In turn, dissociations
among (cognitive and decision-related) experimental manipulations in their ability to influence
measures of motor-response execution may provide a finer-grained description of the crucial
transition from decision onto action, which may instead remain blurred when considering overall

RTs measures.
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Table 1

Psycholinguistic variables of the stimuli used in Experiment 1.

49

Variables Words Pseudowords t-value
Frequency (log) 3.27 - -
N. of Letters 7.00 7.00 0
N. of Syllables 2.88 2.88 0
Orthographic N 4.16 4.41 0.27
OLD20 2.08 2.22 0.94

Note. N. of Letters = number of letters; N. of Syllables = number of syllables; Orthographic N =
number of orthographic neighbors; OLD = orthographic Levenshtein distance (Yarkoni et al.,
2008). For words, all variables were extracted from the Phonltalia database (Goslin et al., 2013).
For pseudowords, the number of orthographic neighbors and OLD were computed on the same
database using the vwr package (Keuleers, 2013) in R. t-values result from independent sample

two-tailed t-tests conducted to compare words and pseudowords (all ps > .34).
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Table 2

Psycholinguistic variables of the stimuli used in Experiment 3.

Variables HF LF t-value Words Pseudo. t-value
Frequency (log) 5.87 1.93 19.91 3.90 - -
Freq. Subtlex (log) 9.11 4.99 19.04 7.05 - -
Familiarity 7.26 6.31 5.37 6.78 - -
Imageability 7.24 7.24 0.02 7.24 - -
Concreteness 6.57 6.87 -1.07 6.72 - -
Valence 5.57 5.22 1.11 5.40 - -
Arousal 5.46 5.27 1.17 5.37 - -
N. of Letters 6.89 6.95 -0.21 6.92 6.92 0.00
N. of Syllables 2.89 2.97 -0.62 2.93 2.95 0.18
Orthographic N 3.00 3.19 -0.29 3.09 3.09 -0.02
OLD20 2.02 2.14 -1.15 2.08 2.14 0.78
Bigr. Freq. Sum 674018 705947 -0.58 689983 665406 -0.64
Bigr. Freq. Mean 111813 115835 -0.67 113824 108797 -1.19

Note. N. of Letters = number of letters; N. of Syllables = number of syllables; Orthographic N =
number of orthographic neighbors; OLD = orthographic Levenshtein distance (Yarkoni et al.,
2008); Bigr. Freq. Sum = summed bigram frequency; Bigr. Freq. Mean = mean bigram
frequency. For words, all the surface variables were extracted from the Phonltalia database
(Goslin et al., 2013), except for Frequency Subtlex (log), which was extracted from the
SUBTLEX-IT database (Crepaldi et al., 2013). Semantic scores (familiarity, concreteness,
imageability, valence, arousal) scores were taken from the Italian adaptation (Montefinese et al.,
2014) of the Affective Norms for English Words database (Bradley & Lang, 1999). For
pseudowords, the number of orthographic neighbors, and OLD were computed on the Phonltalia
database using the vwr package (Keuleers, 2013) in R. Bigram frequency variables were
computed on the same database with a custom-made script. t-values result from independent
sample two-tailed t-tests.
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Table 3.

Parameters of the fixed effects for models of chronometric measures.

o1

RT PMT MT
Est. SE t Est. SE t Est. SE t
Exp 1
Intercept 802.77 18.97 4232 62234 19.52 31.89 180.32  6.18  29.19
Lexicality (word) -99.67 13.12  -7.59 -9296 12.83 -7.24 -6.49 2.11 -3.08
Exp 2
Intercept 74234 1423 52.17 506.11 13.59 37.25 236.21 236.21 28.36
Obj. Type (real object) -59.03  13.67 -4.32 -45.74  12.59 -3.63 -13.34 237 -5.63
Exp 3
Intercept 691.10 1499 46.10 465.17 12.89 36.09 226.37  6.53  34.66
Frequency (low-frequency) 64.10 8.67 7.39 63.09 8.56 7.37 - - -
Intercept 82277 17.62  46.69 583.51 15.63 37.34 239.22 7.7  33.36
Lexicality(word) -99.89  9.84 -10.15 -86.98  9.13  -9.53 -12.88 247 -5.22

Note. RT = reaction time; PMT = premotor time; MT = motor time; SE = standard error. When the fixed term failed to increase

goodness-of-fit, it was excluded from the model and thus parameters are not reported (-).
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Figure 1

Results from Experiment 1

A: Chronometric Measures
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Note. Section A (first row): findings on measures of reaction time (RT), premotor time (PMT)
and motor time (MT). Section B (second row, first two columns): findings on accuracy (first
panel) and conditional accuracy functions (second panel). For the latter, points represent
empirical means, lines represent means predicted by the statistical model. Section C reports
findings on partial errors. Error bars reflect 95% confidence intervals. Inset plots provide
information about the consistency of the lexicality effect across participants. Points represents
individual difference-scores between pseudowords and words in the corresponding measure, with
the violin-plot providing information about the distribution. Red error-bars highlight 95%
confidence-interval of the mean effect for the whole sample. All confidence intervals were

adjusted for within-participants variables following Morey (2008).
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Figure 2

Results from Experiment 2

A: Chronometric Measures
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Note. Section A (first row): findings on measures of reaction time (RT), premotor time (PMT)
and motor time (MT). Section B (second row, first two columns): findings on accuracy (first
panel) and conditional accuracy functions (second panel). Section C reports findings on partial
errors. Error bars reflect 95% confidence intervals. Lines were not plotted when the effect under
examination was not significant. Inset plots provide information about the consistency of the
object-type effect across participants. Points represents individual difference-scores between
pseudo-objects and real objects in the corresponding measure, with the violin-plot providing
information about the distribution. Red error-bars highlight 95% confidence-interval of the mean
effect for the whole sample. All confidence intervals were adjusted for within-participants
variables following Morey (2008).
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Figure 3

Results from Experiment 3

A: Chronometric Measures (frequency)
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Note. Section A and D (first and third rows): findings on measures of reaction time (RT),

premotor time (PMT) and motor time (MT). Section B and E (second and fourth rows, first two

54



DECISIONAL COMPONENTS OF MOTOR RESPONSES 55

columns): findings on accuracy (first panel) and conditional accuracy functions (second panel).
For the latter, points represent empirical means, lines represent means predicted by the statistical
model. Section C and E (last panels in second and fourth rows) report findings on partial errors.
Error bars reflect 95% confidence intervals. Lines were not plotted when the effect under
examination was not significant. Inset plots provide information about the consistency of the
effects across participants. Points represents individual difference-scores between low- and high-
frequency words (LF and HF, respectively) or between pseudowords and words in the
corresponding measure, with the violin-plot providing information about the distribution. Red
error-bars highlight 95% confidence-interval of the mean effect for the whole sample. All
confidence intervals were adjusted for within-participants variables following Morey (2008).
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Footnotes
1. All the chronometric analyses for the 3 experiments were conducted including also the fixed
effect of Repetition (repeated vs novel item). Importantly, Experiment 2 was the only one to
reveal a significant interaction between Repetition and the critical experimental manipulation
(pseudo-object vs object) at the level of MTs, »° (1) = 7.44, p = .006. The effect of Object Type
was however significant for both novel items (Estimate = 16.93, SE =2.67,z=6.33), and —

albeit reduced — for repeated ones (Estimate = 8.92, SE = 3.10, z = 2.87).

2. We first ran a pilot with 9 participants using colored stimuli. During the debriefing,
participants reported that their decision relied mainly on differences in color between objects and
non-objects. The pseudo-objects, in fact, had a rather distinctive color-palette compared to real-
object pictures. The actual experiment was thus conducted on black-and-white versions of all the

images.



