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Abstract
A central problem in graph mining is finding dense subgraphs, with several applica-
tions in different fields, a notable example being identifying communities. While a lot
of effort has been put in the problem of finding a single dense subgraph, only recently
the focus has been shifted to the problem of finding a set of densest subgraphs. An
approach introduced to find possible overlapping subgraphs is the Top-k-Overlapping
Densest Subgraphs problem. Given an integer k ≥ 1 and a parameter λ > 0, the goal
of this problem is to find a set of k dense subgraphs that may share some vertices. The
objective function to be maximized takes into account the density of the subgraphs,
the parameter λ and the distance between each pair of subgraphs in the solution. The
Top-k-OverlappingDensest Subgraphs problem has been shown to admit a 1

10 -factor
approximation algorithm. Furthermore, the computational complexity of the problem
has been left open. In this paper, we present contributions concerning the approxima-
bility and the computational complexity of the problem. For the approximability, we
present approximation algorithms that improve the approximation factor to 1

2 , when
k is smaller than the number of vertices in the graph, and to 2

3 , when k is a constant.
For the computational complexity, we show that the problem is NP-hard even when
k = 3.

A preliminary version of the paper appears in Dondi et al. (2019).
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1 Introduction

Complex systems are usually analyzed with graphs. One of the most studied and
central task to understand the behaviour of complex system is the identification of
communities, that is cohesive subgraphs. This problem has been raised in several
contexts, from social network analysis (Kumar et al. 1999) to finding functional motifs
in biological networks (Fratkin et al. 2006). Different definitions of cohesive graphs
have been proposed and applied in the literature. One of themost remarkable examples
is Clique, and finding a maximum size clique is a well-known and studied problem
in theoretical computer science (Karp 1972). Other interesting definitions of cohesive
subgraphs have been proposed in the literature, for example relaxed cliques (Alba
1973; Mokken 1979; Komusiewicz 2016), which are graphs that satisfy a relaxation
of some clique property, like the distance between vertices of the clique or the degree of
the vertices of the clique. Notable examples of relaxed cliques are s-clubs, t-cliques, k-
core, and s-plex [for an overview of the different clique relaxations, see Komusiewicz
(2016)].

Most of the definitions of cohesive subgraph lead to NP-hard problems, in some
cases even hard to approximate. For example, finding a clique of maximum size in a
graph G = (V , E) is an NP-hard problem (Karp 1972) and it is even hard to approx-
imate within factor O(|V |1−ε), for each ε > 0 (Zuckerman 2007). Similarly, finding
an s-club, with s ≥ 2, of maximum size in a graphG = (V , E) is an NP-hard problem
(Bourjolly et al. 2002) which admits an approximation algorithm of factor O(|V |1/2)
(Asahiro et al. 2017), while it is not approximable within factor O(|V |1/2−ε), for
each ε > 0 (Asahiro et al. 2017). A definition of a dense subgraph that leads to a
polynomial-time algorithm is that of average-degree density. For this problem, called
Densest Subgraph, Goldberg gave an elegant polynomial-time algorithm (Goldberg
1984), that requires O(|V |3) time (Kawase and Miyauchi 2018), while a linear-time
greedy algorithm that achieves an approximation factor of 1

2 for Densest Subgraph
has been given in Asahiro et al. (1996) and Charikar (2000). A related problem, Dens-
est k-Subgraph, is that of finding a densest subgraph with a constraint on the size of
the subgraph. The problem becomes NP-hard, if it looks for a densest subgraph of a
given size (Asahiro et al. 2002; Feige et al. 2001), of at most a given size (Andersen
and Chellapilla 2009) or of at least a given size (Khuller and Saha 2009; Goldstein
and Langberg 2009).

The Densest Subgraph problem aims at finding a single subgraph, but in many
applications it is of interest to find a collection of dense subgraphs of a given graph.
More precisely, it is interesting to compute a collection of distinct subgraphs having
maximum density in a given graph. A recent approach proposed in Galbrun et al.
(2016) asks for a collection of top k densest, possibly overlapping, distinct subgraphs
(denoted as Top-k-Overlapping Densest Subgraphs), since in many real-world cases
dense subgraphs are related to non-disjoint communities. As pointed out in Leskovec
et al. (2009) and Galbrun et al. (2016), for example hubs are vertices that may be part
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of several communities and hence of several densest subgraphs, thus motivating the
quest for overlapping distinct subgraphs. Top-k-Overlapping Densest Subgraphs,
proposed in Galbrun et al. (2016), addresses this problem by looking for a set of
k subgraphs that maximize an objective function that takes into account both the
density of the subgraphs and the distance between the subgraphs of the solution, thus
allowing an overlap between the subgraphs which depends on a parameter λ. When
λ is small, compared to the density, then the density plays a dominant role in the
objective function, so the output subgraphs can share a significant part of vertices. On
the other hand, if λ is large compared to the density, then the subgraphs will share few
or no vertices, so the subgraphs may be disjoint.

An approach similar to Top-k-Overlapping Densest Subgraphs was proposed in
Balalau et al. (2015), where the goal is to find a set of k subgraphs ofmaximumdensity,
with the constraint that the pairwise Jaccard coefficient (originally defined in Jaccard
(1912)) between the subgraphs is bounded. A dynamic variant of the problem, whose
goal is finding a set of k disjoint subgraphs, has been recently considered in Nasir et
al. (2017).

Other approaches related to Top-k-Overlapping Densest Subgraphs include cov-
ering or partitioning an input graph in dense subgraphs, likeMinimumCliquePartition
(Garey and Johnson 1979) orMinimums-ClubCovering (Dondi et al. 2019).However,
notice that these approaches require that all the vertices of the graph belong to some
dense subgraph of the solution, which is not the case for Top-k-Overlapping Dens-
est Subgraphs.

Top-k-OverlappingDensest Subgraphs has been shown to be approximablewithin
factor 1

10 (Galbrun et al. 2016), while its computational complexity has been left open
(Galbrun et al. 2016). In this paper, we present algorithmic and complexity results for
Top-k-Overlapping Densest Subgraphs when k is less than the number of vertices in
the graph. This last assumption (required in Sect. 3) is reasonable, for example notice
that in the experimental results presented in Galbrun et al. (2016) k is equal to 20,
even for graphs having thousands or millions of vertices. Concerning the approxima-
tion of the problem, we provide in Sect. 3 a 2

3 -approximation algorithm when k is a
constant (notice that the time complexity of this algorithm depends exponentially on
k), and we present a 1

2 -approximation algorithm when k < |V |. From the computa-
tional complexity point of view, we show in Sect. 4 that Top-k Overlapping Densest
Subgraphs is NP-hard even if k = 3 (that is we ask for three densest subgraphs), when
λ = 3|V |3, for an input graph G = (V , E). Notice that, since λ is large, the three
subgraphs computed by the reduction are disjoint. The rest of the paper is organized
as follows. In Sect. 2, we present some definitions and we give the formal definition
of the Top-k-Overlapping Densest Subgraphs problem. In Sect. 3, we present the
two approximation algorithms. In Sect. 4, we present the complexity result for Top-k-
Overlapping Densest Subgraphs and we show that it is NP-hard even if k = 3, when
λ = 3|V |3.

We conclude the paper in Sect. 5 with some open problems.
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2 Definitions

In this section, we present some definitions that will be useful in the rest of the paper.
Moreover, we provide the formal definition of the problem we are interested in.

All the graphs we consider in this paper are undirected. Given a graphG = (V , E),
and a set V ′ ⊆ V , we denote by G[V ′] = (V ′, E ′) the subgraph of G induced by V ′,
where E ′ is defined as follows: E ′ = {{u, v} : {u, v} ∈ E ∧ u, v ∈ V ′}. If G[V ′] is a
subgraph of G[V ′′], with V ′ ⊆ V ′′, then G[V ′′] is a supergraph of G[V ′]. A subgraph
G[V ′] of G is a singleton, if |V ′| = 1.

Given a subset U ⊆ V , we denote by E(U ) the set of edges of G having both
endpoints in U . Moreover, given V1 ⊆ V , V2 ⊆ V , such that V1 ∩ V2 = ∅, define
E(V1, V2) = {{u, v} : {u, v} ∈ E ∧ u ∈ V1 ∧ v ∈ V2}, that is the set of edges having
exactly one endpoint in V1 and exactly one endpoint in V2. Two subgraphs G[V1] and
G[V2] of a graph G = (V , E) are called distinct when V1 	= V2.

Next, we present the definition of crossing subgraphs, which is fundamental in
Sect. 3.2.

Definition 1 Given a graph G = (V , E), let G[V1] and G[V2] be two subgraphs of
G = (V , E). G[V1] and G[V2] are crossing when V1 ∩ V2 	= ∅, V1\V2 	= ∅ and
V2\V1 	= ∅.

Consider two crossing subgraphs G[V1] and G[V2] of G. Notice that V1 ⊆ V2 and
V2 � V1 (see an example in Fig. 1).

Now, we present the definition of density of a subgraph.

Definition 2 Given a graphG = (V , E) and a subgraphG[V ′] = (V ′, E ′), with V ′ ⊆
V , the density of G[V ′], denoted by dens(G[V ′]), is defined as dens(G[V ′]) = |E ′|

|V ′| .

A densest subgraph of a graph G = (V , E) is a subgraph G[U ], with U ⊆ V ,
that maximizes dens(G[U ]), among the subgraphs of G. In the example of Fig. 1 the
subgraph induced by {v5, v6, v7, v8, v9, v10} is the densest subgraph and has density
11
6 .
Given a graph G = (V , E) and a set of k pairwise distinct subgraphs W =

{G[W1], . . . ,G[Wk]} where each G[Wi ] is a subgraph of G, that is Wi ⊆ V , with
1 ≤ i ≤ k, then the density of W , denoted by dens(W), is defined as follows:

dens(W) =
k∑

i=1

dens(G[Wi ]).

The goal of the problem we are interested in is to find a set of k, with 1 ≤ k <

|V |, pairwise distinct and possibly overlapping subgraphs having high density. In
order to differentiate these k subgraphs, in Galbrun et al. (2016) a distance function
between subgraphs of the solution is included in the objective function. The problem
we consider maximizes an objective function that includes the sum of the densities
of the subgraphs and the distances between subgraphs. We present here the distance
function between two subgraphs introduced in Galbrun et al. (2016).
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Definition 3 Given a graphG = (V , E) and two subgraphsG[U ],G[Z ], withU , Z ⊆
V , define the distance function d : 2V × 2V → R+ between two sets U , Z ⊆ V that
induce subgraph G[U ] and G[Z ], respectively, as follows:

d(U , Z) =
{
2 − |U∩Z |2

|U ||Z | if U 	= Z ,

0 else.

We prove an upper and a lower bound for the distance between two distinct sub-
graphs.

Lemma 1 Let G[U ], G[Z ] be two distinct subgraphs of G = (V , E). Then, it holds
1 ≤ d(U , Z) ≤ 2.

Proof By the definition of distance d, since G[U ] and G[Z ] are distinct subgraphs of
G, it follows that d(U , Z) = 2 − |U∩Z |2

|U ||Z | , where 0 ≤ |U∩Z |2
|U ||Z | ≤ 1. �

Now, we are able to define the problem we are interested in, introduced in Galbrun
et al. (2016), where we add the constraint that k < |V |.
Problem 1 Top-k-Overlapping Densest Subgraphs
Input: A graph G = (V , E), a parameter λ > 0.

Output: A set W = {G[W1], . . . ,G[Wk]} of k pairwise distinct subgraphs, with
1 ≤ k < |V | and Wi ⊆ V , 1 ≤ i ≤ k, that maximizes the following value

r(W) = dens(W) + λ

k−1∑

i=1

k∑

j=i+1

d(Wi ,Wj ).

Notice that a solution W of Top-k-Overlapping Densest Subgraphs (see Fig. 1 for
an example) consists of k distinct subgraphs, sinceW is a set. We denote by (G, λ) an
instance of Top-k-Overlapping Densest Subgraphs. Moreover, we assume in what
follows that |V | > 5 (it is required in the proof of Lemma 5). Notice that, when
|V | ≤ 5, Top-k-Overlapping Densest Subgraphs can be solved optimally in constant
time.

2.1 Goldberg’s algorithm and extended Goldberg’s algorithm

Goldberg’s Algorithm (Goldberg 1984) computes in polynomial time an optimal solu-
tion for Densest-Subgraph. Densest-Subgraph, given as input a graph G = (V , E),
asks for a subgraph G[V ′] in G having maximum density. Goldberg’s Algorithm
reducesDensest-Subgraph to the problem of computing aminimum cut in a weighted
auxiliary graph. The time complexity of Goldberg’s Algorithm is O(|V |3) by applying
flow algorithm (Kawase and Miyauchi 2018).

Given a graph G = (V , E) and a subgraph G[V ′], with V ′ ⊆ V , we denote by
Densest-Subgraph(G[V ′]) a densest subgraph in G[V ′], which can be computed with
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Fig. 1 A graph and a solution W of Top-k-Overlapping Densest Subgraphs, for k = 3, consisting of
the three subgraphs included in boxes. Notice that the two subgraphs induced by {v5, v6, v7, v8, v9, v10}
and {v1, v2, v3, v4, v5} are crossing, while the two subgraphs induced by {v5, v6, v7, v8, v9, v10} and
{v5, v6, v7, v8, v9} are not crossing

Goldberg’s Algorithm in O(|V |3) time. Notice thatDensest-Subgraph(G[V ]) denotes
a densest subgraph of G.

In the approximation algorithm, we will apply a modification of Goldberg’s Algo-
rithm given in Zou (2013). We refer to this algorithm as the Extended Goldberg’s
Algorithm. Extended Goldberg’s Algorithm (Zou 2013) addresses a constrained vari-
ant of Densest-Subgraph, that, given as input a graph G = (V , E) and a subset
S ⊆ V , asks for a subgraph G[V ′] in G having maximum density such that S ⊆ V ′.
We denote by Densest-Subgraph(G[Vc], S) a densest subgraph of G[Vc], with
Vc ⊆ V , that is forced to contain S, where S is called the constrained set of
Dense-Subgraph(G[V ′

c], S). Notice that Densest-Subgraph(G[V ′], S) can be com-
puted with the Extended Goldberg’s Algorithm in time O(|V |3) (Zou 2013; Kawase
and Miyauchi 2018).

3 Approximating Top-k-Overlapping Densest Subgraphs

In this section, we present a 2
3 -approximation algorithm for Top-k-OverlappingDens-

est Subgraphs when k is a constant and a 1
2 -approximation algorithm when k is not

a constant. First, the two approximation algorithms compute a densest subgraph of
G, denoted by G[W1]. Then, the two approximation algorithms iteratively compute a
solution for an intermediate problem, called Densest-Distinct-Subgraph. When k is
constant we are able to solve the Densest-Distinct-Subgraph problem in polynomial
time, while for general k we are able to provide a 1

2 -approximation algorithm for it.
First, we introduce the Densest-Distinct-Subgraph problem, then we present the

two approximation algorithms and the analysis of their approximation factors.

Problem 2 Densest-Distinct-Subgraph
Input:AgraphG = (V , E) and a setW = {G[W1], . . . ,G[Wt ]}, with 1 ≤ t ≤ k−1,
of pairwise distinct subgraphs of G.

Output: A subgraph G[Z ] of G such that Z 	= Wi , for each 1 ≤ i ≤ t , and
dens(G[Z ]) is maximum.
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Notice that Densest-Distinct-Subgraph is not identical to compute a densest sub-
graph of G, as we need to ensure that the returned subgraph G[Z ] is distinct from any
subgraph inW . Moreover, notice that we assume t ≤ k − 1, since if t = k we already
have k subgraphs in our solution of Top-k-Overlapping Densest Subgraphs.

3.1 Approximation for constant k

First, we show thatDensest-Distinct-Subgraph is polynomial-time solvable when k is
a constant. The approximation algorithm for Top-k-Overlapping Densest Subgraphs
returns the solution of maximum value between a solution obtained by iteratively
solving Densest-Distinct-Subgraph (see Algorithm 2) and a solution consisting of k
singletons.

3.1.1 A polynomial-time algorithm forDensest-Distinct-Subgraph

We start by proving a property of solutions of Densest-Distinct-Subgraph.

Lemma 2 Consider a graph G = (V , E) and a set W = {G[W1], . . . ,G[Wt ]},
1 ≤ t ≤ k−1, of subgraphs of G. Given a subgraph G[Z ] distinct from the subgraphs
inW , there exist t vertices u1, . . . , ut , not necessarily distinct, with ui ∈ V , 1 ≤ i ≤ t ,
that can be partitioned into two sets U1, U2 such that Z ⊇ U1, Z ∩U2 = ∅ and there
is no G[Wj ] inW , with 1 ≤ j ≤ t , such that W j ⊇ U1 and Wj ∩U2 = ∅.
Proof Consider G[Z ] and a subgraph G[Wj ], 1 ≤ j ≤ t , in W . Construct the sets
U1,U2 as follows. First, setU1,U2 = ∅. For each j with 1 ≤ j ≤ t , consider G[Wj ].
Since G[Z ] is distinct from G[Wj ], it follows that: (1) there exists u j ∈ Z\Wj , then
add u j to U1, or (2) there exists u j ∈ Wj\Z , then add u j to U2. By construction, the
two sets U1 and U2 satisfy the lemma. �

Next, based onLemma2,we provideAlgorithm1 that computes an optimal solution
of Densest-Distinct-Subgraph, when k is a constant. Algorithm 1 iterates over each
subsetU of at most t vertices (recall that |W| = t < k) and over the subsetsU1,U2 ⊆
U such that U1 � U2 = U . Algorithm 1 computes a densest subgraph G[Z ] of G,
with constrained set U1 and with Z ∩ U2 = ∅, such that there is no subgraph of W
that containsU1 and whose set of vertices is disjoint fromU2. Algorithm 1 applies the
Extended Goldberg’s algorithm on the subgraph G[V \U2], with constrained set U1.
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Algorithm 1: Returns an optimal solution for Densest-Distinct-Subgraph when
k is a constant
Data: A graph G and a set W = {G[W1], . . . ,G[Wt ]} of subgraphs of G
Result: A subgraph G[Z ] of G, with Z 	= Wi , for each 1 ≤ i ≤ t , and dens(Z)

is maximum
1 Z = ∅;
2 dens = 0;
3 for U1, U2 ⊆ V , with U1 ∩U2 = ∅, |U1 ∪U2| ≤ t , such that there is no
subgraph G[Wi ] inW with Wi ⊇ U1 and Wi ∩U2 = ∅ do

4 G[X ] ← Densest-subgraph(G[V \U2],U1);
5 dens′ ← dens(G[X ]);
6 if dens′ > dens then
7 dens ← dens′;
8 Z ← X ;
9 Return(G[Z ]);
We prove the correctness of Algorithm 1 in the next theorem.

Theorem 1 Let G[Z ] be the solution returned byAlgorithm 1. Then G[Z ] is an optimal
solution of Densest-Distinct-Subgraph over instance (G,W).

Proof Consider a set W = {G[W1], . . . ,G[Wt ]} of subgraphs of G and let G[Z ]
be the solution returned by Algorithm 1. By Lemma 2 it follows that for each
subgraph distinct from those in W , hence also for an optimal solution G[X ] of
Densest-Distinct-Subgraph over instance (G,W), there exist t (non necessarily dis-
tinct) vertices u1, . . . , ut , that can be partitioned into two setsU1,U2 such that X ⊇ U1,
X ∩ U2 = ∅ and there is no G[Wj ] in W , with 1 ≤ j ≤ t , such that Wj ⊇ U1 and
Wj ∩U2 = ∅. The subgraph G[Z ] returned by Algorithm 1 is computed as a densest
subgraph over each subsetU of at most t vertices and for each partition ofU into two
sets U ′

1 and U ′
2, such that Z ⊇ U ′

1, Z ∩ U ′
2 = ∅ and there is no G[Wj ] in W , with

1 ≤ j ≤ t , such that Wj ⊇ U ′
1 and Wj ∩U ′

2 = ∅. This holds also when U ′
1 = U1 and

U ′
2 = U2, hence dens(G[Z ]) ≥ dens(G[X ]). �
We recall that a densest subgraph constrained to a given set can be computed in time

O(|V |3) with the Extended Goldberg’s Algorithm (Zou 2013; Kawase and Miyauchi
2018). The set U can be computed in O(|V |k−1) time, by selecting t elements from
V , since there are |V |t ≤ |V |k−1 many of these subsets. For each U , the possible
choices ofU1 andU2 are O(2k−1), which is a constant, since k is a constant. It follows
that Algorithm 1 returns an optimal solution of Densest-Distinct-Subgraph in time
O(|V |k−1|V |3) = O(|V |k+2).

3.1.2 A 2
3 -approximation algorithmwhen k is a constant

We show that, by solving the Densest-Distinct-Subgraph problem optimally, we
achieve a 2

3 approximation ratio for Top-k-Overlapping Densest Subgraphs. The
approximation algorithm returns the solution of maximum value between the solution
returned by Algorithm 2 and a solution consisting of k singletons.
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First, we consider the solution returned by Algorithm 2. At each step, Algorithm 2
computes an optimal solution of Densest-Distinct-Subgraph in time O(|V |k+2) and
the output subgraph is added to the solution. Since k is a constant, the number of
iterations of Algorithm 2 is a constant, the overall time complexity of Algorithm 2 is
O(|V |k+2).

Algorithm 2: Algorithm that returns an approximate solution of Top-k-
Overlapping Densest Subgraphs
Data: A graph G
Result: A set W = {G[W1], . . . ,G[Wk]} of subgraphs of G

1 W ← {G[W1]} /* G[W1] is a densest subgraph of G */;
2 for i ← 2 to k do
3 Compute an optimal solution G[Z ] of Densest-Distinct-Subgraph with

input (G,W) /* Applying Algorithm 1 */;
4 W ← W ∪ {G[Z ]}
5 Return(W);

Consider the solution W = {G[W1], . . . ,G[Wk]} returned by Algorithm 2, we
prove a bound on the objective value r(W).

Lemma 3 Let W = {G[W1], . . . ,G[Wk]} be a set of subgraphs returned by
Algorithm 2 and let Wo = {G[Wo

1 ], . . . ,G[Wo
k ]} be an optimal solution of Top-

k-Overlapping Densest Subgraphs over instance (G, λ). Then, it holds

dens(W) ≥ dens(Wo),

λ

k−1∑

i=1

k∑

j=i+1

d(G[Wi ],G[Wj ]) ≥ 1

2
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]).

Proof The second inequality follows from Lemma 1 and from the fact that the sub-
graphs inW are all distinct.

We prove the first inequality of the lemma by induction on the number h ≤ k of
subgraphs added toW . LetG[Wi ], with 2 ≤ i ≤ h, be the subgraph added toW by the
i-th iteration of Algorithm 2. By construction, dens(G[W1]) ≥ dens(G[W2]) ≥ . . .

≥ dens(G[Wh]). Moreover, assume w.l.o.g. that dens(G[Wo
1 ]) ≥ dens(G[Wo

2 ]) ≥
. . . ≥ dens(G[Wo

h ]).
When h = 1, by construction of Algorithm 2, G[W1] is a densest subgraph of G, it

follows that dens(G[W1]) ≥ dens(G[Wo
1 ]). Assume that the lemma holds for h − 1,

we prove that it holds for h. Notice that
∑h

i=1 dens(G[Wi ]) = ∑h−1
i=1 dens(G[Wi ])+

dens(G[Wh]) and by induction hypothesis

h−1∑

i=1

dens(G[Wi ]) ≥
h−1∑

i=1

dens(G[Wo
i ]).

Notice thatG[Wh] is an optimal solution ofDensest-Distinct-Subgraphon instance
(G, {G[W1], G[W2], . . . ,G[Wh−1]}). By the pigeon-hole principle at least one
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of the distinct subgraphs G[Wo
1 ], G[Wo

2 ], . . . , G[Wo
h ] does not belong to the set

{G[W1],G[W2], . . . , G[Wh−1]} of subgraphs, hence, by the optimality of G[Wh],
dens(G[Wh]) ≥ dens(G[Wo

p]), for some p with 1 ≤ p ≤ h, and dens(G[Wo
p]) ≥

dens(G[Wo
h ]). Now,

h∑

i=1

dens(G[Wi ]) =
h−1∑

i=1

dens(G[Wi ]) + dens(G[Wh])

≥
h−1∑

i=1

dens(G[Wo
i ]) + dens(G[Wo

h ]) ≥
h∑

i=1

dens(G[Wo
i ])

thus concluding the proof. �
Consider a trivial algorithm, called Algorithm AT

1, that, given an instance
(G, λ) of Top-k-Overlapping Densest Subgraphs, returns a solution WT =
{G[WT ,1], . . . ,G[WT ,k]} consisting of k distinct singletons. Notice that, since each
G[WT ,i ], with 1 ≤ i ≤ k, is a singleton, it follows that dens(WT ) = 0. Moreover,
since the subgraphs inWT are pairwise disjoint, we have d(G[WT ,i ],G[WT , j ]) = 2,
for each G[WT ,i ], G[WT , j ] ∈ WT with 1 ≤ i ≤ k, 1 ≤ j ≤ k and i 	= j .

We can prove now that the maximum between r(W) (where W is the solution
returned byAlgorithm 2) and r(WT ) (whereWT is the solution returned byAlgorithm
AT ) is at least 2

3 of the value of an optimal solution of Top-k-Overlapping Dens-
est Subgraphs.

Theorem 2 Let W = {G[W1], . . . ,G[Wk]} be a solution returned by Algorithm 2
and let WT = {G[WT ,1], . . . ,G[WT ,k]} be a solution returned by Algorithm AT .
LetWo = {G[Wo

1 ], . . . , G[Wo
k ]} be an optimal solution of Top-k-Overlapping Dens-

est Subgraphs over instance (G, λ). Then max(r(W), r(WT )) ≥ 2
3 r(Wo).

Proof By Lemma 3, it holds dens(W) ≥ dens(Wo). Moreover, by Lemma 1 it holds

λ

k−1∑

i=1

k∑

j=i+1

d(G[Wi ],G[Wj ]) ≥ 1

2
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]).

Algorithm AT returns solution WT = {G[WT ,1], . . . ,G[WT ,k]} such that

λ

k−1∑

i=1

k∑

j=i+1

d(G[WT ,i ],G[WT , j ]) ≥ λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]).

First, assume that λ
∑k−1

i=1
∑k

j=i+1 d(G[Wo
i ],G[Wo

j ]) ≥ 2 dens(Wo). Then

1

3
λ

k−1∑

i=1

k∑

j=i+1

d(G[WT ,i ],G[WT , j ]) ≥ 2

3
dens(Wo)

1 The T in AT means Trivial

123



90 Journal of Combinatorial Optimization (2021) 41:80–104

thus,

λ

k−1∑

i=1

k∑

j=i+1

d(G[WT ,i ],G[WT , j ])

≥ 2

3
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]) + 1

3
λ

k−1∑

i=1

k∑

j=i+1

d(G[WT ,i ],G[WT , j ])

≥ 2

3
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]) + 2

3
dens(Wo)

thus in this case AT returns a solution having approximation factor 2
3 .

Second, assume that λ
∑k−1

i=1
∑k

j=i+1 d(Wo
i ,Wo

j ) < 2 dens(Wo). It holds

dens(W) ≥ dens(Wo) = 2

3
dens(Wo) + 1

3
dens(Wo)

>
2

3
dens(Wo) + 1

6
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]).

By Lemma 3

λ

k−1∑

i=1

k∑

j=i+1

d(G[Wi ],G[Wj ]) ≥ 1

2
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]).

Since

r(W) = dens(W) + λ

k−1∑

i=1

k∑

j=i+1

d(G[Wi ],G[Wj ])

we can conclude that

r(W) >
2

3
dens(Wo) + 1

2
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ])

+1

6
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ])

hence r(W) ≥ 2
3 r(Wo). �
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3.2 Approximation when k is not a constant

Now, we show that Top-k-Overlapping Densest Subgraphs can be approximated
within factor 1

2 when k is not a constant. The approximation algorithm (Algorithm 3),
consists of two phases. In the first phase, whileW does not contain crossing subgraphs
(see Definition 1 of crossing subgraphs), Algorithm 3 adds to W a subgraph which
is an optimal solution of Densest-Distinct-Subgraph. When W contains crossing
subgraphs (Property 1 holds), Phase 2 of Algorithm 3 completes W , by adding a set
of subgraph so that W contains k distinct subgraphs (see the description of Phase 2).
We prove that the subgraphs added by Phase 2 are sufficiently dense (see Lemma 6).
Notice that the subgraphs added by the algorithm are only distinct, that is a subgraph
may be contained or have almost the same vertex set of another subgraph.

Algorithm 3: Returns an approximate solution of Top-k-Overlapping Dens-
est Subgraphs
Data: A graph G
Result: A set W = {G[W1], . . . ,G[Wk ]} of subgraphs of G

1 W ← {G[W1]} /* G[W1] is a densest subgraph of G */;
2 Phase 1;
3 while |W| < k andW does not contain two crossing subgraphs do
4 Compute an optimal solution G[Z ] of Densest-Distinct-Subgraph with input (G,W) /*

Applying Algorithm 4 (described later) */;
5 W ← W ∪ {G[Z ]};
6 Phase 2 (Only if |W| < k);
7 Wi, j ← Wi ∩ Wj , with Wi and Wj two crossing subgraphs in W;
8 if |Wi, j | ≤ 3 then
9 Complete W by adding the k − |W| densest distinct subgraphs (not already inW) induced by

Wi ∪ {v}, with v ∈ V \Wi , and by Wj ∪ {u}, with u ∈ V \Wj ;
10 if |Wi, j | ≥ 4 then
11 Complete W by adding the k − |W| densest distinct subgraphs (not already inW) induced by

Wi ∪ {v}, with v ∈ V \Wi , by Wj ∪ {u}, with u ∈ V \Wj , and by Wj \{w}, with w ∈ Wi, j (or
equivalently by Wi\{w});

12 Return(W);

First, we define formally the property on which Algorithm 3 is based.

Property 1 W contains two crossing subgraphs.

3.2.1 Description and analysis of phase 1

We show that, while W does not satisfy Property 1, Densest-Distinct-Subgraph
can be solved optimally in polynomial time. We assume that a solution of
Densest-Distinct-Subgraph contains at least two vertices, otherwise such a subgraph
can be easily computed in polynomial time, since it consists of a single vertex and
has density 0. First, we prove a property of a solution of Densest-Distinct-Subgraph
when Property 1 does not hold.
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Lemma 4 Consider a graph G = (V , E) and a set W = {G[W1], . . . ,G[Wt ]},
1 ≤ t ≤ k − 1, of distinct subgraphs of G that does not satisfy Property 1. Given a
subgraph G[Z ] distinct from the subgraphs inW , there exists a set U of at most three
vertices that can be partitioned in two subsets U1 and U2, where U2 can possibly be
empty, such that Z ⊇ U1, Z ∩ U2 = ∅ and there is no G[Wj ] in W , 1 ≤ j ≤ t , with
W j ⊇ U1 and Wj ∩U2 = ∅.
Proof Consider a subgraphG[Z ]distinct from the subgraphs inW and avertexv1 ∈ Z .
SetU = {v1}. Notice that, for each subgraph inW that does not contain v1, the lemma
holds. Now, we consider the setW ′ of subgraphs inW that contain v1, and we assume
in the following that W ′ 	= ∅.

Consider the pair (W ′,⊆), where ⊆ is the subgraph inclusion relation2. (W ′,⊆)

is a well-ordered set3. Clearly, ⊆ is reflexive, antysimmetric and transitive onW ′. We
show that (W ′,⊆) is comparable, that is, given G[Wx ],G[Wy] ∈ W ′ withWx 	= Wy ,
eitherWx ⊂ Wy orWy ⊂ Wx . Indeed, consider two subgraphs G[Wx ],G[Wy] ∈ W ′,
such that neitherWx ⊂ Wy norWy ⊂ Wx . It follows that they are crossing subgraphs,
since they both contain v1, contradicting the hypothesis that Property 1 does not hold.
Since W ′ is a finite set, it follows that (W ′,⊆) is a well-ordered set.

Consider now the setW ′
C of subgraphs inW ′ that are subgraphs ofG[Z ] and notice

that, since (W ′,⊆) is a well-ordered set, then also (W ′
C ,⊆) is a well-ordered set. Let

G[Wv] be the largest subgraph in W ′
C . Since G[Wv] is a subgraph of G[Z ], there

exists a vertex v2 ∈ Z\Wv . Since (W ′
C ,⊆) is a well-ordered set, each subgraph in

W ′
C\{G[Wv]} is a subgraph of G[Wv], thus each subgraph in W ′

C does not contain
v2. Hence add v2 to U and set U1 = {v1, v2}. Notice that if Z = V then the lemma
holds, since each element inW ′ is a subgraph of G[Z ], hence it is inW ′

C .
Consider now the set W ′

N of subgraphs in W ′ which are not subgraphs of G[Z ].
Notice that (W ′

N ,⊆) is a well-ordered set and let G[Wy] be the graph of minimum
cardinality in W ′

N . It follows that there exists a vertex v3 ∈ Wy\Z , and notice that,
since (W ′

N ,⊆) is a well-ordered set, v3 belongs to each subgraph inW ′
N . Hence add

v3 to U and set U2 = {v3}.
Since we have shown that there existsU1 ⊆ Z that is not contained in any subgraph

ofW ′
C and there existsU2 � Z that is contained in each subgraph ofW ′

N , the lemma
follows. �

2 Given A, B ⊆ V , G[A] ⊆ G[B] if and only if A ⊆ B
3 We recall that a well-ordered set is a pair (S,≤), where S is a set and ≤ is a binary relation on S such that
(1) Relation ≤ satisfies the following properties: reflexivety, antisymmetry, transitivity and comparability;
(2) every non-empty subset of S has a least element based on relation ≤.
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Algorithm 4: Returns an optimal solution for Densest-Distinct-Subgraph when
Property 1 does not hold
Data: A graph G and a set W = {G[W1], . . . ,G[Wt ]}, 1 ≤ t ≤ k − 1, of

subgraphs of G, such that Property 1 does not hold
Result: A subgraph G[Z ] of G, with Z 	= Wi , for each 1 ≤ i ≤ t , and dens(Z)

is maximum
1 Z ← ∅;
2 dens ← 0;
3 for Each subset U ⊆ V of at most three vertices, and each partition of U in
U1,U2 where U1 	= ∅, such that there is no subgraph G[Wi ] inW with
U1 ⊆ Wi and U2 ∩ Wi = ∅ do

4 G[X ] ← Densest-subgraph(G[V \U2],U1);
5 dens′ ← dens(G[X ]);
6 if dens′ > dens then
7 dens ← dens′;
8 Z ← X ;
9 Return (G[Z ]);
Algorithm 4 computes an optimal solution G[Z ] of Densest-Distinct-Subgraph

when Property 1 does not hold. Algorithm 4 is a modified variant of Algorithm 1 (see
Sect. 3.1), which considers each set U of three vertices and each possible partition
of U into U1, U2 (where U2 can be empty). Based on Lemma 4, we can prove the
following result.

Theorem 3 Let G[Z ] be the solution returned by Algorithm 4. Then, an optimal solu-
tion of Densest-Distinct-Subgraph over instance (G,W) when Property 1 does not
hold has density at most dens(G[Z ]).
Proof Given (G,W), consider a subgraph G[X ] of maximal density distinct from the
subgraphs in W . By Lemma 4, it follows that there exists a set U of at most three
vertices that can be partitioned into subsetsU1,U2 such thatU1 ⊆ X andU2 ∩ X = ∅
and there is no subgraph in W satisfying the same property. The subgraph G[Z ]
returned by Algorithm 4 is computed as a densest subgraph over each subset U ′ of
three vertices and each bipartition U ′

1, U
′
2 of U

′ such that U ′
1 ⊆ Z and U ′

2 ∩ Z = ∅
and there is no subgraph inW satisfying the same property. This holds also in the case
U ′
i = Ui , with 1 ≤ i ≤ 2. It follows that dens(G[Z ]) ≥ dens(G[X ]). �
Notice that Algorithm 4 returns an optimal solution ofDensest-Distinct-Subgraph

when Property 1 does not hold in time O(|V |6), since it applies the Extended Gold-
berg’s Algorithm of complexity O(|V |3) (Zou 2013; Kawase and Miyauchi 2018) for
each subset of three vertices in V .

3.2.2 Description and analysis of phase 2

Assuming that Property 1 holds and |W| = t < k, we consider Phase 2 ofAlgorithm 3.
Given two crossing subgraphs G[Wi ] and G[Wj ] of W , with 1 ≤ i ≤ t , 1 ≤ j ≤ t
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and i 	= j , defineWi, j = Wi ∩Wj . Algorithm 3 adds h = k − t subgraphs toW until
|W| = k, as follows.

If |Wi, j | ≤ 3, then Phase 2 of Algorithm 3 adds the h densest distinct subgraphs
(not already in W) induced by Wi ∪ {v}, for some v ∈ V \Wi , and by Wj ∪ {u}, for
some u ∈ V \Wj .

If |Wi, j | ≥ 4, then Phase 2 of Algorithm 3 adds the h densest distinct subgraphs
(not already inW) induced by Wi ∪ {v}, for some v ∈ V \Wi , by Wj ∪ {u}, for some
u ∈ V \Wj , and byWj\{w}, for somew ∈ Wi, j (or equivalently byWi\{w}, for some
w ∈ Wi, j ).

Next, we show that, after Phase 2 of Algorithm 3, |W| = k and the setW ′ of sub-
graphs added by Phase 2 has density at least 12 |W ′|min(dens(G[Wi ]), dens(G[Wj ]))
(recall that G[Wi ] and G[Wi ] are added in Phase 1).

We start by proving that, after Phase 2 of Algorithm 3, |W| = k. Lemma 5 is based
on the size ofWi, j = Wi ∩Wj . When |Wi, j | ≤ 3, we distinguish two cases depending
on the number of vertices that belong to |Wi\Wi, j | and |Wj\Wi, j |. If one of these
sets has at least two vertices, then there are enough subgraphs obtained by adding a
vertex to Wi and Wj . In the other case (that is |Wi\Wi, j | = |Wj\Wi, j | = 1), then
|Wi ∪ Wj | = 5, thus there are |V | − 5 vertices that can be added to Wi and to Wj .

When |Wi, j | ≥ 4, we can show that there are at least |V \Wi, j | subgraphs obtained
by adding a vertex to Wi or to Wj . Then, we show that there are |Wi, j | subgraphs
induced by Wj\{w} (which are added by Phase 2).

Lemma 5 |W| = k after the execution of Phase 2 of Algorithm 3.

Proof Recall that we have assumed |V | > 5 and that G[Wi ] and G[Wj ] are two
crossing subgraphs added in Phase 1 of Algorithm 3, withWi, j = Wi ∩Wj . Next, we
consider three cases depending on the size of Wi, j .

Consider the case that |Wi, j | ≤ 3. If |Wi\Wi, j | ≥ 2 or |Wj\Wi, j | ≥ 2, then
Wi ∪ {v}, with v ∈ V \Wi , and Wj ∪ {u}, with u ∈ V \Wj induce distinct subgraphs.
Hence there exist at least |V | − 3 distinct subgraphs induced by Wi ∪ {v}, with v ∈
V \Wi , or by Wj ∪ {u}, with u ∈ V \Wj . Since G[Wi ] and G[Wj ] are in W and
k ≤ |V | − 1, it follows that in this case k subgraphs belong to W after Phase 2 of
Algorithm 3.

If both |Wi\Wi, j | = 1 and |Wj\Wi, j | = 1, then there exist one subgraph induced
byWi ∪Wj , since we have assumed that |Wi, j | ≤ 3, at least |V |−5 distinct subgraphs
induced by Wi ∪ {v}, with v ∈ V \(Wi ∪ Wj ), and at least |V | − 5 distinct subgraphs
induced by Wj ∪ {u}, with u ∈ V \(Wi ∪ Wj ). Since |V | > 5, it follows that at least
|V | − 5 + |V | − 5 + 1 ≥ |V | − 5 + 2 ≥ |V | − 3 distinct subgraphs are induced by
Wi ∪ {v}, with v ∈ V \Wi , or by Wj ∪ {u}, with u ∈ V \Wj . Since G[Wi ] and G[Wj ]
are in W and k ≤ |V | − 1, it follows that in this case k subgraphs belong to W after
Phase 2 of Algorithm 3.

Consider now the case that |Wi, j | ≥ 4. There exist at least |V \Wi | subgraphs
induced by Wi ∪ {v}, with v ∈ V \Wi , and at least |V \Wj | subgraphs induced by
Wj ∪ {u}, with u ∈ V \Wj . Hence there exist at least |V \Wi, j | − 1 distinct subgraphs
induced by Wi ∪ {v}, with v ∈ V \Wi , or by Wj ∪ {u}, with u ∈ V \Wj (notice that
the value −1 is due to the fact that Wi ∪ {v} and Wj ∪ {u} induce identical subgraphs
when Wi\Wj = {u} and Wj\Wi = {v}).
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There exist at least |Wi, j | subgraphs induced byWj\{w}, for somew ∈ Wi, j . Since
k ≤ |V | − 1, it follows that in this case k subgraphs belong to W after Phase 2 of
Algorithm 3. �

Now, we show that the density of the set W ′ of subgraphs added by Phase 2 of
Algorithm 3 is at least 1

2 |W ′|dens(G[Wj ]), where G[Wj ] is a subgraph added to W
in Phase 1.

Lemma 6 LetW ′ be the set of subgraphs added toW by Phase 2 of Algorithm 3. Then,
dens(W ′) ≥ |W ′| 12dens(G[Wj ]), with G[Wj ] a subgraph added toW by Phase 1 of
Algorithm 3.

Proof Consider G[Wi ] and G[Wj ], two crossing subgraphs added to W by Phase 1
of Algorithm 3, and Wi, j = Wi ∩ Wj . Consider the case that |Wi, j | ≤ 3. The density
of a subgraph induced by W ′ = Wj ∪ {u}, added by Phase 2 of Algorithm 3 can be
bounded as follows:

dens(G[W ′]) ≥ |E(Wj )|
|Wj | + 1

= |E(Wj )|
|Wj |

|Wj |
|Wj | + 1

= dens(Wj )
|Wj |

|Wj | + 1

≥ 1

2
dens(G[Wj ])

as |Wj | ≥ 1.
Similarly, if W ′ = Wi ∪ {u} then

dens(G[W ′]) ≥ 1

2
dens(G[Wi ]).

Now, consider the case that |Wi, j | ≥ 4. For a subgraph G[W ′] added by Phase 2
of Algorithm 3 to W and induced by either Wj ∪ {u} or Wi ∪ {v}, it holds the same
argument of the case |Wi, j | ≤ 3, thus, it holds

dens(G[W ′]) ≥ 1

2
dens(G[Wj ])

or

dens(G[W ′]) ≥ 1

2
dens(G[Wi ]).

Now, we consider the density of subgraphs G[W ′], with W ′ = Wj\{u}, where
u ∈ Wi, j , added toW byPhase 2 ofAlgorithm3. In order to show that dens(G[W ′]) ≥
1
2dens(G[Wj ]), with W ′ = Wj\{u}, we show a bound on the sum over u ∈ Wi, j of
densities of the subgraphs G[W ′] . Since Algorithm 2 picks h densest of these sub-
graphs, it follows that the bound holds for the subgraphs added toW by Algorithm 2.

Consider the sum of the densities of the subgraphs G[W ′] over the vertices u ∈
Wi, j :

∑

u∈Wi, j

dens(G[Wj\{u}])
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=
∑

u∈Wi, j

1

|Wj | − 1

(|E(Wj\Wi, j )| + |E(Wi, j\{u})|

+|E(Wj\Wi, j ,Wi, j\{u})|) .

Each edge {v,w}, with v,w ∈ Wi, j , is skipped in the sum

∑

u∈Wi, j

1

|Wj | − 1
|E(Wi, j\{u})|

exactly twice, once for u = v and once for u = w. It follows that

∑

u∈Wi, j

|E(Wi, j\{u})| = (|Wi, j | − 2)|E(Wi, j )|.

Each edge {w, v}, with v ∈ Wi, j and w ∈ Wj\Wi, j , is skipped in the sum

∑

u∈Wi, j

1

|Wj | − 1
|E(Wj\Wi, j ,Wi, j\{u})|

once, when u = v, thus

∑

u∈Wi, j

|E(Wj\Wi, j ,Wi, j\{u})| = (|Wi, j | − 1)|E(Wj\Wi, j ,Wi, j )|.

Thus

∑

u∈Wi, j

dens(G[Wj\{u}])

=
∑

u∈Wi, j

1

|Wj | − 1

(|E(Wj\Wi, j )| + |E(Wi, j\{u})|

+|E(Wj\Wi, j ,Wi, j\{u})|)

= 1

|Wj | − 1
(|Wi, j ||E(Wj\Wi, j )| + (|Wi, j | − 2)|E(Wi, j )|

+(|Wi, j | − 1)|E(Wj\Wi, j ,Wi, j )|)
≥ |Wi, j | − 2

|Wj | − 1
(|E(Wj\Wi, j )| + |E(Wi, j )| + |E(Wj\Wi, j ,Wi, j )|).

Thus

∑

u∈Wi, j

dens(G[Wj\{u}]) ≥ |Wi, j | − 2

|Wj | − 1
(|E(Wj\Wi, j )| + |E(Wi, j )|

+|E(Wj\Wi, j ,Wi, j )|)
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≥ (|Wi, j | − 2)(dens(G[Wj ]))

since

dens(G[Wj ]) = 1

|Wj |
(|E(Wj\Wi, j )| + |E(Wi, j )| + |E(Wj\Wi, j ,Wi, j )|

)

≤ 1

|Wj | − 1

(|E(Wj\Wi, j )| + |E(Wi, j )| + |E(Wj\Wi, j ,Wi, j )|
)
.

It follows that

∑

u∈Wi, j

dens(G[Wj\{u}]) ≥ (|Wi, j | − 2)(dens(G[Wj ]))

= (|Wi, j | − 2)

|Wi, j | |Wi, j |(dens(G[Wj ])).

Since |Wi, j | ≥ 4, it follows that
(|Wi, j |−2)

|Wi, j | ≥ 1
2 , thus

∑

u∈Wi, j

dens(G[Wj\{u}]) ≥ 1

2

∑

x∈Wi, j

dens(G[Wj ])

since
∑

u∈Wi, j
dens(G[Wj ]) = |Wi, j |dens(G[Wj ]).

Since Algorithm 3 adds the h most dense subgraphs among the choice of u ∈ Wi, j

so that |W| = k, this completes the proof. �
Now, we consider the time complexity of Algorithm 3.

Lemma 7 Algorithm 3 requires O(|V |7) time.
Proof Phase 2 of Algorithm 3 requires O(k2|V |) time, since we have to compare
each subgraph to be added to W with the subgraphs already in W and each of this
comparison requires O(k|V |) time. Each iteration of Phase 1 of Algorithm 3 requires
time O(|V |6), hence the overall complexity of Algorithm 3 is O(|V |7), since Phase 1
is iterated at most k ≤ |V | − 1 times. �

Now, thanks to Lemma 6, we are able to prove that the density of the solution
returned by Algorithm 3 is at least half the density of an optimal solution of Top-k-
Overlapping Densest Subgraphs.

Lemma 8 Let W = {G[W1], . . . ,G[Wk]} be the solution returned by Algo-
rithm 3 and let Wo = {G[Wo

1 ], . . . ,G[Wo
k ]} be an optimal solution of Top-k-

Overlapping Densest Subgraphs over instance (G, λ). Then
∑k

i=1 dens(G[Wi ]) ≥
1
2

∑k
i=1 dens(G[Wo

i ]).
Proof First, notice that we are assuming dens(G[Wo

i ]) ≥ dens(G[Wo
j ]), when 1 ≤

i < j ≤ k. Assume that Phase 1 of Algorithm 3 adds k1 ≤ k subgraphs to W .
We start by proving the following claim.
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Claim 1 For each h, with 1 ≤ h < k, given an optimal solution G[W ′
h+1] of

Densest-Distinct-Subgraph over instance (G, {G[W1], G[W2], . . . ,G[Wh]}), it holds
dens(G[W ′

h+1]) ≥ dens(G[Wo
h+1]).

Proof Assume that this is not the case, and that dens(G[W ′
h+1]) < dens(G[Wo

h+1]).
Notice that at least one of G[Wo

1 ], G[Wo
2 ], . . . , G[Wo

h+1] does not belong to the set
{G[W1],G[W2], . . . ,G[Wh]} of subgraphs. Since the subgraphs are in non increasing
order of density, it follows that an optimal solution of Densest-Distinct-Subgraph
over instance (G, {G[W1], G[W2], . . . , G[Wh]}) is a subgraph of G having density
at least dens(G[Wo

p]), for some p with 1 ≤ p ≤ h + 1, and that dens(G[Wo
p]) ≥

dens(G[Wo
h+1]) > dens(G[W ′

h+1]), contradicting the optimality of G[W ′
h+1]. �

We prove that the lemma holds for the subgraphs added by Phase 1 of Algorithm 3
by induction on k1. When k1 = 1, since G[W1] is a densest subgraph of G, it follows
that dens(G[W1]) ≥ 1

2dens(G[Wo
1 ]). Assume that the lemma holds for h < k1, we

prove that it holds for h + 1.
Notice that

k1∑

i=1

dens(G[Wi ]) =
h∑

i=1

dens(G[Wi ]) +
k1∑

i=h+1

dens(G[Wi ]).

By induction hypothesis

h∑

i=1

dens(G[Wi ]) ≥ 1

2

h∑

i=1

dens(G[Wo
i ]). (1)

We prove that

k1∑

i=h+1

dens(G[Wi ]) ≥ 1

2

k1∑

i=h+1

dens(G[Wo
i ]).

Consider subgraph G[Wi ], with h + 1 ≤ i ≤ k1, added to W by Phase 1 of
Algorithm 3. By Claim 1 then dens(G[Wi ]) ≥ dens(G[Wo

i ]), for each i with h+1 ≤
i ≤ k1, thus

k1∑

i=h+1

dens(G[Wi ]) ≥ 1

2

k1∑

i=h+1

dens(G[Wo
i ]). (2)

Hence the lemma holds for the subgraphs added by Phase 1 of Algorithm 3.
Consider the subgraphs G[Wk1+1], . . . ,G[Wk] that are added to W by Phase 2 of

Algorithm 3. By Lemma 6 it follows that there exists a subgraphG[Wj ] added toW by
Phase 1 of Algorithm 3 such that

∑k
i=k1+1 dens(G[Wi ]) ≥ (k − k1)

1
2dens(G[Wj ]).

Consider an optimal solution G[W ′
k1+1] of Densest-Distinct-Subgraph over instance
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(G, {G[W1], G[W2], . . . ,G[Wk1 ]}). Since G[Wj ] is added toW by Phase 1 of Algo-
rithm 3, by Theorem 3 it follows that dens(G[Wj ]) ≥ G[W ′

k1+1]. Hence,

k∑

i=k1+1

dens(G[Wi ]) ≥ 1

2
(k − k1)dens(G[W ′

k1+1]).

Moreover, by Claim 1 it holds dens(G[W ′
k1+1]) ≥ dens(G[Wo

k1+1]). Hence it must
hold

k∑

i=k1+1

dens(G[Wi ]) ≥ 1

2
(k − k1)dens(G[W ′

k1+1]) ≥ 1

2
(k − k1)dens(G[Wo

k1+1])

thus
k∑

i=k1+1

dens(G[Wi ]) ≥ 1

2

k∑

i=k1+1

dens(G[Wo
i ]). (3)

Combining Inequalities 2, 3, we obtain

k∑

i=1

dens(G[Wi ]) =
k1∑

i=1

dens(G[Wi ]) +
k∑

i=k1+1

dens(G[Wi ])

≥ 1

2

k1∑

i=1

dens(G[Wo
i ]) + 1

2

k∑

i=k1+1

dens(G[Wo
i ])

≥ 1

2

k∑

i=1

dens(G[Wo
i ])

thus concluding the proof. �
We can conclude the analysis of the approximation factor with the following result.

Theorem 4 Let W = {G[W1], . . . ,G[Wk]} be the solution returned by Algo-
rithm 3 and let Wo = {G[Wo

1 ], . . . ,G[Wo
k ]} be an optimal solution of Top-k-

Overlapping Densest Subgraphs over instance (G, λ). Then r(W) ≥ 1
2r(Wo).

Proof First, by Lemma 8, it holds dens(W) ≥ 1
2dens(Wo). Since the subgraphs in

{G[W1], . . . ,G[Wk]} are all distinct, it holds from Lemma 1 that d(G[Wi ],G[Wj ]) ≥
1, for each i , j with 1 ≤ i ≤ k, 1 ≤ j ≤ k and i 	= j , hence

λ

k−1∑

i=1

k∑

j=i+1

d(G[Wi ],G[Wj ]) ≥ 1

2
λ

k−1∑

i=1

k∑

j=i+1

d(G[Wo
i ],G[Wo

j ]).

We can conclude that r(W) ≥ 1
2r(Wo). �
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4 Complexity of Top-k-Overlapping Densest Subgraphs

In this section,weconsider the computational complexity of Top-k-OverlappingDens-
est Subgraphs and we show that the problem is NP-hard even if k = 3, when
λ = 3|V |3. We denote this restriction of the problem by Top-3-Overlapping Dens-
est Subgraphs. Notice that our hardness result applies when λ is large (λ = 3|V |3)
and hence an optimal solution of Top-3-Overlapping Densest Subgraphs consists of
three disjoint subgraphs.

We prove the result by giving a reduction from 3-Clique Partition, which is NP-
complete (Karp 1972). Next, we recall the definition of 3-Clique Partition.

Problem 3 3-Clique Partition
Input: A graph GP = (VP , EP ).
Output: A partition of VP into VP,1, VP,2, VP,3 such that VP = VP,1 � VP,2 � VP,3
and each G[VP,i ], with 1 ≤ i ≤ 3, is a clique.

Given an instance GP = (VP , EP ) of 3-Clique Partition, define an instance
(G = (V , E), λ) of Top-3-Overlapping Densest Subgraphs as follows: set G = GP

and λ = 3|V |3. In order to define a reduction from 3-Clique Partition to Top-3-
Overlapping Densest Subgraphs, we show the following result.

Lemma 9 Let GP = (VP , EP ) be an instance of 3-Clique Partition and let (G =
(V , E), λ) be the corresponding instance of Top-3-Overlapping Densest Subgraphs.
There exist three cliques GP [VP,1], GP [VP,2], GP [VP,3] in GP such that VP,1, VP,2,
VP,3 partition VP if and only if there exists a set W = {G[V1],G[V2],G[V3]} of
subgraphs of G such that r(W) ≥ |V |−3

2 + 18|V |3.
Proof We start by proving the first direction of the lemma. By construction the three
subgraphs GP [VP,1], GP [VP,2], GP [VP,3] of GP are disjoint. Construct three sub-
graphs G[V1], G[V2], G[V3] of G as follows:

Vi = {u j ∈ Vi : v j ∈ VP,i }

It follows that G[V1], G[V2], G[V3] are disjoint and that V1 � V2 � V3 = V . Hence

r(W) = dens(W) + λ

2∑

i=1

3∑

j=2

d(G[Vi ],G[Vj ])

where

dens(W) = dens(G[V1]) + dens(G[V2]) + dens(G[V3]) = |E1|
|V1| + |E2|

|V2| + |E3|
|V3| .

Since GP [VP,i ], with 1 ≤ i ≤ 3, is a clique and, by construction, G[Vi ] is also a
clique, it follows that

|Ei |
|Vi | = |Vi |(|Vi | − 1)

2|Vi | = |Vi | − 1

2
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thus

dens(G[V1]) + dens(G[V2]) + dens(G[V3])
= |V1| − 1

2
+ |V2| − 1

2
+ |V3| − 1

2
= |V | − 3

2
.

For each i, j ∈ {1, 2, 3}, with i 	= j , G[Vi ] and G[Vj ] are disjoint, hence:

d(G[Vi ],G[Vj ]) = 2

Thus, r(W) ≥ |V |−3
2 + 18|V |3.

Now, we prove the second direction of the lemma. First, notice that

λ

2∑

i=1

3∑

j=2

d(G[Vi ],G[Vj ]) ≤ 18|V |3

since d(G[Vi ],G[Vj ]) ≤ 2, for each i , j with 1 ≤ i < j ≤ 3, and λ = 3|V |3.
Next, we prove that G[V1], G[V2], G[V3] are disjoint and that V1 � V2 � V3 = V .

Assume to the contrary that two subgraphs in W , w.l.o.g. G[V1] and G[V2], share at
least one vertex. Then

d(G[V1],G[V2]) = 2 − |V1 ∩ V2|2
|V1||V2| ≤ 2 − 1

|V |2 .

Since dens(W) ≤ 3(|V |−1)
2 , as |Ei ||Vi | ≤ |Vi |−1

2 ≤ |V |−1
2 . Moreover, since λ = 3|V |3, it

follows that

λ

2∑

i=1

3∑

j=2

d(G[Vi ],G[Vj ]) = λ(6 − 3

|V |2 ) = 4λ + λ

(
2 − 3

|V |2
)

≤ 4λ

+λ

(
2 − 1

|V |2
)

= 12|V |3 + 3|V |3
(
2 − 1

|V |2
)

.

Hence

r(W) ≤ 3
|V | − 1

2
+ 12|V |3 + 3|V |3

(
2 − 1

|V |2
)

< 3|V | + 18|V |3 − 3|V | = 18|V |3.

Thus r(W) <
|V |−3

2 + 18|V |3, contradicting the hypothesis that r(W) ≥ |V |−3
2 +

18|V |3. Thus we can assume that G[V1], G[V2], G[V3] are disjoint.
Now, we show that V1 � V2 � V3 = V . Assume that this is not the case. Let

dens(G[Vi ]) = zi , with 1 ≤ i ≤ 3. Since G[V1], G[V2], G[V3] are disjoint, it follows
that z1 + z2 + z3 <

|V |−3
2 , since |V1| + |V2| + |V3| ≤ |V | and zi ≤ |Vi |−1

2 , with
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1 ≤ i ≤ 3. Indeed notice that zi = |Vi |−1
2 if and only if G[Vi ] is a clique. Thus

r(W) <
|V |−3

2 + 18|V |3 contradicting the hypothesis that r(W) ≥ |V |−3
2 + 18|V |3.

Moreover, notice that, since r(W) ≥ |V |−3
2 + 18|V |3, dens(W) ≥ |V |−3

2 , thus each
G[Vi ], with 1 ≤ i ≤ 3, is a clique in G.

Now, we define GP [VP,1], GP [VP,2], GP [VP,3]:

VP,i = {v j : u j ∈ Vi }.

By construction of G, it follows that G[VP,1], G[VP,2], G[VP,3] are disjoint, VP,1 �
VP,2 � VP,3 = VP and that G[VP,i ], with 1 ≤ i ≤ 3, is a clique. �

We can conclude that Top-3-Overlapping Densest Subgraphs is NP-hard.

Theorem 5 Top-3-Overlapping Densest Subgraphs is NP-hard.

Proof From Lemma 9, it follows that we have described a polynomial-time reduction
from 3-Clique Partition to Top-3-Overlapping Densest Subgraphs. Since 3-Clique
Partition is NP-complete (Karp 1972), it follows that also Top-3-Overlapping Dens-
est Subgraphs is NP-hard. �

5 Conclusion

We have shown that Top-k-Overlapping Densest Subgraphs is NP-hard when k = 3
and we have given two approximation algorithms of factor 2

3 and 1
2 , when k is a con-

stant and when k is smaller than the number of vertices in the graph, respectively.
For future works, it would be interesting to further investigate the approximability
of Top-k-Overlapping Densest Subgraphs, it remains open whether the problem
admits a polynomial-time approximation scheme. A second interesting open prob-
lem is the computational complexity of Top-k-Overlapping Densest Subgraphs,
in particular when λ is a constant and when the subgraphs in the solution overlap.
Another open problem of theoretical interest is the computational complexity of Top-
k-Overlapping Densest Subgraphs when k = 2.

Another direction is the investigation of the problem with other distance functions.
The distance function we have considered has been introduced and applied in Galbrun
et al. (2016) and, thanks to its properties (see Lemma 1), we were able to improve
the constant-factor approximation of Top-k-Overlapping Densest Subgraphs, since
it is enough to return distinct subgraphs. However, for other distance functions alter-
native algorithmic strategies may be needed to provide approximation algorithms. For
example, one may consider the following distance function:

d(U , Z) =
{
1 − |U∩Z |2

|U ||Z | if U 	= Z ,

0 else.

Notice that Lemma 1 does not hold for this distance function, so the approximation
results we have given cannot be applied.
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