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Abstract. We prove a stochastic maximum principle for a control problem

where the state equation is delayed both in the state and in the control, and
both the running and the final cost functionals may depend on the past trajec-

tories. The adjoint equation turns out to be a new form of linear anticipated
backward stochastic differential equations (ABSDEs in the following), and we

prove a direct formula to solve these equations.

1. Introduction. In this paper we consider a controlled state equation for the pro-
cess x with delay both in the state and in the control u, namely x is the solution to
the following stochastic delay controlled equation in Rn driven by an m-dimensional
Brownian motion W :{

dx(t) = b(t, xt, ut)dt+ σ(t, xt, ut)dW (t),
x(θ) = x0(θ), u(θ) = η(θ), θ ∈ [−d, 0].

(1)

Here and throughout the paper we use the notation xt(θ) = x(t+θ), ut(θ) = u(t+θ),
with θ ∈ [−d, 0] to denote the past trajectory of x and u from t − d up to time
t. We consider admissible controls u, that are progressively measurable and square
integrable processes taking values in a convex set U ⊂ Rk: in this case the stochastic
maximum principle can be formulated in terms of the first order adjoint equation.
We are able to allow a quite general dependence on the past trajectories xt and ut
of the state and of the control, namely the drift and diffusion can be written as

f(t, x, u) = f̄(t,

∫ 0

−d
x(θ)µ1(dθ),

∫ 0

−d
u(θ)µ3(dθ)), (2)

g(t, x, u) = ḡ(t,

∫ 0

−d
x(θ)µ2(dθ),

∫ 0

−d
u(θ)µ4(dθ)),
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where µ1, µ2, µ3, µ4 are finite regular measures on [−d, 0], and f̄(t, ·, ·) and ḡ(t, ·, ·)
are Lipschitz continuous and differentiable. Associated to equation (1) we consider
the cost functional

J(u(·)) = E
∫ T

0

l(t, xt, ut)dt+ Eh(xT ) (3)

that we have to minimize over all admissible controls. Also in the running cost l
and in the final cost h we can allow a general dependence on the past trajectories
xt and xT : there exist finite regular measures µ5, µ6, µ such that the current cost
and the final cost can be written as follows

l(t, x, u) = l̄(t,

∫ 0

−d
x(θ)µ5(dθ),

∫ 0

−d
u(θ)µ6(dθ)), (4)

h(x) = h̄(

∫ 0

−d
x(θ)µ(dθ)), ∀x ∈ C([−d, 0],Rn),

Such kind of dependence is rather general even though some relevant cases cannot
be covered, like the dependence on the supremum of the history of the path, for
example h(x) = h(supθ∈[−d,0] x(θ)).

We choose to attach our problem by means of the stochastic maximum princi-
ple since the dynamic programming approach stochastic optimal control problems
governed by delay equations with delay in the control are usually harder to study
than the ones when the delay appears only in the state. The main difficulty is that
the associated Hamilton Jacobi Bellman equation is an infinite dimensional second
order semilinear PDE, which is not trivial to solve, see e.g. [10, 11, 12]. Indeed
the delay in the control cannot be directly treated by means of the dynamic pro-
gramming principle, and in order to remove such delay in the control the problem
must be turned into an infinite dimensional stochastic control problem that, unlike
the infinite dimensional formulation of problem with delay in the state, does not
satisfy the so called structure condition according to which the control affect the
system as a perturbation of the noise, and moreover in many situations, including
the case of pointwise delay, the control operator is unbounded. More general cases
can be treated by applying the so called randomization method, see e.g. [1]: with
this approach it is possible to characterize the value function but no conditions on
the optimal control can be given.

On the contrary, studying a stochastic optimal control problem by means of the
stochastic maximum principle allows to get conditions on the optimal control.

When studying our control problem by means of the stochastic maximum prin-
ciple the adjoint equation turns out to be the following ABSDE for the pair of
processes (p, q) ∈ L2

F (Ω× [0, T ],Rn)× L2
F (Ω× [0, T ],Rn×m),

p(t) =

∫ T

t

EFs

∫ 0

−d
l̄x (s− θ, x(s− θ), u(s− θ))µ5(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
p(s− θ)f̄x (s− θ, x(s− θ), u(s− θ))µ1(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
q(s− θ)ḡx (s− θ, x(s− θ), u(s− θ))µ2(dθ) ds

+

∫ T

t

q(s)dWs +

∫ T

t∨(T−d)

h̄x(xT )µ(dθ),

p(T − θ) = 0, q(T − θ) = 0, ∀ θ ∈ [−d, 0).

(5)
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Notice that equation (5) does not make sense in differential form: the term

d

dt

∫ T

t∨(T−d)

h̄x(xT )p(T − θ)µ(dθ)

is well defined when µ is absolutely continuous with respect to the Lebesgue mea-
sure. In order to be able to work with differentials, we will consider an ABSDE
where µ is approximated by a sequence of finite regular measures (µn)n≥1 abso-
lutely continuous with respect to the Lebesgue measure on [T − d, T ], so that the
differential

d

dt

∫ T

t∨(T−d)

h̄x(xT )p(T − θ)µn(dθ)

makes sense. In this way, for the approximating ABSDE the differential form makes
sense.

The ABSDE (5) is a new type of linear ABSDEs, already considered in [14]: in
the present paper for the solution of (5) we are able to give a representation which
is the analogous of the one for linear BSDEs.

With these tools in hands, we are able to state necessary conditions for the
optimality in terms of the pair of processes (p, q): let (x̄, ū) be an optimal pair and
let uρ = ū + ρv̄, where v̄ is another admissible control, then, P- a.s. and for a.e.
t ∈ [0, T ]:

EFt

∫ 0

−d

(
f̄(t− θ, x̄t−θ, uρt−θ)− f̄(t− θ, x̄t−θ, ūt−θ)

)
p(t− θ)µ3(dθ)

+ EFt

∫ 0

−d

(
l(t, x̄t−θ, u

ρ
t−θ)− l(t, x̄t−θ, ūt−θ)

)
µ6(dθ)

+ EFt

∫ 0

−d

(
ḡ(t− θ, x̄t−θ, uρt−θ)− ḡ(t− θ, x̄t−θ, ūt−θ)

)
q(t− θ)µ4(dθ) ≥ 0. (6)

Notice that this formula can be rewritten in a differential way under stronger as-
sumptions on the coefficients, see Section 3, formula (57).

The results achieved by means of the stochastic maximum principle can be ap-
plied to a stochastic optimal control problem arising in advertisement models with
delay and to an optimal portfolio problem with execution delay, we refer to Sections
4 and 5 for details.

After the introduction of anticipated backward stochastic differential equations
(ABSDEs) in the paper [22], the stochastic maximum principle for delay equations
has been widely studied in the literature. We mention, among others, [4], where
a problem with pointwise delay in the state and in the control is studied, [19],
where a controlled state equation driven by a Brownian motion and by a Poisson
random measure is taken into account, and the delay affects the system by means
of terms with a more restrictive structure that the one considered in (2), indeed,
the measures µj , j = 1, ..., 4 all reduce to the same measure, absolutely continuous
with respect to the Lebesgue measure, and with exponential density.

In the present paper we study the stochastic maximum principle for stochastic
control problems where the state equation may present delay in the state and in
the control and where in the associated cost functional we allow dependence on the
past trajectory also in the final cost. Following the standard steps in the variational
approach for control problems, we formulate the maximum principle by means of
an adjoint equation. The novelty is that the adjoint equation turns out to be an
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ABSDE of a more general form than the ones introduced in [22] and generalized in
[23]. This is due to the fact that we allow dependence on the past trajectory also
in the final cost. It turns out that the adjoint equation is not regular enough to be
an Itô process and so to prove the stochastic maximum principle we must introduce
some suitable regularized approximating problems.
The dependence on the past trajectory in the final cost has been studied also in
[14], for an infinite dimensional evolution equation with delay only in the state and
no control dependent noise. The adjoint ABSDE considered in [14] is similar to
the one we handle here; in the present paper the ABSDE is solved directly by an
extension of the formulas for linear BSDEs.

Concerning the recent literature based on ABSDEs, we are able to consider more
general dependence on the past trajectory and moreover we can study the case when
the final cost depends on the past trajectory of the state. As far as we know, such
a general case is studied only in [17], with a direct functional analytic method, and
the authors do not take into account the delay in the control.

The paper is organized as follows: in Section 2 we study the new form of lin-
ear ABSDEs, in Section 3 we present the control problem and after studying the
variation of the state with respect to the variation of the control we formulate and
prove the stochastic maximum principle, in Sections 4 and 5 the results are applied
respectively to a stochastic dynamic model in marketing for problems of optimal
advertising and to an optimal portfolio problem with execution delay.

1.1. Notations. Let (Ω,F ,P) be a complete probability space, W (t) an
m-dimensional Brownian motion and let (Ft)t≥0 be the natural filtration associ-
ated to W , augmented in the usual way with the family of P-null sets of F .
For any p ∈ [1,∞] and T > 0 we define

• LpF (Ω× [0, T ];Rk), the set of all (Ft)-progressive processes with values in Rk
such that the norm

||Y ||pLp
F (Ω×[0,T ];Rk)

=

(
E
∫ T

0

|Y (t)|pRkdt

)1/p

if p <∞,

||Y ||L∞F (Ω×[0,T ];Rk) = ess supω∈Ω,t∈[0,T ] |Yt(ω)| if p =∞

is finite. Here we take the ess sup with respect to dt⊗ dP.
• LpF (Ω;C([0, T ];Rk)), the set of all (Ft)-progressive and continuous processes

with values in Rk such that the norm

||Y ||pLp
F (Ω;C([0,T ];Rk))

= E supt∈[0,T ] |Yt|p if p <∞,
||Y ||L∞F (Ω;C([0,T ];Rk)) = ess supω∈Ω supt∈[0,T ] |Yt(ω)| if p =∞

is finite. Elements of this space are identified up to indistinguishability. We
will denote the space as SpF ([0, T ]).

• LpF (Ω;B([0, T ];Rk)), the set of (Ft)-progressive measurable and a.s bounded
trajectories processes with values in Rk such that the norm

||Y ||pLp
F (Ω;B([0,T ];Rk))

= E supt∈[0,T ] |Yt|p if p <∞,
||Y ||L∞F (Ω;B([0,T ];Rk)) = ess supω∈Ω supt∈[0,T ] |Yt(ω)| if p =∞

is finite. Elements of this space are identified up to indistinguishability. We
will denote the space as BpF ([0, T ])

Throughout the paper given a progressive measurable process y ∈ L1
F (Ω ×

[0, T ],Rk), for 0 ≤ s ≤ t by EFsy(t) we denote the optional projection of y into Fs.
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2. A new form of anticipated backward stochastic differential equations.
In this section we study ABSDEs which have the suitable form to be the adjoint
equations in problems with delay we treat in the present paper. We will consider
a stochastic differential equation of backward type, and on its coefficients we make
the following assumptions.

Hypothesis 2.1. Let f ∈ L2
F (Ω × [0, T ],Rn), g ∈ L∞F (Ω × [0, T ],Rn×n), h ∈

L∞F (Ω × [0, T ],Rm) and ξ ∈ B2
F ([T − d, T ]) where 0 < d ≤ T is fixed. Let µ be a

finite regular measure on [T − d, T ] and denote by |µ| its total variation, see [6].

Here we refer to the definition of regular measure, given in [6], page 156, according
to which given a closed interval I a non negative measure µ defined on the σ-algebra
B(I) of all the Borel sets of I is called regular if ∀A ∈ B(I)

µ(A) = sup{µ(F ) : F ⊆ A, F is closed}

µ(A) = inf{µ(G) : F ⊇ A, G is open}
To be more precise in [6] such a measure is called strongly regular, but we follow
most of the literature where such a measure is called regular measure.

If h1, h2 ∈ Rm, we denote for brevity with h1h2 the scalar product 〈h1, h2〉Rm .
Let us consider the following linear BSDE

p(t) =

∫ T

t

f(s)ds+

∫ T

t

g(s)p(s)ds+

∫ T

t

q(s)h(s)ds+

∫ T

t

q(s)dW (s) (7)

+

∫ T

t∨(T−d)

ξ(s)µ(ds).

Let Q be the probability measure, equivalent to the original one P, such that

W̃ (t) :=

∫ t

0

h(s) ds+W (t)

is a Q-Wiener process. Notice that dQ
dP = E(

∫ T
0
h(s) dBs) thus, thanks to hypothesis

2.1 the two measures are equivalent, and in particular for any Θ ∈ L1(Ω,P)

EQ|Θ| ≤ CE|Θ| and E|Θ| ≤ C̃EQ|Θ| (8)

for some C, C̃ depending only on T and the process h.
We have the following formula for the unique solution of the linear BSDE (7),

which is the counterpart for the classical formula for the solution of a linear BSDE.
We also notice that equation (7) is a linear BSDE with a final datum ξ acting not
only at the final time T , but on the whole interval [T − d, T ].

Lemma 2.2. Assume Hypothesis 2.1 holds true, then the BSDE (7) admits a unique
adapted solution, that is a pair of processes (p, q) ∈ L2

F (Ω × [0, T ],Rn) × L2
F (Ω ×

[0, T ],Rn×m), satisfying the integral equation (7). The process p is given by the
formula

p(t) = EFt

Q

[∫ T

t∨(T−d)

e
∫ s
t
g(u)duξ(s)µ(ds) +

∫ T

t

e
∫ s
t
g(u)duf(s)ds

]
. (9)

Proof. Under the probability measure Q equation (7) can be rewritten as

p(t) =

∫ T

t

f(s)ds+

∫ T

t

g(s)p(s)ds+

∫ T

t

q(s)dW̃ (s) +

∫ T

t∨(T−d)

ξ(s)µ(ds). (10)
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Let us first prove that the process p given by formula (9) verifies equation (7) for
t ∈ [T − d, T ]. For t ∈ [T − d, T ] equation (10) implies

p(t) = EFt

Q

[∫ T

t

f(s)ds+

∫ T

t

g(s)p(s)ds+

∫ T

t

ξ(s)µ(ds)

]
. (11)

Using formula (9) we define

p̄(t) := EFt

Q

[∫ T

t

e
∫ s
t
g(u)duξ(s)µ(ds) +

∫ T

t

e
∫ s
t
g(u)duf(s)ds

]
, t ∈ [T −d, T ]. (12)

It is immediate to see that p̄ defined in formula (12) satisfies (11), indeed putting
formula (12) for p̄ in equation (11) we get

EFt

Q

[∫ T

t

e
∫ s
t
g(u)duξ(s)µ(ds) +

∫ T

t

e
∫ s
t
g(u)duf(s)ds

]
(13)

= EFt

Q

[∫ T

t

f(s)ds+

∫ T

t

ξ(s)µ(ds)

]

+

∫ T

t

g(s)EFs

Q

[∫ T

s

e
∫ r
s
g(u)duξ(r)µ(dr) +

∫ T

s

e
∫ r
s
g(u)duf(r)drds

]

= EFt

Q

[∫ T

t

f(s)ds+

∫ T

t

ξ(s)µ(ds)

]

+

∫ T

t

g(s)

[∫ T

s

e
∫ r
s
g(u)duξ(r)µ(dr) +

∫ T

s

e
∫ r
s
g(u)duf(r)dr

]
ds.

Changing the order of integration it is immediate to see that(
EFt

Q

[∫ T

t

e
∫ s
t
g(u)duξ(s)µ(ds) +

∫ T

t

e
∫ s
t
g(u)duf(s)ds

])
t∈[0,T ]

satisfies the integral equation (11) that corresponds to equation (10), by the usual
application of the Martingale Representation Theorem.

Now let us consider the following equation, under Q again, for t ∈ [0, T − d]:

p(t) =

∫ T−d

t

f(s)ds+

∫ T−d

t

g(s)p(s)ds+

∫ T−d

t

q(s)dW̃ (s) + p̄(T − d), (14)

that is a standard BSDE with final datum p̄(T − d) defined in (12). The unique
solution of (14) is given by:

p̃(t) = EFt

Q

[
e
∫ T−d
t

g(u)dup̄(T − d) +

∫ T−d

t

e
∫ s
t
g(u)duf(s)ds

]
(15)

= EFt

Q

[
e
∫ T−d
t

g(u)duEFT−d

Q

[∫ T

T−d
e
∫ s
T−d

g(u)duξ(s)µ(ds)

+

∫ T

T−d
e
∫ s
T−d

g(u)duf(s)ds

]
+

∫ T−d

t

e
∫ s
t
g(u)duf(s)ds

]
,
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Hence p(t) defined by (9), can also be written as

p(t) :=

 p̄(t) t ∈ [T − d, T ],

p̃(t) t ∈ [0, T − d)
(16)

So by construction p together with its corresponding martingale term q, that can
be uniquely determined through the variation of the process p with the noise W ,
is a solution to (10), and hence a weak solution to (7) in the whole time interval
[0, T ].

In particular, directly from (9) we get that, see also [21, Chapter 5], for any
β > 0, taking also into account (8) and the Burkholder-Davis-Gundy inequalities:

E sup
t∈[0,T ]

eβt|p(t)|2 ≤ C EQ sup
t∈[0,T ]

eβt|p(t)|2 (17)

≤ C eβTEQ

[
sup
t∈[0,T ]

EFt

Q

∣∣∣ ∫ T

t

e
∫ s
t
g(u)duξ(s)µ(ds)

∣∣∣2 (18)

+ sup
t∈[0,T ]

EFt

Q

∣∣∣ ∫ T

t

e
∫ s
t
g(u)duf(s)ds

∣∣∣2]

≤ C eβTEQ

[
sup
t∈[0,T ]

EFt

Q

[ ∫ T

T−d
|ξ(s)||µ|(ds)

]2
+

1

β
sup
t∈[0,T ]

EFt

Q

∫ T

0

eβs|f(s)|2 ds

]

≤ C EQ

eβT sup
t∈[0,T ]

EFt

Q

(∫ T

T−d
|ξ(s)||µ|(ds)

)2

+
1

β
sup
t∈[0,T ]

EFt

Q

∫ T

0

eβs|f(s)|2 ds


≤ C

eβT (EQ

∫ T

T−d
|ξ(s)||µ|(ds)

)2

+
1

β
EQ

∫ T

0

eβs|f(s)|2 ds


≤ C

eβT (E∫ T

T−d
|ξ(s)||µ|(ds)

)2

+
1

β
E
∫ T

0

eβs|f(s)|2 ds


where the constant C may change from line to line but only depends on T and
||g||L∞F (Ω×[0,T ]), ||h||L∞F (Ω×[0,T ]) and thus

E sup
t∈[0,T ]

eβt|p(t)|2 (19)

≤ C

[
eβT (|µ|([T − d, T ]))

2 E sup
t∈[T−d,T ]

|ξ(t)|2 +
1

β
E
∫ T

0

eβs|f(s)|2 ds

]
.

By the latter calculations together with standard considerations see for instance [9],
using the Martingale Representation Theorem, we get for all β > 0,

E sup
t∈[0,T ]

eβt|p(t)|2 + E
∫ T

0

eβs|q(s)|2 ds (20)

≤ c

[
EQ sup

t∈[0,T ]

eβt|p(t)|2 + EQ

∫ T

0

eβs|q(s)|2 ds

]
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≤ c

eβT (EQ

∫ T

T−d
|ξ(s)||µ|(ds)

)2

+
1

β
EQ

∫ T

0

eβs|f(s)|2 ds

 ,
≤ c

eβT (E∫ T

T−d
|ξ(s)||µ|(ds)

)2

+
1

β
E
∫ T

0

eβs|f(s)|2 ds

 ,
and these estimates imply

E
∫ T

0

β

2
eβs|p(s)|2 ds+ E

∫ T

0

eβs|q(s)|2 ds (21)

≤ c

[
eβT (|µ|([T − d, T ]))

2 E sup
t∈[0,T ]

|ξ(t)|2 +
1

β
E
∫ T

0

eβs|f(s)|2 ds

]
,

where the constant c depends on ||g||L∞F (Ω×[0,T ]), ||h||L∞F (Ω×[0,T ]), and T . Therefore

(p, q) ∈ S2
F ([0, T ])×L2

F (Ω× [0, T ];Rn×m). Pathwise uniqueness follows by standard
arguments since the non-classical terms disappears when one calculates the differ-
ence between solutions. By the Yamada-Watanabe type result for weak solutions
for BSDEs, see [3], also for BSDEs pathwise uniqueness implies the uniqueness in
law; and the pathwise uniqueness together with the existence of the weak solution
imply the existence of the strong solution. This concludes the proof.

We apply the results collected in Lemma 2.2 to prove existence and uniqueness
of a solution of the following anticipated ABSDE (22).
As before, let (Wt)t≥0 be a standard m-dimensional Brownian motion, and on the
coefficients we make the following assumptions.

Hypothesis 2.3. f ∈ L2
F (Ω× [0, T ],Rn), g ∈ L∞F (Ω× [0, T+d],Rn×n) h ∈ L∞F (Ω×

[0, T + d],Rm) and ξ ∈ B2
F ([T − d, T ]) where 0 < d ≤ T is fixed. Let µ be a finite

regular measure on [T − d, T ], and µ1 and µ2 be finite regular measures on [−d, 0].

Remark 1. The results in this Section can be extended from measures µ, µ1, µ2

in Hypothesis 2.3 to vector valued finite regular measures, that allow to consider
more general dependence on the past trajectory.

We will prove existence and uniqueness of the following anticipated BSDEs of
backward type:

p(t) =

∫ T

t

f(s)ds+

∫ T

t

EFs

∫ 0

−d
g(s− θ)p(s− θ)µ1(dθ)ds

+

∫ T

t

EFs

∫ 0

−d
q(s− θ)h(s− θ)µ2(dθ)ds+

∫ T

t

qsdWs

+
∫ T
t∨(T−d)

ξ(s)µ(ds)

p(T − θ) = 0, q(T − θ) = 0 ∀ θ ∈ [−d, 0).

(22)

The ABSDE (22) is of the form of equation introduced in [22] and generalized in
[23], with the difference that it is given a final datum acting not only in [T, T + d),
but also in [T − d, T ], see also [14]. Notice that as soon as the process q belongs to

L2
F (Ω× [0, T +d],Rn×m) the term EF·

∫ 0

−d
q(·−θ)h(·−θ)µ2(dθ) has meaning since:

E
∫ T

0

∫ 0

−d
|q(t− θ)|2|h(t− θ))|2|µ2|(dθ) dt
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≤ |µ|2([−d, 0])||h||2L∞E
∫ T+d

0

|q(ρ)|2 dρ < +∞

Theorem 2.4. Let Hypothesis 2.3 holds true. Then the ABSDE (22) admits a
unique adapted solution, that is a pair of processes (p, q) ∈ L2

F (Ω× [0, T + d],Rn)×
L2
F (Ω× [0, T + d],Rn×m), satisfying the integral equation (22).

Proof. We notice that by the data of our problem, if it exists, the pair of processes
(p, q) solution to the ABSDE (22), is such that p(t) = q(t) = 0 for t ∈ (T, T + d).

Let us consider the more general equation, for (ξ, η) ∈ L2
F (Ω;B([T − d, T +

d];Rn))× L2
P(Ω× [T, T + d],Rn×m)

p(t) =

∫ T

t

f(s)ds+

∫ T

t

EFs

∫ 0

−d
g(s− θ)p(s− θ)µ1(dθ)ds

+

∫ T

t

EFs

∫ 0

−d
q(s− θ)h(s− θ)µ2(dθ)ds+

∫ T

t

q(s)dW (s)

+

∫ T

t∨(T−d)

ξ(s)µ(ds)

p(T − θ) = ξ(θ), q(T − θ) = η(θ) ∀ θ ∈ [−d, 0).

(23)

We prove existence of a solution by a fixed point argument on the space L2
F (Ω ×

[0, T + d],Rn)× L2
F (Ω× [0, T + d],Rn×m) endowed with the equivalent norm

‖(p, q)‖β = E
∫ T+d

0

|p(s)|2eβs ds+

∫ T+d

0

|q(s)|2eβs ds, (24)

with β > 0 to be chosen in the following.
Given (y, z) ∈ L2

F (Ω × [0, T + d],Rn) × L2
F (Ω × [0, T + d],Rn×m) we define the

map Γ : L2
F (Ω× [0, T+d],Rn)×L2

F (Ω× [0, T+d],Rn×m)→ L2
F (Ω× [0, T+d],Rn)×

L2
F (Ω× [0, T + d],Rn×m).
The pair (p, q) := Γ(y, z) is given by the pair of processes solution of the following

BSDE given in integral form:

p(t) =

∫ T

t

f(s)ds+

∫ T

t

EFs

∫ 0

−d
g(s− θ)y(s− θ)µ1(dθ)ds

+

∫ T

t

EFs

∫ 0

−d
z(s− θ)h(s− θ)µ2(dθ)ds

+

∫ T

t

q(s)dWs +

∫ T

t∨(T−d)

ξ(s)µ(ds)

p(T − θ) = ξ(θ), q(T − θ) = η(θ) ∀ θ ∈ [−d, 0).

(25)

Thanks to Lemma 2.2 it turns out that (p, q) ∈ L2
F (Ω × [0, T ],Rn) × L2

F (Ω ×
[0, T ],Rn×m), and together with the condition given in (25) it turns out that (p, q) ∈
L2
F (Ω × [0, T + d],Rn) × L2

F (Ω × [0, T + d],Rn×m). So Γ is well defined. Next we
prove that Γ is a contraction. Let y, ȳ ∈ L2

F (Ω× [0, T + d],Rn) and z, z̄ ∈ L2
F (Ω×

[0, T + d],Rn×m), and set ŷ = y− ȳ, ẑ = z− z̄. We denote (p̂, q̂) = Γ(y, z)−Γ(ȳ, z̄).
So

p̂(t) =

∫ T

t

f(s)ds+

∫ T

t

EFs

∫ 0

−d
g(s− θ)ŷ(s− θ)µ1(dθ)ds

+

∫ T

t

EFs

∫ 0

−d
ẑ(s− θ)h(s− θ)µ2(dθ)ds+

∫ T

t

q̂(s)dWs. (26)
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Equation (26) is a special case of the BSDE (7), whose existence and uniqueness
have been studied in Lemma 2.2. By estimate (19) we get (here and in the following
c is a constant whose value can change from line to line)

E
∫ T

0

(
β

2
|p̂(s)|2 + |q̂(s)|2

)
eβs ds (27)

≤ 2c

β
E
∫ T

0

|
∫ 0

−d
g(s− θ)ŷ(s− θ)µ1(dθ)ds+

∫ 0

−d
ẑ(s− θ)h(s− θ)µ2(dθ)|2ds

≤ 2c

β

{
E
∫ T

0

∫ 0

−d
|ŷ(s− θ)|2|µ1|(dθ)ds+ E

∫ T

0

∫ 0

−d
|ẑ(s− θ)|2|µ2|(dθ)ds

}

≤ 2c

β

{∫ 0

−d

[
E
∫ T

0

|ŷ(s− θ)|2ds

]
|µ1|(dθ)

+

∫ 0

−d

[
E
∫ T

t

|ẑ(s− θ)|2ds

]
|µ2|(dθ)

}

=
2c

β

{∫ 0

−d

[
E
∫ T

0

|ŷ(s)|2ds

]
|µ1|(dθ) +

∫ 0

−d

[
E
∫ T

t

|ẑ(s)|2ds

]
|µ2|(dθ)

}

≤ c 2

β
‖(ŷ, ẑ)‖β .

By choosing β > 0 such that c 2
β < 1 we have proved that Γ is a contraction, and

its unique fixed point is the unique solution of the ABSDE (22).

Equation (22) can be written in differential form if we make some additional
assumptions on the measure µ. If we assume that

µ = cδT + µ̃, c ∈ R,

where µ̃ is a measure on (T − d, T ) absolutely continuous with respect to the
Lebesgue measure, equation (22) can be written in differential form as

−dp(t) = f(t)dt+ EFt

∫ 0

−d
g(t− θ)p(t− θ)µ1(dθ)dt

+EFt

∫ 0

−d
q(t− θ)h(t− θ)µ2(dθ)dt+ q(t)dW (t) + ξ(t)ηµ̃(t)dt

p(T ) = cξ(T ), p(T − θ) = 0, q(T − θ) = 0 ∀ θ ∈ [−d, 0),

(28)

where for t ∈ [T − d, T ], ηµ̃ is the Radon-Nikodym derivative of µ̃ with respect to
the Lebesgue measure, that is ηµ̃ is defined by the relation

µ̃(dt) = ηµ̃(t)dt.

If we do not make additional assumptions on the measure µ, the differential form
of equation (22) does not make sense, since the term

d

∫ T

t∨(T−d)

ξ(s)µ(ds)

is not well defined for t ∈ [T−d, T ]. In the following, we build an approximating AB-
SDE whose differential form makes sense. This approximating ABSDE is obtained
by a suitable approximation of µ: the construction of this sequence of approximat-
ing measures (µn)n≥1 is given in the following Lemma, which is the analogous of
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Lemma 5 in [14]. In the following, given I ⊂ R we denote with Cb(I,R]) the space
of bounded an continuous functions from I to R; with the notation λ[T−d,T ], we
denote the Lebesgue measure on [T − d, T ].

Lemma 2.5. Let µ̄ be a finite regular measure on [T −d, T ], such that µ̄({T}) = 0.
There exists a sequence (µ̄n)n≥1 of finite regular measures on [T − d, T ], absolutely
continuous with respect to λ[T−d,T ] and such that

µ̄ = lim
n→∞

µ̄n, in the sense of the narrow convergene, (29)

that is for every f ∈ Cb([T − d, T ],R)

∫ T

T−d
f dµ̄ = lim

n→∞

∫ T

T−d
f dµ̄n (30)

Notice that we can apply the previous Lemma to the approximation of the mea-
sure µ by defining µ̄ such that for any A ∈ B([T − d, T ])

µ̄(A) = µ(A\ {T}) : (31)

the measure µ̄ is obtained from the original measure µ, by subtracting to µ its mass
in {T}. Lemma 2.5 ensures that there exists a sequence of measures (µ̄n)n≥1, on
[T − d, T ], which are absolutely continuous with respect to the Lebesgue measure
on [T − d, T ] and converge to µ̄.

The next step is to build an approximation, in a sense that we are going to
precise, of the equation (22), by approximating µ̄ obtained by µ in (31).

Proposition 1. Let Hypothesis 2.3 holds true and assume ξ ∈ S2
F ([T − d, T ]), let

µ̄ be defined by (31), and let us consider (µ̄n)n the approximations of µ̄, absolutely
continuous with respect to the Lebesgue measure on (T − d, T ). Let us consider the
approximating ABSDEs (of “standard” type):



pn(t) =

∫ T

t

f(s)ds+

∫ T

t

EFs

∫ 0

−d
g(s− θ)pn(s− θ)µ1(dθ)ds

+

∫ T

t

EFs

∫ 0

−d
qn(s− θ)h(s− θ)µ2(dθ)ds

+

∫ T

t

qn(s)dWs +

∫ T

t∨(T−d)

ξ(s)µ̄n(ds) + µ(T )ξ(T ),

pn(T − θ) = 0, qn(T − θ) = 0 ∀ θ ∈ [−d, 0).

(32)

Then the pair (pn, qn), solution to (32) converges in L2
F (Ω× [0, T+d],Rn)×L2

F (Ω×
[0, T + d],Rn×m) to the pair (p, q) solution to (22).

Proof. Let us first prove that the sequence (pn, qn)n is a Cauchy sequence in L2
F (Ω×

[0, T + d],Rn) × L2
F (Ω × [0, T + d],Rn×m). The equation satisfied by (pn(t) −
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pk(t), qn(t)− qk(t)), n, k ≥ 1, turns out to be the following ABSDE:

pn(t)− pk(t) =

∫ T

t

EFs

∫ 0

−d
g(s− θ)

(
pn(s− θ)− pk(s− θ)

)
µ1(dθ)ds

+

∫ T

t

EFs

∫ 0

−d

(
qn(s− θ)− qk(s− θ)

)
h(s− θ)µ2(dθ)ds

+

∫ T

t

(
qn(s)− qk(s)

)
dW (s) +

∫ T

t∨(T−d)

ξ(s)µ̄n(ds)

−
∫ T

t∨(T−d)

ξ(s)µ̄k(ds),

pn(T − θ)− pk(T − θ) = 0, qn(T − θ)− qk(T − θ) = 0 ∀ θ ∈ [−d, 0).

(33)

Notice that the terms
∫ T
t∨(T−d)

ξ(s)µ̄n(ds),
∫ T
t∨(T−d)

ξ(s)µ̄k(ds), are Ito terms, so

equation (33) is a standard ABSDE. By standard estimates, see e.g. [23], Lemma
2.3, formula (3), as n, k →∞

E|pn(t)− pk(t)|2 + E
∫ T

t

|pn(s)− pk(s)|2 ds+ E
∫ T

t

|qn(s)− qk(s)| 2ds

≤ E

∣∣∣∣∣
∫ T

t∨(T−d)

ξ(s)(µ̄n(ds)− µ̄k(ds))

∣∣∣∣∣
2

→ 0

by the narrow convergence of the sequence of measures µ̄n. So the sequence (pn, qn)
is a Cauchy sequence in L2

F (Ω×[0, T+d],Rn)×L2
F (Ω×[0, T+d],Rn×m). It remains

to show that it converges to (p, q) solution of equation (22). Let us denote

(p̄, q̄) = lim
n→∞

(pn, qn) in L2
F (Ω× [0, T + d],Rn)× L2

F (Ω× [0, T + d],Rn×m).

and for every t ∈ [0, T ]:
lim

n→+∞
E|pn(t)− p̄(t)|2 = 0

Notice also that pn(s − θ), p̄(s − θ) = 0, for s − θ > T : thus we have that, for all
t ∈ [0, T ],

E

∣∣∣∣∣
∫ T

t

∫ 0

−d
g(s− θ)pn(s− θ)µ1(dθ)ds−

∫ T

t

∫ 0

−d
g(s− θ)p̄(s− θ)µ1(dθ)ds

∣∣∣∣∣
2

= E

∣∣∣∣∣
∫ 0

−d

∫ T

t

g(s− θ) (pn(s− θ)− p̄(s− θ)) dsµ1(dθ)

∣∣∣∣∣
2

≤ |g|2L∞[0,T ]E

(∫ 0

−d

∫ T

t

|pn(s− θ)− p̄(s− θ)|ds|µ1|(dθ)

)2

≤ |g|2L∞[0,T ]E

(∫ 0

−d

∫ T+θ

(t+θ)∨0

|pn(σ)− p̄(σ)|dσ|µ1|(dθ)

)2

≤ |g|2L∞[0,T ]E

(∫ 0

−d

∫ T

0

|pn(σ)− p̄(σ)|dσ|µ1|(dθ)

)2

≤ |g|2L∞[0,T ]E

(∫ 0

−d
|µ1|(dθ)

∫ T

0

|pn(σ)− p̄(σ)|dσ

)2
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≤ |g|2L∞[0,T ]

(∫ 0

−d
|µ1|(dθ)

)2

E

(∫ T

0

|pn(σ)− p̄(σ)|dσ

)2

≤ T |g|2L∞[0,T ]|µ1|([−d, 0])2E
∫ T

0

|pn(r)− p̄(r)|2 dr.

So

E

∣∣∣∣∣
∫ T

t

∫ 0

−d
qn(s− θ)h(s− θ)µ2(dθ)ds−

∫ T

t

∫ 0

−d
q̄(s− θ)h(s− θ)µ2(dθ)ds

∣∣∣∣∣
2

≤ T |h|2L∞[0,T ]|µ2|([−d, 0])2E
∫ T

0

|qn(r)− q̄(r)|2 dr

By passing to the limit as n→∞ in equation (32) we get

EFt p̄(t) = EFt

∫ T

t

f(s)ds+ EFt

∫ T

t

∫ 0

−d
g(s− θ)p̄(s− θ)µ1(dθ)ds

+EFt

∫ T

t

∫ 0

−d
q̄(s− θ)h(s− θ)µ2(dθ)ds

+EFt

[∫ T

t∨(T−d)

ξ(s)µ̄(ds) + µ(T )ξT

]
,

p̄(T − θ), q̄(T − θ) = 0 ∀ θ ∈ [−d, 0).

It follows immediately that (p̄, q̄) = (p, q) and this concludes the proof.

3. The controlled problem and the stochastic maximum principle. Let us
consider the following controlled state equation in Rn{

dx(t) = f(t, xt, ut) dt+ g(t, xt, ut)dW (t), t ∈ [0, T ],
x(θ) = x̄(θ), u(θ) = η(θ), θ ∈ [−d, 0],

(34)

where W in this section, for simplicity of notation, will be supposed to be a real
standard Brownian motion, and xt and ut denote the past trajectories from time t−d
up to time t. Moreover x̄ and η are the initial paths of the state and of the control

respectively, and we assume η to be deterministic and such that
∫ 0

−d η
2(t) dt < +∞.

By admissible control we mean an Ft-progressively measurable process with values
in a convex set U ⊂ Rk.

E
∫ T

−d
|u(t)|2 dt <∞, (35)

such that u(θ) = η(θ), P − a.s. for a.e. θ ∈ [−d, 0]. We will denote this space of
admissible controls by U .

We want to minimize the following cost functional

J(u(·)) = E
∫ T

0

l(t, xt, ut)dt+ Eh(xT ) (36)

over all admissible controls. We make the following assumptions on f, g, l, h and on
the initial condition x̄. Here and in the following we denote by E = Cb([−d, 0],Rn)
and K = Cb([−d, 0],Rk).
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Hypothesis 3.1. Let µi, i = 1, ..., 6 and µ be finite regular measures.
We assume that f , g, l and h are defined for any x ∈ E and any u ∈ K in terms of

f̄ : Ω× [0, T ]×Rn×Rk → Rn, ḡ : Ω× [0, T ]×Rn×Rk → Rn, l̄ : [0, T ]×Rn×Rk → R
and h̄ : Rn → R as follows

f(t, x, u) = f̄(t,

∫ 0

−d
x(θ)µ1(dθ),

∫ 0

−d
u(θ)µ3(dθ)),

g(t, x, u) = ḡ(t,

∫ 0

−d
x(θ)µ2(dθ),

∫ 0

−d
u(θ)µ4(dθ)),

l(t, x, u) = l̄(t,

∫ 0

−d
x(θ)µ5(dθ),

∫ 0

−d
u(θ)µ6(dθ)),

h(x) = h̄

(∫ 0

−d
x(θ)µ(dθ) .

Here and in the following in the drift f , and correspondingly in f̄ , and in the
diffusion term g, and correspondingly in ḡ, we omit the dependence on ω. We
assume that for each Ft, t ∈ [0, T ]-adapted processes, x, u ∈ L2

F (Ω, B([0, T ;Rk]),
the processes f̄(·, x·, u·), ḡ(·, x·, u·) are also Ft, t ∈ [0, T ]-adapted.

We will assume that f̄ , ḡ and l̄ are Borel measurable and differentiable with
respect to the second and to the third variable, that with an abuse of notation
we still refer to as x and u. Moreover f̄x, f̄u, ḡx and ḡu are uniformly bounded,
while l̄x, l̄u have linear growth with respect to x and u, uniformly in t, finally h̄
is differentiable and h̄x has linear growth too. Moreover we will use the following
notations

f̄x(t,

∫ 0

−d
x(θ)µ1(dθ),

∫ 0

−d
u(θ)µ3(dθ)) =: f̄x(t, x, u),

f̄u(t,

∫ 0

−d
x(θ)µ1(dθ),

∫ 0

−d
u(θ)µ3(dθ)) =: f̄u(t, x, u)

ḡx(t,

∫ 0

−d
x(θ)µ2(dθ),

∫ 0

−d
u(θ)µ4(dθ)) =: ḡx(t, x, u),

ḡu(t,

∫ 0

−d
x(θ)µ2(dθ),

∫ 0

−d
u(θ)µ4(dθ) =: ḡu(t, x, u)

l̄x(t,

∫ 0

−d
x(θ)µ5(dθ),

∫ 0

−d
u(θ)µ6(dθ)) =: l̄x(t, x, u),

l̄u(t,

∫ 0

−d
x(θ)µ5(dθ),

∫ 0

−d
u(θ)µ6(dθ)) =: l̄u(t, x, u)

h̄x

(∫ 0

−d
x(θ)µ(dθ)

)
=: h̄x(x).

Remark 2. In analogy to Remark 1, all the results in this Section and throughout
the paper can be extended to measures µi, i = 1, ...6, µ considered in Hypothesis 3.1
possibly vector valued finite regular measures with values respectively in Rji , i =
1, ..., 6, Rj , with ji, j ≥ 1, i = 1, .., 6.
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We notice that when the coefficients are stochastic, under Hypothesis 3.1 exis-
tence and uniqueness of a solution of equation (34) holds true, see e.g. [18], Theorem
I.1

We notice that the terms∫ 0

−d
u(θ)µ3(dθ),

∫ 0

−d
u(θ)µ4(dθ),

∫ 0

−d
u(θ)µ6(dθ)

appearing respectively in the drift f , in the diffusion g and in the current cost l do
not make sense in a standard way and for every t ∈ [0, T ] as soon as the control u
is not assumed to be integrable with respect to the measures µ3, µ4, µ6, but only
square integrable with respect to the Lebesgue measure in [−d, 0].

So it is necessary to give a precise meaning to the state equation and to the
current cost. First of all we want to clarify that for any u ∈ U equation (34) is well
defined, indeed for any u ∈ U and any finite regular measure µ̃ we have that:

E
∫ T

0

∫ 0

−d
|u(t+ θ)|2|µ̃|(dθ) dt ≤ |µ̃|([−d, 0])E

∫ T

−d
|u(ρ)|2 dρ < +∞

thus ∫ 0

−d
|u(t+ θ)|2|µ̃|(dθ) < +∞, a.s. for a.e. t ∈ [0, T ].

Then we can deduce that, thanks to Hypothesis 3.1, for all x ∈ SpF ([−d, T ]) and u ∈
U the processes are square integrable: f(t, xt, ut) ∈ L2

F (Ω× [0, T ];Rn), g(t, xt, ut) ∈
L2
F (Ω× [0, T ];Rn). In a similar way it follows that the current cost is well defined.
Moreover for any u ∈ U , there exists a solution x = xu ∈ SpF ([−d, T ]): the result

follows in the same way as for controlled stochastic delay equations without delay
in the control, and it is substantially cointained e.g. in [18], where stochastic delay
equations with random drift and diffusion are solved.

Next we want to show that the adjoint equation of a delay equation is of the
form of ABSDE (22), and it allows to formulate a stochastic maximum principle
for finite dimensional controlled state equations with delay, and in the case of final
cost functional depending on the history of the process.

Many recent papers, see e.g. [4], [5], deal with similar problems, but only in
the simpler case of final cost functionals not depending on the past of the process.
Moreover only the case of pointwise delay is considered, or in some cases the past
affects the system at time t by terms of the form∫ 0

−d
e−λθξ(t+ θ) dθ

where ξ may coincide with the state x of the system, and/or with the control u.
These two choices coincide respectively with taking the measures µi, i = 1, ..., 6
delta Dirac measures and measures absolutely continuous with respect to the
Lebesgue measure and with exponential density.
In the present paper we are able to handle µi, i = 1, ..., 6 finite regular measures
on [−d, 0]: such a general case is treated in the paper [16], only in the case without
delay in the control and it is here proved by means of anticipated BSDEs.

In order to write the adjoint equation, at first we study the variation of the
state: let us consider the pair (x, u), where x is solution to equation (34) and u is
the control process in this equation, and let v ∈ U be another admissible control;
set v̄ = v − ū and

uρ = ū+ ρv̄. (37)
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Also uρ turns out to be an admissible control. Let xρ be the solution of equation
(34) corresponding to the admissible control uρ and let y be the solution of the
following linear equation

dy(t) =

∫ 0

−d
f̄x(t, x̄t, ūt)yt(θ)µ1(dθ) dt+

∫ 0

−d
f̄u(t, x̄t, ūt)v̄t(θ)µ3(dθ) dt+

+

∫ 0

−d
ḡx(t, x̄t, ūt)yt(θ)µ2(dθ) dWt +

∫ 0

−d
ḡu(t, x̄t, ūt)v̄t(θ)µ4(dθ) dWt

y(θ) = 0, ∀ θ ∈ [−d, 0].
(38)

With an immediate extension of Theorem 3.2 in [17] to the case with delay in the
control, we have the following first order expansion

xρ(t) = x̄(t) + ρy(t) +Rρ(t), t ∈ [0, T ], lim
ρ→0

1

ρ2
E sup
t∈[0,T ]

|Rρ(t)|2 = 0. (39)

We are going to prove that equation (22) with

f(t) = EFt

∫ 0

−d
l̄x(t− θ, x̄(t− θ), ū(t− θ))(dθ), (40)

g(t) = f̄x(t, x̄t, ūt), h(t) = ḡx(t, x̄t, ūt), ξ(t) = hx(x̄T ).

is the adjoint equation in the control problem with cost functional (36). We notice
with the coefficients given by (40) the BSDE (22) is solvable by Theorem 2.4 since
Hypothesis 2.3 is satisfied.

To prove that (22) is the adjoint equation, for a.a. τ ∈ [0, T ], x ∈ E, u ∈
L2([−d, T ];U), p, q ∈ Rn, we define the Hamiltonian function as

H(t, x, u, p, q) = f̄

(
τ,

∫ 0

−d
x(θ)µ1(dθ),

∫ 0

−d
u(θ)µ3(dθ)

)
p

+ ḡ

(
τ,

∫ 0

−d
x(θ)µ2(dθ),

∫ 0

−d
u(θ)µ4(dθ)

)
q

+ l̄

(
τ,

∫ 0

−d
x(θ)µ5(dθ),

∫ 0

−d
u(θ)µ6(dθ)

)
= f̄ (τ, x, u) p+ ḡ (τ, x, u) q + l(τ, x, u),

(41)

where the last expression will be used, with an abuse of notation, to shorten the for-
mulas. Notice that the Hamiltonian function is not defined for every τ , as discussed
at the beginning of this Section, due to the fact that f̄ , ḡ and l̄ depend respectively

on the terms

∫ 0

−d
u(t−θ+η)µ3(dη),

∫ 0

−d
u(t−θ+η)µ4(dη) and

∫ 0

−d
u(t−θ+η)µ6(dη).

The Hamiltonian function turns out to be a p -integrable function in time for
any p ≥ 1, and so for any function v ∈ Lq([0, T ]) the integral∫ T

0

H(t, x, u, p, q)v(t) dt, t ∈ [0, T ], x ∈ E, u ∈ L2([−d, T ];U), p, q ∈ Rn.

makes sense, and this integral appears in the proof of the stochastic maximum
principle, see the next Theorem on the stochastic maximum principle.

In the formulation of the stochastic maximum principle, the adjoint ABSDE
turns out to be nothing else than equation (22), with with f, g, h and ξ given in
(40).
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Theorem 3.2. Let Hypothesis 3.1 holds true. Let (p, q) be the unique solution of
the ABSDE

p(t) =

∫ T

t

EFs

∫ 0

−d
l̄x (s− θ, x̄s−θ, ūs−θ)µ5(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
p(s− θ)f̄x (s− θ, x̄s−θ, ūs−θ)µ1(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
q(s− θ)ḡx (s− θ, x̄s−θ, ūs−θ)µ2(dθ) ds

+

∫ T

t

q(s)dWs +

∫ T

t∨(T−d)

h̄x(x̄T )µ(dθ)

p(T − θ) = 0, q(T − θ) = 0 ∀ θ ∈ [−d, 0).

(42)

Let (x̄, ū) be an optimal pair for the optimal control problem of minimizing the cost
functional (36) related to the controlled state equation (34). Then the following
condition holds:

〈v(t)− ū(t),EFt

∫ 0

−d
f̄u(t− θ, x̄t−θ, ūt−θ)p(t− θ)µ3(dθ)〉

+ 〈v(t)− ū(t),EFt

∫ 0

−d
ḡu(t− θ, x̄t−θ, ūt−θ)q(t− θ)µ4(dθ)〉 (43)

+ 〈v(t)− ū(t),EFt

∫ 0

−d
l̄u (t, x̄t−θ, ūt−θ)µ6(dθ)〉 ≥ 0 dt× P− a.e.;

for all v ∈ U .

Remark 3. We notice that in equation (42) and in condition (43) the terms

EFt
∫ 0

−d ḡx(t − θ, xt−θ, ut−θ)q(t − θ)µ2(dθ) and EFt
∫ 0

−d ḡu(t − θ, xt−θ, ut−θ)q(t −
θ)µ4(dθ) make sense only when integrated iwith respect to t as we already pointed
out for the control terms.

As it is well known, the stochastic maximum principle can be reformulated with-
out differentiability assumptions on the coefficients as stated in Hypothesis 3.1. In
the place of differentiability, we assume that f̄ and ḡ are Lipschitz continuous with
respect to x, u, l̄ is locally Lipschitz continuous with respect to x, u, and l̄ is locally
Lipschitz continuous. In this case condition (44) can be replaced by a condition
on the variation of the Hamiltonian function. Namely let v be another admissible
control, set v̄ = v − ū and uρ = ū+ ρv̄, condition (44) can be substituted by

EFt

∫ 0

−d

(
f̄(t− θ, x̄t−θ, uρt−θ)− f̄(t− θ, x̄t−θ, ūt−θ)

)
p(t− θ)µ3(dθ)

+ EFt

∫ 0

−d

(
ḡ(t− θ, x̄t−θ, uρt−θ)− ḡ(t− θ, x̄t−θ, ūt−θ)

)
q(t− θ)µ4(dθ)

+ EFt

∫ 0

−d

(
l̄(t− θ, x̄t−θ, uρt−θ)− l̄(t− θ, x̄t−θ, ūt−θ)

)
µ6(dθ) ≥ 0, (44)

dt× dP− a.e.. This form of the maximum principle can be obtained in a similar to
the differentiable case, without writing the variation of the coefficients in terms of
derivatives.

Finally we notice that, unlike the undelayed case, both conditions (43) and (44)
cannot be expressed with any derivative or variation of the Hamiltonian.
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Proof of Theorem 3.2. As we already pointed out, see the comment after the
proof of Theorem 2.4, the adjoint equation (42) is not regular enough to perform
directly the usual proof of the maximum principle. Thus during the proof we must
introduce some suitable regularized approximating problem to apply the Itô formula
and deduce the necessary condition (43).

As usual in proving the stochastic maximum principle, we start by writing the
variation of the cost functional. Namely, following (37), let (x̄, ū) be an optimal
pair and let v be another admissible control, set v̄ = v − ū and uρ = ū + ρv̄. We
can write the variation of the cost functional,

δJ = J(uρ(·))− J(ū(·)),
as

0 ≤ δJ = J(uρ(·))− J(ū(·)) (45)

= E
∫ T

0

l(t, xρt , u
ρ
t )dt− E

∫ T

0

l(t, x̄t, ūt)dt+ E (h(xρT )− h(x̄T )) = I1 + I2.

Now

I1 = E
∫ T

0

l(t, xρt , u
ρ
t ) dt− E

∫ T

0

l(t, x̄t, ūt) dt

=

[
E
∫ T

0

l(t, xρt , u
ρ
t ) dt− E

∫ T

0

l(t, x̄t, u
ρ
t ) dt

]

+

[
E
∫ T

0

l(t, x̄t, u
ρ
t ) dt− E

∫ T

0

l(t, x̄t, ūt) dt

]
= J1 + J2

We rewrite (39) as

xρ(t) = x̄(t) + ρy(t) +Rρ(t), t ∈ [0, T ], lim
ρ→0

1

ρ2
E sup
t∈[0,T ]

|Rρ(t)|2 = 0, (46)

where y is solution to equation (38). We start by computing J1:

J1 = E
∫ T

0

[
l

(
t,

∫ 0

−d
xρ(t+ θ)µ5(dθ),

∫ 0

−d
uρ(t+ θ)µ6(dθ)

)
(47)

−l
(
t,

∫ 0

−d
x̄(t+ θ)µ5(dθ),

∫ 0

−d
uρ(t+ θ)µ6(dθ)

)
dt

]
= E

∫ T

0

∫ 1

0

∫ 0

−d
(xρt − x̄t) l̄x (t, (x̄t + λ (xρt − x̄t)) , u

ρ
t ))µ5(dθ)dλdt

= E
∫ T

0

∫ 1

0

∫ 0

−d
(ρyt(θ) +Rρ(t+ θ)) l̄x (t, x̄t + λ (xρt − x̄t) , u

ρ
t )µ5(dθ)dλdt.

By similar computations we obtain the analogous formula for J2:

J2 = E
∫ T

0

∫ 1

0

∫ 0

−d
(uρt − ūt) l̄u (t, x̄t, u

ρ
t + λ (uρt − ūt))µ6(dθ)dλdt (48)

= E
∫ T

0

∫ 1

0

∫ 0

−d
ρv̄(t+ θ)l̄u (t, x̄t, u

ρ
t + λ (uρt − ūt))µ6(dθ)dλdt.
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Notice that the last term is well defined only when ū, uρ are continuous, i.e. be-
long to E, but can be extended to the whole L2([−d, T ];U) by a standard density
argument. We now compute I2:

I2 = E (h(xρT )− h(x̄T )) (49)

= E
∫ 1

0

∫ 0

−d
(xρ(T + θ)− x̄(T + θ))) h̄x (x̄T + λ (xρT − x̄T ))µ(dθ)

= E
∫ 1

0

∫ 0

−d
(ρy(T + θ) +Rρ(T + θ)) h̄x (x̄T + λ (xρT − x̄T ))µ(dθ)

= E
∫ 1

0

∫ 0

−d
(ρy(T + θ) +Rρ(T + θ)) h̄x (x̄T + λ (xρT − x̄T ))µ(dθ).

Now we follow Lemma 2.5 and we decompose the measure µ into

µ = µ̄+ µ({0})δ0 (50)

so that µ̄ turns out to be a finite regular measure on [−d, 0], such that µ̄({0}) = 0.
By Lemma 2.5 there exists a sequence (µ̄n)n≥1 of finite regular measures on [−d, 0],
absolutely continuous with respect to λ[−d,0], the Lebesgue measure on [−d, 0], such
that

µ̄ = lim
n→∞

µ̄n. (51)

So following (49), the variation of the final cost can be written as

I2 = lim
n→∞

E
∫ 1

0

∫ 0

−d
(ρyT (θ) +Rρ(T + θ)) h̄x (x̄T + λ (xρT − x̄T )) dµ̄n(θ)dλ (52)

+ E
∫ 1

0

(ρyT (θ) +Rρ(T + θ)) h̄x (x̄T + λ (xρT − x̄T ))µ({0})dλ

So taking into account the computation for J1, J2 and for I2 that we have performed
in (47), (48), (49) and (52), also by dividing both sides of (45) by ρ, and then by
letting ρ→ 0 on the right hand side, we get

0 ≤ E
∫ T

0

∫ 0

−d
yt(θ)l̄x(t, x̄t, ūt)µ5(dθ)dt+ E

∫ T

0

∫ 0

−d
l̄u(t, x̄t, ūt)v̄t(θ)µ6(dθ)dt (53)

+ µh({0})h̄x(x̄T )yT (0) + lim
n→∞

E
∫ 0

−d
yT (θ)h̄x(x̄T )dµ̄n(θ).

Let Jn the cost obtained from J defined in (36) by replacing µ̄ with its absolute
continuous approximation µ̄n in the final cost. So the variation δJn of Jn is given
by

δJn := Jn(uρ(·))− Jn(ū(·)) = E
∫ T

0

∫ 0

−d
y(t+ θ)l̄x(t, x̄t, ūt)µ5(dθ)dt (54)

+ E
∫ T

0

l̄u(t, x̄t, ūt)v̄t(θ)µ6(dθ)dt

+ µ({0})h̄x(x̄T )yT (0) + E
∫ 0

−d
yT (θ)h̄x(x̄T )dµ̄n(θ).m

We notice that in the first term, yt(θ) = y(t + θ) = 0 if t + θ < 0, and the same
holds for v̄.

Since (42) does not make sense in differential form and we cannot apply the Ito
formula, we now introduce an approximated version of equation (42), along the lines
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we have described at the beginning of the proof.
First we notice that with µ decomposed into µ̄ and µ(0) as in (50), equation (42)

can be rewritten as

p(t) =

∫ T

t

EFs

∫ 0

−d
l̄x (s− θ, x̄s−θ, ūs−θ)µ5(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
p(s− θ)f̄x

(
s− θ̄, xs−θ, ūs−θ

)
µ1(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
q(s− θ)ḡx (s− θ, x̄s−θ, ūs−θ)µ2(dθ) ds

+

∫ T

t

q(s)dWs +

∫ T

t∨(T−d)

h̄x(x̄T )µ̄(dθ) + µ({0})h̄x(x̄T )

p(T − θ), q(T − θ) = 0 ∀ θ ∈ [−d, 0).

(55)

Now we approximate µ̄ by µ̄n as in (51) in the ABSDE (55), and so we obtain an
approximated version of (55) given by

pn(t) =

∫ T

t

EFs

∫ 0

−d
l̄x (s− θ, x̄s−θ, ūs−θ)µ5(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
pn(s− θ)f̄x (s− θ, x̄s−θ, ūs−θ)µ1(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
qn(s− θ)ḡx (s− θ, x̄s−θ, ūs−θ)µ2(dθ) ds

+

∫ T

t

qn(s)dWs +

∫ T

t∨(T−d)

h̄x(x̄T )µ̄n(dθ) + µ({0})h̄x(x̄T )

pn(T − θ), qn(T − θ) = 0 ∀ θ ∈ [−d, 0).

(56)

Since the differential form of pn(t) makes sense, we can compute d〈y(t), pn(t)〉:

d〈y(t), pn(t)〉

= 〈dy(t), pn(t)〉+ 〈y(t), dpn(t)〉+ 〈
∫ 0

−d
ḡx(t, x̄t, ūt)µ2(dθ), qn(t)〉dt

+ 〈
∫ 0

−d
ḡu(t, x̄t, ūt)v̄(t+ θ)µ4(dθ), qn(t)〉dt

= 〈
∫ 0

−d
y(t+ θ)f̄x(t, x̄t, ūt)dµ1(θ) dt+

∫ 0

−d
fu(t, x̄t, ūt)v̄(t+ θ)µ6(dθ) dt

+

∫ 0

−d
y(t+ θ)ḡx(t, x̄t, ūt)dµ2(θ) dW (t)

+

∫ 0

−d
ḡu(t, x̄t, ūt)v̄(t+ θ)µ4(dθ) dW (t), pn(t)〉

− 〈y(t),EFt

∫ 0

−d
l̄x (t− θ, x̄t−θ, ū(t− θ))µ5(dθ)〉dt

− 〈y(t),EFt

∫ 0

−d
pn(t− θ)f̄x (t− θ, x̄t−θ, ūt−θ)µ1(dθ)〉dt

− 〈y(t),EFt

∫ 0

−d
qn(t− θ)ḡx (t− θ, x̄t−θ, ūt−θ))µ2(dθ)〉dt
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− 〈y(t), q(t)dWt〉+ 〈y(t), χt>T−dh̄x(x̄T )
dµ̄n

dt
dt〉

− 〈
∫ 0

−d
ḡx(t, x̄t, ūt)µ2(dθ), qn(t)〉dt.

Integrating between 0 and T and taking expectation we obtain

E〈y(T ), µh({0})h̄x(xT )〉 = E
∫ T

0

〈
∫ 0

−d
y(t+ θ)f̄x(t, xt, ut)dµ1(θ)

+

∫ 0

−d
fu(t, xt, ut)v̄(t+ θ)µ6(dθ), pn(t)〉dt

− E
∫ T

0

〈y(t),EFt

∫ 0

−d
χt−θ<T l̄x (t− θ, xt−θ, ut−θ)µ5(dθ)〉dt

− E
∫ T

0

〈y(t),EFt

∫ 0

−d
pn(t− θ)χt−θ<T f̄x (t− θ, xt−θ, ut−θ)µ1(dθ)〉dt

− E
∫ T

0

〈y(t),EFt

∫ 0

−d
qn(t− θ)χt−θ<T ḡx (t− θ, xt−θ, ut−θ)µ2(dθ)〉dt

− E
∫ T

0

〈y(t), χt>T−dh̄x(xT )˜̄µ
n
(t)〉dt

− E
∫ T

0

〈
∫ 0

−d
ḡx(t, xt, ut)dµ2(θ), qn(t)〉dt

where

˜̄µn =
dµ̄n

dt
,

is the Radon Nikodym derivative of µ̄n with respect to the Lebesgue measure. By
some change in the time variable and with the optimal pair (x̄, ū) instead of (x, u),
it turns out that

δJn = E〈y(T ), µ({0})h̄x(x̄T )〉+ E
∫ T

0

〈y(t), χt>T−dh̄x(x̄T )˜̄µn(t)〉dt

+ E
∫ T

0

〈y(t),EFt

∫ 0

−d
χt−θ<T l̄x (t− θ, x̄t−θ, ūt−θ)µ5(dθ)〉dt

+ E
∫ T

0

lu(t, x̄t, ūt)

∫ 0

−d
v̄(t+ θ)µ6(dθ)dt

= E
∫ T

0

〈
∫ 0

−d
f̄u(t, x̄t, ūt)v̄(t+ θ)µ3(dθ), pn(t)〉dt

+ E
∫ T

0

〈
∫ 0

−d
ḡu(t, x̄t, ūt)v̄(t+ θ)µ4(dθ), qn(t)〉dt

+ E
∫ T

0

∫ 0

−d
lu(t, x̄t, ūt)v̄(t+ θ)µ6(dθ)dt.

So, taking into account (53)

0 ≤ E
∫ T

0

〈
∫ 0

−d
f̄u(t, x̄t, ūt)v̄(t+ θ)µ3(dθ), pn(t)〉dt
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+ E
∫ T

0

〈
∫ 0

−d
ḡu(t, x̄t, ūt)v̄(t+ θ)µ4(dθ), qn(t)〉dt

+ E
∫ T

0

∫ 0

−d
lu(t, x̄t, ūt)v̄(t+ θ)µ6(dθ)dt

and letting n→∞ we get

0 ≤ E
∫ T

0

〈
∫ 0

−d
f̄u(t, x̄t, ūt)v̄t(θ)µ3(dθ), p(t)〉dt (57)

+ E
∫ T

0

〈
∫ 0

−d
ḡu(t, x̄t, ūt)v̄t(θ)µ4(dθ), q(t)〉dt

+ E
∫ T

0

∫ 0

−d
lu(t, x̄t, ūt)v̄(t+ θ)µ6(dθ)dt

= E
∫ T

0

〈v̄(t),EFt

∫ 0

−d
f̄u(t− θ, x̄t−θ, ūt−θ)p(t− θ)µ3(dθ)〉dt

+ E
∫ T

0

〈v̄(t),EFt

∫ 0

−d
ḡu(t− θ, x̄t−θ, ūt−θ)q(t− θ)µ4(dθ)〉dt

+ E
∫ T

0

〈v̄(t),EFt

∫ 0

−d
lu(t− θ, x̄t−θ, ūt−θ)v̄(t)µ6(dθ)〉dt

which is nothing else than (43) in integral form. The conclusion follows by a stan-
dard localization procedure, along the lines given e.g. in [20], end of paragraph 5.4,
see also [17], end of the proof of Theorem 5.1, and [24].

4. Delay equations arising in advertising models. We consider a stochastic
dynamic model in marketing for problems of optimal advertising. We study, as
done in [10] and in [11], stochastic models for optimal advertising starting from the
stochastic variant introduced in [13], and also with delay both in the state and in
the control, see also [15]. In this model delay in the control corresponds to lags in
the effect of advertisement.

So we consider, for t ∈ [0, T ], the following controlled stochastic differential
equation in R with delay in the state and in the control:

dy(t) =

[
a0y(t) +

∫ 0

−d
y(t+ θ)µa(dθ) + b0u(t) +

∫ 0

−d
u(t+ θ)µb(dθ)

]
dt

+σay(t)dWt + σbu(t)dWt,
y(θ) = y0(θ), θ ∈ [−d, 0),
u(θ) = u0(θ), θ ∈ [−d, 0).

(58)

In equation (58), y represents the goodwill level, a0 is a constant factor of image
deterioration in absence of advertising, b0 is a constant representing an advertising
effectiveness factor, µa(·) is the distribution of the forgetting time, and µb(·) is
the distribution of the time lag between the advertising expenditure u and the
corresponding effect on the goodwill level. The diffusion term σay(t) accounts for
the word of mouth communication, the parameter σa is the advertising volatility;
the diffusion term, σbu(t) accounts for the effect of advertising, the parameter σb is
the communication effectiveness volatility. Moreover, y0(0) is the level of goodwill at
the beginning of the advertising campaign, while y0(·) is the history of the goodwill
level before the initial time, and u0(·) is the history of the advertising expenditure
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before the initial time, too.
We assume the following:

Hypothesis 4.1. (i) W is a standard Brownian motion in R, and (Ft)t≥0 is the
augmented filtration generated by W ;

(ii) a0, σa, σb ∈ R;
(iii) the control strategy u belongs to U where

U :=
{
z ∈ L2

F (Ω× [0, T ],R) : u(t) ∈ U a.s.
}

where U is a convex subset of R;
(iv) d > 0 is the maximum delay the control takes to affect the system;
(v) µa, µb are finite regular measures in [−d, 0] that describe the time that re-

spectively the state and the control take to affect the system.

The objective is to minimize, over all controls in U , the following finite horizon
cost:

J(t, x, u) = E
∫ T

t

` (s, y(s), u(s)) ds+ Eφ(yT ), (59)

where ` represents the cost of advertisement, and −φ represents the final utility,
that may depend on the trajectory yT = y(T + θ), θ ∈ [−d, 0]. We assume that
` : [0, T ] × R × R → R is continuous, bounded and differentiable with respect to x
and u, moreover the derivatives with respect to x and u satisfy

|`x(t, y, u)|+ |`ul(t, y, u)| ≤ C3(1 + |y|+ |u|),

and φ is given by

φ(yT ) = φ̄

(∫ 0

−d
y(T + θ)µφ(dθ)

)
, (60)

where φ̄ : R→ R is Lipschitz continuous and differentiable and µφ is another finite
regular measure on [−d, 0].

We consider the adjoint equation for the pair of processes (p, q) ∈ L2
F (Ω ×

[0, T ],R)× L2
F (Ω× [0, T ],R)

p(t) =

∫ T

t

`x (s, y(s), u(s)) ds+

∫ T

t

a0p(s) ds

+

∫ T

t

EFs

∫ 0

−d
p(s− θ)µa(dθ) ds+

∫ T

t

σaq(s) ds+

∫ T

t

qsdWs

+

∫ T

t∨(T−d)

φ̄x(yT )µφ(dθ)

p(T − θ) = 0, q(T − θ) = 0 ∀ θ ∈ [−d, 0).

(61)

Theorem 4.2. Let Hypothesis 4.1 hold true. Let (p, q) be the unique solution of
the ABSDE (61). Let (ȳ, ū) be an optimal pair for the optimal control problem of
minimizing the cost functional (59) related to the controlled state equation (58). Let
v be another admissible control, set v̄ = v − ū and uρ = ū+ ρv̄, then

b0 (ū(t)− uρ(t)) p(t) + (ū(t)− uρ(t))EFt

∫ 0

−d
p(t− θ)µb(dθ)

+ σb (ū(t)− uρ(t)) q(t) + `u(t, ȳ(t), ū(t)) (ū(t)− uρ(t)) ≤ 0 dt× P a.s.. (62)
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5. An optimal portfolio problem with execution delay. We consider a gen-
eralized Black and Scholes market with one risky asset, whose price at time t is
denoted by S(t) and whose past trajectory from time t− d up to time t is denoted
by St, and one non-risky asset, whose price at time t is denoted by B(t). The result
can be extended to the case of a Black and Scholes market with j risky assets, whose
prices at time t are denoted by Si(t), i = 1, ..., j, and one non-risky asset: for the
sake of simplicity we limit here to the case of only one risky asset.

The evolution of the prices is given by the following stochastic delay differential
equation in a complete probability space (Ω,F ,P) :

dS(t) = S(t) [b(t, St)dt+ σ(t, St)dWt] , S(θ) = ν0(θ),

dB(t) = r(t, St)B(t)dt,

B(0) = B0

(63)

where W (t) is a standard Brownian motion in R, (Ft)t≥0 is the filtration generated
by W and augmented with null probability sets and St(θ) = S(t + θ), θ ∈ [−d, 0].
The drift b, the diffusion σ and the rate r are given by

b(t, St) = b̄(t,

∫ 0

−d
S(t+ θ)µb̄(dθ)), σ(t, St) = σ̄(t,

∫ 0

−d
S(t+ θ)µσ̄(dθ)),

r(t, St) = r̄(t

∫ 0

−d
S(t+ θ)µr̄(dθ)) (64)

where µb̄, µσ̄, µr̄ are finite regular measures on [−d, 0].

Hypothesis 5.1. On b̄, σ̄ and r̄ we make the following assumptions:

i) µb̄ is a regular measure and b̄ : [0, T ] × R → R is measurable. Moreover
∀ si ∈ R, i = 1, 2

|b̄(t, s1)− b̄(t, s2)| ≤ c|s1 − s2|
for some c > 0 and for all t ∈ [0, T ] b̄(t, ·) is differentiable;

ii) µσ̄ is a regular measure and σ̄ : [0, T ] × R → R is measurable. Moreover
∀ si ∈ R, i = 1, 2

|σ̄(t, s1)− σ̄(t, s2)| ≤ c|s1 − s2|
for some c > 0 and for all t ∈ [0, T ] σ̄(t, ·) is differentiable;

iii) r̄ : [0, T ]× R→ R is measurable. Moreover ∀ si ∈ R, i = 1, 2

|r(t, s1)− r(t, s2)| ≤ c|s1 − s2|
for some c > 0 and for all t ∈ [0, T ] r̄(t, ·) is differentiable.

We now consider the evolution of V (t), the value at time t of the associated
self-financing portfolio. We consider an optimal portfolio problem with execution
delay, which is inspired by the models studied, in a different context, in [2] in a
stochastic impulse control framework, and which is treated also in [8]. Let d > 0
be a fixed execution delay time: at time t > 0 the investor chooses, on the basis
of the information contained in Ft, to allocate the amount of money u(t) > 0 of
its portfolio in the risky asset. This is the control process. However, due to the
execution delay this order will be executed at time t + d when the price of the
risky asset has changed, see [2] for the formulation of this problem in a stochastic
impulse control framework. Moreover we allow consumption, and also the investors
are allowed to take money from the portfolio V : in the model this is represented by



ON THE STOCHASTIC MAXIMUM PRINCIPLE WITH DELAY 853

a further control c.
The state equation for the optimal portfolio with execution delay is similar to

the one considered in [7] in the case without delay, see also [8], and it is given by dV (t) = r(t, St)(V (t)− π∗(t− d))dt− c(t)dt+ π∗(t− d) [b(t, St)dt
+σ(t, St)dWt)]

V (θ) = η(θ), π(θ) = π0(θ), θ ∈ [−d, 0).
(65)

Here we will only consider square-integrable, predictable investment strategies π ∈
L2
F (Ω× [0, T ],R).
The aim is to maximize the utility functional over the set of the admissible

strategies

U(c) = E
∫ T

0

[U1 (t, c(t))] dt+E
[
U2

(∫ 0

−d
V (T + θ)µU (dθ)

)]
= E [U (VT )] , (66)

where U1 : [0, T ]×R→ R and U2 : R→ R are given utility functions, U1 represents
the utility from consumption and it is assumed to be continuous, differentiable in
the second variable and the derivative with respect to c has linear growth in c,
and U2 represents the utility from the wealth on [T − d, T ] and it is assumed to be
Lipschitz continuous and differentiable. Here µU is another finite regular measure
on [−d, 0]: the utility is related not only to the final value T , but to the value of
the portfolio in the window [T − d, T ], and so it depends on V (T + θ), θ ∈ [−d, 0].

At any time t ∈ [−d, T ], the state X(t) ∈ R2 is given by the pair

X(t) =

(
S(t)
V (t)

)
.

So the equation for X is given by

d

(
S(t)
V (t)

)
=

(
S(t)b(t, St)

r(t, St)(V (t)− π(t− d))− c(t) + π(t− d)b(t, St)

)
dt

+

(
S(t)σ(t, St)

π(t− d)σ(t, St)

)
dWt

(
S(θ)
V (θ)

)
=

(
ν0(θ)
η(θ)

)
(67)

and it turns out to be an equation with delay both in the state and in the control.
Notice that the adjoint processes are given by a pair of processes

(p, q) =

((
p1

p2

)
,

(
q1

q2

))
∈ L2

F (Ω× [0, T ],R2)× L2
F (Ω× [0, T ],R2)

solution of the ABSDEs we are going to write, and that it turns out that the pair
(p1, q1) is identically 0. Indeed

p1(t) =

∫ T

t

p1(s)b(s, Ss) ds+

∫ T

t

q1(s)σ(s, Ss) ds+

∫ T

t

q1(s)dWs

+

∫ T

t

EFs

∫ 0

−d
p1(s− θ)S(s− θ)b̄x(s− θ, Ss−θ)µb̄(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
q1(s− θ)S(s− θ)σ̄x(s− θ, Ss−θ)µσ̄(dθ) ds

p(T − θ) = 0, q(T − θ) = 0 ∀ θ ∈ [−d, 0].

(68)
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The pair of processes (p2, q2) ∈ L2
F (Ω × [0, T ],R) × L2

F (Ω × [0, T ],R) satisfies the
following equation:

p2(t) =∫ T

t

EFs

∫ 0

−d
p2(s− θ) (V (s− θ)− π(s− θ − d)) r̄x(s− θ, Ss−θ)µr̄(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
p2(s− θ)π(s− θ − d)b̄x(s− θ, Ss−θ)µb̄(dθ) ds

+

∫ T

t

EFs

∫ 0

−d
q2(s− θ)π(s− θ − d)σ̄x(s− θ, Ss−θ)µσ̄(dθ) ds

+

∫ T

t

q2(s)dWs +

∫ T

t∨(T−d)

Ux (VT )µU (dθ)

p2(T − θ) = 0, q2(T − θ) = 0 ∀ θ ∈ [−d, 0).
(69)

From the maximum principle stated in Theorem 3.2 we deduce the following con-
dition on the optimal strategy for the present problem: notice that the optimality
condition can be given only in terms of the pair of processes (p2, q2).

Theorem 5.2. Let Hypothesis 3.1 holds true. Let (p2, q2) be the unique solution of
the ABSDE (69) Let (X̄, π̄, c̄) be an optimal pair for the optimal control problem of
minimizing −U , where U is defined in (66). For every admissible control (π1, c1)
set π̄1 = π1 − π̄, c̄1 = c1 − c̄ and πρ = π̄ + ρπ̄1, c

ρ = c̄+ ρc̄1, then

EFt
[(
r(t+ d, S̄t+d) (πρ(t)− π̄(t)) + cρ(t+ d)− c̄(t+ d)

+ (π̄(t)− πρ(t)) b(t+ d, S̄t+d)
)
p2(t+ d)

+ (π̄(t)− πρ(t))σ(t+ d, S̄t+d)q
2(t+ d)

]
+ (cρ(t)− c̄(t)) (U1)c(t, c̄(t)) ≤ 0

dt× P a.s., where we have set X̄(t) =

(
S̄(t)
V̄ (t)

)
.
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