


ABSTRACT

Extremization problems are frequently encountered in AdS/CFT. Field theory ob-

servables such as central charges and sphere partition functions can be computed from

extremal functions of the dual supergravity solution. The latter can be expressed

in terms of topological quantities that naturally arise in the context of equivariant

localization. A particularly interesting example of extremal functions are the entropy

functions of AdS supersymmetric black holes, whose Legendre transform reproduces

the Bekenstein-Hawking entropy. Focusing on the case of Kerr-Newman black holes

asymptotically AdS5×SE5, the superconformal index of the dual four-dimensional

N = 1 quiver theory can match the entropy function in the large -N limit.

In the first part of this thesis we study the superconformal index of N = 1 quiver

theories at large -N for general values of electric charges and angular momenta, using

both the Bethe Ansatz formulation and the more recent elliptic extension method.

We are particularly interested in the case of unequal angular momenta, J1 6= J2,

which has only been partially considered in the literature. We revisit the previous

computation with the Bethe Ansatz formulation with generic angular momenta and

extend it to encompass a large class of competing exponential terms. In the process,

we also provide a simplified derivation of the original result. We consider the newly-

developed elliptic extension method as well; we apply it to the J1 6= J2 case, finding a

good match with the Bethe Ansatz results. We also investigate the relation between

the two different approaches, finding in particular that for every saddle of the elliptic

action there are corresponding terms in the Bethe Ansatz formula that match it at

large -N .

In the second part of this thesis we study extremal functions of supergravity so-

lutions through the lenses of equivariant localization. Recently it has been proposed

that a vast class of gravitational extremization problems in holography can be formu-

lated in terms of the equivariant volume of the internal geometry, or of the cone over

it. We substantiate this claim by analysing supergravity solutions corresponding to

branes partially or totally wrapped on a four-dimensional orbifold, both in M-theory

as well as in type II supergravities. We show that our approach recovers the relevant

gravitational central charges/free energies of several known supergravity solutions

and can be used to compute these also for solutions that are not known explicitly.

Moreover, we demonstrate the validity of previously conjectured gravitational block

formulas for M5 and D4 branes. In the case of M5 branes we make contact with a

recent approach based on localization of equivariant forms, constructed with Killing

spinor bilinears.
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Chapter 1

Introduction

In the AdS/CFT holography many interesting observables can be expressed in terms

of extremization problems. In the conformal field theory side, a notable example is

the way that the exact R-symmetry of the theory can be determined by extremizing

a functional. The exact R-symmetry is the U(1)R symmetry whose current is in

the same superconformal multiplet as the stress-energy tensor. In four dimensions,

the exact R-symmetry can be found by a process called a-maximization [4]. Since

the a central charge can be easily computed from the ’t Hooft anomalies of the

U(1)R symmetry, the idea is to define a trial R-symmetry, which is a generic linear

combination of all the possible global abelian symmetries of the CFT, and then to

compute atrial from the trial R-symmetry the same way one would compute a from

the exact R-symmetry. a-maximization states that atrial is maximized when the

trial R-symmetry matches the exact R-symmetry. A two-dimensional analogue of

this process involves the central charge c and is called c-extremization [5]. Similar

extremal problems can also be set up for odd-dimensional field theories, but instead

of central charges the functional to be extremized is given by the sphere partition

function (or its logarithm, the free energy), as is the case for F -maximization [6] and

I-extremization [7].

The gravitational dual of the extremization of central charges and free energies

was first described in [8–12]. On the gravitational side we have extremal functions

that depend on a set of parameters for the abelian isometries of the background

and another set of parameters describing the geometry. The extremization with

respect to these parameters gives the gravitational free energy of the supergravity

solution, that is holographically equal to the central charge or free energy of the

dual conformal field theory. Given the close relation between these field theory

observables and quantities that are invariant under small deformation of the theory,

such as ’t Hooft anomalies and Witten indices, it should be of no surprise that the

gravitational extremal functions can be built from basic topological objects of the

internal geometry. Such is the case for the Sasakian volume [8, 9], dual to a and
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F -maximization, and its generalization in GK geometry, the master volume [11, 12],

dual to c and I-extremization.

The extremal problems that we have mentioned up to this point are far from be-

ing an exhaustive list. One the most notorious and well-studied example of extremal

functions are the entropy functions of supersymmetric black holes. The Bekenstein-

Hawing formula [13–17] gives a semiclassical prediction for the black hole entropy

in terms of the area of the event horizon. The entropy should just be a function of

the conserved charges of the black hole, but the supergravity solution from which

the horizon area can be computed typically also depends on the asymptotic mod-

uli. This discrepancy is fixed by the attractor mechanism, which expresses the value

of the moduli fields at the black hole horizon exclusively in terms of the conserved

charges. The explicit realization of the attractor mechanism in four-dimensional

N = 2 gauged supergravity was found in [18–20]. A notable consequence of this

mechanism is that horizon area can be determined as the extremal value of a func-

tional. More in general, the entropy of extremal black holes in various dimensions

can be expressed as the Legendre transform of the so-called entropy function [21].

We will focus on asymptotically-AdS black holes, whose microscopical entropy

can be investigated by means of the AdS/CFT holography. The microstates of a

black hole in the bulk correspond holographically to an ensemble of states of the dual

CFT on the boundary. The black hole entropy can then be determined by counting

these states, and the result should be compared with the semiclassical prediction

given by the Bekenstein-Hawing formula. The first successful microstate counting

of this type was obtained for a class of static dyonic BPS black holes in AdS4 × S7

[7, 22], and has been followed by an extensive literature. The BPS states in the

dual ABJM theory were counted in [7] by means of a Witten index, the topologically

twisted index I [23]. In the weak-gravity / large -N limit, the index I reproduces

the entropy function of the black holes, whose Legendre transform correctly matches

the value of the Bekenstein-Hawing entropy. Interestingly, if we consider the AdS2

solution arising as the near-horizon limit of the black hole, its dual is a quantum

mechanics obtained by dimensionally reducing the CFT. The index I is invariant

under this process and can thus be interpreted as the Witten index of the quantum

mechanics. The I-extremization principle then suggests that the critical point of I
selects the exact R-symmetry of the superconformal algebra, and the gravitational

dual of this procedure can be understood using the master volume of GK geometry

[24, 25].

Extremal functions of known black holes (and black strings) can be expressed in

terms of gravitational blocks. Inspired by the holomorphic blocks in field theory [26],

it was found in [27] using the attractor mechanism in 4d that the entropy function

of various black holes and strings in AdS4 and AdS5
1 could be obtained by gluing

1For black holes and black strings in AdS5 a dimensional reduction to 4d was performed.
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two “blocks”, each corresponding to the fixed points of the rotational symmetry of

the sphere in the near horizon. This strongly suggested a connection to equivariant

localization, given that fixed point formulas frequently appear in the latter. Recently

this connection has been made more clear by the suggestion of [28] that extremal

functions of a vast class of supergravity solutions can be expressed in terms of the

equivariant volume [29] of the internal geometry, a universal topological quantity

computable by means of the fixed point formulas of equivariant localization.

In the first part of this thesis we will focus on the case of supersymmetric Kerr-

Newman black holes in AdS5, whose entropy function can be reproduced by com-

puting the large -N limit of the superconformal index [30, 31]. In the second part of

this thesis we will generalize the proposal of [28] and show how the extremal func-

tion of various systems of branes wrapped around four-dimensional toric orbifolds

(or two-cycles within them) can be expressed in terms of the equivariant volume.

1.1 Kerr-Newman black holes in AdS5

Let us consider the asymptotically AdS5 × S5 supersymmetric black hole solutions

of type IIB supergravity [32–36]. In the weak-gravity / large -N limit it should be

possible to reproduce the entropy of these black holes by counting the 1/16 BPS

states of the dual boundary theory, which is N = 4 Super Yang-Mills on S3 × R.

These states are counted, with a (−1)F sign, by the superconformal index [30, 31].

The entropy function of these black holes was found in [37], and in [38] a more general

expression for AdS5×SE5 black holes with toric Sasaki-Einstein SE5 was conjectured,

despite that black hole solutions of this type are not known for general values of the

conserved charges. It would be natural then to expect that the logarithm of the

superconformal index of N = 1 quiver theories might be able to reproduce this

entropy function in the large -N limit.

Early attempts to compute the superconformal index at large -N did not repro-

duce the O(N2) growth expected from the entropy function, leading to the belief that

large cancellations between fermions and bosons caused by the (−1)F sign made this

approach non-viable [31, 39–41]. More recently a solution to this puzzle has been

found: when the fugacities associated to electric charges and angular momenta are

extended to complex values the cancellations between fermions and bosons states

are obstructed [42, 43]. Then at the leading O(N2) order the resulting expression

for the superconformal index does indeed match the entropy function of AdS5 × S5

black holes [3, 43–45].

The large -N computation of the superconformal index simplifies considerably

when the angular momenta are assumed to be equal, J1 = J2. This special case

was the sole focus of the first large -N results [43–45], which all made use of the

so-called Bethe Ansatz formula [46, 47]. The Bethe Ansatz formula recasts the

standard integral representation of the index as a sum over the solutions of a set
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of transcendental equations, the Bethe Ansatz equations (BAE). When J1 6= J2 the

terms that contribute to the formula are also indexed by a vector of integers that

takes values in the Cartan subalgebra of the gauge group, making the computation

technically difficult. These obstacles were overcome in [3], in which we showed that

there exist a term in Bethe Ansatz formula that can reproduce the entropy function

of AdS5 BPS black holes with generic values for the conserved charges. A notable

shortcoming of [3] is that we only computed a single contribution to the index out

of the many competing and exponentially growing ones.

The main goal of the work we will present in chapter 3, which is based on [1], is

to seek a better understanding of the large -N limit of the index with generic charges

(and especially J1 6= J2) by computing a much wider class of competing exponential

terms that contribute to the index. In order to achieve this, other than the Bethe

Ansatz formula, we will also make use of the elliptic extension method [48–50], which

consists on a saddle point analysis with the peculiarity that the integrand is not

meromorphic, it is instead doubly periodic. We will provide the first application of

this method to the case of J1 6= J2, and compare the effective action of the large -N

saddles with the analogous contributions to the Bethe Ansatz formula, finding a good

match.

1.2 Equivariant volume extremization

Equivariant localization, and especially the Atiyah-Bott-Berline-Vergne formula [51,

52], can be used to compute the integral of large class of differential forms in terms

of in terms of lower dimensional integrals over the fixed point set of the abelian

symmetry of the geometry. If the fixed point set consists of isolated points, the

integral reduces to a sum over the fixed points: this is the case for toric orbifolds,

which will feature in all the examples we will consider in chapter 5, based on [2].

A very useful quantity that can be computed with this fixed point formula is the

equivariant volume [29], which for compact orbifolds can be thought as the generator

of all the possible integrals of equivariant Chern forms. In [28] it was proposed that

a large class of extremal functions in supergravity can be formulated in terms of the

equivariant volume: they showed that the Sasakian volume and the master volume of

GK geometry could be extracted from the equivariant volume, and they successfully

tested their approach on supergravity solutions that arise as the near-horizon limit

of branes wrapped on the sphere or the spindle.

One of the main goal of our work in [2] was to bring further evidence to the pro-

posal of [28] by studying various systems of branes wrapped around four-dimensional

toric orbifolds or two-cycles within them. We find that in order to fully capture the

quantization of the fluxes of the Ramond-Ramond or M theory forms a slight general-

ization of the equivariant volume is needed, one that also includes higher times. While

the Kähler moduli couple linearly with the equivariant Chern forms, the higher times
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are additional parameters that couple with products of equivariant Chern forms. We

find that the equivariant volume with higher times can reproduce the gravitational

central charges and free energies of various known supergravity solutions, provided

that it is extremized with respect to all the parameters that are not fixed by su-

persymmetry or the quantization of the fluxes. Our approach can also be applied

to cases where the supergravity solution is not explicitly known and we can recover

various previously conjectured gravitational block formulas.

We analyze AdS3 and AdS5 solutions to eleven dimensional supergravity corre-

sponding to systems of M5 branes, solutions in AdS2 and AdS4 of massive type IIA

corresponding to D4 branes in the presence of D8 and a O8 plane, and lastly AdS3

solutions in type IIB arising as the near-horizon limit of D3 branes. In the case of

M5 branes we will show that our approach is equivalent to the very recent method of

[53], which constructed equivariant forms using Killing spinor bilinears as building

blocks and subsequently applied the fixed point formulas of equivariant localization.

1.3 Structure of the thesis

This thesis is structured as follows. In chapter 2 we review the BPS Kerr-Newman

black holes in AdS5, their Bekenstein-Hawking entropy, their entropy function, and

how the latter can be reproduced by the large -N limit of the superconformal index.

We review the definition and key properties of the superconformal index, together

with some useful formulae for its computation, namely the integral representation

and the Bethe Ansatz formula.

In chapter 3 we compute the large -N limit of the superconformal index of N = 1

quiver theories. This chapter is based on the paper [1]. First, we briefly review the

elliptic extension method and explain how we generalized it to the case of unequal

angular momenta. We describe the large -N saddles and compute their effective

action. Then we study the contributions to the Bethe Ansatz formula at large -N

and compare them with the results obtained with the elliptic extension method.

In chapter 4 we review equivariant localization, toric orbifolds and the equivari-

ant volume. We review the the Atiyah-Bott-Berline-Vergne equivariant localization

formula for orbifolds, the definition of toric orbifolds and some key aspects of them:

moment maps, polytopes, toric-Käher metrics, the Chern classes associated to the

toric divisors. Then we review the definition equivariant volume, its computation

by means of a fixed point formula and some of its salient properties. At last we

introduce the higher times generalization of the equivariant volume.

In chapter 5 we propose a prescription for extremal functions in supergravity

based on the equivariant volume of the internal space, which generalizes the pro-

posal presented in [28]. This chapter is mostly based on the paper [2]. We begin

by briefly reviewing the Sasakian and master volumes. Then we present our pre-

scription, which we use to study various systems of branes wrapped around four-
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dimensional toric orbifolds or two-cycles within them, reproducing the gravitational

central charges/free energies and various previously conjectured gravitational block

formulas. For systems of M5 branes we consider solutions in AdS3 and AdS5 and

make contact with the approach of [53]. For systems of D4 branes in massive type

IIA we consider solutions in AdS2 and AdS4. Lastly for systems of D3 branes in

type IIB we consider solutions in AdS3, generalizing to the orbifold case the results

of [54].

In chapter 6, which contains unpublished material, we begin by reviewing the

Molien-Weyl formula for the equivariant volume. Then we provide a direct derivation

of the formula from the standard formulation of the equivariant volume and discuss

the correspondence between residues and fixed points. We revisit the AdS3 ×M8

solutions in M theory, reformulating the prescription for extremal functions that we

advanced in [2] in terms of the Molien-Weyl formula, and discuss some interesting

future directions.

At last, in chapter 7 we briefly summarize our main findings. For a more in-

depth discussion of our results and interesting future directions we refer instead to

sections 3.4, 5.4 and 6.3, each one pertaining to their respective chapters.

The appendices A and B are respectively the appendices of [1] and [2], the former

containing technical aspects pertaining the large -N computation of the superconfor-

mal index, the latter providing more details about the parametrization of the Kähler

moduli for extremal function and the computation of the gravitational free-energy

of the solutions constructed in [55].
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Chapter 2

Counting black hole microstates

with the superconformal index

In this chapter we review the Bekenstein - Hawking entropy of asymptotically AdS5

Kerr-Newman BPS black holes in type IIB supergravity, and how it is possible to

reproduce such entropy with a microstate count in the dual CFT. The fundamental

object used for this count is the superconformal index [30, 31].

This chapter is organized as follows. In section 2.1 we review the Bekenstein -

Hawking entropy of AdS5×S5 black holes. In section 2.2 we discuss how the picture

changes when S5 is substituted with a more general five-dimensional Sasaki-Einstein

SE5. Then in section 2.3 we review the definition of the superconformal index and

how it can provide a count for the microstates of AdS5 black holes. Lastly in section

2.4 we review two formulae for the computation of the index.

2.1 Entropy of BPS Kerr-Newman black holes in AdS5×S5

A class of supersymmetric Kerr-Newman black holes asymptotic to AdS5 has been

found in [32–36]. They have an embedding in type IIB supergravity on AdS5 × S5,

which means that we can probe their microstates using the AdS/CFT correspon-

dence. Let us briefly review their key properties.

From the symmetries of AdS5×S5 we can determine the conserved charges carried

by the black holes. The group of rotations in AdS5 corresponds to the maximal

compact subgroup of the group of isometries of the anti-de Sitter space, which is

SO(4) ⊂ SO(2, 4). The maximal torus of SO(4) is U(1)2 ⊂ SO(4), which means that

the AdS5 black holes depend on two angular momenta J1,2 , each corresponding to a

Cartan isometry of AdS5. Furthermore the black holes carry three electric charges

Q1,2,3 associated to the Cartan isometries of the internal space S5, considering that

its symmetry group is SO(6) which has maximal torus U(1)3.

The black holes that we consider are supersymmetric, more precisely they are

1/16 BPS, since they preserve two real supercharges out of the 32 of type IIB su-
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pergravity. The black hole mass is related to the conserved charges by the following

linear BPS condition:

M =
1

`5

(
|J1|+ |J2|+ |Q1|+ |Q2|+ |Q3|

)
, (2.1.1)

which also makes the black holes extremal. Here `5 denotes the curvature radius of

the anti-de Sitter space.

In order to have regular solutions with no closed time-like curves other nonlinear

constraints among the five charges are necessary. We will mention some of these

constraints in section 2.1.1 when we review the Legendre transform of the entropy. A

consequence of these conditions imposed on the charges is that the angular momenta

J1,2 cannot be seto to zero, meaning that all these supersymmetric black holes rotate

and there is no static limit. Also at most one of the three electric charges Q1,2,3 can

be zero or negative, the other must be strictly positive.

The Bekenstein–Hawking entropy of these black holes can be expressed as a

function of the charges as [56]

SBH =
A

4GN

= 2π

√
Q1Q2 +Q1Q3 +Q2Q3 −

π` 3
5

4GN

(J1 + J2) . (2.1.2)

For simplicity we will denote the coefficient that appears in front of the sum of the

angular momenta as

ν ≡ π` 3
5

4GN

=
N2

2
, (2.1.3)

where N is the color number of the dual field theory.

2.1.1 Black hole entropy from an extremization principle

In [37] it was shown that the Bekenstein-Hawking entropy (2.1.2) for the general

class of supersymmetric AdS5 black holes discussed in the previous section can be

obtained as the Legendre transform of the quantity

E
(
X ; ω̂

)
= −2πiν

X1X2X3

ω̂1 ω̂2

, (2.1.4)

as long as the chemical potentials X1,2,3 and ω̂1,2 conjugated respectively to the

electric charges Q1,2,3 and to the angular momenta J1,2 satisfy one of the two following

choices for the constraint:
3∑

a=1

Xa =
2∑
i=1

ω̂i ± 1 . (2.1.5)

E
(
X ; ω̂

)
goes by the name of entropy function. The constraint on the chemical

potentials mirrors the fact that that the five conserved charges depend on only four

parameters. We will now review a simple method of extracting the value of the

entropy from E
(
X ; ω̂

)
which follows appendix B of [57].
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The entropy SBH is given by the extremal value of

S
(
X ; ω̂

)
= E

(
X ; ω̂

)
− 2πi

( 3∑
a=1

QaXa +
2∑
i=1

Ji ω̂i

)
− 2πiΛ

( 3∑
a=1

Xa −
2∑
i=1

ω̂i ∓ 1

)
,

(2.1.6)

where Λ is a Lagrange multiplier introduced in order to impose the constraint (2.1.5).

Then the critical point of S can be found as the solution to these equations:

Qa + Λ =
1

2πi

∂E

∂Xa

= −ν X1X2X3

ω̂1 ω̂2Xa

, (2.1.7)

Ji − Λ =
1

2πi

∂E

∂ ω̂i
= ν

X1X2X3

ω̂1 ω̂2 ω̂i
. (2.1.8)

Fixing the value of Λ would require using the constraint (2.1.5) afterwards.

However, instead of solving (2.1.7) and (2.1.8) to determine the critical point,

we can use the fact that E
(
X ; ω̂

)
is a homogeneous function of degree one to write

E =
3∑

a=1

Xa
∂E

∂Xa

+
2∑
i=1

ω̂i
∂E

∂ ω̂i
=

= 2πi
3∑

a=1

Xa

(
Qa + Λ

)
+ 2πi

2∑
i=1

ω̂i
(
Ji − Λ

)
. (2.1.9)

The second identity is only valid at the critical point. Substituting this expression

back into S we find the entropy SBH in terms of the Lagrange multiplier:

SBH = S
∣∣∣
crit.

= ± 2πiΛ . (2.1.10)

There is a simple way to determine the value of Λ. From (2.1.7) and (2.1.8) it is easy

to see that the following quantity must be zero:

0 =
(
Q1+Λ

)(
Q2+Λ

)(
Q3+Λ

)
+ν
(
J1−Λ

)(
J2−Λ

)
≡ Λ3 + p2 Λ2 + p1 Λ + p0, (2.1.11)

which gives us a third degree equation for Λ. Its coefficients are

p2 = Q1 +Q2 +Q3 + ν ,

p1 = Q1Q2 +Q1Q3 +Q2Q3 − ν(J1 + J2) ,

p0 = Q1Q2Q3 + νJ1J2 . (2.1.12)

From (2.1.10) we see that the entropy is real only for Λ purely imaginary. Since

the coefficients (2.1.12) are real, the polynomial (2.1.11) has imaginary roots only

if it can be factored as (Λ2 + x1)(Λ + x2) for some x1, x2 ∈ R, with x1 > 0. The
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coefficients p1,2,3 in terms of x1,2 are given by p2 = x2, p1 = x1 and p0 = x1x2. This

means that in order to have real value for the entropy we must impose that

p0 = p1p2 , p1 > 0 , (2.1.13)

which correspond to some of the already mentioned nonlinear constraints among the

black hole charges required to avoid closed time-like curves. The imaginary solutions

of (Λ2 + x1)(Λ + x2) = 0 are Λ = ±i√x1, we have to chose the one that makes

(2.1.10) positive. Either way we find that

SBH = 2π
√
p1 = 2π

√
Q1Q2 +Q1Q3 +Q2Q3 − ν(J1 + J2) , (2.1.14)

which reproduces precisely (2.1.2).

2.2 Entropy of AdS5×SE5 black holes

The black holes we have discussed so far are asymptotic to AdS5 × S5. Solutions

with general values for the electric charges for choices of the internal manifold other

than S5 (and its quotient spaces under discrete symmetries) are not known. However

in [35] solutions of minimal gauged supergravity that are asymptotically AdS5 are

described, which can be embedded in type IIB supergravity on AdS5× SE5 for more

general Sasaki-Einstein manifolds other than S5. These solutions only depend on

a single electric charge Q, and their Bekenstein-Hawking entropy can be read from

(2.1.2) just by identifying Q1 = Q2 = Q3 ≡ Q.

In [38] the following expression for the entropy function of AdS5 × SE5 black

holes with toric SE5 was conjectured:

S
(
X ; ω̂

)
=E

(
X ; ω̂

)
− 2πi

( d∑
a=1

QaXa +
2∑
i=1

Ji ω̂i

)
− 2πiΛ

( d∑
a=1

Xa −
2∑
i=1

ω̂i ∓ 1

)
,

E
(
X ; ω̂

)
= − πiN2

d∑
a,b,c=1

Cabc
6

XaXbXc

ω̂1 ω̂2

. (2.2.1)

where N2Cabc = 1
4

trRaRbRc are ’t Hooft anomaly coefficients of the dual theory. Ra

gives charge 2 to the a-th chiral multiplet and zero to the others. The trace is over the

fermions of the theory. In terms of toric data Cabc = | det(va, vb, vc)|, where the va are

the vectors that generate the fan.1 For AdS5×S5 black holes this expression reduces

to (2.1.4). Using known relations valid for holographic superconformal theories [58].

we can re-express (2.2.1) at leading O(N2) order as

E = −πi
24

(ω̂1 + ω̂2 ± 1)3

ω̂1 ω̂2

trR(δ±)3 = −4πi

27

(ω̂1 + ω̂2 ± 1)3

ω̂1 ω̂2

a(δ±) , (2.2.2)

1We will review toric geometry in chapter 4.
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where

δ±a =
Xa

ω̂1 + ω̂2 ± 1
,

d∑
a=1

δ±a = 2 . (2.2.3)

For the universal black holes of [35] it is straight-forward to check that (2.2.2)

reproduces their entropy (see e.g. [3]). Since the δa can be seen as parameterizing a

trial R-charge, by a-maximization [4] a(δ) is extremized when δa matches the exact

R-symmetry and a(δ) =
π`35

8GN
. The rest of the computation is the same as subsection

2.1.1, leading to expression 2.1.2 with Q1 = Q2 = Q3 = Q.

In [3] we provided further evidence that (2.2.1) is the correct entropy function by

focusing in the case of AdS5 × T 1,1 with equal angular momenta. T 1,1 = SU(2)×SU(2)
U(1)

is the five-dimensional Sasaki-Einstein whose Kähler cone is the conifold Calabi-Yau

three-fold, and whose dual is the Klebanov-Witten gauge theory [59]. We can use

a consistent truncation from type IIB down to 5d N = 2 gauged supergravity (the

second one in section 7 of [60]). Even if an AdS5 black hole solution with general

electric charges and equal angula momenta is not known, assuming it exist it would

have the topology of AdS2 fibered over S3 and we could reduce it along the Hopf

fiber of S3 down to a black hole in four dimensions. The four dimensional black hole

would then have the same entropy as the AdS5 one. Since in four dimensions the

attractor mechanism is known [61–63], we can use it to compute the entropy, and

the result we obtain is in accordance with (2.2.1).

In the rest of this chapter and in chapter 3 we will discuss how the entropy of

supersymmetric Kerr-Newmann black holes can be reproduced from a microstate

counting in the dual CFT. The field theory results corroborate (2.2.1).

2.3 Superconformal index and microstate counting

In order to provide a microscopic description of the Bekenstein-Hawking entropy of

the AdS5 black holes we have described in the previous sections we rephrase the

problem in terms of counting the number of states of the dual CFT that holograph-

ically correspond to the black hole. Under the assumption that for large charges the

contribution of single-center black holes dominates, this amounts to counting all BPS

states of the dual theory with the appropriate value for the conserved charges. For

the AdS5 × S5 black holes in particular we need to count 1/16 BPS states of N = 4

super Yang-Mills.

The BPS states of a supersymmetric CFT transform under short representations

of the superconformal algebra, since they are annihilated by some of the supercharges.

The superconformal index [30, 31] counts these states with a sign (−1)F , − for

fermions and + for bosons. In this section we will review the definition of the index,

and in subsections 2.3.1 and 2.3.2 how it is possible to extract the black hole entropy

(2.1.2) from it.

16



Let us consider a generic four dimensional N = 1 superconformal theory. We

work in radial quantization, in which the euclidean distance from the origin takes

the role usually reserved to the time coordinate. Because of conformal invariance

the radially quantized euclidean theory on R4 is equivalent to the same field theory

defined on S3×R, the conformal boundary of AdS5. Given a supercharge Q we can

define a supersymmetric index as

I(µ) = tr (−1)F e−β{Q,Q
†}
∏
j

e2πi µjMj , (2.3.1)

whereMj are conserved charges that are invariant under the action of Q and µj are

their respective chemical potentials.

As in the case of the Witten index [64], the index (2.3.1) only receives contribu-

tions from BPS states that are annihilated by Q and Q†, thus it does not actually

depend on the parameter β. Indeed from the relation {Q,Q} = 0 we can deduce that

Q and {Q,Q†} commute, which combined with the fact that the chargesMi are Q-

closed by assumption and that any supercharge satisfies the relation {(−1)F ,Q} = 0,

we come to the conclusion that the state Q|Ω〉, if not zero, gives a contribution to

the trace in (2.3.1) that is opposite to the one coming from the state |Ω〉. This means

that unless Q|Ω〉 = 0 (and by similar logic Q†|Ω〉 = 0 ) the contribution of |Ω〉 will

cancel out. Therefore (2.3.1) can be written equivalently as

I(µ) = tr
∣∣∣
{Q,Q†}=0

(−1)F
∏
j

e2πi µjMj , (2.3.2)

where the trace is over the kernel of {Q,Q†}, which coincides with the subspace of

BPS states since

0 = 〈Ω|{Q,Q†}|Ω〉 = ‖Q|Ω〉‖2 +
∥∥Q†|Ω〉∥∥2 ⇒ Q|Ω〉 = Q†|Ω〉 = 0 . (2.3.3)

The reason why (2.3.2) is called an “index” is the fact that it doesn’t change

under continuous deformations of the theory. Indeed under such continuous defor-

mations the quantum numbers of a state with respect to the conserved charges Mi

cannot change; the only thing that could affect the value of (2.3.2) is if a multiplet of

states in a long representation of the algebra, not counted by (2.3.2), were to break

down into two or more multiplets of BPS states with {Q,Q†} = 0, or viceversa.

However this would lead to a jump in the value of (2.3.2), which is a continuous

functions. We can conclude that continuous deformations of the theory do not affect

the index (2.3.2).

To obtain the proper definition of the superconformal index we still need to make

an adequate choice for the supercharge Q and the conserved chargesMi that appear

in (2.3.2).
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We denote the conserved charges associated to the Cartan generators of SO(4),

the isometry group of S3, as J1,2 , mirroring the black hole angular momenta intro-

duced at the beginning of this chapter. Their linear combinations J± = 1
2

(
J1 ± J2

)
are the Cartan generators of the subalgebra su(2)+ ⊕ su(2)− ⊂ su(2, 2) ' so(2, 4).

It is convenient to assemble the supercharges into doublets of SU(2)+ and SU(2)− .

If α and α̇ are the respective spinor indices associated to these two groups we can

write the N = 1 supercharges as {Qα, Q α̇, Sα, Sα̇}, which amount to 8 real super-

charges, since they are related by hermitian conjugation. For a radially quantized

theory we need to be careful with the hermitian conjugate of operators, considering

that in euclidean space-time hermitian conjugation is accompanied by a time rever-

sal, which in radial quantization corresponds to the inversion x→ x / |x|2. This leads

to nontrivial relations like P †µ ≡ Kµ, which implies that (Qα)† ≡ Sα , (Q α̇)† ≡ Sα̇ .

If we choose Q2 as the supercharge Q that enters the definition of the index,

then Q† ≡ S1 and their anticommutator is given by

1

2
{Q,Q†} = H − 2J+ −

3

2
R . (2.3.4)

Here H denotes the conformal Hamiltonian in radial quantization, which corresponds

to the generator of dilatations, while R generates the exact U(1)R symmetry of the

theory. Thus the superconfomal index will only count states for which the quantity

on the right hand side of (2.3.4) vanishes.

One can check that the Cartan generators of the subalgebra commuting with Q
and Q† are given by H+J+ and J−. In the case of the latter it is evident since we’ve

chosen supercharges that are in doublets of SU(2)+ and not SU(2)−. Therefore we

can define the superconformal index as a function of the chemical potentials τ and

σ conjugated to convenient linear combinations of H + J+ and J− :

I(τ, σ) = tr (−1)F exp

[
−β{Q,Q†}+2πi τ

(
1
3

(
H+J+

)
+J−

)
+2πi σ

(
1
3

(
H+J+

)
−J−

)]
.

(2.3.5)

Considering that this expression does not depend on the value of β, we can shift

the conserved charges conjugated to the chemical potentials τ and σ by a constant

multiple of {Q,Q†} without affecting the index. In particular if we subtract 1
3
{Q,Q†}

from them we obtain the much simpler J+ ± J− + R
2

= J1,2 + R
2

.

If the flavor symmetry group of the theory is given by GF then its Cartan gen-

erators {qα}rk(GF )
α=1 are Q-closed conserved charges that we can add to the definition

of the index as following:

I(ξ, τ, σ) = tr (−1)F exp

[
−β{Q,Q†}+2πi τ

(
J1+R

2

)
+2πi σ

(
J2+R

2

)
+2πi

rk(GF )∑
α=1

ξα qα

]
.

(2.3.6)
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This is the general definition of the four dimensional superconformal index that we

will use from now on. The chemical potentials τ and σ are conjugated to the angular

momenta J1,2, up to a shift of R/2, while the flavor chemical potentials {ξα}rk(GF )
α=1

are conjugated to the charges {qα}rk(GF )
α=1 .

Had we chosen Q2̇ to take the role of the supercharge Q instead of Q2 we would

have obtained the same expression as (2.3.6) but with a minus sign in front of the

R symmetry, obtaining the “left-handed” index, whereas (2.3.6) gives the “right-

handed” index. The difference between the two indices can be reabsorbed just by

changing the sign of the potentials τ and σ (a change in sign of J± doesn’t affect

the index because of SU(2)± symmetry). The choice Q ≡ Q1 on the other hand

produces an index that is equivalent to the right-handed one, and similarly Q ≡ Q1̇

produces an index equivalent to the left-handed one.

The superconformal index is related to the supersymmetric partition function of

the theory on S3 × S1
β as follows [65, 66]:

ZS3×S1
β
(ξ, τ, σ) = e−βE I(ξ, τ, σ) , (2.3.7)

where E is the supersymmetric Casmir energy, which can be expressed as a function

of the central charges a, c. The supersymmetric partition function ZS3×S1
β

can be

computed by means of localization.

2.3.1 N = 4 SYM and the microstates of AdS5 × S5 black holes

Let us specialize (2.3.6) to the case of N = 4 super Yang-Mills. The R-symmetry

group is SO(6)R , which has U(1)3 for its maximal torus. A basis of Cartan generators

is given by {Ra}a=1,2,3, where Ra gives charge 2 to the chiral superfield Φa and zero

charge to the other two. In terms of these generator we can write the U(1)R symmetry

and flavor charges q1,2 that enter the definition of the superconformal index (3.1.1)

as

R =
1

3

(
R1 +R2 +R3

)
, (2.3.8)

q1,2 =
1

2

(
R1,2 −R3

)
. (2.3.9)

For a R-symmetry the charge of the fields in a multiplet lowers by one for pro-

gressively higher spins, while in the case of a flavor symmetry all the fields in the

same multiplet have the same charge. Since R1,2,3 are R-symmetries, from (2.3.8)

and (2.3.9) we see respectively that R is a proper R-symmetry while q1,2 are flavor

charges.

Following [43], it is convenient to define the chemical potentials {∆a}a=1,2,3 as

∆1,2 = ξ1,2 +
τ + σ

3
, ∆3 = τ + σ −∆1 −∆2 ± 1 . (2.3.10)
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The definition of ∆3 is such that the {∆a} satisfy a constraint similar to the one

imposed on the {Xa} in (2.1.5). If we introduce the fugacities

p = e2πiτ , q = e2πiσ , ya = e2πi∆a , (2.3.11)

then in terms of them we can write the superconformal index (2.3.6) as

I(p, q, y1, y2) = tr
∣∣∣
{Q,Q†}=0

(−1)FpJ1+
R3
2 qJ2+

R3
2 yq11 yq22 = (2.3.12)

= tr
∣∣∣
{Q,Q†}=0

pJ1 qJ2 yQ1

1 yQ2

2 yQ3

3 . (2.3.13)

Here Qa ≡ Ra/2 correspond to the black hole charges, which were defined as the

Cartan generators of the isometry group SO(6) of the internal manifold S5, the

same way the R1,2,3 are (with a different normalization) the Cartan generators of the

R-symmetry group SU(4)R ' SO(6). To go from (2.3.12) to (2.3.13) we must notice

that (−1)F = (−1)R3 . Indeed the fact that R3 gives even charge to all the superfields

(charge two to Φ3 and V , charge zero to Φ1,2) means that all boson fields have even

charge under R3 while the fermions have odd charge.

From (2.3.12) we can see that the superconformal index is a single valued function

of the fugacities, considering that the flavor charges q1,2 are integers and so are

J1,2 + R3

2
. As for the latter R3 is odd only for fermions, in which case the spin

statistic theorem says that J1,2 are half an odd integer. On the other hand for

bosons J1,2 are integers and R3 is even.

From (2.3.13) one can extract the sought after value of the entropy of AdS5×S5

black holes as a Fourier coefficient. Schematically:

eSBH(J,Q) ≈
∫
dτ dσ d∆1 d∆2 I(τ, σ,∆1,∆2) e−2πi(τJ1+σJ2+

∑
a=1,2,3 ∆aQa) . (2.3.14)

The saddle point approximation of this integral leads to expressing the entropy SBH
as the Legendre transform of log I(τ, σ,∆1,∆2,∆3) with the constraint ∆1 + ∆2 +

∆3 = τ +σ± 1. In the light of the extremization principle for the black hole entropy

discussed in section 2.1.1, by identifying ∆a ≡ Xa, ω̂1 ≡ τ and ω̂2 ≡ σ we conclude

that in large N limit the logarithm of the superconformal index should reproduce

the entropy function (2.1.4), which scales as O(N2).

The matching between the entropy function and the logarithm of the super-

conformal index at large N was first achieved in [43] for the case of τ = σ, which

corresponds to considering black holes with equal angular momenta. Previous at-

tempts [31] to reproduce the black hole entropy had failed to obtain the expected

O(N2) behavior, getting instead a O(1) scaling for the large N limit of the supercon-

formal index. This discrepancy was attributed to large cancellations between boson

and fermions states due to the (−1)F factor in the index. The authors of [31] only
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considered real values for the fugacities; as pointed out in [42, 43, 57, 67], this corre-

sponds to a Stokes line for the large N behavior of the index. The critical point of

the entropy function corresponds to complex values for the fugacities, for which the

logarithm of the superconformal index grows as O(N2).

In [3] we provided the first large -N computation of the index for general charges,

including the case of unequal angular momenta J1 6= J2, and we reproduced the

entropy function (2.1.4).

We note that there is also another limit, other than the large -N one, for which

the superconformal index has been show to reproduce the entropy function of AdS5

black holes: the Cardy limit τ, σ → 0 [42].

2.3.2 Microstate counting for AdS5×SE5 black holes

A microstate counting for AdS5×SE5 black holes can be done in a similar manner, by

computing the large -N limit of the dual field theory. The cone over a toric SE5 is a

Gorenstein toric singularity, and the dual CFT lives in the world-volume of the stack

of N D3 branes probing the singularity. The N = 1 quiver theories that in the IR

flow in this CFT are called the toric phases and they are related by Seiberg dualities.

Such toric phases have as a gauge group multiple copies of SU(N), and in terms of

matter content only have chiral multiplets in the bi-fundamental representation of

two of the SU(N) groups [68]. They can thus be represented with a quiver diagram,

a directed graph where the SU(N) subgroups are the nodes and arrows between

nodes represent bi-fundamental chiral multiplets. A prescription on how to extract

important data such as the R-charges of a toric phase with minimal content has been

proposed in [69].

In [70] it was shown that the Cardy limit of the logarithm of the superconformal

index of toric models can reproduce the entropy function (2.2.1).

The first large -N computation of the superconformal index for toric model was

done in [45] in the special case τ = σ. In [3] we generalized this result to the

case of general parameters, thus fully reproducing (2.2.1). We note that the quiver

theories considered in these works can also include chiral multiplets in the adjoint

representation, which are not needed for the minimal phase of toric models, but it

is an easy generalization which is also useful to make contact with N = 4 super

Yang-Mills, whose three chiral multiplets are in the adjoint of SU(N). These quiver

theories are also the ones we will focus in chapter 3 in our large -N limit analysis.

In the next section we will review the necessary formulae for the computation of the

superconformal index.

2.4 Formulae for the superconformal index

In this section we will review two formulae for the superconformal index of quiver

theories, the integral representation [30, 31, 71] and the Bethe Ansatz formula [46, 47].
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We will discuss how to extract the large -N limit of the index from them in chapter

3.

2.4.1 Integral representation

The index for N = 1 superconformal theories in four dimensions has the following

integral representation [30, 31, 71]:

I(ξ, τ, σ) = κG

∫
[0,1]rk(G)

Z(u; ξ, τ, σ) d rk(G)u . (2.4.1)

The integration variables are called holonomies and they parametrize the Cartan

subalgebra of the gauge group G. The factor κG in front is defined as

κG =
1

|WG|

[
∞∏
k=1

(
1− e2πikτ

)(
1− e2πikσ

)]rk(G)

, (2.4.2)

where |WG| is order of the the Weyl group that acts on the root system of G. The

integrand on the other hand is given by the following product of elliptic gamma

functions (see appendix A.1 for their definition and properties) :

Z(u; ξ, τ, σ) =

nχ∏
I=1

∏
ρI∈RI

Γe

(
ρI(u) + ωI(ξ) + rI

τ+σ
2

; τ, σ
)

∏
α∈∆

Γe

(
α(u) ; τ, σ

) . (2.4.3)

Let us look at the numerator first. The index I = 1, ..., nχ runs over all chiral

superfields of the theory, each one transforming in the representation RI of the

gauge group G and carrying flavor weight ωI with respect to the representation RF

of the flavor symmetry group GF . The ρI denote the weights of RI and act on the

holonomies u, given how the latter parametrize the Cartan subalgebra of G. While

the numerator of (2.4.3) accounts for the contribution of the matter content of the

theory, the terms at the denominator come from the vector multiplets. Here ∆

denotes the set of the roots of G; indeed the gauge fields are always in the adjoint

representation, for which the nonzero weights are the roots of the group.

We will denote ωI(ξ) ≡ ωαI ξα simply as ξI . The {ξI} are a more convenient

parametrization of the flavor chemical potentials, but they are not linearly indepen-

dent: for each superpotential term W in the Lagrangian they satisfy the constraint∑
I∈W

ξI = 0 . (2.4.4)

It will also be useful to define a new set of chemical potentials {∆I} as

∆I ≡ ξI + rI
τ + σ

2
(2.4.5)

22



in analogy to the already mentioned potentials (2.3.10) of N = 4 super Yang-Mills.

Notably, the superconformal index as a function of τ , σ, ∆I is invariant under integer

shifts of its arguments.2 For each superpotential term W in the Lagrangian we have

that ∑
I∈W

∆I = τ + σ + nW , (2.4.6)

where nW ∈ Z can be chosen arbitrarily, considering that the ∆I are only defined up

to integers. This constraint follows from (2.4.4) and the fact that each superpotential

term must have R-charge 2: ∑
I∈W

rI = 2 . (2.4.7)

The integral representation (2.4.1) of the index is valid in the following domain:

Im(τ + σ) > Im ∆I > 0 , Im τ > 0 , Imσ > 0 . (2.4.8)

Outside the above domain it would be necessary to change the integration contour

to avoid the poles of the Γe.

2.4.2 Bethe Ansatz formula

In this subsection we will review the Bethe Ansatz formula for the superconformal

index [46, 47].

First, we restrict ourselves to values of the chemical potentials τ and σ such

that their ratio τ/σ is a rational number. By doing so we do not loose any relevant

information: as observed in [47], the set {(τ, σ) ∈ H2 | τ/σ ∈ Q}+Z2 is dense in H2.3

Considering that the index as a function of τ , σ, ∆I is invariant under integer shifts

and it is continuous, the value of the index for generic angular chemical potentials

can be inferred from the τ/σ ∈ Q case For τ/σ ∈ Q+ we can then define ω, a and b

such that

τ = aω, σ = bω, Im ω > 0, gdc(a, b) = 1 . (2.4.9)

Then the Bethe Ansatz formula expresses the superconformal index as

I(ξ, τ, σ) = κG
∑

û∈MBAE

ab∑
{mi}=1

Z(û−mω ; ξ, τ, σ)H−1(û; ∆, ω) . (2.4.10)

Here MBAE denotes the set of all the inequivalent solutions to the following tran-

scendental equations:

Qi(u; ∆, ω) ≡
nχ∏
a=1

∏
ρa∈Ra

P
(
ρa(u)+∆a ;ω

)(ρa)i
= 1, ∀ i ∈ {1, ..., rk(G)} , (2.4.11)

2In general the same is not true when the index is written as a function of τ , σ and ξa. The

reason is that the index is not a single-valued function of the fugacities p, q and va, unless all the

R-charges of the theory are even.
3In our conventions H is the set of complex numbers with positive imaginary part.
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where P (v;ω) is defined in terms of the θ0 function (see appendix A.1) as

P (v;ω) ≡ e
πi
(
v− v

2

ω

)
θ0(v;ω)

. (2.4.12)

The equations (2.4.11) are called the Bethe Ansatz equations (BAE in short). The

identifications

ui ∼ ui + 1 ∼ ui + ω (2.4.13)

together with Weyl group transformations define the equivalence classes of solu-

tions that constitute the elements of MBAE. Indeed the “Bethe Ansatz operator”

Qi(u; ∆, ω) can be show to be invariant under (2.4.13) and is trivially invariant un-

der the Weyl group. Lastly, the quantity H(u; ∆, ω) that appears in (2.4.10) is a

Jacobian and it is given by

H(u; ∆, ω) = det

[
1

2πi

∂Qi(u; ∆, ω)

∂uj

]
. (2.4.14)

The Bethe Ansatz formula (2.4.10) has been derived from the integral represen-

tation (2.4.1) in [47]. We will now very briefly review how it is proven. The general

idea is to rewrite (2.4.1) in the following trivial way

I(ξ, τ, σ) = κG

∫
[0,1]rk(G)

Z(u; ξ, τ, σ)

rk(G)∏
i=1

1−Qi(u; ∆, ω)

1−Qi(u; ∆, ω)
d rk(G)u (2.4.15)

and then apply this shift formula for Z to the numerator:

Qi(u; ∆, ω)Z(u; ξ, aω, bω) = Z(u− δiabω ; ξ, aω, bω) . (2.4.16)

The result can be written as a single contour integral of the function Z ·Πi(1−Qi)
−1.

The Bethe Ansatz formula (2.4.10) is then obtained by application of the residue

theorem.
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Chapter 3

Superconformal index at large-N

There are primarily two distinct methods that have been used to compute the su-

perconformal index of N = 1 quiver theories at large -N .1 The first one makes use

of the Bethe Ansatz formula [46, 47], which we reviewed in subsection 2.4.2. The

Bethe Ansatz formula simplifies considerably in the particular case of equal angular

momenta; for this reason the computations of [43, 73, 74] forN = 4 Super Yang-Mills

and [44, 45] for more generic quiver theories were restricted to J1 = J2. The J1 6= J2

case was finally addressed in [3]: a particular contribution to the Bethe Ansatz for-

mula for the index has been shown to reproduce the entropy of Kerr-Newman BPS

black holes with arbitrary charges. However, a notable limitation of [3] is that we

only computed a single exponentially growing term out of the many competing ones

that contribute to the Bethe Ansatz formula.

The other approach to the large -N computation of the superconformal index is

the elliptic extension method [48–50]. It consists of a saddle point analysis of the

matrix integral representation of the index, with the peculiarity that the integrand is

not extended analytically outside its contour of integration; instead, it is extended to

a doubly periodic function. The action of the matrix integral is thus well-defined on

a torus, and a large class of saddle point solutions can be found by taking advantage

of its periodicity properties. This method was pioneered in [48] for N = 4 Super

Yang-Mills and later generalized to other quiver gauge theories in [49]; furthermore,

a reformulation of this approach that that is exact even at finite values of N has been

developed in [50]. So far this type of saddle point analysis has been employed only

for the case of equal angular momenta; the reason behind this technical restriction

is that the modulus of the torus is taken to be equal the chemical potential of the

angular momentum J ≡ J1 = J2.

The primary motivation behind the work presented in this chapter is to bet-

ter understand the large -N behavior of the superconformal index for general values

1There is also the approach of [72], which considered a truncated matrix model for the index

and showed that higher order corrections are numerically small.
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of BPS charges, especially in the case of unequal angular momenta, J1 6= J2. We

consider both approaches, the elliptic extension method and the Bethe Ansatz for-

malism, in order to provide an estimate of the large -N limit of the index. We also

investigate the relation between the two methods, focusing in particular on what the

saddles of the elliptic action correspond to in the Bethe Ansatz formalism.

First, we extend the saddle point analysis of [48, 49] to the J1 6= J2 case. We

achieve this by employing the same trick as [47]: we can assume without loss of

generality that the angular chemical potentials are integer multiples of the same

quantity, that is τ = aω and σ = bω, so that we can take advantage of the properties

of the elliptic gamma functions [75] to rewrite the action as a function that is well-

defined on a torus of modulus abω. We find that the class of solutions to the saddle

point equations described in [49] can be easily generalized to the τ 6= σ case, and we

compute their effective action.

We then consider the Bethe Ansatz approach to the large -N computation of the

index, proceeding as following.

• We revisit the computation of [3], which focused only on a single contribution

to the Bethe Ansatz formula, and extend it to encompass a large class of

competing exponential terms, finding a good match with the effective action of

the elliptic saddles. Our large -N estimate of the superconformal index is thus

verified in both formalisms.

• We provide a simplified derivation of the same large -N result of [3]. The most

laborious step in the computation of [3] is proving that a particular simplifica-

tion does not affect the large -N leading order of the index. We show how this

step can be avoided altogether, provided that N and ab are coprime.

• We study the relation between the saddles of the elliptic extension method and

the solutions to the Bethe Ansatz equations (BAE), with the intent to shed

light on the connection between the two different approaches. We find that in

the J1 = J2 case every elliptic saddle corresponds exactly to a BAE solution;

however this is no longer true when J1 6= J2, since the elliptic action and

the Bethe Ansatz equations have different periodicities. Nonetheless, we show

that matching elliptic saddles with holonomy configurations that contribute

to the Bethe Ansatz formula is always possible, as long as the role of the

auxiliary integer variables mi present in the Bethe Ansatz formalism is taken

into consideration. This matching is not always exact: sometimes the two differ

by O(1/N) corrections, which can be shown to produce a negligible effect at

leading order.

This chapter is organized as follows. In section 3.1 we introduce the integral

representation of the superconformal index ofN = 1 quiver theories and we define the
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elliptic extension of the integrand. In section 3.2 we describe the saddles of the elliptic

action and compute their effective action. In section 3.3 we switch to the Bethe

Ansatz formalism: in subsection 3.3.2 we study the relation between solutions of the

Bethe Ansatz equations and saddles of the elliptic action, while in subsection 3.3.3

we evaluate the large -N limit of the contributions to the Bethe Ansatz formula that

correspond to holonomy distributions that match the saddles; lastly, in subsection

3.3.4 we elaborate on the relation between our results and the ones of [3]. In section

3.4 we provide a summary of our results and discuss some open questions.

3.1 The superconformal index of quiver theories

We are interested in computing the large -N limit of the superconformal index of

a broad class of four dimensional N = 1 quiver gauge theories. We will focus on

theories whose gauge group can be written as the direct sum of SU(N) subgroups,

and with matter fields that transform in either the adjoint or the bifundamental

representation. The exact field content of these theories can be summarized in the

quiver diagram, a directed graph with |G| nodes and and nχ arrows (oriented edges)

between them, according to the following rules:

• Each node of the quiver denotes a SU(N) subgroup of the gauge group G.

• An arrow between two distinct nodes denotes a chiral multiplet in the bifun-

damental representation of the two SU(N) groups associated to the respective

nodes.

• An arrow that has both ends attached to the same node denotes a chiral mul-

tiplet in the adjoint representation of the respective SU(N) subgroup.

Let us specialize the general formula for the integral representation of the su-

perconformal index (2.4.1) to the case of the above class of quiver theories. We will

label the nodes of the quiver diagram with the index α = 1, . . . , |G|. The index Iαβ
will run over all the arrows of the quiver that start from the node α and end on the

node β. Then the integral representation (2.4.1) can be written as

I = κ

∫
[Du ]

|G|∏
α=1

N∏
i 6=j=1

Γe

(
uαij+τ+σ ; τ, σ

)
·
|G|∏

α,β=1

∏
Iαβ

N∏
i,j=1

Γe

(
uαβij +∆I ; τ, σ

)
, (3.1.1)

where the prefactor κ is given by

κ =

[
∞∏
k=1

(
1− e2πikτ

)(
1− e2πikσ

)]|G|(N−1) |G|∏
α=1

∏
Iαα

Γe

(
∆I ; τ, σ

)−1

(3.1.2)
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and the integration measure is

[Du ] =
1

(N !)|G|

|G|∏
α=1

δ

( N∑
j=1

uαj

) N∏
i=1

duαi . (3.1.3)

The above variables uai are an over-parametrization of Cartan subalgebra of G: for

any given α they parametrize the Cartan subalgebra of U(N). The delta functions

in the measure then restrict them to the Cartan subalgebra of SU(N). For brevity

in (3.1.1) we used the notation

uαij ≡ uαi − uαj , uαβij ≡ uαi − u
β
j . (3.1.4)

The domain of validity of the integral representation of the index is (2.4.8). Through-

out the rest of this chapter we will assume that the value chemical potentials ∆I , τ ,

σ is within this domain.

Since log κ = O(N), in the large -N limit this term gives a subleading con-

tribution and can be neglected. Similarly the 1
(N !)|G|

factor in the measure is also

subleading, being O(N logN). In the following discussion we will ignore them, as

we will only be interesed in the leading order O(N2) contributions.

In formula (3.1.1) the contour of integration for the holonomies uαi lies exclusively

on the real axis. The integrand of (3.1.1) can be extended analytically to the rest of

the complex plane, since it is a product of elliptic gamma functions, which are are

meromorphic. However it is possible to consider different extensions to the complex

plane; one of the key ideas behind the saddle-point approach of [48, 49] for the large -

N limit of the index is to forgo the analytic extension of the integrand in favor of a

doubly periodic one. Focusing exclusively on the τ = σ case, the authors of [48, 49]

rewrote the integral representation of the index in terms of the function Qc,d(z ; τ),

which is a doubly periodic function in z with periodicities 1 , τ that matches the

elliptic gamma function on the real axis as following:

Qc,d

(
x ; τ

)
= Γe

(
x+ (c+ 1)τ + d ; τ, τ

)−1
, ∀ x ∈ R . (3.1.5)

For all c, d ∈ R the Qc,d function is defined by [48]

Qc,d (z ; τ) = e
πiτ
(
c3

3
− c

6

)
Q(z + cτ + d ; τ)

P (z + cτ + d ; τ)c
, (3.1.6)

where the functions P and Q are defined by (A.1.17) and (A.1.19) respectively [76–

78]. There is an ambiguity in the definition of the phase of P , Q which will play an

important role in the discussion of section 3.2.1.

One of the goals of our work is to extend the computation of [48, 49] to the case

of unequal angular momenta. We can take advantage of the same observation at the

heart of the Bethe Ansatz formula for τ 6= σ [47], that is we can assume without
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loss of generality that the angular chemical potential τ , σ are such that τ/σ is a

rational number (see the discussion at the beginning of subsection 2.4.2). Again, we

will define ω ∈ H and integers a, b so that

τ = aω , σ = bω , gcd(a, b) = 1 . (3.1.7)

We can now take advantage of the following gamma function identity [75]:

Γe
(
z ; aω, bω

)
=

a−1∏
r=0

b−1∏
s=0

Γe
(
z + (as+ br)ω ; abω, abω

)
, (3.1.8)

which follows from (A.1.3) and it allows us to write an analogue of (3.1.5) valid for

τ 6= σ:

Γe
(
x+(c+1)abω+d ; aω, bω

)−1
=

a−1∏
r=0

b−1∏
s=0

Q r
a

+
s
b

+c , d

(
x ; abω

)
, ∀x ∈ R . (3.1.9)

We can use this relation to rewrite the integral representation of the index (3.1.1) in

terms of a new integrand which is doubly periodic but not meromorphic:

I = κ

∫
[Du ]

a−1∏
r=0

b−1∏
s=0

[ |G|∏
α=1

N∏
i 6=j=1

Q r+1
a

+
s+1
b
−1 , 0

(
uαij ; abω

)
·

|G|∏
α,β=1

∏
Iαβ

N∏
i,j=1

Q r
a

+
s
b

+(∆I)2−1 , (∆I)1

(
uαβij ; abω

)]−1

,

(3.1.10)

where (∆I)1,2 are defined by

∆I ≡ (∆I)1 + abω(∆I)2 , (∆I)1,2 ∈ R . (3.1.11)

This integral representation will be the starting point of the saddle point analysis of

section 3.2.

3.2 Large -N saddle points and the effective action

In this section we compute the large-N limit of quiver theories for general angular

momenta by following the same saddle-point approach as [48, 49]. First, we write

the matrix model (3.1.10) as

I =

∫
[Du ] exp

(
− S(u)

)
, (3.2.1)

where the action S(u) takes the following form:

S(u) = S0 +

|G|∑
α=1

N∑
i 6=j=1

V
(
uαij , τ + σ

)
+

|G|∑
α,β=1

∑
Iαβ

N∑
i,j=1

V
(
uαβij ,∆I

)
. (3.2.2)
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Here S0 is a constant that does not depend on the holonomies u and whose value is

subleading at large -N , while the function V is defined as following:

V
(
z,∆

)
=

a−1∑
r=0

b−1∑
s=0

logQ r
a

+
s
b

+(∆)2−1 , (∆)1

(
z ; abω

)
(3.2.3)

Since Qc,d(z; abω) is doubly-periodic in the variable z with periodicities 1 and abω,

so is the function V .

The saddle point equations are obtained by varying the quantity

S(u, ū)−
|G|∑
α=1

N∑
i=1

(
λαuαi + λ̃αuαi

)
(3.2.4)

with respect to the holonomies {uαi } and their complex conjugates {uαi }. The quan-

tities λα and λ̃α are Lagrange multipliers required to enforce the SU(N) constraint.

We have denoted the action (3.2.2) as S(u, ū) to stress the fact that it is not mero-

morphic and thus ∂uαi S 6= 0. Varying with respect to uαi leads to the following

equation:

N∑
j=1

(
∂V (uαij , τ+σ)−∂V (uαji , τ+σ)+

|G|∑
β=1

∑
Iαβ

∂V
(
uαβij ,∆I

)
−
|G|∑
γ=1

∑
Iγα

∂V
(
uγαji ,∆I

))
= λα.

(3.2.5)

Here ∂V is a shorthand for ∂zV (z, z̄,∆). A similar equation with ∂̄V and λ̃α replacing

∂V and λα is obtained when we vary with respect to uαi .

When a = b = 1 equation (3.2.5) and its analogue for ∂̄V match the saddle

point equations discussed in [49]. A large class of solutions for the a = b = 1

case has been found in [48, 49] using only the periodicity properties of V . When

ab 6= 1 the expression for V becomes more complicated, but it still remains a doubly

periodic function and thus the solutions known for the a = b = 1 case can be easily

generalized; we will now briefly review them.

Because of the periodicities of V the solutions to equation (3.2.5) live in the

torus ET ≡ C/(Z + T Z), where T ≡ abω. The solutions that we consider are such

that uαi = uβi ≡ ui for all α, β; the advantage of this ansatz is that equation (3.2.5)

can now be solved simply by searching for configurations {ui}Ni=1 such that the sum

N∑
j=1

∂V
(
uj − ui ,∆

)
(3.2.6)

does not depend on the value of the index i. This can be achieved by taking {ui}Ni=1 =

U+ū, where U is a finite subgroup of the torus ET and ū is some constant (ū vanishes

when we take the difference uj−ui). Indeed, for any ui ∈ U we have that {u−ui}u∈U
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and U are the same set, and thus the following sum does not actually depend on the

value of ui: ∑
u∈U

∂V (u− ui ,∆) =
∑
u∈U

∂V (u,∆) , (3.2.7)

Thus equation (3.2.5) is solved by the choice {ui}Ni=1 = U + ū, and the same is true

for the analogue equation for ∂̄V . In particular this means that these solutions to

the saddle point equations can be classified by homomorphisms of abelian groups of

order N into the torus ET [49].

Any abelian group G of order N is isomorphic to a product of cyclic groups:

G ∼= (Z /N1 Z)× . . .× (Z /N` Z) , (3.2.8)

where N1 . . . N` = N . Furthermore, we can assume without loss of generality that

each Ni is a divisor of Ni−1
2, which we write compactly as Ni | Ni−1. The most

general homomorphism of the cyclic group of order N into the torus can be written

as

i 7→ i

N

(
mT + n

)
, i ∈ Z /N Z , (3.2.9)

for some m,n ∈ Z. Hence, the most general saddle point configuration that corre-

sponds to a finite group homomorphism in the torus takes the following form:

uαi1...i` =
i1
N1

(
m1 T + n1

)
+ . . .+

i`
N`

(
m` T + n`

)
+ ū , (3.2.10)

where N1 . . . N` = N and Ni | Ni−1. The value for the constant ū is chosen so that

the SU(N) constraint is satisfied:

N∑
i=1

uαi = 0 . (3.2.11)

Since (3.2.2) only depends on differences between holonomies ū ultimately cancels

out in all the relevant equations. From now on we will omit ū completely.

We note that different choices of integers {Ni,mi, ni}`i=1 may lead to equivalent

solutions, that is solutions that match under the periodicities of the torus ET or

permutations of the index i of uαi . As an example, (3.2.10) is invariant under uαi 7→
−uαi , or equivalently {mi, ni}`i=1 7→ {−mi,−ni}`i=1. For this reason we can assume

without loss of generality that m1 ≥ 0.

2This is due to the fact that (Z /mZ) × (Z / nZ) ∼= (Z / nmZ) if gcd(m,n) = 1, hence there

are multiple factorizations N = N1 × . . . ×N` that, up to isomorphisms, define the same abelian

group G, and it is always possible to find one that satisfies Ni | Ni−1 ∀ i [49].

31



3.2.1 Contour deformation

It is not sufficient for the saddles (3.2.10) to be stationary points of the action

(3.2.2) for them to contribute to the integral representation of the index (3.1.10); it

is necessary for the contour of integration to pass through the saddle point as well.

There is a problem: the integrand of (3.1.10) is not meromorphic, and thus it is not

possible to use the Cauchy theorem to change contour. An alternative procedure for

the deformation of the contour has been used in [48, 49] for the analysis of the τ = σ

case; in this section we will show that it can be adapted to the τ 6= σ case as well.

In both integral representations of the superconformal index, (3.1.1) and (3.1.10),

each holonomy variable uαi is integrated over the interval [ 0, 1). In the case of (3.1.1)

the integrand is meromorphic and we are free to deform the contour as long as we

don’t cross any poles; however the saddles (3.2.10) are only stationary points of the

integral representation with a doubly periodic integrand (3.1.10). The key insight of

[48, 49] is that the integrands of (3.1.1) and (3.1.10) are equal when evaluated on any

given saddle, as long as the phase of the Qc,d function is chosen appropriately. The

idea is to deform the contour of integration of the meromorphic integrand to one that

passes thought the saddle point, and then show that the meromorphic integrand can

be substituted with the doubly periodic one up to subleading corrections.

In order to show that the argument of [48, 49] can be adapted the τ 6= σ case we

only need to check that the integrand of (3.1.1), which is a product of elliptic gamma

functions Γe, and the integrand of (3.1.10), which depends on the Qc,d function and

the choice of its phase, match when the holonomies uαi take (3.2.10) as their value.

When z is real the functions Qc,d(z; τ) and Γe(z + (c + 1)τ + d ; τ, τ)−1 match

exactly; otherwise their relation is given by the following formula [48], obtained by

substituting (A.1.19) in (3.1.6):

Qc,d(z; τ) = e2πi αQ(z+cτ+d) e−2πiτAc(z2) P (z + cτ + d ; τ)z2

Γe(z + (c+ 1)τ + d ; τ, τ)
. (3.2.12)

Here z1,2 ∈ R are defined by z ≡ z1+τ z2. The phase of Qc,d depends on the particular

choice for the real-valued function αQ. Apart from the constraint αQ(x) = 0 ∀x ∈ R,

αQ can be chosen arbitrarily in the fundamental domain 0 ≤ z1,2 < 1 ; its value on

the rest of the complex plain is then fixed by the requirement that Qc,d(z; τ) must

be doubly periodic in z with periods 1, τ .

The rest of this subsection will be dedicated to showing that the integrands of

(3.1.1) and (3.1.10) are equal in absolute value when evaluated on any given saddle.

It is then possible to choose αQ appropriately so that the integrands match in phase

as well, and thus the contour deformation argument of [48, 49] can also be applied

to the τ 6= σ case.

The function Ac that appears in (3.2.12) denotes the following cubic polynomial:

Ac(x) = 1
6
x3 + 1

2
cx2 + 1

2
c2x− 1

12
x . (3.2.13)
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We can show that the total contribution of Ac to the integrand of (3.1.10) vanishes

when evaluated at the saddle points, that is∑
r,s

∑
i,j

[
|G|A r+1

a
+ s+1

b
−1

(
(uij)2

)
+
∑
I

A r
a

+ s
b
+(∆I)2−1

(
(uij)2

)]∣∣∣∣
ui as in (3.2.10)

= 0 .

(3.2.14)

First, we note that the odd powers of x in Ac(x) vanish when we sum over i, j since

(uij)2 changes sign when i and j are exchanged. This leaves only the quadratic

term in x, which is proportional to c; when we sum over r, s and all the multiplet

contributions the c-terms vanish:
a−1∑
r=0

b−1∑
s=0

[
|G|
(
r + 1

a
+
s+ 1

b
− 1

)
+
∑
I

(
r

a
+
s

b
+ (∆I)2 − 1

)]
=

=
a+ b

2

[
|G|+

∑
I

(
2ab(∆I)2

a+ b
− 1

)]
= 0 .

(3.2.15)

The term in the square bracket in the second line can be shown to be vanishing

by imposing the U(1)R - gauge2 anomaly cancellation condition, which for the quiver

theories that we are considering can be written as following3:

|G|+
∑
I

(
r̃I − 1

)
= 0 . (3.2.16)

This relation is valid for any R-symmetry. Then (3.2.15) follows from (3.2.16) if we

consider the R-symmetry obtained by assigning the following charges to each chiral

multiplet:

r̃I ≡
2ab(∆I)2

a+ b
. (3.2.17)

Because of relation (2.4.6) this choice of R-charges does indeed satisfy∑
I∈W

r̃I = 2 (3.2.18)

for every superpotential term W in the Lagrangian.

The contribution of log |P | to the integrand is vanishing as well:

N∑
i,j=1

(uij)2 log
∣∣∣P(uij + (c+ 1) + d ; τ

)∣∣∣ = 0 . (3.2.19)

This relation can be derived from the double Fourier expansion of log |P | (A.1.18)

and the fact that sums of the following type vanish:

Nk∑
ik,jk=1

(ik − jk) e
2πi
(
ik−jk
Nk

(mkn−nkm)
)

= 0 . (3.2.20)

3Condition (3.2.16) is equivalent to the statement that tr R̃ = O(1) at large -N , for any R-

symmetry R̃. For more details we refer to appendix B of [49].
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Since the contribution of the Ac and log |P | terms is overall zero, from (3.2.12)

we see that the integrands of (3.1.1) and (3.1.10) are equal in absolute value on the

saddles, which is what we needed to show.

We conclude this subsection by mentioning that in [50] a more rigorous frame-

work for this type of saddle point analysis has been presented, based on Atiyah-

Bott-Berline-Vergne equivariant integration formula [51, 52]. The method of [50] is

also applicable at finite N , and it provides more solid evidence for the fact that the

(3.2.10) saddles do indeed contribute to index.

3.2.2 Continuum limit

In the large -N limit the saddles (3.2.10) become uniform continuous distributions.

We can make the substitutions

uαi 7−→ uα(x) ,
N∑
i=1

7−→ N

∫ 1

0

dx (3.2.21)

and replace the discrete action (3.2.2) with a large -N effective action Seff[u], which

is a functional of the distribution uα(x) and is given by

Seff[u] = N2

∫ 1

0

dx

∫ 1

0

dy

[ |G|∑
α=1

V
(
uα(x)−uα(y) , τ+σ

)
+

|G|∑
α,β=1

∑
Iαβ

V
(
uα(x)−uβ(y),∆I

)]
.

(3.2.22)

The stationary points of this action can be found by extremising the functional

Seff[u] −
|G|∑
α=1

∫ 1

0

dx
(
λαuα(x) + λ̃αuα(x)

)
, (3.2.23)

and correspond to the continuum limit of the discrete saddles (3.2.10). The su-

perconformal index at large -N can then be written as a sum over these stationary

points:

I ∼
∑

u∈{saddles}

exp
(
− Seff[u]

)
. (3.2.24)

In order to take the continuum limit of the saddles (3.2.10) we need to distinguish

between a few cases. Each saddle depends on a particular factorization of N , that is

N ≡ N1 . . . N` with Ni | Ni−1 ∀ i :

uαi1...i` =
i1
N1

(
m1 T + n1

)
+ . . .+

i`
N`

(
m` T + n`

)
. (3.2.25)

Hence, the N →∞ limit can be realized in multiple ways.

Let us consider the case of saddles with ` = 1 first. After the the substitution

i1/N1 7→ x they become

uα(x) = x
(
mT + n

)
. (3.2.26)
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We omitted the subscript on m1 and n1 as it is no longer needed. The effective action

for these saddles can be written as

Seff(m,n) = (3.2.27)

= N2

∫ 1

0

dx dy

[
|G|V

(
(x− y)(mT + n), τ + σ

)
+
∑
I

V
(

(x− y)(mT + n),∆I

)]
= N2

∫ 1

0

dx

[
|G|V

(
x(mT + n), τ + σ

)
+
∑
I

V
(
x(mT + n),∆I

)]
.

The second equality follows from the fact that mT + n is a period of V . An-

other consequence of the periodicity of V is that Seff(m,n) = Seff(m/h, n/h), where

h ≡ gcd(m,n). This is expected, considering that the (m,n) saddle describes a dis-

tribution of holonomies equivalent to the one of the (m/h, n/h) saddle. Thus for

the ` = 1 “string-like” saddles we can assume that gcd(m,n) = 1 without loss of

generality. We postpone the computation of Seff(m,n) to section 3.2.3.

We consider the ` = 2 saddles now. Let us first assume that N2 ∼ O(1) at

large -N . We can make the substitution i1/N1 7→ x and write the ` = 2 saddles in

the continuum limit as

uαi2(x) = x
(
m1 T + n1

)
+

i2
N2

(
m2 T + n2

)
. (3.2.28)

If we want to write the saddle without the extra index i2 we can change variables to

xnew ≡ x/N2 + i2/N2 so that

uα(x) = {N2x}
(
m1 T + n1

)
+
bN2xc
N2

(
m2 T + n2

)
, (3.2.29)

where {N2 x} ≡ N2 x − bN2 xc. It is straightforward to see that (3.2.29) extrem-

ises the effective action (3.2.22) for any value of N2. For convenience we will use

representation (3.2.28) and keep the index i2; the effective action is then given by

Seff(m1, n1;m2, n2, N2) =
N2

N2

N2∑
i2=1

∫ 1

0

dx

[
|G|V

(
x(m1T + n1) +

i2
N2

(m2 T + n2), τ + σ
)

+

+
∑
I

V
(
x(m1T + n1) +

i2
N2

(m2 T + n2),∆I

)]
.

(3.2.30)

Again, without loss of generality we can assume that gcd(m1, n1) = gcd(m2, n2) = 1.

We postpone the computation of (3.2.30) to section 3.2.4.

If we take N2 →∞ in (3.2.28) we obtain the “surface” saddles:

uα(x, y) = x
(
m1 T + n1

)
+ y

(
m2 T + n2

)
. (3.2.31)
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The effective action for these saddles is the same as (3.2.30), provided that the

following substitutions are made:

i2
N2

7−→ y ,
1

N2

N∑
i2=1

7−→
∫ 1

0

dy . (3.2.32)

Because of the periodicity of the potential V , as long as (m1, n1) and (m2, n2) are

linearly independent the effective action of surface saddles does not depend on any

of these integers:∫ 1

0

dx

∫ 1

0

dy V
(
x(m1T + n1) + y(m2T + n2),∆

)
=

∫ 1

0

dx

∫ 1

0

dy V
(
xT + y ,∆

)
.

(3.2.33)

On the other hand if (m1, n1) and (m2, n2) are linearly dependent the saddle (3.2.31)

is just equivalent to one of the “string-like” saddles (3.2.26).

The saddles with ` ≥ 3 in the continuum limit are always equivalent to one

of the already discussed cases, (3.2.26), (3.2.28) or (3.2.31). To see why, let us

fist assume that m1 6= 0. We can rewrite the ` = 2 saddle (3.2.28) by shifting

x 7→ x− (i2/N2)(m2/m1), obtaining the following equivalent expression:

uαi2(x) = x
(
m1 T + n1

)
+

i2
N2

m1n2 −m2n1

m1

. (3.2.34)

Similarly, a generic saddle with ` = 3 and m1 6= 0 after the i1/N1 7→ x substitution

and analogue shifts can be written as

uαi2,i3(x) = x
(
m1 T + n1

)
+

i2
N2

m1n2 −m2n1

m1

+
i3
N3

m1n3 −m3n1

m1

. (3.2.35)

Considering that N3 | N2 and gcd(m1, n1) = 1, it is always possible to find (m̃2, ñ2)

such that the ` = 2 saddle with m1, n1, m̃2, ñ2, N2 is equivalent to (3.2.35). The

m1 = 0 case is similar: the saddle

uαi2,i3(x) = x+
i2
N2

(
m2 T + n2

)
+

i3
N3

(
m3 T + n3

)
(3.2.36)

can be rewritten as

uαi2,i3(x) = x+
i2
N2

m2 T +
i3
N3

m3 T (3.2.37)

by shifting x 7→ x− (i2/N2)n2− (i3/N3)n3 ; it is then always possible to find Ñ2 such

that the saddle is equivalent to

uαı̃2(x) = x+
ı̃2

Ñ2

T . (3.2.38)

In conclusion, there is no need to consider saddles with ` ≥ 3 in the continuum limit.

This argument does not hold at finite N however; we will discuss the saddles (3.2.10)

at finite N in more detail in section 3.3.2.
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3.2.3 String-like saddles

In this section we focus of the saddles uα(x) = x(mT+n) and compute their effective

action Seff(m,n). Without loss of generality we can assume that gcd(m,n) = 1 and

m ≥ 0. Given (3.2.3) and (3.2.27), the effective action of these saddles takes the

following form:

Seff(m,n) = N2

∫ 1

0

dx
a−1∑
r=0

b−1∑
s=0

[
|G| logQ r+1

a
+
s+1
b
−1 , 0

(
x(mabω + n) ; abω

)
+

+
∑
I

logQ r
a

+
s
b

+(∆I)2−1 , (∆I)1

(
x(mabω + n) ; abω

)]
.

(3.2.39)

When m 6= 0 the integral can be computed using formula (A.1.22), which we can

write as∫ 1

0

dx logQc,d

(
x(mτ+n) ; τ

)
= −πi

6
cτ+

πi

3

B3

(
[m(cτ + d)]′mτ+n

)
m(mτ + n)2

+
(

purely imaginary
)
,

(3.2.40)

where the function [ · ]′τ is defined as follows:

[
x+ yτ

]′
τ

=

{
x− bxc+ yτ for x ∈ Rr Z, y ∈ R
either yτ or yτ + 1 for x ∈ Z, y ∈ R

. (3.2.41)

There is an ambiguity in the definition of [z]′τ when z ∈ Z+ τ R; however, because of

property (A.1.13) of the Bernoulli polynomials and the fact that Bn(0) = Bn(1), one

can see that equation (3.2.40) is unaffected by this ambiguity. The purely imaginary

terms left out from equation (3.2.40) do not actually contribute to the large -N

leading order of the effective action, considering that Seff is defined up to multiples

of 2πi.

Using (3.2.40) we find the contribution of a single multiplet to the effective action:

N2

a−1∑
r=0

b−1∑
s=0

∫ 1

0

dx logQ r
a

+
s
b

+(∆)2−1 , (∆)1

(
x(mabω + n) ; abω

)
= (3.2.42)

= −πi
6
abN2

(
abω(∆)2 −

τ + σ

2

)
+ πiN2

a−1∑
r=0

b−1∑
s=0

B3

(
[m∆ +mω(as+ br − ab)]′mabω+n

)
3m(mabω + n)2

,

where ∆ ≡ τ + σ for vector multiplets and ∆ ≡ ∆I for the I-th chiral multiplet.

When we sum over all multiplet contributions the first term in the second line of

(3.2.42) gives an overall null contribution because of anomaly cancellation relations;

it is indeed the same (3.2.15) term that we discussed in section 3.2.1, up to a pro-

portionality constant. The effective action for (m,n) saddles with m 6= 0 can thus
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be written as

Seff(m,n) = πiN2

(
|G|Ψm,n(τ + σ) +

∑
I

Ψm,n(∆I)

)
, (3.2.43)

where Ψm,n(∆) denotes the following quantity:

Ψm,n(∆) =
a−1∑
r=0

b−1∑
s=0

B3

(
[m∆ +mω(as+ br − ab)]′mabω+n

)
3m(mabω + n)2

. (3.2.44)

As a simple check, we notice that (3.2.44) is invariant under (m,n) 7→ (−m,−n),

as expected. Using that [−z]′τ = 1−[z]′τ and property (A.1.11) of the Bernoulli poly-

nomials, we can see that under (m,n) 7→ (−m,−n) the numerator of the summand

in (3.2.44) changes sign; since the denominator changes sign as well, (3.2.44) is indeed

invariant.

When a = b = 1 we have τ = σ = ω and the effective action (3.2.43) matches the

analogous result obtained in [49]. It is also in accord with the results [43–45, 73, 74]

derived from the Bethe Ansatz formula. As for the a 6= b case, the effective action

of the (m,n) = (1, 0) saddle matches perfectly the contribution to the index we

computed in [3] using the Bethe Ansatz formalism; we will discuss in more detail the

relation between the saddle point and the Bethe Ansatz approaches in section 3.3.2.

As we showed in [3] the contribution to the index corresponding to the (m,n) = (1, 0)

saddle reproduces the entropy of supersymmetric Kerr-Newman AdS5 black holes,

as we will now briefly review.

3.2.3.1 The (m,n) = (1, 0) saddle

As we already noted in [3], expression (3.2.44) can be simplified significantly when

(m,n) = (1, 0). Using the translation property of the Bernoulli polynomials (A.1.13)

it is possible to write Ψ1,0(∆) as

Ψ1,0(∆) =
1

3(abω)2

a−1∑
r=0

b−1∑
s=0

B3

(
[∆]′ω + ω(as+ br − ab)

)
=

=
1

3

a−1∑
r=0

b−1∑
s=0

3∑
k=0

(
3

k

)
(abω)k−2

(
r

a
+
s

b
+
a+ b

2ab
− 1

)k
B3−k

(
[∆]′ω −

τ + σ

2

)
.

(3.2.45)

The sum over r and s can now be easily computed by means of a simple trick; we

consider the following power series

∞∑
k=0

a−1∑
r=0

b−1∑
s=0

(
r

a
+
s

b
+
a+ b

2ab
− 1

)k
(2t)k

k!
=

a−1∑
r=0

b−1∑
s=0

e
2t

(
r
a

+
s
b

+
a+b
2ab
−1

)
=

sinh2 t

sinh t
a

sinh t
b

=
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= ab+
t2

6

(
2ab− a

b
− b

a

)
+O(t4) .

(3.2.46)

which gives us immediately the relations that we need:

a−1∑
r=0

b−1∑
s=0

(
r

a
+
s

b
+
a+ b

2ab
− 1

)k
=


ab for k = 0

0 for k = 1
1
12

(
2ab− a

b
− b

a

)
for k = 2

0 for k = 3

(3.2.47)

Substituting (3.2.47) in (3.2.45) we get

Ψ1,0(∆) =
1

3τσ
B3

(
[∆]′ω −

τ + σ

2

)
+

1

12

(
2ab− a

b
− b

a

)
B1

(
[∆]′ω −

τ + σ

2

)
. (3.2.48)

When we sum over all the multiplets, the total contribution to the effective action

Seff(1, 0) coming from the B1 terms is purely imaginary and at leading N2 order can

be neglected. Indeed the ω - dependent part of the B1 term gives a total contribution

proportional to the term in the second line of (3.2.15). Therefore, we can equivalently

define the function Ψ1,0(∆) as

Ψ1,0(∆) ≡ 1

3τσ
B3

(
[∆]′ω −

τ + σ

2

)
. (3.2.49)

The disappearance of the term proportional to 2ab is not surprising considering that

the index is ultimately a continuous function of τ = aω and σ = bω.

By using the explicit expression (A.1.12) for B3 it is possible to write (3.2.49) as

Ψ1,0(∆) =
1

24τσ

[(
2[∆]′ω − τ − σ − 1

)3 −
(
2[∆]′ω − τ − σ − 1

)]
. (3.2.50)

We can then introduce variables ∆̂± so that

2[∆]′ω − τ − σ − 1 = (τ + σ ± 1)(∆̂± − 1) , (3.2.51)

or explicitly

∆̂+ =
2[∆]′ω

τ + σ + 1
, ∆̂− =

2([∆]′ω − 1)

τ + σ − 1
. (3.2.52)

In light of constraint (2.4.6), it is natural to expect that there are regions of the

parameter space where ∑
I∈W

∆̂±I = 2 , (3.2.53)

for superpotential terms W and either + sign or − sign. In [3] we verified that in

toric models such regions always exists. Then the ∆̂±I can be interpreted as R-charges

for a trial R-symmetry.
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In the region of parameter space where the (m,n) = (1, 0) dominates and either

∆̂+ or ∆̂− can be interpreted as a trial R-symmetry, the large -N limit of the index

will be given by

I = πiN2

(
|G|Ψ1,0(τ + σ) +

∑
I

Ψ1,0(∆I)

)
+ o(N2) =

=
πi

24

(τ + σ ± 1)3

τσ
trR(∆̂±)3 +

πi

24

τ + σ ± 1

τσ
trR(∆̂±) + o(N2)

(3.2.54)

For theories with a holographic dual it is possible to show that trR = O(1), so the

second term is actually vanishes at leading order. The entropy function of the dual

AdS5×SE5 black holes (2.2.2) is thus perfectly reproduced.

3.2.3.2 The (m,n) = (0, 1) saddle

So far we have assumed m 6= 0 ; let us now discuss the m = 0 case. The requirement

gcd(m,n) = 1 only leaves n = ±1 as possible choices, and they are equivalent; hence,

there is only one saddle with m 6= 0. As we will now show, the effective action of this

saddle is zero at the leading N2 order, which is coherent with the results obtained

in [43, 48, 49] for the τ = σ case.

For the (m,n) = (0, 1) saddle the {uαi } are all real and thus the doubly periodic

function Qc,d simply coincides with the analytic elliptic gamma, and thus the action

S(u) given by (3.2.2) and (3.2.3) is just minus the logarithm of the integrand of

(3.1.1). We find it easier in this case to work with the elliptic gamma functions

directly rather than the Qc,d.

First, let us look at the contribution to the effective action of the (m,n) = (0, 1)

saddle coming from a chiral multiplet. Using the property (A.1.4) and the definition

(A.1.1) of the elliptic gamma function we can write it as

−
N∑

i,j=1

log Γe

(
∆I +

i− j
N

; aω, bω
)

= −N log Γe

(
N∆I ;Naω,Nbω

)
=

= N
∞∑

j,k=0

[
log

(
1− e2πiN

(
jaω+kbω+∆I

))
− log

(
1− e2πiN

(
(j+1)aω+(k+1)bω−∆I

))]
.

(3.2.55)

If either
(
(j+1)aω+(k+1)bω−∆I

)
or
(
jaω+kbω+∆I

)
had a negative imaginary part

the respective logarithm term would beO(N) and we would get nonzero contributions

at the N2 order. However in the domain (2.4.8) the imaginary part of these terms

is always positive and at large -N all the logarithms are exponentially suppressed.

Hence, the chiral multiplet contribution is null at the N2 order.
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The contribution to the effective action coming from the vector multiplets is

subleading as well. We can write it as

−|G|
N∑

i 6=j=1

log Γe

(
aω+bω+

i− j
N

; aω, bω
)

= −N |G|
N−1∑
`=1

log Γe

(
aω+bω+

`

N
; aω, bω

)
.

(3.2.56)

This term is of order O(N logN). Indeed, if we substitute the definition (A.1.1) of

the elliptic gamma function in the following product

N−1∏
`=1

Γe

(
aω + bω +

i

N
; aω, bω

)
= (3.2.57)

=
N−1∏
`=1

[(
1− e−2πi `

N

)(
1− e2πi(aω− `

N )
)(

1− e2πi(bω− `
N )
) ∞∏
j,k=1

1− e2πi(aω+bω− `
N )

1− e2πi(aω+bω+ `
N )

]
,

then we can use a slight modification of identity (A.1.5),

N−1∏
`=1

(
1− e−2πi `

N z
)

=
1− zN

1− z
= 1 + z + . . .+ zN−1 , (3.2.58)

to conclude that

N−1∏
`=1

Γe

(
aω + bω +

i

N
; aω, bω

)
= N

1− e2πiNaω

1− e2πiaω

1− e2πiNbω

1− e2πibω
= O(N) , (3.2.59)

and thus (3.2.56) does not contribute to the leading N2 order either.

3.2.4 General saddles

In section 3.2.3 we considered the particular case of the uα(x) = x(mT + n) saddles;

we will now evaluate the effective action of the other saddles discussed in section

3.2.2. Other than the surface saddles (3.2.31), in the continuum limit the only type

of saddles that we still need to account for are the “two-factor” saddles (3.2.28),

whose effective action Seff(m1, n1;m2, n2, N2) is given by (3.2.30). We start from the

two-factor saddles and postpone the discussion about surface saddles at the end of

this section.

We will assume that m1 6= 0 ; without loss of generality we can take m1 > 0 and

gcd(m1, n1) = gcd(m2, n2) = 1. The contribution to the effective action coming from

a single multiplet is given by the following expression:

N2

N2

N2∑
i2=1

∫ 1

0

dx
a−1∑
r=0

b−1∑
s=0

logQ r
a

+
s
b

+(∆)2−1 , (∆)1

(
x(m1abω+n1)+

i2
N2

(m2abω+n2) ; abω
)
,

(3.2.60)
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where as usual ∆ is equal to τ +σ for vector multiplets and to ∆I for the I-th chiral

multiplet. In order to compute (3.2.60) we first generalize formula (3.2.40) to include

the sum over the new index i2. Using (A.1.22) and ignoring purely imaginary terms

we find that

1

N2

N2∑
i2=1

∫ 1

0

dx logQc,d

(
x(m1τ + n1) +

i2
N2

(m2τ + n2) ; τ
)

=

= −πi
6
cτ +

πi

3

1

N2

N2∑
i2=1

B3

(
{m1d− n1c+ i2

N2
(m1n2 −m2n1)}+ c(m1τ + n1)

)
m1(m1τ + n1)2

=

= −πi
6
cτ +

πi

3

B3

(
[m(cτ + d)]′mτ+n

)
m(mτ + n)2

. (3.2.61)

In the last equality we used formula (A.1.15) to simplify the sum of Bernoulli poly-

nomials and we defined the integers m and n as following:(
m,n

)
≡ N2

gcd(N2,m1n2 −m2n1)
·
(
m1, n1

)
. (3.2.62)

Given the similarity between the last line of (3.2.60) and the right-hand side of

(3.2.40), the rest of the computation is identical to the one in section 3.2.3.

In conclusion the effective action for the (3.2.28) saddles can also be expressed

in terms of the Ψm,n(∆) function (3.2.44) as

Seff(m1, n1;m2, n2, N2) = πiN2

(
|G|Ψm,n(τ + σ) +

∑
I

Ψm,n(∆I)

)
. (3.2.63)

The difference between this expression and (3.2.43) lies in the definition of the inte-

gers m,n: for the latter they could be any pair of coprime integers, gcd(m,n) =

1, while in the case of the former they are given by (3.2.62) and gcd(m,n) =

N2/gcd(N2,m1n2 −m2n1). If we set N2 = 1 the two-factor saddles (3.2.28) become

simple string-like saddles (3.2.26); in this case the integers m,n in (3.2.62) simply

match m1, n1, and expressions (3.2.43) and (3.2.63) are in agreement. Furthermore,

in the particular case of a = b = 1 the effective action (3.2.63) matches the one

computed in [49].

An explanation for the similarity between (3.2.63) and (3.2.43) can be found by

recasting the saddles (3.2.28) in a new form. Starting from expression (3.2.34), we

can make the following manipulations:

uαi2(x) =x
(
m1 T + n1

)
+

i2
N2

m1n2 −m2n1

m1

=

= {m1x}
(
T +

n1

m1

)
+ bm1xc

n1

m1

+
i2
N2

m1n2 −m2n1

m1

mod T .

(3.2.64)
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If we set xnew ≡ {m1x} and j ≡ n1bm1xc(m/m1)+i2(m1n2−m2n1)/gcd(N2,m1n2−
m2n1) mod m, we can thus rewrite the two-factor saddle as

uαj (x) =
j

m
+ x

(
T +

n

m

)
, (3.2.65)

where m,n are the same as in (3.2.62).

From result (3.2.63) we find the following estimate for the large -N limit of the

superconformal index:

log I & max
m,n∈Z
m 6=0

[
− πiN2

(
|G|Ψm,n(τ + σ) +

∑
I

Ψm,n(∆I)

)]
+ o(N2) , (3.2.66)

where the maximum is taken with respect to the real part. In regions of the pa-

rameter space where there is no maximum all the competing exponentially growing

contributions to the index should be summed. In this case information about the

phase of each term would be necessary to accurately compute the index, and that

would require an analysis of the o(N2) terms. Hence, estimate (3.2.66) does not

apply in these regions. The same can be said for the codimension-one surfaces where

multiple contributions have have the same real component (i.e. Stokes lines).

We will not try to determine which contribution maximizes (3.2.66) in each

region of the parameter space. The large -N phase structure of the index has been

studied in the case of equal angular momenta in [43, 45, 48, 49, 73].

3.2.4.1 Surface saddles

The last type of saddles that we still need to account for are the surface saddles

(3.2.31). Assuming that (m1, n1) 6= (m2, n2), the following relation follows from

formula (A.1.22):∫ 1

0

dx dy logQc,d

(
x(m1τ+n1)+y(m2τ+n2) ; τ

)
= πiτ

(c3

3
− c

6

)
+
(

purely imaginary
)
.

(3.2.67)

As expected there is no dependence on the specific value of the integers m1, n1,m2, n2.

This formula can also be found by taking the N2 →∞ limit of (3.2.61). In particular

this means that surface saddles correspond to the m,n ∼ O(N) terms in estimate

(3.2.66).

Using relation (3.2.67) we can compute contribution to the effective action of the

surface saddle coming from a single multiplet:

πi

3
N2 abω

a−1∑
r=0

b−1∑
s=0

[(
r

a
+
s

b
+ (∆)2 − 1

)3

− 1

2

(
r

a
+
s

b
+ (∆)2 − 1

)]
=

=
πi

3
N2 a2b2ω

(
(∆)2 −

a+ b

2ab

)3

− πi

12
N2 (a2 + b2)ω

(
(∆)2 −

a+ b

2ab

)
. (3.2.68)
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The sums over r, s in the first line are calculated quickly with the help of relations

(3.2.47). When we sum over all multiplet contributions the second term in the second

line of (3.2.68) sums to zero: it is proportional to (3.2.15). If we define a set of trial

R-charges ∆̂trial ,I as

∆̂trial ,I =
2abω(∆I)2

τ + σ
, (3.2.69)

then the effective action of surface saddles can be expressed in terms of the cubic ’t

Hooft anomaly for this trial R-symmetry:

Seff =
πi

24

(τ + σ)3

τσ
trR3(∆̂trial) , (3.2.70)

where the trace is taken over the fermions of the theory. When τ = σ this result

matches the one of [49].

3.3 The large -N limit with the Bethe Ansatz formula

In this section we will consider a different approach to the computation of the super-

conformal index at large -N . Our starting point will not be the matrix model (3.1.1),

but rather the Bethe Ansatz formula [46, 47]. A contribution to the Bethe Ansatz

formula that reproduces the entropy of black holes with unequal angular momenta

was found in [3]; in this section we will revisit the computation of [3] and also expand

it to include more contributions. The results we will find reaffirm estimate (3.2.66),

thus providing a double check for the saddle-point analysis of section 3.2.

This section is organized as follows. We begin by briefly discussiong in subsection

3.3.1 the Bethe Ansatz formula for the quiver theories that we are considering. Then

in subsection 3.3.2 we study the relation between the holonomy distributions that

contribute to the Bethe Ansatz formula and the saddles (3.2.10) found in [48, 49]. If

the reader is not interested in the technical details of subsection 3.3.2 it is possible

to skip directly to subsection 3.3.3, in which we evaluate the large -N limit of the

index with the Bethe Ansatz formula. Lastly, in subsection 3.3.4 we elaborate on the

relation between our results and the ones of [3].

3.3.1 The Bethe Ansatz formula for quiver theories

As always we assume that the angular chemical potentials τ and σ are integer mul-

tiples of the same quantity ω ∈ H, that is τ = aω, σ = bω. The Bethe Anstatz

formula (2.4.10) specializes to the quiver theories that we are considering as follows:

I =
κ

(N !)|G|

∑
û∈MBAE

ab∑
{mαi }=1

Z̃(û−mω ; ∆, τ, σ)H−1(û ; ∆, ω) , (3.3.1)
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where Z̃(u ; ∆, τ, σ) denotes the integrand of matrix model (3.1.1), or more accurately

its analytic continuation to the complex plane with respect to the holonomies {uαi },
and it is given by

Z̃(u ; ∆, τ, σ) =

|G|∏
α=1

N∏
i 6=j=1

Γe

(
uαij + τ + σ ; τ, σ

)
·
|G|∏

α,β=1

∏
Iαβ

N∏
i,j=1

Γe

(
uαβij + ∆I ; τ, σ

)
.

(3.3.2)

The first out of the two sums in formula (3.3.1) runs over the set of inequivalent

solutions to the Bethe Ansatz equations (BAE), which for our case can be written

as

1 = Qα
i (u ; ∆, ω) ≡ e2πiλα

N∏
j=1

∏|G|
β=1

∏
Iαβ

exp
(
2πiuαi

(
1
2
− 1

ω
∆I

))
θ0

(
− uαβij + ∆I ;ω

)∏|G|
γ=1

∏
Iγα

exp
(
−2πiuαi

(
1
2
− 1

ω
∆I

))
θ0

(
uαγij + ∆I ;ω

) ,
(3.3.3)

where the λα are Lagrange multipliers introduced for convenience: once the value

of the λα are fixed, for example by solving the 1 = Qα
N equations, the remaining

equations match the general BAE we gave in (2.4.11). Again, solutions to the BAE

are equivalent if they match under the identifications ui ∼ ui + 1 ∼ ui + ω or differ

by a Weyl group transformation, which in this case consists in permutations of the

N holonomies associated to each SU(N) subgroup of the gauge group.

We will focus our attention on the class of solutions to the BAE found in [79],

often referred to as Hong-Liu solutions. Given any choice of three integers {p, q, r}
such that p · q = N and 0 ≤ r < q,4 the following configuration of complex

holonomies solves the Bethe Ansatz equations:

uαjk =
j

p
+
k

q

(
ω +

r

p

)
+ ū , (3.3.4)

where j = 0, . . . , p− 1 and k = 0, . . . , q− 1 constitute a new parametrization of the

index i = 1, . . . , N , while ū is a constant needed to satisfy the SU(N) constraint

N∑
i=1

uαi = 0 . (3.3.5)

We point out that the Hong-Liu solutions (3.3.4) are such that uαj1k1 6= uαj2k2 mod 1, ω

whenever (j1, k1) 6= (j2, k2), or in other words they are not invariant under nontriv-

ial Weyl group transformations. As argued in [47], BAE solutions that do not fit

this requirement give an overall null contribution to the superconformal index when

plugged in the Bethe Anstatz formula (3.3.1).

4Taking into account identifications (2.4.13), we could substitute r with r+nq in (3.3.4) for any

n ∈ Z and the solution would be the same up to a redefinition of the index j, that is jnew ≡ j + n

mod p. For this reason the range of r can be limited to 0 ≤ r < q.
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Other than the discrete class of solutions (3.3.4) there is evidence in favor of the

existence of other solutions to the BAE, either isolated or belonging to continuous

families of solutions [73, 80, 81]. We will not account for the contribution of these

“non-standard” solutions, we will instead focus on the standard Hong-Liu solutions

exclusively.

The other sum that appears in formula (3.3.1) is a sum over a collection of

integers {mα
i }. When i 6= N the possible values that mα

i can take range from 1 to

ab ; on the other hand mα
N is fixed by the SU(N) constraint:

mα
N = −

N−1∑
i=1

mα
i . (3.3.6)

However in the large -N limit we can ignore this constraint and set mα
N to whatever

is most convenient: the leading order of logZ(u ; ∆, τ, σ) is unaffected by a change

in value of a single holonomy uαi , and thus changing mα
N from (3.3.6) to something

else entirely does not impact the computation of the index [3].

Lastly, the Jacobian H(u ; ∆, ω) can be written as

H(u ; ∆, ω) = det

[
1

2πi

∂
(

logQ1
1, . . . , logQ1

N , . . . , logQ
|G|
1 , . . . , logQ

|G|
N

)
∂
(
u1

1, . . . , u
1
N−1, λ

1, . . . , u
|G|
1 , . . . , u

|G|
N−1, λ

|G|
) ]

. (3.3.7)

In this expression the holonomies {uαN |α = 1, . . . , |G|} are not considered inde-

pendent variables, they are instead treated like functions of the other holonomies,

uαN ≡ −
∑N−1

i=1 uαi . The Lagrange multipliers λα on the other hand are regarded as

independent variables.

3.3.2 BAE solutions and saddle points of the elliptic action

For a direct comparison of the saddle point analysis with the Bethe Ansatz formula it

is important to understand the relation between the saddles found in [48, 49] with the

configurations that arise from the discrete solutions to the Bethe Ansatz equations;

this will be the goal of this section. The bulk of the computation of the large -N

limit of the index will be in section 3.3.3, and it is possible for the reader to skip

ahead.

In the first half of this section we will show that the saddles given by (3.2.10)

can always be written in a form similar to the Hong-Liu solutions (3.3.4), namely it

is possible to find integers p, q and r and a new set of indices j = 0, . . . , p − 1 and

k = 0, . . . , q − 1 such that5

uαi1...i` ≡
i1
N1

(
m1 T + n1

)
+ . . .+

i`
N`

(
m` T + n`

)
=

j

p
+
k

q

(
T +

r

p

)
mod 1, T .

(3.3.8)

5The vice versa however does not hold: we will later provide an explicit example of a choice of

integers p, q and r such that the right-hand side of (3.3.8) does not correspond to any of the saddles

given by (3.2.10).
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This expression generalizes relation (3.2.65), which is valid only in the continuum

limit, to the case of finite N . The main difference between the right-hand side of

(3.3.8) and the BAE solutions (3.3.4) is that the saddles of the doubly periodic action

have T ≡ abω as their period, while the solutions to the Bethe Ansatz equations have

periodicity ω. We will address this discrepancy in the second half of this section,

where we will discuss the role played the vector of integers m that appears in the

Bethe Ansatz formula (3.3.1).

We can ignore without loss of generality saddle point configurations that re-

peat values, or in other words saddles such that uαi1...i` = uαj1...j` mod 1, T for some

(i1, . . . i`) 6= (j1, . . . , j`). Since the saddles given by (3.2.10) can be thought as homo-

morphisms of finite abelian groups into the torus, repetitions occur only if the kernel

is nontrivial. If the kernel contains n elements, then the image group in the torus

is the same as the image group of a SU(N/n) saddle point configuration with no

repetitions. Therefore (3.3.8) holds for these saddles as long as we take p · q = N/n,

assuming (3.3.8) is true for saddles that don’t repeat values. Furthermore, we note

that solutions to the Bethe Ansatz equations that repeat values give an overall null

contribution to the index because they are not invariant under nontrivial Weyl group

transformations. For these reasons we will only consider configurations without rep-

etitions from now on.

For ` = 1 the relation (3.3.8) has already been proven in [43]. The idea is

to take p = gcd(m1, N1), q = N1/p and defining the new indices k = 0, ..., q − 1,

̂ = 0, ..., p − 1 so that i1 = sk + q ̂ mod N1, where s is a positive integer such

that sm1/p mod q = 1; such an integer must exist since m1/p and q are coprime.

Furthermore, s cannot have factors in common with q, and thus the set {sk+q̂ |k =

0, ..., q − 1, ̂ = 0, ..., p − 1} covers all residue classes modulo N1 once. The saddle

can then be written as

i1
N1

(
m1 T + n1

)
=
(
sk + q̂

)(m1/p

q
T +

n1

N1

)
=
n1̂

p
+
k

q

(
T +

n1s

p

)
mod 1, T ,

(3.3.9)

which matches the right-hand side of (3.3.8) for r ≡ n1s mod q, j ≡ n1̂ mod p.

We can now prove (3.3.8) in the general case using induction. Let us assume

that there are positive integers p1, q1 and r1 such that p1q1 = N1 . . . N`−1 = N/N`

and

i1
N1

(
m1 T + n1

)
+ ...+

i`−1

N`−1

(
m`−1 T + n`−1

)
=

j1

p1

+
k1

q1

(
T +

r1

p1

)
mod 1, T .

(3.3.10)

The left-hand side of this identity is missing the following piece:

i`
N`

(
m` T + n`

)
≡ j2

p2

+
k2

q2

(
T +

r2

p2

)
mod 1, T , (3.3.11)

where the integers p2, q2 and r2 are determined as in the ` = 1 case. In this case p2,

q2 satisfy p2q2 = N` ; furthermore the condition N` | N`−1 implies that p2q2 | p1q1.
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The left-hand side of (3.3.8) can thus be written as

j1

p1

+
k1

q1

(
T +

r1

p1

)
+
j2

p2

+
k2

q2

(
T +

r2

p2

)
mod 1, T . (3.3.12)

We will now show that this expression doesn’t repeat values only when p1, p2, q1, q2

satisfy gcd(p1, p2) = gcd(q1, q2) = 1.

The necessity of the condition gcd(p1, p2) = 1 can be inferred just from the

j1/p1 + j2/p2 portion of (3.3.12), considering that the set{
j1p2 + j2p1

gcd(p1, p2)

∣∣∣∣ j1 = 0, . . . , p1 − 1, j2 = 0, . . . , p2 − 1

}
(3.3.13)

covers every residue class modulo p1p2/gcd(p1, p2) exactly gcd(p1, p2) times. There-

fore if p1 and p2 were not coprime (j1/p1 + j2/p2 mod 1) would repeat values, and

so would (3.3.12) for fixed k1 and k2.

It is easy to see that requiring gcd(q1, q2) = 1 in addition to gcd(p1, p2) = 1 is suf-

ficient to ensure that (3.3.12) doesn’t repeat values. Indeed if q1 and q2 were coprime

(k1/q1 + k2/q2)T modulo T wouldn’t repeat and therefore all possible combinations

of j1, j2, k1, k2 would give rise to unique values for expression (3.3.12). On the other

hand it is a little trickier to show that the condition gcd(q1, q2) = 1 is necessary,

as we need to take in account the terms proportional to r1 and r2 as well. Since

j1/p1 + j2/p2 covers all multiples of 1/p1p2 modulo 1 once, if (3.3.12) doesn’t have

repetitions modulo 1, T then the same expression without j1/p1 + j2/p2 won’t have

repetitions modulo 1/p1p2 , T . Each possible value of (k1/q1 + k2/q2)T modulo T is

repeated gcd(q1, q2) times, which means that either gcd(q1, q2) = 1 or the following

expression doesn’t have repetitions:

k1r1

p1q1

+
k2r2

p2q2

mod
1

p1p2

=
1

p1q1

(
k1r1 + k2r2

p1q1

p2q2

mod
q1

p2

)
. (3.3.14)

Considering that both p1q1/p2q2 and q1/p2 are integers6 and that the pair (k1, k2)

can take a total of q1q2 distinct values, the term in the parenthesis will take the same

values multiple times unless p1 = q1 = 1, which cannot be possible as it would imply

N1 = . . . = N`−1 = 1. Therefore we must have gcd(q1, q2) = 1.

Let us now show that (3.3.12) can be written in the same form as the right-

hand side of (3.3.8), assuming that gcd(p1, p2) = gcd(q1, q2) = 1. First we define

k ≡ k1q2 + k2q1 mod q1q2; since q1 and q2 are coprime k is an index that runs from

0 to q1q2 − 1 once. Let us ignore for the moment terms that are integer multiples of

1/p1p2; we can write the rest as

k1

q1

(
T +

r1

p1

)
+
k2

q2

(
T +

r2

p2

)
=

1

q1q2

(
kT +

k1r1p2q2

p1p2

)
mod

1

p1p2

, T . (3.3.15)

6The condition gcd(p1, p2) = 1 together with p2q2 | p1q1 implies that p2 | q1.
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The term proportional to r2 is a multiple of 1/p1p2, considering that p2q2 | p1q1 and

gcd(q1, q2) = 1 imply that q2 | p1. Since q1 and q2 don’t have factors in common it

is possible to find an integer n such that r1p2 + nq1 = 0 mod q2 , which is going to

help us rewrite (3.3.15) solely in terms of k:

k1r1p2q2 = k1q2

(
r1p2 + nq1

)
mod q1q2

=
(
k − k2q1

)(
r1p2 + nq1

)
mod q1q2

= k
(
r1p2 + nq1

)
mod q1q2 .

(3.3.16)

Defining p ≡ p1p2, q ≡ q1q2 and r ≡ r1p2 + nq1 mod q, equation (3.3.15) becomes

k1

q1

(
T +

r1

p1

)
+
k2

q2

(
T +

r2

p2

)
=
k

q

(
T +

r

p

)
mod

1

p
, T ≡

≡ k

q

(
T +

r

p

)
+
nk
p

mod 1 , T

(3.3.17)

for some k-dependent integer nk. At last we can define j ≡ j1p2 + j2p1 + nk mod p,

so that

j1

p1

+
k1

q1

(
T +

r1

p1

)
+
j2

p2

+
k2

q2

(
T +

r2

p2

)
=

j

p
+
k

q

(
T +

r

p

)
mod 1, T , (3.3.18)

which concludes the proof of (3.3.8).

Vice versa, we can show that there exist some choices of integers p, q and r such

that the set of points{
j

p
+
k

q

(
T +

r

p

) ∣∣∣∣ j = 0, . . . , p− 1, k = 0, . . . , q − 1

}
(3.3.19)

does not match any of the saddles given by (3.2.10), modulo 1, T . One way to see

this is to look at the greatest common divisor of p, q and r obtained by the procedure

above.

First, in the case of saddles with ` = 1 the steps outlined in (3.3.9) lead to values

of p, q and r that don’t have factors in common:

gcd
(
p, q, r

)
= gcd

(
m1, N1, q, n1s

)
= 1 , (3.3.20)

where we used that gcd(m1, n1) = 1 = gcd(q, s). For more general saddles on the

other hand we find that

gcd
(
p, q, r

)
= N2 . . . N` . (3.3.21)

We can show this by means of induction, by writing gcd(p, q, r) in terms of gcd(p1, q1, r1).

Considering that kr = k1r1p2q2 mod q for all possible values of k, we must have that

gcd(q, r) = gcd
(
q, r1p2q2

)
. The greatest common divisor of p, q, r is thus given by

gcd
(
p, q, r

)
= gcd

(
p, q, r1p2q2

)
= p2q2 gcd

(
p1

q2

,
q1

p2

, r1

)
= p2q2 gcd

(
p1, q1, r1

)
.

(3.3.22)
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In the last step we used that gcd(p1, p2) = gcd(q1, q2) = 1. Since p2q2 = N`, by

induction we find formula (3.3.21).

Let us consider for example the case p = 4, q = 4, r = 2. We want to try to

find a saddle point configuration that matches the set (3.3.22) for these values of

p, q, r. Using formula (3.3.21) we find that such a saddle would have N2 . . . N` =

gcd(p, q, r) = 2, which implies ` = 2 and N2 = 2. Consequently, there are only two

possible values that gcd(m2, N2) can take, either 1 or 2, and neither of them works:

the former would lead to q1 = q2 = 2, while the latter would lead to p1 = p2 = 2, and

in both cases gcd(p1, p2) = gcd(q1, q2) = 1 is not satisfied. Hence there is no saddle

that reproduces the configuration with p = 4, q = 4, r = 2.

3.3.2.1 The different periodicities

The most jarring difference between the saddles (3.2.10) of the doubly-periodic action

and the Hong-Liu solutions (3.3.4) to the Bethe Ansatz equations lies in the different

value for T , the modulus of the torus, which is abω for the former and just ω for the

latter.

In the particular case of equal angular momenta we have τ = σ ≡ ω, which

implies a = b = 1 and thus this discrepancy between the known saddles and the

standard BAE solutions disappears.

When ab 6= 1 the solution to the problem comes from a key element that we

haven’t taken in consideration yet: the presence of the vector of integers m in the

Bethe Ansatz formula (3.3.1). Each of its entries mα
i takes values that range from 1

to ab, and its shifts the corresponding holonomy inside the argument of the integrand

Z̃ as ûαi −mα
i ω, where û is the BAE solution that we are considering. Rather than

trying to match the saddles (3.2.10) with the Hong-Liu solutions directly, it is more

sensible to compare them with configurations of the type û−mω. That is, given any

choice of integers {p, q, r}, we search for a BAE solution û and a choice of vector m

such that

j

p
+
k

q

(
abω +

r

p

)
= ûαi −mα

i ω + constant mod 1, abω . (3.3.23)

The constant term ultimately vanishes because the integrand (3.3.2) only depends

on differences between holonomies.

We point out that there is a large number of valid û−mω configurations other

than the ones that satisfy (3.3.23). We won’t try to account for all possible (û,m)

combinations, especially considering that the number of possible values that the

vector m can take is (ab)|G|(N−1), which grows exponentially with N .

In order to find a (û,m) combination that satisfies (3.3.23) for a given choice of

{p, q, r}, we need to search for integers p̃, q̃ and r̃ that satisfy p̃ q̃ = pq and a new set
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of indices ̃ = 0, . . . , p̃− 1 and k̃ = 0, . . . , q̃ − 1 such that

j

p
+
k

q

(
abω +

r

p

)
=
̃

p̃
+
k̃

q̃

(
ω +

r̃

p̃

)
mod 1, ω . (3.3.24)

Unfortunately this isn’t always possible; to see why, let us set h ≡ gcd(q, ab) and

define a new parametrization of the index k in terms of new indices k′ = 0, . . . , q/h−1

and k′′ = 0, . . . , h− 1 such that k ≡ k′+ (q/h)k′′. The left-hand side of (3.3.24) then

becomes

j

p
+
k

q

(
abω +

r

p

)
=
j

p
+
k′

q

(
abω +

r

p

)
+
k′′r

hp
mod 1, ω . (3.3.25)

If r and h are not coprime then the right hand side of (3.3.25) manifestly repeats

values when k′′ varies while j and k′ are fixed. This means that unless gcd(q, r, ab) = 1

it is not possible to match the right-hand side of (3.3.24), since the latter never repeats

values modulo 1, ω as ̃ and k̃ vary.

Even if it is not possible to find a (û,m) combination that satisfies (3.3.23) when

q and r are such that gcd(q, r, ab) 6= 1, it is always possible to find û and m that

approximate the left-hand side of (3.3.23) well enough in the large -N limit; we will

discuss this in more detail in appendix A.2.

Let us consider the case gcd(q, r, ab) = 1 and show that it is indeed possi-

ble to obtain (3.3.24) starting from (3.3.25). Since ab/h and q/h are coprime

k′(ab/h) mod q/h takes all the values from 0 to q/h − 1 once; therefore if we set

q̃ ≡ q/h and k̃ ≡ k′(ab/h) mod q̃ we can match the ω-dependent portion of (3.3.24)

and (3.3.25) as follows:

k′

q
abω =

1

q/h

(
k′
ab

h

)
ω =

k̃

q̃
ω mod ω . (3.3.26)

Since k′ also appears in the ω-independent term proportional to r, we need to rewrite

this term as well in terms of the new index k̃; to do so, we will ignore for the moment

the role of integer multiples of 1/hp so that we can write

k′r

pq
=
k′(r + nq/h)

pq
mod

1

hp
=

(
1

q/h
k′
ab

h

)
1

hp

(
r + nq/h

ab/h

)
mod

1

hp
,

(3.3.27)

where n is an arbitrary integer that we have introduced. Once again we make use

of the fact that ab/h and q/h are coprime: r + n q/h for n ∈ Z covers all the

residue classes modulo ab/h, which means that we can always choose n such that

r̃ ≡ (r+nq/h)/(ab/h) is an integer. Setting p̃ ≡ hp and noticing that the other term

inside parentheses is equal to k̃ / q̃ mod 1, we find that

k′r

pq
=
k̃ r̃

p̃ q̃
mod

1

p̃
≡ k̃ r̃

p̃ q̃
+
nk
p̃

mod 1 (3.3.28)
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for some k-dependent integer nk. We notice that the way p̃ and q̃ have been defined

is such that p̃ q̃ is equal to pq, as it should be. At last we make use of the fact that

we are assuming that gcd(q, r, ab) = 1, which is equivalent to the statement that h

and r are coprime, and thus ̃ ≡ k′′r + hj + nk mod p̃ is a proper definition for an

index that runs from 0 to p̃− 1 a single time; using (3.3.28) and the definition of the

new index ̃ we can match the ω-independent portion of (3.3.24) and (3.3.25):

j

p
+
k′r

pq
+
k′′r

hp
=
̃

p̃
+
k̃ r̃

p̃ q̃
mod 1 . (3.3.29)

This concludes the proof of the existence of integers {p̃, q̃, r̃} for which the rewrite

(3.3.24) is possible, under the assumption that gcd(q, r, ab) = 1.

3.3.3 Evaluation of the index

In this section we will evaluate the contribution to the Bethe Ansatz formula (3.3.1)

coming from distributions of holonomies of the following type:

(u−mω)αjk =
j

p
+
k

q

(
abω +

r̂

p

)
+ const . (3.3.30)

As usual p · q = N and 0 ≤ r̂ < q ; we have added the hat on r̂ in order to avoid

confusion with the index r that appears in definition (3.2.44). For simplicity when

we take the large -N limit we will keep p and r̂ fixed and send q →∞.

In section 3.3.2 we have shown that configurations like (3.3.30) are possible only

when gcd(ab, q, r̂ ) = 1 . Throughout this section we will assume that q satisfies this

condition; in appendix A.2 we will show how this restriction can be removed.

The quantity that we need to compute is the following:

lim
q→∞

log
(
κ (N !)−|G| Z̃(u−mω ; ∆, τ, σ)H−1(u ; ∆, ω)

)∣∣∣
(3.3.30)

. (3.3.31)

The prefactor κ is given by (3.1.2); as already mentioned in section 3.1, it is sub-

leading at large -N , specifically log κ = O(N). The factor (N !)−|G| is subleading as

well, it is O(N logN) by Stirling formula. We are left with the Jacobian H, given

by (3.3.7), and the integrand Z̃, given by (3.3.2).

Let us start from the Jacobian: we can show that generically it gives a subleading

contribution and can be neglected, using an argument similar to the one given in

[43, 45]. The Jacobian H is the determinant of the matrix whose elements are

the partials derivatives of the Bethe Ansatz operators Qα
i defined in (3.3.3); let us

examine these partial derivatives. First, the derivatives of Qα
i with respect to the

Lagrange multipliers are simply

∂ logQα
i

∂λβ
= 2πi δαβ . (3.3.32)
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We can ignore these terms as they are just O(1). On the other hand, the derivatives

of with respect to the holonomies are given by

∂ logQα
i

∂uβj
= −δαβ

(
δij − δiN

) N∑
k=1

|G|∑
γ=1

[∑
Iαγ

F (−uαγik + ∆I) +
∑
Iγα

F (uαγik + ∆I)

]
+

+
∑
Iαβ

[
F (−uαβij + ∆I)− F (−uαβiN + ∆I)

]
+
∑
Iβα

[
F (uαβij + ∆I)− F (uαβiN + ∆I)

]
,

(3.3.33)

where F is the following function:

F (u) ≡ 2πi

ω
u− πi+

∂uθ0(u;ω)

θ0(u;ω)
. (3.3.34)

This function becomes singular only at the zeros of the θ0, that is when u ∈ Z+ω Z.

If the the chemical potentials ∆I are such that the distribution of points uαβij + ∆I

doesn’t accumulate around any of these poles in the limit N → ∞, then F (uαβij +

∆I) ∼ O(1) and

∂ logQα
i

∂uβj
= δαβ

(
δij − δiN

)
· O(N) + O(1) . (3.3.35)

In our case uαi is given by (3.3.30), and in the q →∞ limit the poles of F are provided

that

∆I /∈
gcd(ab, r̂)

pab
Z + (pabω + r̂)R . (3.3.36)

As long as this condition is satisfied for all chemical potentials only the diagonal

elements and the i = N, α = β elements are of order O(N), while all the others are

just O(1). In particular this means that the determinant (3.3.7) grows like N (|G|N),

and thus logH = O(N logN).

Since the Jacobian is subleading as long as the chemical potentials satisfy (3.3.36),

the large -N leading order of (3.3.31) is determined solely by the integrand Z̃. The

computation boils down to the evaluation of the following quantity:

Φp,q,r̂(∆) ≡
p−1∑

j1,j2=0

q−1∑
k1 6=k2=0

log Γe

(
∆ +

j1 − j2

p
+
k1 − k2

q

(
abω +

r̂

p

)
; aω, bω

)
.

(3.3.37)

In terms of this function we can write log Z̃ as7

log Z̃(u−mω ; ∆, τ, σ)
∣∣∣
(3.3.30)

= |G|Φp,q,r̂(τ +σ) +
∑
I

Φp,q,r̂(∆I) +O(N) . (3.3.38)

7If p is fixed as N →∞ then the sum of all the terms that have k1 = k2 is subleading:

q|G|
∑p−1
j1 6=j2=0 log Γe

(
aω+ bω+ j1−j2

p ; aω, bω
)

+ q
∑
I

∑p−1
j1,j2=0 log Γe

(
∆ + j1−j2

p ; aω, bω
)

= O(N)
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A quick comparison with (3.2.63) tells us that in the large -N limit we should expect

Φp,q,r̂(∆) to be related to the function Ψm,n(∆) defined in (3.2.44). More specif-

ically, because of (3.2.65) we expect the leading order of Φp,q,r̂(∆) to be equal to

−πiN2 Ψp,r̂(∆).

Using formula (A.1.4) we can take care of the sum over j1, j2:

Φp,q,r̂(∆) = p

q−1∑
k1 6=k2=0

log Γe

(
p∆ +

k1 − k2

q

(
pabω + r̂

)
; paω, pbω

)
. (3.3.39)

In order to compute the q → ∞ limit of this sum we can take advantage of the

following result found in [43]:

N∑
i 6=j=1

log Γe

(
∆ +

i− j
N

ω ;ω, ω

)
= −πiN2B3

(
[∆− ω ]′ω

)
3ω2

+ o(N2) . (3.3.40)

Here the subleading terms are of order O(N) when ∆ /∈ Z + R · ω, and O(N logN)

for the ∆ = 0 case. We can recast (3.3.39) in a form similar to (3.3.40) by making

use of the following identity:

log Γe

(
z ; paω, pbω

)
=

a−1∑
r=0

b−1∑
s=0

log Γe

(
z+pω(as+ br) ; pabω+ r̂, pabω+ r̂

)
, (3.3.41)

which follows from (A.1.3) and the invariance of the elliptic gamma under integer

shifts of any of its arguments. Denoting pabω + r̂ as ω̃ for convenience, (3.3.39)

becomes

Φp,q,r̂(∆) = p
a−1∑
r=0

b−1∑
s=0

q−1∑
k1 6=k2=0

log Γe

(
p∆ + pω(as+ br) +

k1 − k2

q
ω̃ ; ω̃, ω̃

)
.

(3.3.42)

Applying formula (3.3.40), we get at last the following expression for the large -N

leading order of Φp,q,r̂(∆) :

Φp,q,r̂(∆) = − πiN2

3p(pabω + r̂)2

a−1∑
r=0

b−1∑
s=0

B3

([
p∆ + pω(as+ br − ab)

]′
pabω+r̂

)
+ o(N2) =

= − πiN2 Ψp,r̂(∆) + o(N2) , (3.3.43)

where as usual the function Ψm,n(∆) is defined by (3.2.44).

This result is consistent with the ones we obtained in sections 3.2.3 and 3.2.4

with the elliptic extension approach. In particular, we find that the large -N estimate

for the index (3.2.66) is verified by the Bethe Ansatz formalism as well.

As already mentioned in section 3.2.3, the p = 1, r̂ = 0 case matches the

contribution to the Bethe Ansatz formula computed in [3], which reproduces the

entropy function of AdS5 black holes. In the next subsection we will elaborate more

on how result (3.3.43) and the one of [3] compare.
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3.3.4 Relation with previous work and competing exponential terms

Let us discuss the relation between the computation of subsection 3.3.3 and the one

of [3], which also estimated the large -N leading order of the index with τ 6= σ using

the Bethe Ansatz formula.

In [3] we focused exclusively on a single contribution to the index, the one coming

from the following distribution of holonomies:

(u−mω)αi =
i

N
ω + (i mod ab)ω + const . (3.3.44)

Up to O(1/N) terms, this configuration matches the right-hand side of (3.3.30) with

p = 1, r̂ = 0. For clarity, let us assume that N is a multiple of ab ; we can then

reparametrize the index i in terms of new indices i′ = 0, . . . , N/ab − 1 and i′′ =

0, . . . , ab− 1 such that i ≡ i′ab+ i′′, and rewrite (3.3.44) as following:

i

N
ω + (i mod ab)ω =

i′ + i′′(N/ab)

N
abω +

i′′

N
ω ≡ ı̃

N
abω + O

(
1

N

)
. (3.3.45)

In the second step we defined a new index ı̃ = 0, . . . , N − 1 as ı̃ ≡ i′ + i′′(N/ab).

As argued in appendix A of [3], these O(1/N) terms can be neglected in the large -N

limit, if we are only interested in the leading order. Accordingly, the contribution to

the index coming from the distribution of holonomies (3.3.44) computed in [3] does

indeed match the result that we have obtained for the p = 1, r̂ = 0 case.

Proving that theO(1/N) terms in (3.3.45) do not affect the large -N leading order

is possibly the most laborious step in the large -N computation of [3]. In this section

we have shown that it is possible to avoid this step completely by choosing a different

set up for u−mω, i. e. (3.3.30), at least as long as the assumption gcd(ab, q, r̂ ) = 1

is valid. Since the superconformal index is a continuous function of τ = aω and

σ = bω, it is natural to expect that the gcd(ab, q, r̂ ) = 1 condition doesn’t actually

play a role in the large -N behavior of the index; rather, this condition should be

a byproduct of focusing strictly on holonomy distributions that can be written as

(3.3.30).8

We want to stress the fact that the distributions of holonomies (3.3.44) and

(3.3.30) (with p = 1, r̂ = 0) are distinct from one another, even if in the large -N

limit they differ just by O(1/N) terms. This raises a problem: the contributions

to the index coming from these two distributions are exponentially growing terms

whose logarithms match at leading N2 order, and it is easy to see that there are

8In appendix A.2 we will verify that this intuition is indeed correct: for any possible choice of

integers p, q, r̂ there are contributions to the Bethe Anstatz formula that in the large -N limit give

the same result as (3.3.43), even when the condition gcd(ab, q, r̂ ) = 1 is not satisfied; the price to

pay is that we will have to deal with the O(1/N) terms once again.
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many other similar contributions;9 all these competing exponential terms must be

summed together since there is no guarantee that one of them clearly dominates over

the others.

Let us first estimate how many competing exponential terms there are. Any

possible choice of u−mω that matches i
N
abω up to O(1/N) terms must have ui ≡

i
N
ω, since this is the only Hong-Liu solution (3.3.4) whose holonomies are strictly

proportional to ω. There are then (ab)|G|(N−1) possible choices for the vector m,

at most. If we were to assume that all the competing exponential terms interfere

constructively, we would get at most a |G|(N − 1) log(ab) correction to our previous

estimate for the large -N limit, which is subleading and thus negligible. In other

words the leading N2 order does not receive corrections from the multiplicity of the

competing exponentials. However it would be possible, albeit very unlikely, for all

these terms to interfere destructively in such a way that they cancel completely. In

order to determine whether this is the case, we would need to calculate the exact

phase of all the competing contributions, which is unfeasible. Given that in the

saddle point analysis of section 3.2 this problem does not occur at all, we are lead

to believe that such a cancellation does not happen and the leading N2 order is

unaffected.

3.4 Summary and discussion

In this chapter we have estimated the large -N limit of the superconformal index of

N = 1 quiver theories with adjoint and bifundamental matter for general values of

BPS charges, using both the elliptic extension approach of [48–50] and the Bethe

Ansatz formula [46, 47]. We have found a good accord between the two methods,

resulting in the following estimate for the index:

log I
(
{∆I}; τ, σ

)
& max

m,n∈Z
m6=0

[
− πiN2

(
|G|Ψm,n(τ + σ) +

∑
I

Ψm,n(∆I)

)]
+ o(N2) ,

(3.4.1)

where the function Ψm,n(∆) is defined by

Ψm,n(∆) ≡
a−1∑
r=0

b−1∑
s=0

B3

(
[m∆ +mω(as+ br − ab)]′mabω+n

)
3m(mabω + n)2

(τ ≡ aω , σ ≡ bω)

(3.4.2)

and the parentheses [ · ]′T are such that [x+ y T ]′T = x− bxc+ y T for real x, y.

9For example, as already argued in [3] changing the value of a single holonomy does not impact

the large N leading order, and it is always possible to change the value of a single holonomy by by

changing the value of one of the entries of the vector of integers m. Hence, for any contribution to

the index that we have computed there are always many possible competing exponential terms.
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Our results extend the saddle point analysis of [48, 49] to the case of unequal

angular momenta (τ 6= σ). They also extend the computation of [3] to include multi-

ple competing exponentially-growing contributions to the Bethe Ansatz formula; the

single contribution computed in [3] corresponds to the m = 1, n = 0 term in (3.4.1).

In section 3.3.2 we have shown that the saddles of the elliptic action found in

[48, 49] can always be written in the form

j

p
+
k

q

(
T +

r

p

)
+ const. (3.4.3)

for some integers p, q, r, with T ≡ abω. This is the same form that the standard

Hong-Liu solutions [79] to the Bethe Ansatz equations (BAE) take, with the only

difference being that the latter are defined on a torus with a modulus T ≡ ω. When

a = b = 1 this means that each saddle has a matching BAE solution, and thus

a corresponding term in the Bethe Ansatz equations; however for general a, b the

different values of T cause a mismatch between saddles and BAE solutions. In this

chapter we have shown how the two different pictures can be reconciled: we have to

consider that each contribution to the Bethe Ansatz formula is labeled not only by

the BAE solution u but also by the choice of value for the auxiliary integer parameters

{mi} that shift the BAE solution as ui 7→ ui −mi ω . We have found that for each

saddle of the elliptic action there is a (u, {mi}) combination that matches it, either

exactly or up to O(1/N) corrections that are negligible at large -N .

There are still some open questions concerning the matching between the two

approaches. Most notably, the number of (u, {mi}) combinations that label each

contribution to the Bethe Ansatz formula is exponentially bigger than the number

of known saddles of the elliptic action. In this chapter we have computed only the

contribution of the (u, {mi}) combinations that match a saddle, but there are many

other contributions that are unaccounted for. It is not feasible to try to evaluate

all of them, given their exponentially large number: the integers {mi} can take

(ab)|G|(N−1) different values. Furthermore, the formulas that we have used in section

3.3.3 would not apply in general. Nonetheless, trying to understand what role do

all these terms play remains an interesting question. The simplest possible answer

would be that only the (u, {mi}) combinations that match one of the elliptic saddles

up to negligible corrections give a contribution that at large -N dominates in some

region of the space of parameters; further work is however still needed to test the

correctness of such a conjecture.

In our work we have not analyzed which contribution maximizes (3.4.1) in each

region of the parameter space. A detailed study of the phase structure of the index at

large -N for general values of BPS charges is a possible direction for future research.

In our analysis we focus exclusively on the O(N2) leading order; an interesting gen-

eralization would be to compute some lower order corrections.
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Chapter 4

Equivariant localization and

equivariant volume

In this chapter we review some of the key mathematical aspects that we will need in

chapter 5 to derive extremal functions for supergravity solutions with an holographic

dual. In particular, we will review the Atiyah-Bott-Berline-Vergne equivariant local-

ization formula [51, 52] for orbifolds [82, 83], and how it can be applied to compute

the equivariant volume, which will be the fundamental object for our discussion in

chapter 5.

We will focus on toric orbifolds, and although we will make ample use of the

symplectic and Kähler structures constructed in [84–87], we stress the fact that the

quantities that we will compute are topological in nature. In particular our results

apply to geometries that are topologically symplectic and toric, regardless of whether

the particular metric is compatible with a symplectic structure, which is the case for

many of the supergravity solutions that we consider in chapter 5.

This chapter is organized as follows: first, in section 4.1 we briefly review equiv-

ariant localization, then in section 4.2 we review some of the key properties of toric

orbifolds, their classification in terms of polytopes and their symplectic and Kähler

structures. In section 4.3 we review the equivariant volume of toric orbifolds fol-

lowing the discussion and notations of [28]. At last in section 4.4 we generalize the

equivariant volume with the addition of higher times.

4.1 Equivariant localization

In this section we briefly review the Atiyah-Bott-Berline-Vergne equivariant local-

ization formula [51, 52] for orbifolds [82, 83]. Given a torus action on a compact

orbifold M, the formula allows to compute integrals of equivariant forms on M in

terms of integrals on the fixed point set of the torus action. If the fixed point set

only contains isolated points, then the integrals simply reduce to sums over the fixed
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points. The equivariant localization formula can be applied to non-compact orbifolds

as well, provided that eventual contributions from infinity are accounted for.

Let us consider a torus Tm = Rm/2πZm action on an orbifold M. Let ε =

(ε1, . . . , εm) be a vector in the Lie algebra of Tm, and let ξ be the corresponding

vector field in M generated by the action of Tm. We can define a differential operator

acting on the space of mixed-degree differential forms as

dξα = dα + 2π iξα . (4.1.1)

Since d2
ξ = 0, the equivariant differential dξ defines a cohomology, the equivariant

cohomology of M. Mixed-degree forms that are closed under dξ are called equivariant

forms, and can be though as functions of the parameters ε1, . . . , εm, which are called

equivariant parameters. We will denote equivariant forms with as αTm , or more

simply with αT if there is no confusion about the dimension of the torus.

We can now state the equivariant localization formula. If M is a compact, ori-

entable, connected orbifold with a smooth Tm action, then the integral of an equiv-

ariant form αT is given by ∫
M
αT =

∑
F

1

dF

∫
F

i∗Fα
T

eT(NF )
, (4.1.2)

where F are the components of the fixed point set of the Tm action (which always

have even co-dimension), dF is the order of the orbifold singularity of M in F , i∗Fα
T

is the pullback of αT under the inclusion map iF : F → M, and eT(NF ) is the

equivariant Euler form of the normal bundle NF .1

If NF splits into a sum of invariant orbifold line bundles Lj,
2

NF =

codim(F )/2⊕
j=1

Lj , (4.1.3)

then the equivariant Euler form eT(NF ) can be defined as the following polynomial

of the Chern forms c1(Lj)

eT(NF ) =

codim(F )/2∏
j=1

(
c1(Lj)− wj · ε

)
(4.1.4)

where wj are the orbifold weights of the Tm action on Lj.

In the rest of this thesis we will focus on (2m)-dimensional toric orbifolds M2m.

In this case the fixed point set of the Tm action is comprised of isolated fixed points ya.

1For any point p ∈ F , the fiber of the normal bundle at p is by definition NpF = TpM/TpF .
2This will be true for the cases relevant to us. The following discussion easily generalizes using

the splitting principle.
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Then the above equivariant integration formula simplifies to the fixed point formula∫
M2m

αT =
∑
α

αT|yα
dα eT|yα

, (4.1.5)

which we will frequently use.

4.2 Toric orbifolds

In this section we review the key properties of toric orbifolds that we will need. In

subsection 4.2.1 and 4.2.2 we review their Kähler metrics and the explicit construction

of the equivariant Chern classes respectively, while in subsection 4.2.3 we review the

details of the construction of toric orbifolds as symplectic quotients.

Given a (2m)-dimensional orbifold M2m with a symplectic form ω, the action of

a Lie group G on M2m is Hamiltonian if there exist a G-equivariant3 moment map

µG : M2m → g∗, where g∗ is the dual of the Lie algebra g of G, such that

iξω = −d〈µG, ε〉 , (4.2.1)

where ε ∈ g and ξ is the corresponding vector field on M2m generated by the action

of G. The symplectic orbifold M2m is said to be toric if it is equipped with a Tm

Hamiltonian action. It is convenient to rewrite (4.2.1) as

iξω = −
m∑
i=1

εi dµ
i , (4.2.2)

where we have split ε ≡ (ε1, . . . , εm) and µi : M2m → R are the respective components

of the moment map of Tm, each one being the moment map of a S1 subgroup of Tm.

The moment maps µi are constant over the orbits of the Tm action.

A classic theorem of Delzant [88], generalized to the case of orbifolds in [89],

states that the image under the moment map of a (2m)-dimensional compact toric

orbifold M2m is a m-dimensional Delzant polytope.4 A convex polytope P can always

be written as

P = { yi ∈ Rm | yi v̂ai ≥ λ̂a, a = 1, . . . , d } (4.2.3)

where v̂ai is the vectors orthogonal to the facet Fa of the polytope and we are using

Einstein notation on the index i. The above polytope is said to be Delzant if each

vertex is the intersection of exactly m facets5 (i.e. it is simple) and the corresponding

3If Lg is the action of g ∈ G on M2m, then µG ◦ LG = Ad∗g ◦ µG, for all g ∈ G.
4For non-compact orbifolds we will still use the term polytope to refer to the image of the

moment map, even if in this case it is unbounded.
5It is not uncommon to encounter geometries with worse-than-orbifold singularities, such as

the singularity at the center of the cone over a toric Sasaki-Einstein. In this cases the singularity

corresponds to a vertex of the polytope which is the intersection of more than m facets. As we will

discuss later, such singularities can be dealt with by resolving them, which corresponds to cutting

off the singularity at the cost of introducing new facets.
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m vectors v̂ai can be chosen to be a Z-basis of the lattice Zm (i.e. it is rational).

Smooth compact toric manifolds are completely classified by their respective Delzant

polytopes: from the polytope it is always possible to reconstruct the toric manifold,

up to symplectomorphisms. For toric orbifolds additional information is needed: a

generic compact toric orbifold can be reconstructed from its polytope and the labels

dDa , which are the order of the toric singularity of M2m at Da = µ−1(Fa). This

information can be baked inside the definition of the polytope by defining the non-

primitive vectors vai = dDa · v̂ai , which we will exclusively use from now on. The

polytope can then be written as6

P = { yi ∈ Rm | la(y) ≥ 0, a = 1, . . . , d } , la(y) ≡ yi vi − λa . (4.2.4)

In subsection 4.2.3 we will briefly review how the orbifold M2m can be reconstructed

from the above information.

The sets Da = µ−1(Fa) are 2(m− 1)-cycles of M2m and are called toric divisors.

They are subject to the homological relations

d∑
a=1

vaiDa = 0 , i = 1, . . . ,m . (4.2.5)

At each toric divisor a S1 subgroup of the Tm degenerates. The intersection of q

distinct divisors is thus a toric sub-orbifold of M2m of codimension 2q, if non-empty.

In particular the fixed point of the Tm action correspond to the intersections of m

distinct toric divisors Da, and the moment map provides a one-to-one correspondence

between the fixed points of M2m and the vertices of the polytope.

The vectors vai are the generators of the fan of the orbifold M2m. The fan is

a collection of cones spanned by the vectors vai and encodes information about the

intersections of the facets Fa. More precisely, the cone spanned by (va1 , . . . , vak) is

part of the fan if-and-only-if the intersection Fa1∩. . .∩Fak is non-empty. In particular

the fixed points correspond to cones in the fan spanned by m vectors (va1 , . . . , vam).

The order of the orbifold singularity at the fixed point yα, α ≡ (va1 , . . . , vam), which

is needed for the fixed point formula (4.1.5), is given by

dα = | det(va1 , . . . , vam) | . (4.2.6)

Indeed we have

1 = | det(v̂a1 , . . . , v̂am) | = | det(va1 , . . . , vam) |
dDa1 . . . dDam

=
| det(va1 , . . . , vam) |

dα
. (4.2.7)

From the fan it is possible to reconstruct the algebraic structure of M2m as a toric

variety, but we will not need the details of this construction in the following.

6Also λa = dDa
· λ̂a
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The orbifold M2m can be seen as a Tm fibration over the polytope P , provided

that we collapse to a point the appropriate one-cycle of Tm above each facet Fa. In

particular there is a convenient densely defined local chart for M2m, given by the

cartesian coordinates yi taking values in the interior of the polytope and the angular

coordinates φi ∼ φi + 2π that parametrize the torus. This coordinate system is

symplectic, in the sense that the symplectic form ω is given by the following simple

expression:

ω = dyi ∧ dφi . (4.2.8)

We note that in this coordinate system the moment maps µi are just the projections

onto the coordinates yi.

4.2.1 Toric-Kähler metrics

In the symplectic (y, φ) coordinates the most general Tm invariant almost complex

structure on M2m compatible with ω given is [90]

J =

(
0 −Gij(y)

Gij(y) 0

)
, (4.2.9)

where Gij(y) is the inverse of Gij(y). The integrability of the complex structure is

equivalent to the condition on Gij(y) being a Hessian matrix:

Gij(y) =
∂2G(y)

∂yi∂yj
. (4.2.10)

The function G(y) is called the symplectic potential. The holomorphic coordinates

are then given by

zj(y, φ) =
∂G(y)

∂yj
+ i φj , (4.2.11)

while the toric-Käler metric obtained from ω and J is

ds2 = Gij(y)dyidyj +Gij(y)dφidφj . (4.2.12)

In order to behave correctly at the facets of the polytope G(y) must take the form

G(y) =
1

2

d∑
a=1

la(y) log la(y) + h(y) , (4.2.13)

where h(y) is a smooth function on the whole polytope P (not just on its interior).

In addition it must satisfy

det
[
Gij(y)

]
·

d∏
a=1

la(y) > 0 ∀y ∈ P (4.2.14)
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in order to be positive defined.

If the function h(y) in (4.2.13) is chosen to be h(y) = 0 we obtain the canonical

metric

Gcan.(y) =
1

2

d∑
a=1

la(y) log la(y) , Gcan.
ij =

∂2Gcan.(y)

∂yi∂yj
=

1

2

d∑
a=1

vai v
a
j

la(y)
. (4.2.15)

The canonical metric is the toric-Kähler metric obtained by constructing M2m as

a symplectic quotient Cd//G, as we will discuss more in detail in subsection 4.2.3.

Given that the quantities that we want to study are topological and do not depend

on the specific choice of metric, in the following we will use the canonical metric and

we will simply write G instead of Gcan..

4.2.2 Equivariant Chern classes

Every facet Fa of the polytope of a toric orbifold M2m is associated to a toric divisor

Da by inverse image of the moment map. There extist a holomorphic line bundle

La over M2m which is canonically associated with the divisor Da. The bundle La is

uniquely defined by requiring that its restriction on Da is the normal bundle NDa,

and that its restriction on M2m r Da is trivial. The Chern class of the line bundle

La has been computed in [91, 92]:

c1(La) = − i

2π

[
∂∂̄ log la(y)

]
, (4.2.16)

where [ · ] denotes the cohomology class. A key property of c1(La) is that it is the

Poincaré dual of the divisor Da, that is∫
M2m

c1(La) ∧ α =

∫
Da

α , (4.2.17)

for any (2m− 2)-form α on M2m. From the homological relation among the divisors

(4.2.5) we can deduce its cohomological counterpart:

d∑
a=1

vai c1(La) = 0 , i = 1, . . . ,m . (4.2.18)

We will now introduce equivariant analogue of the Chern forms, following the

discussion in [28]. First, we define the functions µia(y) as

µia(y) = − 1

4π

Gij(y) vaj
la(y)

(4.2.19)

We can then give the explicit expression for another representative of the Chern

class,

c1(La) =
[
d
(
µiadφi

)]
. (4.2.20)
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In the following, with an abuse of notation, we will be indicating this specific rep-

resentative of the Chern class the same way as the Chern class itself, c1(La). From

c1(La) = d
(
µiadφi

)
it is easy to verify the relation

i∂φic1(La) = − dµia . (4.2.21)

We can now define the equivariant Chern forms as

cT1 (La) = c1(La) + 2π εi µ
i
a , (4.2.22)

which are easily verified to be closed under the equivariant differential:

dξ c
T
1 (La) =

(
d+ 2π iξ

)(
c1(La) + 2π εi µ

i
a

)
= 0 . (4.2.23)

The equivarant counterpart of the cohomological relation (4.2.18) is

d∑
a=1

vai c
T
1 (La) = − εi , i = 1, . . . ,m , (4.2.24)

where we have used that
d∑
a=1

vai µ
j
a = − δ

j
i

2π
, (4.2.25)

which is a simple consequence of GijGjk = δij and (4.2.15).

The cohomology class of the symplectic form ω can be expressed in terms of the

Chern classes as [91]

[ω] = −2π
d∑
a=1

λa c1(La) . (4.2.26)

The λa are thus an over-parametrization of the Kähler moduli. The equivariant

analogue of the above formula is[
ωT ] = −2π

d∑
a=1

λa c
T
1 (La) , (4.2.27)

where this time [ · ] denotes the equivariant cohomology class and

ωT = ω + 2πH(εi) = ω + 2π εi yi . (4.2.28)

This form is equivariantly closed since H(εi) is the Hamiltonian of the vector ξ and

thus by definition

iξω = −dH . (4.2.29)

The relations (4.2.26) and (4.2.27) can be derived from the observation that the

moment maps µi(y) = yi can be written as

yi =Gij Gjk yk = Gij
∑
a

vaj v
a
k yk

2 la
= Gij

∑
a

vaj (la + λa)

2 la
=

= − 2π
∑
a

λaµ
a
i +

1

2

∑
a

Gijvaj .

(4.2.30)
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Then we find

ω = dyi ∧ dφi = −2π
∑
a

λa d
(
µai dφi

)
+ d

(
1

2

∑
a

Gijvaj dφi

)
, (4.2.31)

which implies (4.2.26), and the other relation easily follows.

4.2.3 Toric orbifolds as symplectic quotients

In this section we review how toric orbifolds can be reconstructed from polytopes (and

labels at the facets, which in our notations are baked inside the vectors that define

the polytope). For compact toric orbifolds this provides a complete classification,

according to the generalization to orbifolds [89] of the classic theorem of Delzant

[88]. This construction will be particularly useful to us when in chapter 6 we will

discuss the Molien-Weyl formula for the equivariant volume.

Our starting point is a generic simple rational convex polytope

P = {yi ∈ Rm | yivai ≥ λa} . (4.2.32)

Let us consider the space Cd, where we have a complex coordinate za for each vector

va ∈ Rm of the fan. The standard Td torus action on this space simply shifts the

phases of each za. Then we can define the following subgroup of Td:

G =
{(
e2πiQ1 , . . . , e2πiQd

)
∈ Td

∣∣∣ ∑
a

Qava ∈ Zm
}
. (4.2.33)

The idea is to construct the toric orbifold M2m as the zero level set of the moment

map of the action of G, quotiented by G: in short M2m = µ−1
G (0)/G. In the following

we will review this procedure step by step.

It is always possible to define the “GLSM charges” Qm
a ∈ Z by requiring that

d∑
a=1

Qm
a v

a
i = 0 , m = 1, . . . , d−m . (4.2.34)

These charges generate the Td−m continuous component of G. More precisely we

have

G = Γ ⊕
{(
e2πiQm1 θm , . . . , e2πiQmd θm

)
∈ Td

∣∣∣ θ1, . . . , θd−m ∈ R
}
, (4.2.35)

where for simplicity we are using Einstein notation on the index m = 1, . . . , d − m.

Here Γ is a discrete group, which we will call the “torsion group”. Without loss of

generality we will assume that the GLSM charges Qm
a are chosen so that the map

Td−m → Td that they define is injective.
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In order to construct the moment map of G, we first construct the moment map

of Td. The standard symplectic form on Cd is given by

ω0 =
1

2i

d∑
a=1

dza ∧ dz̄a . (4.2.36)

Then the components of the moment map of Td are

µa0(z, z̄) =
|za|2

2
+ λa , (4.2.37)

where for later convenience we have introduced the Kähler moduli λa, since µa0 is only

defined up to a constant. It is easy to check that the above µa0 satisfy the defining

property of the moment maps:

i∂ϕaω0 = −dµa0 , (4.2.38)

where ϕa is the phase of za.

The moment map of G can be found from the moment map of Td by contracting

the components of the latter with the GLSM charges:

µmG (z, z̄) =
d∑
a=1

Qm
a µ

a
0(z, z̄) . (4.2.39)

This trivially follows from the fact that the infinitesimal generators ofG are
∑

aQ
m
a ∂ϕa ,

and thus from (4.2.38) we immediately get

i∂∑
a Q

m
a ϕa

ω0 = −dµmG . (4.2.40)

As already mentioned, the zero level set of the moment map of G

µ−1
G (0) =

{
z ∈ Cd

∣∣∣ µmG (z, z̄) = 0 , m = 1, . . . , d−m
}

(4.2.41)

quotiented by the action of G reconstructs the toric orbifold M2m:

M2m = µ−1
G (0) / G . (4.2.42)

The symplectic form ω on M2m is then constructed by imposing that

p∗ω = i∗ω0 , (4.2.43)

where p : µ−1
G (0) → M2m is the projection into the quotient, i : µ−1

G → Cd is the

inclusion map, and p∗, i∗ are the respective pullbacks. This procedure of constructing

a symplectic orbifold (M2m, ω) from the Hamiltonian action of a group G on a higher

dimensional symplectic space (Cd in this case) is called symplectic reduction and is

usually denoted by

M2m = Cd//G . (4.2.44)
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Let us quickly comment the toricity and the Kähler structure of M2m thus con-

structed. The standard Td action on Cd induces a Td action on µ−1
G (0) which reduces

to Tm action on M2m. It is then possible to show that this Tm action is Hamiltonian

and the image of its moment map is precisely the polytope (4.2.32) that we started

with. Furthermore, since Cd is a Kähler manifold and the action of G preserves its

complex structure, it follows that the symplectic quotient M2m = Cd//G inherits a

complex structure that is compatible with ω. Hence M2m has a canonical Kähler

structure, and the respective Kähler metric is precisely the one given by (4.2.15).

The toric divisors of M2m are the 2(m− 1) cycles where a U(1) subgroup of Tm

acts trivially. In Cd the sets in which the U(1) subgroups act trivially are of the form

{(z1, . . . , zd) ∈ Cd | za = 0}. Thus the divisors are given by

Da =
(
µ−1
G (0) ∩ {(z1, . . . , zd) ∈ Cd | za = 0}

)
/ G . (4.2.45)

4.3 Equivariant volume

In this section we review the definition and the basic properties of the equivariant

volume. We will review the fixed point formula, the special case of four-dimensional

orbifolds and the Calabi-Yau case respectively in subsections 4.3.1, 4.3.2 and 4.3.3.

We will mostly follow the discussion and the conventions of [28] throughout the

entirety of this section. In section 4.4 we will generalize the equivariant volume by

including higher times.

Given a toric orbifold M2m and a vector ξ = εi ∂φi with Hamiltonian H(εi), then

the equivariant volume V is defined as [29]

V(λa, εi) =
1

(2π)m

∫
M2m

e−H
ωm

m!
. (4.3.1)

In the symplectic coordinates we have ω = dyi ∧ dφi and H(εi) = εi yi, which we can

use to write the equivariant volume as an integral over the polytope (4.2.4):

V(λa, εi) =

∫
P

e−εi yi dmy , (4.3.2)

where the factors of 2π at the denominator have been canceled by similar factors

coming from the integration over the angles φi. The equivariant volume can be

computed using the equivariant localization fixed point formula (4.1.5). Indeed, the

integrand of (4.3.1) can be expressed in terms of the equivariant form ωT = ω+ 2πH

as follows:

V(λa, εi) = (−1)m
∫
M2m

e−
1
2π
ωT
. (4.3.3)

In the case of compact toric orbifolds we can use (4.2.27) to write

V(λa, εi) = (−1)m
∫
M2m

e
∑d
a=1 λa c

T
1(La) . (4.3.4)
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For non-compact orbifolds we cannot ignore the exact form in (4.2.27) because it

plays a key role in ensuring the convergence of the integral (there are also constraints

on the values of the equivariant parameters εi which are needed for convergence, as

evident for formula (4.3.2) ). We will discuss some of the caveats regarding the

non-compact case in subsection 4.3.3 when examining toric Calabi-Yau m-folds.

In the case of compact orbifolds the equivariant volume is the generating func-

tional of equivariant intersection numbers, which are topological quantities that can

be defined as integrals of the equivariant Chern classes:

Da1...ak =

∫
M2m

cT1 (La1) · · · cT1 (Lak) . (4.3.5)

Indeed we can expand the equivariant integral as

V(λa, εi) =
∞∑
k=0

(−1)m

k!

d∑
a1,...,ak=1

λa1 · · ·λak
∫
M2m

cT1 (La1) · · · cT1 (Lak) , (4.3.6)

so that

Da1...ak = (−1)m
∂kV(λa, εi)

∂λa1 · · · ∂λak

∣∣∣
λa=0

. (4.3.7)

The equivariant intersection numbers are zero for k < m since in that case the

integrand is a mixed degree form with a zero top degree (2m) form. When k ≥ m

the top degree form is homogeneous of degree m − k in εi. Hence, the intersection

Da1...ak is a homogeneus polynomial of degree m− k in εi.

When the orbifold is non-compact it is still possible to derive the equivariant in-

tersection numbers of compact intersections of divisors from the equivariant volume.

This has been done in [93] using the Molien-Weyl formula. Regardless of intersection

numbers, we will need the expansion of the equivariant volume in powers of λa, which

we write as

V(λa, εi) =
∞∑
k=0

V(k)(λa, εi) , (4.3.8)

where V(k) is homogeneus of degree k in the λa. In the compact case V(k) is given

by the k-th term in the sum of (4.3.6).

From the equivariant cohomological relations (4.2.24) we find the following for-

mula for the shift of the λa:
7

V(λa + βiv
a
i , εi) = e−βiεiV(λa, εi) . (4.3.9)

When βiεi = 0 this can be regarded as a “gauge transformation”. The infinitesimal

version of the (4.3.9) is
d∑
a=1

vai
∂V

∂λa
= −εiV , (4.3.10)

7The transformation λ→ λa + βiv
a
i correspond to a translation of the polytope, so this formula

can also be easily derived from (4.3.2).
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and in terms of homogeneous components

d∑
a=1

vai
∂V(k)

∂λa
= −εiV(k−1) . (4.3.11)

4.3.1 Fixed point formula

In this subsection we review the fixed point formula for the equivariant volume,

focusing on the case of compact toric orbifolds. We postpone the non-compact case

to subsection 4.3.3.

If we apply the fixed point formula (4.1.5) to the integral (4.3.4) we find

V(λa, εi) = (−1)m
∑
α

eτ
T|yα

dα eT|yα
, (4.3.12)

where α runs over the fixed points of M2m, which are in a one-to-one correspondence

with the m-dimensional cones of the of the fan, α ≡ (va1 , . . . , vam), and we have

defined the equivariant form τT as

τT =
d∑
a=1

λa c
T
1 (La) . (4.3.13)

The restriction of the equivariant Chern classes cT1 (La) to the fixed point yα are

computed by simply evaluating the zero-form component of cT1 (La) in yα, which is

given by (4.2.22), and thus

cT1 (La)
∣∣∣
yα

= 2π εi µ
a
i

∣∣∣
yα
. (4.3.14)

In order to evaluate the functions µai (4.2.19) in yα we need to study the behavior of

Gij in the neighborhood of yα. If we specialize (4.2.15) around the fixed point yα we

can write

Gij =
1

2

m∑
k=1

vaki v
ak
j

lak
+ (terms that are regular at yα) . (4.3.15)

The above matrix can be easily inverted if we first define the vectors uaiα by requiring

that they satisfy

uaiα · vaj = dα δij . (4.3.16)

The above relation is equivalent to stating that (uaiα )j is dα times the inverse matrix

of the v
aj
i square m×m matrix. Therefore we must also have that

m∑
k=1

(uakα )i vakj = dα δ
i
j . (4.3.17)

The vectors uaiα are the inward normals to the facets of the cone α = (va1 , . . . , vam)

(or, equivalently, the vectors along the edges of the polytope that meet at the vertex
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yα) and their components (uaiα )j are integers. We can then use relations (4.3.16) and

(4.3.17) to find the inverse of Gij in the neighborhood of yα:

Gij ∼ 2

(dα)2

m∑
k=1

(uakα )i (uakα )j lak . (4.3.18)

We can now finally compute the restrictions of the µai at the fixed point yα

µai

∣∣∣
yα

= − 1

4π

Gij vaj
la

∣∣∣∣
yα

=

{
− 1

2π
(uaα)i

dα
if va ∈ α

0 if va /∈ α
, (4.3.19)

from which we find the restriction of the equivariant Chern forms:

cT1 (La)
∣∣∣
yα

= 2π εi µ
a
i

∣∣∣
yα

=

{
− ε ·uaα

dα
if va ∈ α

0 if va /∈ α
. (4.3.20)

The normal bundle over the fixed point yα is just the tangent space TyαM2m, and

it factorizes as the direct sum of the m line bundles Lai associated to the divisors

that intersect into the fixed point. In particular formula (4.1.4) for the equivariant

Euler class eT at yα is just the product of the restrictions of the equivariant forms

cT1 (Lai), and thus

eT|yα =
m∏
i=1

cT1 (Lai)
∣∣
yα

= (−1)m
m∏
i=1

ε · uaiα
dα

. (4.3.21)

Putting everything together, we find that the fixed point formula for the equiv-

ariant volume can be expressed as

V
(
λa, εi

)
=

∑
α=(va1 ,...,vam )

eτα

dα
∏m

i=1
ε ·uaiα
dα

, (4.3.22)

where

τα = −
m∑
i=1

λai

(ε · uaiα
dα

)
(4.3.23)

is the restriction of the equivariant form (4.3.13) to the fixed point yα.

4.3.2 Four-dimensional compact toric orbifolds

In this section we specialize to the case of four-dimensional compact toric orbifolds,

and review some of their salient features. The formulas of this section will be heavily

used in chapter 5, where we will mostly consider geometries that are fibrations over

four-dimensional compact toric orbifolds M4.

The polytope of a four-dimensional compact orbifold is just a convex polygon.

The fan is generated by the two-dimensional integer vectors va, a = 1, . . . , d that
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are normal to the sides of the polygon. The fixed points are associated with the

cones (va, va+1), where we take a counter-clockwise order for the vector and identify

cyclically va+d = va. Notice that in the compact four-dimensional case the number

of fixed points is equal to the number of vectors in the fan and we can use the index a

to label both. It is convenient to define the quantities

εa1 =
ε · ua1
da,a+1

, εa2 =
ε · ua2
da,a+1

, (4.3.24)

where ua1 and ua2 are the inward normals to the cones (va, va+1). Explicitly

εa1 = − det(va+1, ε)

det(va, va+1)
, εa2 =

det(va, ε)

det(va, va+1)
, (4.3.25)

where ε ≡ (ε1, ε2). In particular, the equivariant Euler class of the tangent bundle at

a fixed point ya reads

eT
∣∣
ya

= εa1 ε
a
2 , (4.3.26)

and the order of the local orbifold singularity is

da,a+1 = det(va, va+1) . (4.3.27)

The restriction to the fixed points of the equivariant Chern classes cT1 (La) can be

written as

cT1 (La)
∣∣
yb

= −(δa,bε
b
1 + δa,b+1ε

b
2) . (4.3.28)

The fixed point formula (4.3.22) for the equivariant volume is thus given by the

expression8

V(λa, εi) =
d∑
a=1

e−λaε
a
1−λa+1εa2

da,a+1 εa1ε
a
2

. (4.3.29)

From the equivariant volume we can derive the intersections numbers by using

formula (4.3.7). The expression for the intersections Dab and Dabc will be particularly

useful in chapter 5. Since Da1...ak is a homogeneous polynomial of degree k − 2, the

intersections Dab are just numbers. Explicitly they are

Dab =

∫
M4

cT1 (La) c
T
1 (Lb) =



1
da−1,a

if b = a− 1 ,

1
da,a+1

if b = a+ 1 ,

− da−1,a+1

da−1,ada,a+1
if b = a ,

0 otherwise .

(4.3.30)

The expression for Daa is obtained by application of the useful identity

εa1
da,a+1εa2

+
εa−1

2

da−1,aε
a−1
1

= − da−1,a+1

da−1,ada,a+1

, (4.3.31)

8Notice that there is no summation on a in the exponent.
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where da−1,a+1 = det(va−1, va+1).

The triple intersections Da1a2a3 are linear in εi and are given by

Da1a2a3 =

∫
M4

cT1 (La1)c
T
1 (La2)c

T
1 (La3) =

=


− εa−1

2

da−1,a
if ai = aj = ak + 1 ≡ a ,

− εa1
da,a+1

if ai = aj = ak − 1 ≡ a ,
da−1,a+1(2da−1,aεa1+da−1,a+1εa2)

d2a−1,ada,a+1
if a1 = a2 = a3 ≡ a ,

0 otherwise .

(4.3.32)

We note that from the vanishing of Da1...ak for k < 2 it is possible to derive useful

relations:

0 =

∫
M4

1 =
∑
a

1

da,a+1εa1ε
a
2

, (4.3.33)

0 =

∫
M4

cT1 (La) = − 1

da,a+1εa2
− 1

da−1,aε
a−1
1

. (4.3.34)

4.3.3 Toric Calabi-Yau m-folds

In this subsection we briefly review the Calabi-Yau case, which will be relevant for

many of the supergravity solutions that we will study in chapter 5. Given that all

toric Calabi-Yau are non-compact we will also discuss some of the subtleties of the

definition and computation of the equivariant volume of non-compact geometries.

Let us consider a toric Calabi-Yau m-fold. The Calabi-Yau condition is equivalent

to the requirement that all the vectors va that generate the fan lie in the same

hyperplane. Up to an SL(m,Z) transformation9 we can choose one component, say

i = 1,10 to be one for all the vectors, that is va1 = 1 for all a = 1, . . . , d. An

immediate consequence is that all toric Calabi-Yau are non-compact. The large yi
approximation of the polytope P is then a cone P ′:11

P ′ = {y ∈ Rm | yi vaki ≥ 0 , k = 1, . . . , d′ } . (4.3.35)

As evident from formula (4.3.2) for the equivariant volume as an integral over P , the

equivariant parameters εi must lie in th cone P ′ for the equivariant volume to be well

defined. The fixed point formula can be applied to Calabi-Yau geometries with only

orbifold singularities, considering that equivariant localization fails for non-compact

orbifolds only if there are contributions from infinity, which there are none.

9Choosing a different set of generators of the torus Tm action corresponds to an SL(m,Z) trans-

formation.
10The Calabi-Yau examples that we will consider in this thesis are all either three-folds or four-

folds, and for reason that will be more apparent later we will choose to set the third component to

one.
11Vectors va associated to compact divisors Da can be ignored in the large yi approximation.
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There many interesting cases where worse-than-orbifold singularities are present.

The prototypical example are toric Calabi-Yau cones over Sasaki-Einstein SE2m−1,

for which all the facets meet in a single vertex, which means that excluding the case

with minimal number of facets the cone is not a simple polytope. In such cases the

extremal functions of the supergravity solutions are found in terms of homogeneous

components of the equivariant volume V(k) of degree k < m [28]. The equivariant

volume can then be computed by resolving the singularity first, by adding vectors va

to the fan in such a way that the polytope stays the same at large yi but there are

no longer any worse-than-orbifold singularities. This can be done without changing

the final result because the components V(k) of degree k < m do not depend on the

parameters λa associated to compact divisors.12

4.4 Equivariant volume with higher times

In this section we discuss a generalization of the equivariant volume, obtained by

introducing higher times. The equivariant volume with higher times has appeared

only recently in the literature [93]13 and is still poorly studied. As we will discuss

in chapter 5, the equivariant volume with higher times contains all the information

needed to fully capture the topological properties and the quantization of fluxes for

a very large class of supergravity solutions.

The equivariant volume with higher times is defined by

V
(
{λa1...ak}Kk=1, εi

)
= (−1)m

∫
M2m

e−
ωT
2π

+
∑K
k=2 λa1...ak c

T
1(La1 )...cT1(Lak ) , (4.4.1)

where λa1...ak are symmetric tensors and a sum over repeated indices a is understood.

K can be any integer greater than one. The above expression has a large gauge

invariance and many parameters are redundant, as we will later discuss.

We can compute the equivariant volume with higher times (4.4.1) with the fixed

point formula (4.1.5):

V
(
{λa1...ak}Kk=1, εi

)
= (−1)m

∑
α

eτ
T|yα

dα eT|yα
, (4.4.2)

where yα, dα, and eT are defined as in the previous section, whereas τT is now defined

as

τT =
K∑
k=1

λa1...akc
T
1 (La1) . . . c

T
1 (Lak) . (4.4.3)

12The components of degree V(k) of degree k < m vanish for compact orbifolds. Any non-compact

polytope can be made into a compact one by adding facets that only intersect the previously non-

compact facets. This operation does not change the contribution of the original compact facets,

which must then be zero for V(k) with k < m.
13More precisely, in [93] they introduced a higher times analogue of the Molien-Weyl formula for

the equivariant volume. We will discuss this in more detail in chapter 6.
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Using the identities (4.3.20) and (4.3.21) we find

V
(
{λa1...ak}Kk=1, εi

)
=

∑
α=(va1 ,...,vam )

eτα

dα
∏m

i=1
ε ·uaiα
dα

, (4.4.4)

where τα is the restriction of the equivariant form (4.4.3) to the fixed point yα and

explicitly reads

τα = −
m∑
i=1

λai

(ε · uaiα
dα

)
+

m∑
i,j=1

λaiaj

(ε · uaiα
dα

)(ε · uajα
dα

)
+ . . . (4.4.5)

As an example, we give the expression for the equivariant volume with second times

(that is, with K = 2) for a four-dimensional toric orbifold, thus generalizing expres-

sion (4.3.29):

V(λa, λab, εi) =
d∑
a=1

e−λaε
a
1−λa+1εa2+λa,a(εa1)2+2λa,a+1εa1ε

a
2+λa+1,a+1(εa2)2

da,a+1 εa1ε
a
2

. (4.4.6)

We note that among the second times λab only the ones of the form λa,a and λa,a+1

effectively appear in V. We will use this observation a few times in chapter 5.

The equivariant volume can be expanded in power series of the higher times

V
(
{λa1...ak}Kk=1, εi

)
=
∞∑
n=0

V(n)
(
{λa1...ak}Kk=1, εi

)
, (4.4.7)

where we denote with V(n) the homogeneous component of degree n in the set of

higher times λa1...ak for all k. V(n) is a polynomial in εi in the compact case, while it

can be a rational function of εi when M2m is non-compact.

Notice that there is a large redundancy in the description with higher times.

This should be clear if we consider the fact that V is a function of εI and τα, so the

number of independent λ parameters is at most equal to the number of fixed points.

The relations between the equivalent values of the λ are in general non-linear, but

there is an interesting subset of linear gauge transformations which we will focus on.

Due to the relation (4.2.24), τT is invariant under the gauge transformations

λa1...ak+1
→ λa1...ak+1

+ β
(a1...ak
i v

ak+1)
i , λa1...ak → λa1...ak + εiβ

a1...ak
i , (4.4.8)

where βa1...aki is symmetric in the indices a1 . . . ak. Notice that the subgroup with

εiβ
a1...ak
i = 0 acts only on λa1...ak+1

without mixing times of different degree and it is

the only transformation allowed for single times. In the Calabi-Yau case, where the

vectors in the fan lie on a plane identified by the direction i = CY , say vaCY = 1,14

this subgroup can also be written as

λa1...ak → λa1...ak + γ
(a1...ak−1

i w
ak)
i , wai = εCY v

a
i − εi , (4.4.9)

14In all the examples that we will discuss εCY will be identified with ε3.
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generalizing the results in [28]. Many times can be therefore gauge-fixed to zero.

We note that the fact that τT is invariant under the transformation (4.4.8) does

not always imply that V is also invariant under the same transformation. The issue

is that the single times λa determine the shape of the polytope: as the λa are varied

the position of the vertices of the poytope shifts, and when multiple vertices converge

the fixed point structure of M2m can transition into a different one. Therefore the

the equivariant volume is invariant under (4.4.8) only as long as the shift in the

single times λa does not cross into region of the moduli space with different fixed

point structure.15 In the following chapter we will often gauge fix the λa inside

the equivariant form τT to zero for simplicity. Whenever we do this it should be

understood that we are not actually changing the fixed point structure, even if setting

λa to zero at the polytope level would correspond to collapsing all the fixed points

into one.

15This was not an issue for equation (4.3.9), since the shift λ→ λ+ βiv
a
i simply corresponds to

a translation of the polytope.
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Chapter 5

Equivariant volume extremization

and holography

In this chapter we propose a general prescription to write extremal functions for

supergravity solutions with a holographic dual, widening the scope of the approach

presented in [28]. In [28] it was suggested that it should be possible to express

the extremal functions in supergravity in terms of the equivariant volume, which

we reviewed in the previous chapter, and their proposal was checked by studying

systems of branes wrapped around either a sphere or a spindle. In this chapter we

will focus primarily on systems of branes wrapped around four-dimensional orbifolds

(or wrapped around two-cycles inside of them). We will argue that in order to

parameterize all the fluxes of Ramond-Ramond forms or M theory forms supported

by a given geometry it is necessary to include in the definition of the equivariant

volume the higher times, which we reviewed in subsection 4.4.

This chapter is organized as follows. In section 5.1 we introduce our prescription

for the extremal functions in supergravity and explain how it relates to previous

works in the literature.

In section 5.2 we analyse M theory solutions with M5 brane flux. In subsec-

tion 5.2.1 we consider solutions associated with M5 branes wrapped over a four-

dimensional orbifold M4. We show that the free energy can be obtained by extrem-

izing the appropriate term in the equivariant volume and that the result agrees with

the field theory computation in [28], obtained by integrating the anomaly of the M5

brane theory over M4. In subsection 5.2.2 we consider solutions that are potentially

related to M5 branes wrapped on a two-cycle in M4. By extremizing the appropriate

term in the equivariant volume, we reproduce known results in the literature and

extend them to predictions for solutions still to be found. In subsection 5.2.3 we

compare our prescription with the recent approach based on Killing spinor bilinears

in M theory [53].

In section 5.3 we consider solutions in type II string theory with geometries
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that are fibrations over a four-dimensional orbifold M4. In subsection 5.3.1 we

consider massive type IIA solutions associated with D4 branes wrapped around a

four-dimensional toric orbifold M4 and derive the free energy proposed in [85]. In

subsection 5.3.2 we consider massive type IIA solutions associated with a system of

D4/D8 branes, with the former wrapped on a two-cycle in M4. Extremizing the ap-

propriate term in the equivariant volume we are able to reproduce the gravitational

free energy computed from the explicit solution.

In section 5.3.3 we consider type IIB solutions with D3 flux associated with

S3/Zp fibrations over M4, which could potentially arise as the near-horizon limit of

a system of D3 branes wrapped on a two-cycle of the four-dimensional orbifold M4.

This example can be covered by the formalism of GK geometry, that we here extend

to the case of fibrations over orbifolds, using the equivariance with respect to the

full four-torus T4. In this and other previous examples with M5 branes, we observe

that, in order to obtain the correct critical point, one should allow all the equivariant

parameters not fixed by symmetries to vary, thus rectifying some previous results in

the literature.

Lastly, in section 5.4 we summarize our results and discuss open problems and

future perspectives. The appendices B contain technical aspects of some computa-

tions.

5.1 Extremal functions from the equivariant volume

The equivariant volume of toric orbifolds is a basic topological object, sensitive only

to the degenerations of the torus Tm near the fixed points, as can be seen from

its fixed point furmula (4.3.22). In the applications to holography one encounters

metrics that are not Kähler and not even symplectic, but with underlying spaces that

are in fact symplectic toric orbifolds and one can nevertheless define V and use it to

compute topological quantities that ultimately will not depend on the metric. Given

these properties, the equivariant volume is the gravitational analogue of quantum

field theory quantities like ’t Hooft anomalies and supersymmetric indices that are

invariant under small deformations of the theory once symmetries and matter content

are fixed. In [28] it was argued therefore that all extremization problems in gravity

can be reformulated in terms of the equivariant volume. It was shown that this is

true for volume minimization [8, 9] (dual to a [4] and F -maximization [6]) and the

formalism of GK geometry [11, 12] (dual to c [5] and I-extremization [7]). In [28] it

was proposed that this should be true more generally, and as a partial check of their

proposal they showed that all known extremization problems for branes wrapped

over a sphere or a spindle in type II and M theory can indeed be reformulated in

terms of the equivariant volume.

In this chapter we will corroborate and generalize the proposal of [28] by ana-

lyzing systems of branes partially or totally wrapped around four-dimensional toric
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orbifolds. The toric assumption is not essential, but is made for two reasons. Firstly,

if a geometry has a symmetry group that contains Tm = U(1)m, we need to extremize

over the corresponding m − 1 equivariant parameters not fixed by supersymmetry,

otherwise the critical point found would not be a bona fide extremum of the gravi-

tational action. Secondly, in this case the fixed point theorem simplifies to a sum of

contributions at isolated fixed points; more generally, it would be straightforward to

proceed assuming a Tk = U(1)k Hamiltonian action, with 1 < k < m. Furthermore,

in many examples when the underlying geometry is not strictly symplectic or toric

but has a Tm isometry we can also define a natural generalization of V by a sort

of analytical continuation, as is the case for geometries where the fan is not strictly

convex or geometries involving S4.

This section is organized as follows. We will begin in subsection 5.1.1 by briefly

reviewing the the extremal functions in supergravity that have been known in the

literature for quite a while [8, 9, 11, 12] and how they relate to the equivariant

volume. Then in subsection 5.1.2 we review the proposal of [28] and explain how we

generalized it.

5.1.1 Sasakian volume, master volume and equivariant volume

In this section we briefly review the Sasakian volume and its generalization, the

master volume, mostly following the discussion of [8] and [12, 25]. We will review

why these quantities are extremal functions and how they relate to the homogeneous

components of the equivariant volume, as observed in [28].

Let Y2m−1 be a toric Sasaki-Einstein of dimension 2m − 1, and let X2m be the

cone over Y2m−1, namely X2m = R≥0 × Y2m−1 with metric

ds2
X2m

= dr2 + r2ds2
Y2m−1

. (5.1.1)

Since Y2m−1 is a Sasaki-Einstein, the above metric is Ricci-flat and Kähler, with

respect to a compatible integrable complex structure J . Then X2m is a toric Calabi-

Yau m-fold singularity, whose polytope is the cone

P = {y ∈ Rm | yi vai ≥ 0} . (5.1.2)

We impose the Calabi-Yau condition by setting va1 = 1 for all a = 1, . . . , d.

The killing vector of interest is the Reeb vector field of X2m, defined as

ξ = J(r∂r) = εi∂φi , (5.1.3)

where the εi play the role of equivariant parameters. The Reeb vector ξ has unit

norm on Y2m−1 and defines the foliation

ds2
Y2m−1

= η2 + ds2
2m−2 , (5.1.4)
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where η is the dual one-form of ξ (that is η(ξ) = 1) and the transverse metric ds2
2m−2

is conformally Kähler with Kähler form ωSasakian. We can find the subset of the cone

P that correspond to Y2m−1 ≡ X2m|r=1 by imposing that the norm of ξ is one:

1 = εiεjG
ij = 2 εiGjkykG

ij = 2 εi yi (5.1.5)

where Gij and Gij are the ones defined in section 4.2.1 and we have used that

εj = 2Gjkyk, which follows from r∂r = 2yi∂yi and expression (4.2.9) for the complex

structure J . Then the subset of P that correspond to Y2m−1 is P ∩ Hε, where Hε is

the hyperplane

Hε = {y ∈ Rm | εi yi = 1
2
} . (5.1.6)

The Sasakian volume is defined as the volume of Y2m−1 and it can be determined

as following:

Vol(Y2m−1)(εi) =

∫
Y2m−1

η ∧ ωm−1
Sasakian

(m− 1)!
=

(2π)m

|~ε |
Vol(P ∩Hε) . (5.1.7)

Let us consider AdS5×Y5 solutions of type IIB supergravity, Y5 ≡ SE5. The Einstein-

Hilbert action on the space of Sasakian metrics of Y5 is proportional to the Sasakian

volume [8]. Remarkably, the action only depends on the parameters εi, with ε1 fixed

to a constant value. The value of the εi at the critical point of the action determines

the Reeb vector ξ of the Sasaki-Einstein metric. In the dual CFT this procedure

mirrors how the R-symmetry can be determined by maximizing a [4] with respect to

a trial R-symmetry. The value of a for the CFT can also be found in terms of the

minimum of the Sasakian volume by using that [94, 95]

aY5
aS5

=
Vol(S5)

Vol(Y5)
. (5.1.8)

With a suitable parametrization of the trial R-charge this identity is not only valid

at the critical point but also for a generic value of εi (off-shell) [8, 69].

Similarly, for AdS4 × SE7 solutions in 11d supergravity the Sasakian volume

minimization is the dual of the maximization of the free energy F [6], intended as

(minus) the logarithm of the supersymmetric partition function on S3.

In [11, 12] the Sasakian volume has been generalized to the so-called master

volume by allowing the transverse Kähler class in the foliation (5.1.4) to vary and

no longer be fixed to [ωSasakian].1 A generic transverse Kähler class can be written as

[ωB] = −2π
d∑
a=1

λa ca , (5.1.9)

1We stress that the metric of Y2m−1 is no longer Sasakian after varying the transverse Kähler

class. Y2m−1 itself is still topologically Sasakian.
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where the ca are cohomology classes in the foliation of Y2m−1 that uplift to c1(La) in

X2m. In general the above differs from the Sasakian class, which is given by

[ωSasakian] =
π

ε1

d∑
a=1

ca , (5.1.10)

and thus corresponds to (5.1.9) with λa = − 1
2ε1

. The master volume is then defined

as

V(λa, εi) =

∫
Y2m−1

η ∧ ωm−1
B

(m− 1)!
=

(2π)m

|~ε |
Vol
(
P(λa, εi)

)
, (5.1.11)

where P(λa, εi) generalizes P ∩Hε with the introduction of the λa:

P(λa, εi) = {y ∈ Hε | (yi − δi,1
2ε1

) vai ≥ λa} . (5.1.12)

In order to discuss the connection between master volume and extremal func-

tions, for concreteness let us focus on the case of AdS3 × Y7 solutions of type IIB

supergravity described by GK geometry [96, 97]. These solutions can be taken off-

shell: we can consider supersymmetric geometries that admit the required Killing

spinors but do not solve the five-form equation of motion. Putting these geometries

back on-shell can be shown to be equivalent to solving the equations of motions that

come from varying the following supersymmetric action:

SSUSY =

∫
Y7

η ∧ ρ ∧
J2

2m−2

2
= −

d∑
a=1

∂V
∂λa

, (5.1.13)

where ρ and J2m−2 are the Ricci form and complex structure of the transverse Kähler

class of the foliation of Y7. Additionally we need to impose the quantization of the

fluxes of the five-form on all independent five-cicles:

4π(2π`s)
4gs

L4
Ma =

L4

4π

∫
Da

F5 =
d∑
b=1

∂2V
∂λa∂λb

= −∂SSUSY
∂λa

, (5.1.14)

where the Ma are integers and since the toric divisors are not independent neither

are the Na: form
∑

a v
a
iDa = 0 we find

∑
a v

a
iNa = 0. There is also a topological

constraint

0 =

∫
Y7

η ∧ ρ2 ∧ J2m−2 (5.1.15)

which is equivalent to

0 =
d∑

a,b=1

∂2V
∂λa∂λb

= −
d∑
a=1

∂SSUSY
∂λa

. (5.1.16)
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When SSUSY (λa, εi) is extremized under the constraints (5.1.14) and (5.1.16) while

keeping ε1 fixed to a constant value,2 the value of the εi at the critical point fixes

the Killing vector ξ and the extremal value of SSUSY can be used to determine the

central charge c of the dual CFT:

c =
3L8

(2π)6g2
s`

8
s

SSUSY
∣∣
on-shell

. (5.1.17)

This process is the gravitational dual of c-extremization [5].

In [28] it has been shown that the master volume is proportional to the ho-

mogeneous component of degree m − 1 of the equivariant volume of the toric cone

X2m:

V(λa, εi) = (2π)m V(m−1)(λa, εi) . (5.1.18)

Using the property (4.3.11) and the fact that va1 = 1 for a = 1, . . . , d, the super-

symmetric action (5.1.13) can also be expressed as a homogeneous component of

V:

SSUSY = ε1 (2π)m V(m−2)(λa, εi) . (5.1.19)

Equations (5.1.14) and (5.1.16) will be naturally incorporated in the prescription [28]

that we will generalize in subsection 5.1.2.

We conclude this subsection by commenting that the master volume formalism

of GK geometry can also be applied to AdS solutions whose internal spaces are

fibrations with a Kähler base manifold and toric topologically-Sasakian fiber [54]. We

will not review the details here since all solutions in GK geometry that can studied

with the master volume can also be studied with the prescription we present in the

following subsection, provided that the geometry is toric.3 A concrete example of this

are the AdS3 ×M7 solutions in type IIB that we analyze in subsection 5.3.3, which

generalize to the orbifold case the ones that have been studied in [54] with the master

volume. Lastly, let us mention how AdS2×M9 solutions in GK geometry relate to I-

extremization [7, 24, 25]. If M9 is a fibration of toric Y7 over a Riemann surface, these

solutions can arise as the near-horizon limit of asymptotically AdS4×Y7 black holes.

Then the supersymmetric action SSUSY is proportional to the entropy function of

the black holes and reproduces their Bekenstein-Hawking entropy when extremized.

The field theory quantity dual to the entropy function is the topologically-twisted

index I [23], closely related to the superconformal index that we reviewed in chapter

2.

5.1.2 A general prescription

It has been shown in [28] that all known extremization problems for branes wrapped

over a sphere or a spindle can be formulated in terms of an extremal function which

2ε1 is fixed to a constant by the requirement that the Killing vector ξ has the appropriate

R-charge.
3As already mentioned, it would be possible to relax toric assumption.

81



matches one of the homogeneous components (4.3.8) of the equivariant volume:

F = V(α)(λA, εI) , (5.1.20)

where V(α) is homogeneous of degree α in λA. The parameters of F are subject

to a set of flux constraints which can also be expressed in terms of a homogeneous

component of V as follows:

νMA = −∂V
(β)

∂λA
, (5.1.21)

where MA are the integer fluxes of the relevant Ramond-Ramond or M theory anti-

symmetric form, obeying ∑
A

V A
I MA = 0 . (5.1.22)

ν is a normalization constant4 that depends on the type of brane and the dimension

of the internal geometry. We also note that from (5.1.21) and (5.1.22) it follows,

using the property (4.3.11) of V, that the constraint

V(β−1) = 0 (5.1.23)

must be satisfied. Although it is not an independent relation, one can regard this as

a topological constraint necessary in order to impose the flux quantization. Formulae

(5.1.21) and (5.1.23) are the analogous of the master volume formulae (5.1.14) and

(5.1.16) respectively. The integers α and β depend on the type of brane. By a simple

scaling argument, it was found that

D3 branes in type IIB: α = 2 , β = 2

M2 branes in M theory: α = 3 , β = 3

M5 branes in M theory: α = 3 , β = 2

D4 branes in massive type IIA: α = 5 , β = 3

D2 branes in massive type IIA: α = 5 , β = 4 .

(5.1.24)

The extremal function F can be normalized such that its extremum reproduces the

central charge of the dual field theory in even dimensions and the logarithm of the

sphere partition function in odd dimensions and we will use this convention in the

following.

In this chapter we show that this construction also holds for known extremiza-

tion problems for branes (partially or totally) wrapped over four-dimensional toric

4A priori there is also an overall normalization constant in the definition of F , again depending

on the type of brane and the dimension of the internal geometry, however this can always be

absorbed in a rescaling of the λA, using the homogeneity of V(γ). For simplicity, in the examples

we will indicate only the type of brane as a subscript in ν, omitting the dependence on the dimension

of the internal geometry.
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orbifolds. As we will later argue, for this kind of geometries the equivariant volume

with just single times V(λA, εI) is not sufficient: we need to include higher times.

For all the examples that we will consider in this chapter single and double times (λA
and λAB) will be sufficient. Only in appendix B.2 we will show an example of com-

putation where we intentionally over-parametrize the system by using triple times

λABC as well. As a general rule, to fully capture the parameters of the supergravity

solution, we need a number of independent parameters at least equal to the number

of fixed points. Indeed from equation (4.4.4) we can see that functionally V is a

function of εI and τα only. If the number of higher times λA1...Ak is too big to be

fixed by flux constraints and gauge transformations, we will argue that the correct

procedure is to extremize with respect to the excess parameters. As we will show in

the rest of this chapter, the equivariant volume with higher times contains all the

information needed to fully capture the topological properties and the quantization

of fluxes for a very large class of supergravity solutions. Depending on the system

the flux constraint (5.1.21) may need to be modified to include a derivative in the

λAB in place of the derivative in λA. We will discuss this on a case-by-case basis.

The above construction relies on even-dimensional toric orbifolds. For supergrav-

ity backgrounds AdSd ×Mk with odd-dimensional internal space Mk the geometry

to consider is the cone over Mk, as familiar from holography. This cone is often

a non-compact toric Calabi-Yau, or, in the case of supersymmetry preserved with

anti-twist, a non-convex generalization.5 When Mk is even-dimensional, we consider

the equivariant volume of the compact Mk itself. Some M5 brane solutions have a

Z2 symmetry that allows to cut into half the number of fixed point and consider an

equivalent problem for a non-compact Calabi-Yau (half of the manifold). This was

done in [28] for M5 branes wrapped on a spindle.

Since all the geometries that we will consider in this chapter are fibrations over

the four-dimensional toric orbifold M4, for clarity of notation we will use capital

letters (V A
I , A, I) for the higher-dimensional geometry and lower-case letters (vai , a, i)

for M4.

Our approach naturally incorporates the GMS construction based on GK ge-

ometry [11, 12] as well as the recent localization technique based on Killing spinor

bilinears in M theory [53]. Indeed, we will show that, for M5 solutions with even-

dimensional M6 or M8, our approach is effectively equivalent to the one in [53]. In

particular, all the geometrical constraints that must be imposed on a case-by-case

analysis in order to find the free energy in [53] appear naturally in our construc-

tion as an extremization with respect to all the parameters that are not fixed by

the flux quantization conditions. On the one hand, this is a nice confirmation of

our prescription. On the other hand, our approach for the toric case is more gen-

5See for example [98]. Whenever we will encounter polytopes and polyhedral cones that are not

convex, we will obtain results by performing a suitable extrapolation from the convex case.

83



eral, it covers in a simple and universal way the even and odd-dimensional cases, it

naturally extends to massive type IIA solutions, which are not yet covered by the

previous techniques, and expresses everything in terms of the extremization of a uni-

versal quantity, the equivariant volume of the associated geometry, without referring

to supergravity quantities. We are confident that when the explicit case-by-case su-

pergravity analysis will be performed for the missing backgrounds it will confirm our

general prescription.

5.2 AdS3 and AdS5 solutions in M theory

We start by analysing M theory solutions with M5 brane flux and show that the

free energy can be obtained by extremizing the appropriate term in the equivariant

volume. The case of M5 branes wrapped on a spindle have been already studied in

[28]. Here we focus on geometries that are fibrations over a four-dimensional toric

orbifold M4.

5.2.1 AdS3 ×M8 solutions

In this section we consider AdS3 ×M8 solutions in M theory, where6 M8 is an S4

fibration over the four-dimensional orbifold M4. Examples of this form have been

found in [84] and further discussed in [85, 86, 99]. They are obtained by uplifting

AdS3 ×M4 solutions of D = 7 maximal gauged supergravity to eleven dimensions.

These AdS3 × M8 solutions can be interpreted as the near-horizon geometry of a

system of M5 branes wrapped around M4.

We need first to identify the topological structure of the underlying geometry.

We will focus on the case of toric M4. The eight-dimensional geometry M8 is not

strictly toric, but it admits an action of T4 = U(1)4. If d is the dimension of the

fan of M4, there are 2d fixed points of the torus action obtained by selecting a fixed

point on M4 and combining it with the North and South pole of S4. We will assume

that there is a Z2 symmetry of the fibration that identifies the North and South pole

contributions to the fixed point formula. In this situation we can consider half of

the geometry, a C2 fibration over M4 with the geometry of a non-compact toric CY4.

One can understand the appearance of the fibre C2 from the transverse geometry of

the brane system, which is C2 × R, with S4 embedded inside. We then consider a

CY4 with fan generated by the vectors

V a = (va, 1, ta) , V d+1 = (0, 0, 1, 0) , V d+2 = (0, 0, 1, 1) , (5.2.1)

where va, a = 1, . . . , d, are the vectors of the fan of M4 and ta are integers specifying

the twisting of C2 over M4. When supersymmetry is preserved with anti-twist [100],

the toric diagram is not convex and it does not strictly define a toric geometry. We

6In general, M8 is itself an orbifold.
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will nevertheless proceed also in this case, considering it as an extrapolation from

the twist case. The non-convex case is obtained from the formulas in this chapter by

sending va → σava, where σa = ±1.

In addition to the metric, the supergravity solution is specified by the integer

fluxes of the M theory four-form along all the non-trivial four-cycles. The toric four-

cycles of the geometry are M4 itself, the sphere S4 and P1 fibrations over the toric

two-cycles Σa ⊂ M4. In our half-geometry, the sphere S4 and P1 ⊂ S4 are replaced

with copies of C2 and C. All together, the toric four-cycles correspond to all the

possible intersections of the toric divisors DA ∩DB and we can therefore introduce a

matrix of fluxes MAB. As usual, not all toric divisors are inequivalent in co-homology.

The relations
∑

A V
A
I DA = 0 imply that the matrix of fluxes satisfy∑

A

V A
I MAB = 0 . (5.2.2)

We are now ready to formulate our prescription for the extremal function. For

M5 branes in M theory, as discussed in [28] and in the introduction, we define the

free energy to extremize as

F = V(3)(λA, λAB, εI) , (5.2.3)

and impose the flux constraints7

νM5 (2− δAB)MAB = − ∂

∂λAB
V(2)(λA, λAB, εI) . (5.2.4)

Here the index A = 1, . . . , d + 2 runs over all the vectors of the fan of the CY4,

whereas we reserve the lower-case index a = 1, . . . , d for the vectors of the fan of

the base M4. On the other hand, the index I = 1, 2, 3, 4 runs over the equivariant

parameters of the CY4 and we will use i = 1, 2 for the directions inside M4. We have

added a (2− δAB) factor in the equation for the fluxes for convenience. It is easy to

see using (4.4.4) that this equation can be equivalently rewritten as

νM5MAB = − ∂2

∂λA∂λB
V(3)(λA, λAB, εI) , (5.2.5)

and one may wonder if we really need higher times. The answer is yes. As we will

discuss later, with only single times the previous equation cannot be solved.8

In the rest of this section we will show that F reproduces the expected extremal

function and its factorization in gravitational blocks discussed in [28, 85].

7We put a bar on top of νM5 to stress that we are using a half-geometry. To have the correct

normalization of the free energy when using half of the geometry, the parameter νM5 must be

rescaled as in formula (5.2.47), as we will discuss more extensively in section 5.2.2.
8One would need to restrict the ta in order to find solutions.
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5.2.1.1 The equivariant volume with double times

The T4 torus action on the CY4 has d fixed points, each one corresponding to a cone

in the fan with generators (V a, V a+1, V d+1, V d+2), a = 1, . . . , d. In particular, there

is a one-to-one correspondence between these fixed points and the ones of the base

orbifold M4; for the latter the fixed points correspond to two-dimensional cones of

the form (va, va+1) and they can be labelled by the index a. The order of the orbifold

singularities associated with the fixed points of CY4 and M4 also match:

da,a+1,d+1,d+2 =
∣∣det(V a, V a+1, V d+1, V d+2)

∣∣ =
∣∣det(va, va+1)

∣∣ = da,a+1 . (5.2.6)

Therefore, the fixed point formula for the equivariant volume with higher times of

CY4 takes the following form:

V(λA, λAB, εI) =
∑
a

eτa

da,a+1 eT
4 |a

. (5.2.7)

Here, τa is the restriction to the fixed point a of the form (4.4.3)

τa =

(∑
A

λA c
T4

1 (LA) +
∑
A,B

λAB c
T4

1 (LA) cT
4

1 (LB)

)∣∣∣∣∣
a

, (5.2.8)

while at the denominator we have the restriction of the Euler class eT
4

eT
4∣∣
a

=
(
cT

4

1 (La) c
T4

1 (La+1) cT
4

1 (Ld+1) cT
4

1 (Ld+2)
)∣∣∣

a
. (5.2.9)

The restrictions of the Chern classes can be computed using (4.3.20). The inward

normals to the faces of the cone generated by (Va, Va+1, Vd+1, Vd+2) are

Ua = (ua1, 0, 0) ,

Ua+1 = (ua2, 0, 0) ,

Ud+1 =
(
(ta − 1)ua1 + (ta+1 − 1)ua2 , da,a+1,−da,a+1

)
,

Ud+2 = (−taua1 − ta+1u
a
2 , 0, da,a+1) ,

(5.2.10)

where ua1 and ua2 are the two-dimensional normals to the cone (va, va+1). Using the

notations introduced in (4.3.24) we find

cT
4

1 (La)
∣∣
a

= −εi (u
a
1)i

da,a+1

= −εa1 ,

cT
4

1 (La+1)
∣∣
a

= −εi (u
a
2)i

da,a+1

= −εa2 ,

cT
4

1 (Lb)
∣∣
a

= 0 , b 6= a, a+ 1 , (5.2.11)

cT
4

1 (Ld+1)
∣∣
a

= −(ta − 1)εa1 − (ta+1 − 1)εa2 − ε3 + ε4 ,
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cT
4

1 (Ld+2)
∣∣
a

= taε
a
1 + ta+1ε

a
2 − ε4 ,

where for simplicity we have used Einstein notation for the sums over the index

i = 1, 2.

We can write the equivariant volume of the CY4 as an integral over the base

orbifold M4 of four-dimensional equivariant forms with ε3 and ε4 as parameters. Let

us denote with T the two-dimensional torus associated with ε1 and ε2, and let cT1 (La)

be the equivariant Chern classes associated to the restrictions of the line bundles

La to the base M4. We can then take advantage of the one-to-one correspondence

between fixed point of the CY4 and fixed points of M4 and, using (4.3.28), we can

rewrite (5.2.7) as

V(λA, λAB, εI) =

∫
M4

eτ
T

Cd+1 Cd+2

, (5.2.12)

where
τT =

∑
A

λA CA +
∑
A,B

λAB CA CB ,

Ca = cT1 (La) , a = 1, . . . , d ,

Cd+1 = −ε3 + ε4 +
∑
a

(ta − 1)cT1 (La) ,

Cd+2 = −ε4 −
∑
a

tac
T
1 (La) .

(5.2.13)

Notice the relations
∑

a v
a
i c

T
1 (La) = −εi and

∑
A V

A
I CA = −εI , following from (??).9

The homogeneous component of degree α of the equivariant volume with higher

times can be expressed as

V(α)(λA, λAB, εI) =

∫
M4

(τT)α

α! Cd+1 Cd+2

=
∑
a

B
(α)
a

da,a+1 εa1 ε
a
2

, (5.2.14)

where we have defined B
(α)
a to be the restriction over the a-th fixed point of M4 of

the following equivariant form:

B(α) =
(τT)α

α! Cd+1 Cd+2

. (5.2.15)

For later reference we derive the relation between B
(α)
a and B

(β)
a

B(β)
a =

(τa)
β

β!
(
Cd+1 Cd+2

)
|a

=
(α!)

β
α

β!

[
(τa)

α

α!
(
Cd+1 Cd+2

)
|a

] β
α [(
Cd+1 Cd+2

)
|a
] β
α
−1

(5.2.16)

9The second relation, which can be checked by direct computation, is obviously the restriction

of
∑
A V

A
I cT

4

1 (LA) = −εI to M4.
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=
(α!)

β
α

β!

(
B(α)
a

) β
α
(
(1− ta)ε

a
1 + (1− ta+1)εa2 − ε3 + ε4

) β
α
−1(

taε
a
1 + ta+1ε

a
2 − ε4

) β
α
−1
.

When α is even this formula holds in terms of absolute values and the signs must be

fixed separately. This will not be the case for the computation of this section, so we

postpone the discussion about the signs to section 5.3.1.

5.2.1.2 Solving the flux constraints

The flux constraints (5.2.4) reads

νM5 (2− δAB)MAB = −∂V
(2)

∂λAB
= −(2− δAB)

∫
M4

CA CB τT

Cd+1 Cd+2

, (5.2.17)

or, equivalently

νM5MAB = −
∫
M4

CA CB τT

Cd+1 Cd+2

= −
∑
a

B
(1)
a ·

(
CA CB

)
|a

da,a+1 εa1 ε
a
2

. (5.2.18)

Let us focus on the A,B ∈ {1, . . . , d} sector. Using (4.3.28) we find

νM5Ma,a+1 = − B
(1)
a

da,a+1

,

νM5Ma,a = − B
(1)
a εa1

da,a+1 εa2
−
B

(1)
a−1 ε

a−1
2

da−1,a ε
a−1
1

,

νM5Mab = 0 when b 6= a, a+ 1, a− 1 .

(5.2.19)

These equations give constraints on the fluxes but they have a very simple solution

B(1)
a = −νM5N ,

Mab = N Dab ,
(5.2.20)

where Dab is the intersection matrix of divisors (4.3.30) and N is any integer that is

a multiple of all the products da−1,a da,a+1.

This can be seen as follows. By combining the first two equations we obtain

Ma,a = Ma,a+1
εa1
εa2

+Ma,a−1
εa−1

2

εa−1
1

, (5.2.21)

and using the relation (4.3.31)

εa1
da,a+1 εa2

+
εa−1

2

da−1,a ε
a−1
1

= − da−1,a+1

da−1,a da,a+1

, (5.2.22)

we can rewrite this as

Ma,a da,a+1 +Ma,a−1 da−1,a+1 =
εa1
εa2

(
Ma,a+1 da,a+1 −Ma,a−1 da−1,a

)
. (5.2.23)

88



Given that the fluxes MAB and the orders of the orbifold singularity da,a+1 are just

integers, the only way that this equation can be true for general values of ε is for

both sides to vanish. This implies that Mab is proportional to the intersections Dab

given in (4.3.30). We can then conclude that the only solution to equations (5.2.19)

is (5.2.20). Notice that there is just one independent flux associated with the Mab

components of the flux matrix. This was to be expected since this corresponds to

the M theory four-form flux on S4.

The values of the remaining entries of the matrix of fluxes MAB are related to

the fibration parameters. By substituting B
(1)
a = −νM5N in (5.2.18) we find

MAB = N
∑
a

(
CA CB

)
|a

da,a+1 εa1 ε
a
2

= N

∫
M4

CA CB = N
∑
c,d

tcA t
d
BDcd . (5.2.24)

In the last step we have used (4.3.30) and for convenience we have defined tcA as

tcA =


δcA A ∈ {1, . . . , d}
tc − 1 A = d+ 1

−tc A = d+ 2

. (5.2.25)

Given that the ta are integers, the fluxes MAB in (5.2.24) are all integers.

We note that the expression (5.2.24) for MAB satisfies the relation required to

be considered a matrix of fluxes, ∑
A

V A
I MAB = 0 . (5.2.26)

This can easily be verified by noting that

∑
A

V A
I tcA =

{
vci I ≡ i = 1, 2

0 I = 3, 4
,

∑
a

vciDcd = 0 . (5.2.27)

The simplest solution to the equations

B(1)
a ≡

τa(λA(εI), λAB(εI), εI)(
Cd+1 Cd+2

)
|a

= −νM5N (5.2.28)

is to set λd+1,d+2 = −1
2
νM5N while setting all the other λA and λAB to zero. We

note that in general there exist no solutions to these equations with λAB = 0 for

all A,B, meaning that the inclusion of the higher times to the equivariant volume

is necessary. This stems from the fact that when λAB = 0 only d − 1 of the τa are

independent: using the gauge invariance (4.4.9)

λA → λA +
4∑
I=1

γI(ε3V
A
I − εI) , (5.2.29)

three out of the d+ 2 Kähler moduli λA can be set to zero.
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5.2.1.3 The extremal function and c-extremization

We are now ready to compute the extremal function

F (εI) = V(3)(λA(εI), λAB(εI), εI) . (5.2.30)

The dual field theory is supposed to be the two-dimensional SCFT obtained com-

pactifying on M4 the (2, 0) theory living on a stack of N M5 branes. The grav-

itational extremization problem should correspond to c-extremization in the dual

two-dimensional SCFT.

A general comment that applies to all the examples in this chapter is the follow-

ing. The free energy must be extremized with respect to all but one of the parameters

εI in order to find the critical point. The value of the remaining parameter must

be instead fixed by requiring the correct scaling of the supercharge under the R-

symmetry vector field ξ. This is familiar from the constructions in [8, 9, 11, 12].

In our case, we extremize with respect to ε4, ε1 and ε2 with ε3 fixed to a canonical

value.10

Using relations (5.2.14) and (5.2.16) we find

F =
∑
a

B
(3)
a

da,a+1 εa1 ε
a
2

,

B(3)
a =

1

6
(−νM5N)3

(
(1− ta)ε

a
1 + (1− ta+1)εa2 − ε3 + ε4

)2(
taε

a
1 + ta+1ε

a
2 − ε4

)2
,

(5.2.31)

which matches the form of the conjectured formula of [85] in terms of gravitational

blocks [27].11

To make contact with the dual field theory, we can also write our result in terms

of an integral of equivariant forms over the base M4 as follows:

F = −1

6
ν3
M5N

3

∫
M4

C2
d+1 C2

d+2

= −1

6
ν3
M5N

3

∫
M4

(
ε3 − ε4 +

∑
a

(1− ta)c
T
1 (La)

)2(
ε4 +

∑
a

tac
T
1 (La)

)2

.
(5.2.32)

This expression correctly reproduces the M5 brane anomaly polynomial integrated

over the four-dimensional orbifold M4 as computed in [28].12

10Notice that the free energy is homogeneous of degree two in the parameters εI , so it makes no

sense to extremize with respect to all parameters. The specific numerical value of the equivariant

parameter fixed by supersymmetry depends on the setup considered as well as on conventions. In

this chapter we will not fix the numerical values of this parameter from first principles, but rather

we will show that this can be absorbed by the parameter ν.
11The convention for the sign of the free energy in [85] is the opposite of ours.
12Attention must be paid when performing the comparison since the symbol F refers to the central

charge here, while it refers to the integral of the anomaly polynomial in [28] (see also (5.2.35)).
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Let us briefly review the comparison with field theory, referring to [28] for details.

The anomaly polynomial of the 2d SCFT is obtained by integrating the eight-form

anomaly polynomial of the six-dimensional theory over M4, which, at large N , gives

A2d =

∫
M4

A6d =
N3

24

∫
M4

c1(F1)2c1(F2)2 , (5.2.33)

where FI are the generators of the U(1) × U(1) ⊂ SO(5)R Cartan subgroup of the

(2, 0) theory R-symmetry. The c1(FI) can be decomposed as

c1(FI) = ∆Ic1(F 2d
R )− paI

(
c1(La) + 2πµiac1(Ji)

)
, (5.2.34)

where F 2d
R , J1,J2 are line bundles associated with the 2d R-symmetry and the two

global symmetries coming from the isometries of M4. They correspond to background

fields for the two-dimensional theory with no legs along M4. Substituting (5.2.34) in

(5.2.33) and setting c1(Ji) = εic1(F 2d
R ), leads to the equivariant integral

A2d =
cr
6
c1(F 2d

R )2 =
N3

24
c1(F 2d

R )2

∫
M4

(∆1 − pa1c
T
1 (La))

2(∆2 − pa2c
T
1 (La))

2 . (5.2.35)

Preserving supersymmetry with a twist requires c1(F1)+c1(F2) = 2c1(F 2d
R )−

∑
a c1(La)

which gives [28]

∆1 + ∆2 = 2 + det(W, ε) , pa1 + pa2 = 1 + det(W, va) , (5.2.36)

where ε = (ε1, ε2) and W ∈ R2 is a two-dimensional constant vector.13 The two-

dimensional central charge cr is extracted from (5.2.35) and should be extremized

with respect to εi and ∆I subject to the previous constraint. We then see that the

extremization of the gravitational free energy is equivalent to c-extremization under

the identifications

∆1 = ε4 , ∆2 = ε3 − ε4 , pa1 = ta , pa2 = 1− ta , W = 0 , (5.2.37)

where we set ε3 = 2 for convenience. The free energy F is actually homogeneous

of degree two in εI . To match the free energy with the central charge we have to

set ε23ν
3
M5 = −6. The case of anti-twist is similar and can be discussed by taking a

non-convex fan for M4. The most general supersymmetry condition is now c1(F1) +

c1(F2) = 2c1(F 2d
R )−

∑
a σ

ac1(La) where σa = ±1 as discussed in [85] and requires

∆1 + ∆2 = 2 + det(W, ε) , pa1 + pa2 = σa + det(W, va) . (5.2.38)

This case can be just obtained by formally sending va → σava everywhere, implying

εa1 → σaεa1 and εa2 → σa+1εa2.

13W can be gauged away, see [28].
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5.2.2 AdS5 ×M6 solutions

In this section we consider a generalization of the family of M theory solutions found

in [101] and further studied in [102]. Their geometry is AdS5 × M6 where M6 is

a manifold obtained as a P1 bundle over a four-dimensional compact manifold B4,

that can be either a Kähler-Einstein manifold (B4 = KE4) or the product of two

KE2 (B4 = Σ1 × Σ2). The bundle is the projectivization of the canonical bundle

over B4, P(K ⊕ O). Here we consider the case where B4 is replaced by a generic

four-dimensional toric orbifold M4. Notice that generically M6 can be an orbifold,14

like in the solutions discussed in [103]. In addition to recovering the gravitational

central charges of the existing solutions, we give a prediction for these more general

backgrounds that are still to be found. These solutions are potentially interpreted

as M5 branes wrapped over a two-cycle in M4 (see for example [104, 105]).

The topological structure of the underlying geometry can be encoded in the fan

V a = (va, 1) , V d+1 = (0, 0, 1) , V d+2 = (0, 0,−1) , a = 1, . . . , d ,

(5.2.39)

where va are the two-dimensional vectors in the fan of M4. We will use a capital

index A to run over a = 1, . . . , d, d + 1 and d + 2. That this is the right geometry

can be seen looking at the symplectic reduction presentation Cd+2//G of M6. Here

G is the subgroup of the torus Td+2 = U(1)d+2 generated by the GLSM charges∑
A

Qk
AV

A
I = 0 , k = 1, . . . , d− 1 . (5.2.40)

We can choose the following basis of GLSM charges

(qpa,−
∑
a

qpa, 0) , (0, . . . , 0, 1, 1) , (5.2.41)

where qpa are the d − 2 charges for M4,
∑

a q
p
av

a
i = 0. The first d − 2 vectors define

the canonical bundle K of M4 with an extra copy of C. The final charge vector

projectivizes it and gives indeed the geometry we are interested in:

P(K ⊕O) . (5.2.42)

We need also to specify the integer fluxes of the M theory four-form along all the

non-trivial four-cycles. There are d+ 2 toric four-cycles in the geometry, associated

with the divisors DA. The divisors Da are P1 fibrations over the toric two-cycles

Σa ⊂M4, while Dd+1 and Dd+2 are copies of M4 sitting at the North and South pole

of P1, respectively. All together, they define a vector of fluxes MA. The relations

14Using our formalism, we could easily study the case that M6 is a generic toric six-dimensional

orbifold. It would be interesting to understand what kinds of orbifold admit an holographic inter-

pretation.
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∑
A V

A
I DA = 0 imply that not all toric divisors are inequivalent and that the vector

of fluxes satisfies ∑
A

V A
I MA = 0 . (5.2.43)

Since we are dealing with M5 branes in M theory, we define the free energy as

in section 5.2.1

F = V(3)(λA, λAB, εI) , (5.2.44)

and, since now we have a vector of fluxes, we impose the flux constraints

νM5MA = − ∂

∂λA
V(2)(λA, λAB, εI) . (5.2.45)

Differently from the case discussed in the previous section, for these geome-

tries there is no general field theory result for the central charge of the dual four-

dimensional SCFTs. Our results here can therefore be seen as a prediction for the

general form of the off-shell central charge, which presumably can be obtained by

integrating the M5 brane anomaly polynomial on a suitable two-cycle inside M6,

or using the method of [104]. In order to compare with the existing literature, we

will therefore consider in some detail a number of explicit examples of M4, including

KE4 and Σ1×Σ2, but also other examples for which there is no known supergravity

solution, nor field-theoretic understanding. The equations to be solved in the ex-

tremization problem typically lead to finding the zeroes of simultaneous polynomials

of high degree and are therefore not manageable. For this reason, we will proceed

by making different technical assumptions to simplify the algebra. One such general

assumption is the existence of a Z2 symmetry acting on the P1 fibre, as we discuss

below. Furthermore, we will occasionally restrict to non-generic fluxes in order to

simplify the otherwise unwieldy expressions.

If we restrict to a class of geometries with a Z2 symmetry that exchanges the

North and South poles of P1, we can consider a simplified geometry obtained by

cutting P1 into half. We thus obtain a non-compact Calabi-Yau geometry given by

the canonical bundle over M4. The corresponding fan is obtained by dropping V d+2:

V a = (va, 1) , V d+1 = (0, 0, 1) , a = 1, . . . , d . (5.2.46)

Notice that this is a (partial) resolution of a CY3 cone where V d+1 is associated with

a compact divisor. Supergravity solutions with Z2 symmetry have been considered

in [101, 102] where they correspond to set the parameter called c to zero. Effectively,

the Z2 symmetry reduces by one the number of independent fluxes we can turn on,

thus simplifying the calculations. Notice that the on-shell equivariant volume V for

the half-geometry is half of the one for the total geometry. The relation between the

parameters to use in the two cases, in order to have the same normalization for the

free energy, is the following

νM5 = 2−2/3νM5 , (5.2.47)

93



where νM5 is the correct one for half-geometries.

Notice that we introduced single and double times in (5.2.45). We can immedi-

ately understand the need for higher times. In a compact geometry, V(2)(λA) with

only single times would vanish identically.15 As we will discuss later, the double

times are generically necessary also when imposing the Z2 symmetry in order to

have enough parameters to solve the equations.16

5.2.2.1 Geometries with Z2 symmetry

We consider first geometries with Z2 symmetry. Cutting M6 into half we consider

the non-compact CY3 specified by the fan (5.2.46). The I = 3 condition in (5.2.43)

gives

Md+1 = −
∑
a

Ma , (5.2.48)

thus fixing the flux along M4 in terms of the other fluxes. The I = 1, 2 conditions

in (5.2.43) give two linear relations among the Ma, leaving a total number d − 2 of

independent fluxes. Notice that geometries without Z2 symmetry have one additional

independent flux, as we discuss later.

The fan is the union of d cones (V a, V a+1, V d+1) and we see that the number of

fixed points is the same of that of the base M4. It is then easy to write the equivariant

volume with higher times as a sum over the fixed points of M4

V =
∑
a

eτa

da,a+1εa1ε
a
2(ε3 − εa1 − εa2)

, (5.2.49)

where

τa =

(∑
A

λA c
T3

1 (LA) +
∑
A,B

λAB c
T3

1 (LA) cT
3

1 (LB)

)∣∣∣∣∣
a

(5.2.50)

or, more explicitly,

τa =− λaεa1 − λa+1ε
a
2 − λd+1(ε3 − εa1 − εa2) + λaa(ε

a
1)2 + 2λa,a+1ε

a
1ε
a
2 + λa+1,a+1(εa2)2

+ 2(λa,d+1ε
a
1 + λa+1,d+1ε

a
2)(ε3 − εa1 − εa2) + λd+1,d+1(ε3 − εa1 − εa2)2 .

(5.2.51)

Notice that the equations (5.2.45) are not solvable with only single times. Md+1 =

−
∑

aMa 6= 0 while, for λAB = 0,

− ∂V
(2)

∂λd+1

=
∑
a

−λaεa1 − λa+1ε
a
2 − λd+1(ε3 − εa1 − εa2)

da,a+1εa1ε
a
2

=

∫
M4

(∑
a

λac
T
1 (La)− λd+1

(
ε3 +

∑
a

cT1 (La)
))

= 0 ,

(5.2.52)

15For a compact geometry V(2)(λA) = − 1
2

∑
AB λAλB

∫
M6

cT1 (LA)cT1 (LB) = 0 since it is the

integral of a four-form at most on a six-dimensional manifold. In the non-compact case, this

condition is evaded and V(2)(λA) is a rational function of εI . See [28] for details.
16In the case of compactification on a spindle they are not necessary [28].
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being the integral of a two-form at most.

The equations (5.2.45) explicitly read

(I) νM5Ma =
εa1τa

da,a+1εa1ε
a
2(ε3 − εa1 − εa2)

+
εa−1

2 τa−1

da−1,aε
a−1
1 εa−1

2 (ε3 − εa−1
1 − εa−1

2 )
,

(II) − νM5

∑
a

Ma =
∑
a

τa
da,a+1εa1ε

a
2

. (5.2.53)

These equations are not independent. In particular, (II) follows from (I).17 The

equations (I) can be written as

B
(1)
a−1 −B(1)

a = da,a+1ε
a
2νM5Ma , B(1)

a = − τa
ε3 − εa1 − εa2

. (5.2.55)

It is then clear that these equations can be solved for τa, but one “time”, say τ1,

remains undetermined. Our prescription is to extremize the free energy with respect

to all parameters that are left undetermined after imposing the flux constraints. In

this case then we extremize

V(3)(εi, τ1) (5.2.56)

with respect to ε1, ε2 and τ1, with ε3 set to some canonical value, fixed by the scaling

of the supercharge under the R-symmetry vector field. In the next subsection we will

parameterize the free energy in a more convenient way.

5.2.2.2 The extremal function for geometries with Z2 symmetry

We can write the general form of the extremal function for geometries with Z2 sym-

metry. Let us define

τT
3

CY3
=
∑
A

λA c
T3

1 (LA) +
∑
A,B

λAB c
T3

1 (LA) cT
3

1 (LB) , (5.2.57)

the equivariant form with restriction τa at the fixed points. By restricting the form

to M4 and considering ε3 as a parameter, we obtain

τT =
∑
A

λA CA +
∑
A,B

λAB CA CB ,

Ca = cT1 (La) , a = 1, . . . , d ,

Cd+1 = −
(
ε3 +

∑
a

cT1 (La)
)
,

(5.2.58)

17Using
∑
a v

aMa = 0 and the vector identity vai ε
a
1 + va+1

i εa2 = εi, one derives

εi
∑
a

τa
da,a+1εa1ε

a
2 (ε3−εa1−εa2 )

= 0 from (I). Then, summing over a in (I), and using the previous

identity:

νM5

∑
a

Ma =
∑
a

(εa1 + εa2)τa
da,a+1εa1ε

a
2(ε3 − εa1 − εa2)

= −
∑
a

τa
da,a+1εa1ε

a
2

, (5.2.54)

valid for εi 6= 0. For εi = 0 one should pay more attention and we will see in section 5.3.2 one

instance where a similar subtlety is important. In the present case we will check explicitly that

both (I) and (II) are valid.
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where cT1 (La) are the restrictions of the line bundles La to the base M4 and T is the

two-dimensional torus spanned by ε1 and ε2. From now on, unless explicitly said, all

classes will refer to the base M4. In terms of τT the quadratic piece of the equivariant

volume can be written as

V(2)(λA, λAB, εI) =
1

2

∫
M4

(τT)2

ε3 +
∑

a c
T
1 (La)

. (5.2.59)

The flux constraints (5.2.45) give

(I) − νM5Ma =

∫
M4

cT1 (La) τ
T

ε3 +
∑

a c
T
1 (La)

,

(II) − νM5

∑
a

Ma =

∫
M4

τT .
(5.2.60)

For a generic fan, using the gauge transformations (4.4.8) and (4.4.9) we can set all

λa = λa,a = λa,a+1 = 0.18 We will show more formally in appendix B.1 that V(3) has

a critical point at λa = λa,a = λa,a+1 = 0. Then condition (I) becomes

−νM5Ma =

∫
M4

cT1 (La)
(
−λd+1 − 2

∑
b

λb,d+1c
T
1 (Lb) + λd+1,d+1

(
ε3 +

∑
b

cT1 (Lb)
))

=
∑
b

Dab(−2λb,d+1 + λd+1,d+1) . (5.2.61)

We can similarly compute (II) as an integral

− νM5

∑
a

Ma =

∫
M4

τT =
∑
a,b

Dab(−2λb,d+1 + λd+1,d+1) , (5.2.62)

and see that it is automatically satisfied if (I) is. Since
∑

a v
a
iMa = 0, the flux

constraints fix the λb,d+1 only up to the ambiguities

λa,d+1 → λa,d+1 +
2∑
i=1

δiv
a
i + γ ,

λd+1,d+1 → λd+1,d+1 + 2γ ,

(5.2.63)

where δi and γ are free parameters. However, these free parameters can be all

reabsorbed in a redefinition of

λd+1 → λd+1 + 2γε3 + 2
2∑
i=1

δiεi , (5.2.64)

18For special symmetric fans, like P2 and P1 × P1, and other simple examples with low d, one of

the single times λa remains unfixed. However, from the combined conditions (I) + (II) we obtain∑
ab λa

∫
M4

cT1(La) c
T
1(Lb)

ε3+
∑

a c
T
1(La)

= 0 which implies that the remaining single time must vanish.
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since
∑

a v
a
i c

T
1 (La) = −εi and they are not really independent.

The free energy is then given by

V(3) =
1

6

∫
M4

(τT)3

ε3 +
∑

a c
T
1 (La)

, (5.2.65)

which explicitly gives

V(3) =
1

6

∫
M4

(
ε3 +

∑
a

cT1 (La)
)2(

λ̄d+1 +
∑
b

λ̄b,d+1c
T
1 (Lb)

)3

, (5.2.66)

where we defined

λ̄d+1 = −λd+1 + λd+1,d+1ε3 , λ̄a,d+1 = −2λa,d+1 + λd+1,d+1 , (5.2.67)

which are subject to the constraints

− νM5Ma =
∑
b

Dabλ̄b,d+1 . (5.2.68)

Substituting the solution of the flux constraints, V(3) becomes a function of εi
and the extra parameter λ̄d+1. Indeed, as we have seen, the ambiguities (5.2.63) can

be reabsorbed in a redefinition of λ̄d+1. A direct evaluation gives

6V(3) = λ̄3
d+1

∑
ab

Dab + λ̄2
d+1

(
6ε3
∑
ab

Dabλ̄a,d+1 + 3
∑
abc

Dabcλ̄a,d+1

)
+ 3λ̄d+1

(
ε23
∑
ab

Dabλ̄a,d+1λ̄b,d+1 + 2ε3
∑
abc

Dabcλ̄a,d+1λ̄b,d+1 +
∑
abcd

Dabcdλ̄a,d+1λ̄b,d+1

)
+
(
ε23
∑
abc

Dabcλ̄a,d+1λ̄b,d+1λ̄c,d+1 + 2ε3
∑
abcd

Dabcdλ̄a,d+1λ̄b,d+1λ̄c,d+1

+
∑
abcde

Dabcdeλ̄a,d+1λ̄b,d+1λ̄c,d+1

)
, (5.2.69)

where the generalized intersection numbers are defined by

Da1...ap =

∫
M4

cT1 (La1) . . . c
T
1 (Lap) . (5.2.70)

Notice that Dab is ε-independent, while Da1···ap is a homogeneous function of degree

p− 2 in ε1 and ε2. V(3) need to be extremized with respect to ε1, ε2 and λ̄d+1, with

ε3 set to the canonical value.

The critical point is generically at a non-zero value of ε1 and ε2. We can expect a

critical point19 at ε1 = ε2 = 0 only if the background and the fluxes have some extra

19In the opposite direction, of course one would have as critical point ε1 = ε2 = 0 if the base

B4 has no continuous symmetries. This is the case for examples for del Pezzo surfaces dPk with

k > 3, which we do not treat here. This would lead one to suspect that all KE4 have ε1 = ε2 = 0

as critical point, but this is actually incorrect, as the example of the toric dP3 will show.
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symmetry, as for examples in the cases where all U(1) isometries are enhanced to a

non-abelian group. In these particular cases, we can further simplify the expression

6V(3) = λ̄3
d+1

∑
ab

Dab + 6ε3λ̄
2
d+1

∑
ab

Dabλ̄a,d+1 + 3ε23λ̄d+1

∑
ab

Dabλ̄a,d+1λ̄b,d+1 +O(ε2i )

= λ̄3
d+1

∑
ab

Dab − 6νM5

∑
a

Maε3λ̄
2
d+1 + 3ε23λ̄d+1

∑
ab

Dabλ̄a,d+1λ̄b,d+1 +O(ε2i ) ,

(5.2.71)

and extremize it with respect to λ̄d+1.

As a check of our expression, we can reproduce the central charge of the existing

solutions with Kähler-Einstein metrics and fluxes all equal [102]. The only toric

four-manifolds that are also KE are P2, P1 × P1 and dP3, with fans

P2 : v1 = (1, 1) , v2 = (−1, 0) , v3 = (0,−1) ,

P1 × P1 : v1 = (1, 0) , v2 = (0, 1) , v3 = (−1, 0) , v4 = (0,−1) ,

dP3 : v1 = (1, 0) , v2 = (1, 1) , v3 = (0, 1) , v4 = (−1, 0) , v5 = (−1,−1) , v6 = (0,−1) ,
(5.2.72)

and intersection matrices

P2 : Dab = 1 ,

P1 × P1 : Dab = 1 if |a− b| = 1 (mod 2) and zero otherwise ,

dP3 : Daa = −1 , Da,a±1 = 1 and zero otherwise ,

(5.2.73)

where the indices are cyclically identified. To compare with the KE4 solutions, we

set all Ma ≡ N . We can then choose all λ̄a,d+1 equal and we find∑
abc

Dabcλ̄a,d+1 =
∑
abc

Dabcλ̄a,d+1λ̄b,d+1 =
∑
abc

Dabcλ̄a,d+1λ̄b,d+1λ̄c,d+1 = 0 , (5.2.74)

thus ensuring that the linear terms in ε1 and ε2 in V(3) vanish, and that there is

indeed a critical point at ε1 = ε2 = 0. Extremizing (5.2.71) we get

V(3) = ε33ν
3
M5(−5 + 3

√
3)N3{1

9
,
1

3
, 2} , (5.2.75)

for P2, P1×P1 and dP3, respectively, which agrees with (2.16) in [102] for ε3νM5 = 3.20

For P1×P1 we can introduce a second flux. The general solution to
∑

A V
A
I MA =

0 is indeed

MA = (N1, N2, N1, N2,−2N1 − 2N2) . (5.2.76)

The background has an expected SU(2) × SU(2) symmetry that it is realized in

the supergravity solution [102], that now is not in the KE class. Using the gauge

20NCN
in [102] can be identified with Md+1 = −

∑
Ma, so that Nthere = −hNCN

/M =

h
∑
Ma/M where (h,M) are defined in [102] and they have value (3, 9), (4, 8) and (2, 6) for P2,

P1 × P1 and dP3, respectively.
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transformation (4.4.8) we can set λ̄a+2,d+1 = λ̄a,d+1. A simple computation then

shows that the free energy extremized has a critical point in ε1 = ε2 = 0, consistently

with the non-abelian isometry of the solution, with critical value

V(3) =
ε33ν

3
M5

6

(
2(N2

1 +N1N2 +N2
2 )3/2 − (2N3

1 + 3N2
1N2 + 3N1N

2
2 + 2N3

2 )
)
,

(5.2.77)

which should be compared with (2.29) in [102] with N1 = pN and N2 = qN . This

looks superficially different, but it can be rewritten in the form above (cf. for example

(F.14) in [104]).

5.2.2.3 Examples of geometries with non-zero critical ε

So far, in all the explicit examples we have discussed we found that ε1 = ε2 = 0 is a

critical point. However, we have already pointed out that for generic toric M4 and/or

with generic fluxes this will not be the case. In this subsection we will investigate

situations in which at least one of ε1, ε2 is different from zero at the critical point,

by considering geometries with SU(2) × U(1) symmetry, as well as the case of dP3

with generic fluxes. Interestingly, it turns out that for dP3 there exist two special

configurations of fluxes (different from the case where they are all equal) where the

critical point is again ε1 = ε2 = 0, but the corresponding supergravity solutions are

not known. For four independent generic fluxes, instead, ε1 = ε2 = 0 is not a critical

point.

dP3 with unequal fluxes

The symmetry of dP3 is just U(1) × U(1) and the existence of the critical point

ε1 = ε2 = 0 of the extremization problem is not obviously implied by the fact that

there exists a KE metric on dP3. In the basis of the fan as in (5.2.72), the general

assignment of fluxes compatible with
∑

A V
A
I MA = 0 can be parameterized as

MA = (N1, N2, N3, N4, N5, N6,−2N1 − 3N2 − 2N3 +N5) , (5.2.78)

where we choose N1, N2, N3, N5 as independent, with N4 = N1 +N2 −N5 and N6 =

N2 + N3 − N5. Upon setting λa = λa,a = λa,a+1 = 0 using the gauge freedom,

as discussed before, the constraint (5.2.68) on λ̄a,d+1 can be solved by taking, for

example

λ̄1,d+1 = −ν̄M5
N2 +N3

2
, λ̄2,d+1 = −ν̄M5

N3 +N1

2
,

λ̄3,d+1 = −ν̄M5
N1 +N2

2
, λ̄4,d+1 = −ν̄M5

N2 +N3

2
,

λ̄5,d+1 = −ν̄M5
N3 +N1 + 2(N2 −N5)

2
, λ̄6,d+1 = −ν̄M5

N1 +N2

2
.

(5.2.79)

Writing out the free energy (5.2.69), up to linear order in ε1, ε2, we have

V(3) = V(3)
∣∣
εi=0

+ ∂ε1V
(3)
∣∣
εi=0

ε1 + ∂ε2V
(3)
∣∣
εi=0

ε2 +O(ε2i ) (5.2.80)
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where the constant term is not particularly interesting and

∂ε1V
(3)
∣∣
εi=0

= ν̄M5
N5 −N2

2

[
6λ̄2

d+1 − 12(N2 +N3)ν̄M5ε3λ̄d+1

+
(
N2

2 − 2N2
5 + 3N3(N2 +N5) +N5N2

)
ν̄2
M5ε

2
3

]
,

∂ε2V
(3)
∣∣
εi=0

= ν̄M5
N5 −N2

2

[
6λ̄2

d+1 − 12(N2 +N1)ν̄M5ε3λ̄d+1

+
(
N2

2 − 2N2
5 + 3N1(N2 +N5) +N5N2

)
ν̄2
M5ε

2
3

]
.

(5.2.81)

We see that for generic values of the fluxes the expressions above cannot be zero

simultaneously, implying that εi = 0 is not a critical point of the extremization. The

complete extremization equations are unwieldy, so in the following we will instead

concentrate on two special configurations of fluxes, with enhanced symmetry, for

which ε1 = ε2 = 0 turns out to be a critical point.

The first special value of fluxes is clearly obtained for N5 = N2, that leaves

three fluxes N1, N2, N3 free. In this case the parameters (5.2.79) acquire the cyclic

symmetry λ̄a,d+1 = λ̄a+3,d+1, analogously to the P1 × P1 discussed in the previous

section and indeed the linear terms in V(3) manifestly vanish, so that εi = 0 is a

critical point. The fluxes display an enhanced symmetry:

MA = (N1, N2, N3, N1, N2, N3,−2N1 − 2N2 − 2N3) . (5.2.82)

Extremizing V(3) with respect to λ̄d+1 yields

λ̄∗d+1 =
2ν̄M5ε3

3
(N1 +N2 +N3)

− ν̄M5ε3
3

√
4(N2

1 +N2
2 +N2

3 ) + 5(N1N2 +N2N3 +N3N1) ,
(5.2.83)

and the corresponding value of the on-shell central charge is

V(3) =
2ν̄3

M5ε
3
3

27

[(
4(N2

1 +N2
2 +N2

3 ) + 5(N1N2 +N2N3 +N3N1)
)3/2

− (N1 +N2 +N3)
(
8(N2

1 +N2
2 +N2

3 ) + 7(N1N2 +N2N3 +N3N1)
)]
.

(5.2.84)

It can be checked that this expression agrees precisely with the central charge given

in eq. (3.79) of [106] and it correctly reduces to (5.2.75) upon setting N1 = N2 =

N3 = N .

Notice that while the expression of λ̄∗d+1 depends on the specific gauge chosen

for the parameters λ̄a,d+1, the critical values ε∗i = 0 and the central charge (5.2.84)

do not rely on this.

The second special value of fluxes that we found is N1 = N3 = N5, which implies

Na = Na+2, so that the fluxes have again an enhanced symmetry:

MA = (N1, N2, N1, N2, N1, N2,−3N1 − 3N2) . (5.2.85)
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In this case, notice that the two expressions in (5.2.81) coincide, so that it is possible

that both linear terms vanish, for a particular value of λ̄∗d+1, despite N2 6= N5.

However, the parameters in (5.2.79) do not enjoy this new symmetry, so it is better

to look for a different gauge, where the parameters respect the additional symmetry,

namely λ̄a,d+1 = λ̄a+2,d+1. This can be achieved choosing

λ̄1,d+1 = −ν̄M5
N1 + 2N2

3
, λ̄2,d+1 = −ν̄M5

2N1 +N2

3
, (5.2.86)

and cyclic permutations. In this gauge, we can now check that V(3) has no linear

terms in ε1 and ε2. Therefore, extremizing V(3) with respect to λ̄d+1, ε1 and ε2, we

obtain the critical values ε∗1,2 = 0 and

λ̄∗d+1 =
6(N1 +N2)−

√
6(5N2

1 + 8N1N2 + 5N2
2 )

6
ν̄M5ε3 , (5.2.87)

and the corresponding value of the on-shell central charge is

V(3) =
ν̄3
M5ε

3
3

4

[(6(5N2
1 + 8N1N2 + 5N2

2 )
)3/2

27
− 2(N1 +N2)

(
3N2

1 + 4N1N2 + 3N2
2

)]
.

(5.2.88)

It can be checked that this expression agrees precisely with the central charge given

in eq. (3.79) of [106] and it correctly reduces to (5.2.75) upon setting N1 = N2 = N .

It would be interesting to construct explicit supergravity solutions corresponding

to the two special configurations of fluxes we found. If they exist, they should lie

outside the KE class considered in [101].

M4 = S2 n �

We now consider the toric orbifold M4 = S2 n �, namely a spindle � = WP1
[n+,n−]

fibred over a two-sphere, which is a case with only an SU(1)× U(1) symmetry. We

take the following fan

v1 = (n−, 0) , v2 = (−k, 1) , v3 = (−n+, 0) , v4 = (0,−1) , (5.2.89)

and refer to [85] for more details about this orbifold. The total fan is as in (5.2.46)

and the constraint (5.2.43) is solved by

Ma =

(
N1

n−
, N2,

N1 − k N2

n+

, N2

)
, Md+1 = −

∑
a

Ma , (5.2.90)

where N1, N2 parameterize the two independent fluxes, and notice that N2 = N4 is

implied by the SU(2) symmetry acting on the base S2. The constraint (5.2.68) on

λ̄a,d+1 is solved by taking

λ̄3,d+1 = −n+

(
ν̄M5N2+

λ̄1,d+1

n−

)
, λ̄4,d+1 = −

(
ν̄M5N1+

k λ̄1,d+1

n−
+λ̄2,d+1

)
, (5.2.91)
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and we can choose a gauge in which

λ̄2,d+1 = −1

2

(
ν̄M5N1 +

k λ̄1,d+1

n−

)
. (5.2.92)

After using the remaining gauge freedom to fix λ̄1,d+1, we are then left to extremize

V(3) with respect to ε1, ε2, λ̄d+1. One can show that the combination

k
∂V(3)

∂ε1
− 2

∂V(3)

∂ε2
= 0 (5.2.93)

implies ε∗2 = 0, as expected from the SU(2) symmetry, while generically ε∗1 6= 0. In

particular, ε∗1 is determined solving a quartic equation, which takes about half a page

to be written, so we will refrain from reporting this. The on-shell central charge can

then written in terms of the parameters N1, N2, k, n+, n− and ε∗1. For simplicity we

shall present the results in three special cases, where the equations are qualitatively

unchanged, but simpler to write.

Firstly, let us set k = 0. This leads to the direct product M4 = S2 × � and in

this case, defining

χ ≡ n+ + n−
n+n−

, µ ≡ n+ − n−
n+ + n−

, (5.2.94)

it is convenient to use the remaining gauge freedom to set

λ̄1,d+1 = −ν̄M5
2(1− µ)N2 − µχN1

2(1 + µ)χ
. (5.2.95)

Upon extremizing we find that indeed ε∗2 = 0 and

λ̄∗d+1 =
ν̄M5ε3

4χ

[
2(χN1 + 2N2)± s

1/2
1

]
, (5.2.96)

where we defined the quantity

s1 = N2
1χ

2(µχε̂∗1− 2)2− 2N2(χN1 + 2N2)
(
(1−µ)χε̂∗1 + 2

)(
(1 +µ)χε̂∗1− 2

)
. (5.2.97)

Here, ε̂∗1 is solution to the quartic equation

3
[
N2

1µχ
2(2− µχε̂1) + 2N2(χN1 + 2N2)(2µ+ (1− µ2)χε̂1)

]
s

1/2
1 − 3N3

1µχ
3(2− µχε̂1)2

−N2(3χ2N2
1 + 6χN1N2 + 8N2

2 )
(
12µ+ 4(1− 3µ2)χε̂1 − 3µ(1− µ2)χ2ε̂21

)
= 0 ,

(5.2.98)

the critical value of ε1 is given by ε∗1 = ε̂∗1ε3 and the on-shell central charge reads

V(3) =
ν̄3
M5ε

3
3

48χ2

{
s

3/2
1 − (2− µχε̂∗1)

[
N3

1χ
3(2− µχε̂∗1)2

+N2(3χ2N2
1 + 6χN1N2 + 8N2

2 )
(
2 + (1− µ)χε̂∗1

)(
2− (1 + µ)χε̂∗1

)]}
.

(5.2.99)
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Notice that setting n+ = n− = 1 in the above expressions we get ε∗1 = 0 and reproduce

the expression (5.2.77) for the central charge of the P1 × P1 case.

Following the reasoning in [104], the total space M6 may be also viewed as an

F2 fibred over the spindle � and we therefore interpret the corresponding putative

AdS5×M6 solution as arising from a stack of M5 branes at C2/Z2 singularity, further

wrapped on the spindle �. It would be very interesting to reproduce the above

central charge from an anomaly computation, or to construct the explicit AdS5×M6

supergravity solution.

A second sub-case is obtained setting n+ = n− = 1, with k > 0, and corresponds

to the Hirzebruch surfaces Fk. Using the remaining gauge freedom now we can set

λ̄1,d+1 = −ν̄M5
(2− k)N2

4
(5.2.100)

and we find that the remaining two extremization equations are solved by

λ̄∗d+1 =
ν̄M5ε3

4

[
(2N1 + (2− k)N2)± s

1/2
2

]
, (5.2.101)

where

s2 = 4N2
1−4N1N2(ε̂∗1+1)(ε̂∗1−1+k)−N2

2 (ε̂∗1+1)
(
(4−2k−k2)ε̂∗1−4+2k−k2

)
(5.2.102)

and ε̂∗1 is the solution to the quartic equation

12N2
1 (2ε̂1 + k)− 6N1N2

(
3kε̂21 − 2(2− 2k − k2)ε̂1 − k(1− 2k)

)
−N2

2

(
3k(2− 3k − k2)ε̂21 − 2(8− 6k + 3k2 + 3k3)ε̂1 − k(2− 3k + 3k2)

)
− 3
[
2N1(2ε̂1 + k) +N2

(
(4− 2k − k2)ε̂1 − k2

)]
s

1/2
2 = 0 . (5.2.103)

The critical value of ε1 is again given by ε∗1 = ε̂∗1ε3 and the on-shell central charge

reads

V(3) =
ν̄3
M5ε

3
3

24

{
s

3/2
2 − 8N3

1 + 12N2
1N2(ε̂∗1 + 1)(ε̂∗1 − 1 + k) (5.2.104)

− 6N1N
2
2 (ε̂∗1 + 1)

(
kε̂∗1

2 − (2− k − k2)ε̂∗1 + 2− 2k − k2
)

−N3
2 (ε̂∗1 + 1)

(
k(2− 3k − k2)ε̂∗1

2 − 2(4− 2k + k3)ε̂∗1 + (8− 6k + 3k2 − k3)
)}

.

Again, setting k = 0 in the above expressions we get ε∗1 = 0 and reproduce the

expression (5.2.77) for the central charge of the P1 × P1 case.

This result is manifestly not in agreement with the central charge given in

eq. (3.79) of [106], where by construction ε∗1 = ε∗2 = 0. In fact, we can reproduce this

result if we impose by hand that ε∗1 = ε∗2 = 0 so that

V(3)(λ̄d+1) =
λ̄d+1

6

[
8λ̄2

d+1 − 6(2N1 + (2− k)N2)ν̄M5ε3λ̄d+1 + 3N2(2N1 − k N2)ν̄2
M5ε

2
3

]
(5.2.105)
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and then extremizing this with respect to the remaining parameter λ̄d+1 yields

λ̄∗d+1 =
2N1 + (2− k)N2 −

√
4N2

1 + 4(1− k)N1N2 + (4− 2k + k2)N2
2

4
ν̄M5ε3 ,

(5.2.106)

giving the on-shell central charge

V(3)(λ̄∗d+1) =
ν̄3
M5ε

3
3

24

[(
4N2

1 + 4(1− k)N1N2 + (4− 2k + k2)N2
2

)3/2
(5.2.107)

− (2N1 + (2− k)N2)
(
4N2

1 + 2(1− 2k)N1N2 + (4− k + k2)N2
2

)]
,

coinciding with the expression given in eq. (3.79) of [106]. This, however, does not

correspond to a true extremum of V(3)and therefore it is unlikely that there exist

corresponding supergravity solutions, nor dual SCFTs.

Finally, let us also present the results for the particular configuration of fluxes

N1 = k
2
N , N2 = N implying that21

Ma =

(
k N

2n−
, N,−k N

2n+

, N

)
, (5.2.108)

without any assumption on k and n+, n−. In order to simplify the expressions, we

make use of the remaining gauge freedom to set

λ̄1,d+1 = −ν̄M5
((1− µ)(4 + kµχ)− kχ)N

(1 + µ)χ(4 + kµχ)
. (5.2.109)

The extremization problem is then solved by

λ̄∗d+1 =
ν̄M5ε3N

2χξ

(
2ξ ± s

1/2
3

)
, (5.2.110)

where we defined ξ = 4 + kµχ and

s3 = 4ξ2 − 4µχξ2ε̂∗1 − χ2(8(2 + kµχ)(1− µ2)− (1− µ2 + µ4)k2χ2)ε̂∗1
2 . (5.2.111)

Here, ε̂∗1 is solution to the quartic equation

2ξ2(kχ+ 6µξ) + 4χξ2(4− 3µ2ξ)ε̂1 − 3χ2
(ξ2(1− µ2)(kχ+ 2µξ)

2
− k3χ3

)
ε̂21

− 3
(
2µξ2 + χ(8(2 + kµχ)(1− µ2)− (1− µ2 + µ4)k2χ2)ε̂1

)
s

1/2
3 = 0 ,

(5.2.112)

and the critical value of ε1 is ε∗1 = ε̂∗1ε3. The central charge in terms of ε̂∗1 is given by

V(3) =
ν̄3
M5ε

3
3N

3

24χ2ξ2

{
s

3/2
3 − χ3

(ξ2(1− µ2)(kχ+ 2µξ)

2
− k3χ3

)
ε̂∗1

3

+ 2χ2ξ2(4− 3µ2ξ)ε̂∗1
2 + 2χξ2(kχ+ 6µξ)ε̂∗1 − 8ξ3

}
.

(5.2.113)

21We take k to be even in this case.

104



5.2.2.4 General geometries

We now discuss the general AdS5 × M6 solution with no Z2 symmetry. The fan

(5.2.39) corresponds now to a compact geometry. The fan is the union of 2d cones

(V a, V a+1, V d+1) and (V a, V a+1, V d+2) corresponding to the fixed points of the torus

action, that are specified by selecting a fixed point on M4 and simultaneously the

North or South pole of the fibre P1.

The equivariant volume is now given by

V =
∑
a

e−λaε
a
1−λa+1εa2−λd+1(ε3−εa1−εa2)+...

da,a+1εa1ε
a
2(ε3 − εa1 − εa2)

−
∑
a

e−λaε
a
1−λa+1εa2+λd+2(ε3−εa1−εa2)+...

da,a+1εa1ε
a
2(ε3 − εa1 − εa2)

,

(5.2.114)

where the dots at the exponents contain the higher times.

This expression can also be written as an integral over M4

V(λA, λAB, εI) =

∫
M4

eτ
T
N − eτ

T
S

ε3 +
∑

a c
T
1 (La)

, (5.2.115)

where we have defined the North pole equivariant form τTN and South pole equivariant

form τTS as

τTN =
∑
A

λA CNA +
∑
A,B

λAB CNA CNB ,

τTS =
∑
A

λA CSA +
∑
A,B

λAB CSA CSB ,

CNa = CSa = cT1 (La) , a = 1, . . . , d ,

CSd+2 = −CNd+1 = ε3 +
∑
a

cT1 (La) ,

CNd+2 = CSd+1 = 0 .

(5.2.116)

The flux equations are the following:

− νM5MA = ∂λAV
(2) =

∫
M4

CNA τTN − CSA τTS
ε3 +

∑
a c

T
1 (La)

. (5.2.117)

For a generic fan, using the gauge transformations (4.4.8) and (4.4.9) we can set all

λa = λa,a = λa,a+1 = 0. However, as already mentioned, for special fans, including

P2 and P1 × P1, one of the single times λa remains unfixed. As a difference with the

the Z2 symmetric case, an arbitrary λa solves trivially the flux equations. Therefore

we set λa,a = λa,a+1 = 0 and keep λa with the understanding that the latter can be

partially or totally gauged fixed to zero. The forms τTN and τTS with all variables can

then be written as

τTN =
∑
a

λa c
T
1 (La) +

(
ε3 +

∑
a

cT1 (La)
)(
λd+1 +

∑
a

λa,d+1 c
T
1 (La)

)
,

τTS =
∑
a

λa c
T
1 (La) −

(
ε3 +

∑
a

cT1 (La)
)(
λd+2 +

∑
a

λa,d+2 c
T
1 (La)

)
,

(5.2.118)
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where we have defined the λ variables as

λd+1 = ε3λd+1,d+1 − λd+1 , λd+2 = −ε3λd+2,d+2 − λd+2 ,

λb,d+1 = λd+1,d+1 − 2λb,d+1 , λb,d+2 = −λd+2,d+2 − 2λb,d+2 .
(5.2.119)

Then equations (5.2.117) become

− νM5Ma =
∑
b

Dab(λ̄b,d+1 + λ̄b,d+2) ,

− νM5Md+1 = −
∑
ab

Dab λ̄b,d+1 ,

− νM5Md+2 =
∑
ab

Dab λ̄b,d+2 .

(5.2.120)

The expression for V(3) is

V(3) =
1

6

∫
M4

(
ε3 +

∑
a

cT1 (La)
)2[(

ΛN
)3

+
(
ΛS
)3
]

+
1

2

∫
M4

(∑
a

λa c
T
1 (La)

)(
ε3 +

∑
a

cT1 (La)
)[(

ΛN
)2 −

(
ΛS
)2
]

+
1

2

∫
M4

(∑
a

λa c
T
1 (La)

)2[
ΛN + ΛS

]
,

(5.2.121)

where we defined

ΛN = λd+1 +
∑
a

λa,d+1 c
T
1 (La) , ΛS = λd+2 +

∑
a

λa,d+2 c
T
1 (La) . (5.2.122)

The flux constraints are not enough to fix all the λ, so the idea is again to

extremize V(3) with respect to the remaining variables. It is convenient to define

λb,+ and λb,− as

λb,± = λb,d+1 ± λb,d+2 , (5.2.123)

so that all the λb,+ are fixed (up to gauge transformations) by

− νM5Ma =
∑
b

Dab λb,+ , (5.2.124)

whereas the λb,− are only subject to the following constraint:

νM5(Md+1 +Md+2) =
∑
ab

Dab λb,− . (5.2.125)

The extremization conditions then are

0 =
∂V(3)

∂λa
=
∂V(3)

∂λd+1

=
∂V(3)

∂λd+2

=
∑
a

ρa
∂V(3)

∂λa,−
, ∀ ρa such that

∑
ab

Dab ρ
b = 0 .

(5.2.126)
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In general these equations do not look easy, but in the special case Md+1 +Md+2 = 0

there is a simple solution: we can set λa = 0, λd+1 = λd+2 and λb,d+1 = λb,d+2 so

that the equations with ρa are trivially solved. The rest of the computation reduces

to that of section 5.2.2.2 for Z2 symmetric geometries. When Md+1 +Md+2 6= 0 this

simple solution is not possible because the constraint (5.2.125) would not be satisfied.

5.2.2.5 Examples of general geometries

In this section we consider again the examples based on P2, P1 × P1 and dP3 and

compare with the supergravity solutions in [102], where the additional parameter

c is turned on. Since the solutions in [102] all correspond to a critical point at

ε1 = ε2 = 0, for simplicity in this section we restrict again to configurations with this

feature, which as we discussed requires a special choice of fluxes for the case of dP3,

while it is automatic for generic fluxes for P2 and P1 × P1. The explicit value of the

central charge has been written in [104–106].

The free energy (5.2.121) can be expanded in a sum of integrals of equivariant

Chern classes. Since the multiple intersections (5.2.70) are homogeneous function of

degree p − 2 in ε1 and ε2, all the terms involving Da1,...ap with p > 2 in (5.2.121)

vanish for ε1 = ε2 = 0, and the free energy simplifies to

6V(3) = λ̄3
d+1

∑
ab

Dab + 3λ̄2
d+1

∑
ab

Dab(2ε3λ̄a,d+1 + λa)

+ 3λ̄d+1

∑
ab

Dab(ε3λ̄a,d+1 + λa)(ε3λ̄b,d+1 + λb)

+ λ̄3
d+2

∑
ab

Dab + 3λ̄2
d+2

∑
ab

Dab(2ε3λ̄a,d+2 − λa)

+ 3λ̄d+2

∑
ab

Dab(ε3λ̄a,d+2 − λa)(ε3λ̄b,d+2 − λb) .

(5.2.127)

Using the flux constraints we can also write

V(3) = λ̄3
d+1

∑
ab

Dab + 3λ̄2
d+1ε3νM5Md+1 + 3λ̄2

d+1

∑
ab

Dabλ
+
a + 3λ̄d+1

∑
ab

Dabλ
+
a λ

+
b

+ λ̄3
d+2

∑
ab

Dab − 3λ̄2
d+2ε3νM5Md+2 + 3λ̄2

d+2

∑
ab

Dabλ
−
a + 3λ̄d+2

∑
ab

Dabλ
−
a λ
−
b ,

(5.2.128)

where

λ+
a = ε3λ̄a,d+1 + λa , λ−a = ε3λ̄a,d+2 − λa , (5.2.129)

are constrained variables.

We consider first the general case (P2, P1×P1 and dP3) with all fluxes associated

to the fan of the KE4 set equal to N . The fan and intersection matrix are given in

(5.2.72) and (5.2.73). There are, in principle, d − 2 independent fluxes on M4 that

we can turn on but in the supergravity solution with KE metric they are equal
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and we first restrict to this case. The relations
∑

A V
A
I MA = 0 require MA =

(N, . . . , N,NN , NS) with dN+NN−NS = 0 and we can parameterize NN = M− d
2
N

and NS = M + d
2
N , possibly allowing an half-integer M . Given the symmetry of

the problem, we take all λa to be equal, and similarly for the λ̄a,d+1 and λ̄a,d+2. The

condition
∑

abcDabc = 0 holds for these models, and therefore all linear terms in ε1, ε2
in V(3) vanish, guaranteeing a critical point at ε1 = ε2 = 0. The flux conditions are

solved by

λ̄a,d+1 = νM5

(
M − dN

2

)
dmk

, λ̄a,d+2 = −νM5

(
M + dN

2

)
dmk

, (5.2.130)

where
∑

abDab = dmk so that mk = 3, 2, 1 for P2, P1 × P1 and dP3, respectively.

Extremizing with respect to λa and defining λ̄d+1 = νM5(H+K) and λ̄d+2 = νM5(H−
K) we find

6ν−3
M5V

(3) = 2dmkH
3 − 3

2
dε23N

2 K2

mkH
− 6dε3NH

2 + 3ε3H(4KM +
d

2mk

ε3N
2) ,

(5.2.131)

which after extremization gives22

V(3) =
d2ν3

M5ε
3
3N

4

12m2
k(d

2N2 + 12M2)2

(
(3d2N2 − 12M2)3/2 − dN(5d2N2 − 36M2)

)
.

(5.2.132)

An analogous formula for non-necessarily toric KE has recently appeared in [106].

In the case P1×P1 we can turn on two independent fluxes and have round metrics

on the P1s. We take the general assignment of fluxes compatible with
∑

A V
A
I MA = 0:

MA = (N1, N2, N1, N2, NN , NS) , (5.2.133)

where

2N1 + 2N2 +NN −NS = 0

and we can parameterize NN = M − N1 − N2 and NS = M + N1 + N2. Using the

gauge transformations (4.4.8) we can also reduce to the case

λa+2 = λa , λ̄a+2,d+1 = λ̄a,d+1 , λ̄a+2,d+2 = λ̄a,d+2 . (5.2.134)

Notice that, in this gauge, all the linear terms in ε1, ε2 in V(3) vanishes since, as one

can check, ∑
abc

Dabcl
(1)
a l

(2)
b l(3)

c = 0 (5.2.135)

provided the vectors l
(k)
a satisfy l

(k)
a = l

(k)
a+2. We can solve the flux constraints

2λ̄1,d+1 + 2λ̄1,d+2 + νM5N1 = 0 , 4λ̄1,d+1 + 4λ̄2,d+1 + νM5(−M +N1 +N2) = 0 ,

2λ̄2,d+1 + 2λ̄2,d+2 + νM5N2 = 0 , 4λ̄1,d+2 + 4λ̄2,d+2 + νM5(M +N1 +N2) = 0 ,
(5.2.136)

22Recall that to compare with section 5.2.2.2 we need to use the rescaling (5.2.47).
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by

λ̄2,d+1 = −λ̄1,d+1 +
1

4
νM5(M −N1 −N2) ,

λ̄1,d+2 = −λ̄1,d+1 − νM5
N2

2
,

λ̄2,d+2 = λ̄1,d+1 +
1

4
νM5(−M −N1 +N2) .

(5.2.137)

Extremizing with respect to λ1,2 and λ̄1,d+1 and defining λ̄d+1 = νM5(H + K) and

λ̄d+2 = νM5(H −K) we find

6ν−3
M5V

(3) = 16H3 − 3ε23N1N2
K2

H
− 12ε3(N1 +N2)H2 + 3ε3H(4KM + ε3N1N2) ,

(5.2.138)

which after extremization gives

V(3) =
ν3
M5ε

3
3N

2
1N

2
2 (4N2

1 + 4N1N2 + 4N2
2 − 3M2)3/2

6(4N1N2 + 3M2)2

− ν3
M5ε

3
3N

2
1N

2
2 (N1 +N2)(8N2

1 + 4N1N2 + 8N2
2 − 9M2)

6(4N1N2 + 3M2)2
,

(5.2.139)

reproducing (5.7) of [105].

Finally, let us mention that in the case of dP3 we can turn on four independent

fluxes along the base plus one additional flux M , and the general extremization

problem is intractable. It is possible to solve it for the two special configurations of

fluxes with enhanced symmetry discussed previously. We leave this as an instructive

exercise for the reader.

The case P1 × P1 has been interpreted in [104, 105] as a solution for M5 branes

sitting at the orbifold C2/Z2 wrapped over one of the P1. The interpretation follows

by deriving the central charge from an anomaly polynomial computation. It would

be very interesting to understand if our general formula (5.2.121) can be written as

the integral of the anomaly polynomial for some M5 brane theory wrapped over a

two-cycle in M4 and give a field theory interpretation of the solution.

5.2.3 Comparison with other approaches

It is interesting to compare with the recent approach based on Killing spinor bilinears

in M theory [53]. The technique consists in considering a set of equivariantly closed

differential forms which can be constructed from Killing spinor bilinears. Three such

forms have been explicitly constructed for AdS5 × M6 in [53] and for AdS3 × M8

in [106, 107]. Our results in sections 5.2.1 and 5.2.2 partially overlap with those in

[106, 107] and it is interesting to compare the two methods. We will show that they

are actually equivalent, when they can be compared, although in a non-trivial way.

For both cases, AdS11−k ×Mk with k = 6, 8, the authors of [106, 107] define an

equivariant k-form Φ whose higher-degree component is the warped volume of Mk
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and the lowest component the third power of a special locally defined function y. Up

to coefficients, the integral of Φ is the free energy, so we have

F =

∫
Mk

Φ =
∑
α

y3|α
dα eT

k/2|α
, (5.2.140)

where α are the fixed points of the geometry, and we recognize our expression for

V(3) for M theory solutions23

F = V(3) =
∑
α

(τα)3

dα eT
k/2|α

, (5.2.141)

upon identifying

y|α = τα . (5.2.142)

There exists also an equivariant four-form ΦF whose higher-degree component is

the M theory four-form and the lowest component the first power of the function y.

The flux quantization conditions give then

MAB =

∫
M8

ΦF c1(LA)c1(LB) =
∑
α

(cT
4

1 (LA)cT
4

1 (LB)y)|α
dα eT

4|α
,

MA =

∫
M6

ΦF c1(LA) =
∑
α

(cT
3

1 (LA)y)|α
dα eT

3|α
,

(5.2.143)

for AdS3×M8 and AdS5×M6, respectively and it easy to see that these conditions are

equivalent, up to coefficients, to our (5.2.4) and (5.2.45) with the same identification

y|α = τα.

Finally there exists another auxiliary form, a four-form Φ∗F in AdS3 ×M8 and

a two-form ΦY in AdS5 ×M6, whose lowest component is the second power of the

function y.

Consider first the AdS3×M8 solutions with wrapped M5 branes of section 5.2.1.

The vanishing of the Φ∗F flux along S4 is used in [106, 107] to enforce a Z2 symmetry

of the solution by identifying yN |a = −yS|a, thus effectively cutting by half the

number of fixed points. With the identification y|a = τa, our construction in section

5.2.1 is then equivalent to the one in [106].

Consider next the AdS5 × M6 solutions of section 5.2.2. The approaches are

complementary. While we consider toric orbifolds and the action of the full torus

T3 = U(1)3, the authors of [107] consider P1 bundles over a smooth four-manifold B4

and assume that the R-symmetry vector has no legs along B4. Let us observe that

this assumption can fail in general. For a generic B4 with abelian isometries there is

no reason to expect that the R-symmetry does not mix with the isometries of B4 and a

23We are omitting a (−1)k/2 sign in the expression for V(3). In this discussion we are ignoring

all such overall numerical factors.
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full-fledged computation considering the torus action on B4 is necessary. Also for the

toric B4 = dP3 with a generic choice of fluxes we expect a mixing with the isometries

of B4, as discussed in section 5.2.2.2. Under this condition, the central charge given

in [107] is not necessarily the extremum of the free energy. Obviously, whenever the

two approaches can be compared and the assumption in [107] is satisfied, we find

agreement.

From a technical point of view, this might be surprising. Recall indeed that

the flux constraints do not completely fix the values of the times τa = y|a. In our

construction, we just extremize the free energy F with respect to the remaining

parameters. In [106, 107] instead, in a case-by-case analysis, the auxiliary form ΦY

is used to find additional conditions to fix the y|α. The two methods look superficially

different, but we now show that they are effectively equivalent.

The extremization conditions with respect to the Kähler parameters that are not

fixed by the flux constraints are written in (5.2.126). The first three conditions

∂V(3)

∂λA
= 0 , A = a, d+ 1, d+ 2 , (5.2.144)

can also be rewritten as∑
B

V B
i

∂V(3)

∂λBA
(1 + δAB) = 0 , i = 1, 2 , A = a, d+ 1, d+ 2 . (5.2.145)

Indeed ∑
B

V B
i

∂V

∂λBA
(1 + δAB) = −2

∫
M6

eτ
T3
cT

3

1 (LA)
∑
B

V B
i c

T3

1 (LB)

= 2εi

∫
M6

eτ
T3
cT

3

1 (LA) = −2εi
∂V

∂λA
,

(5.2.146)

and taking the degree two component of this equation we see that all the condi-

tions (5.2.145) collapse to the extremization of the free energy with respect to the

parameter λA.

The conditions (5.2.126) can be then written as

0 =
∑
b

vbi
∂V(3)

∂λb,a
(1 + δba) =

∑
b

vbi
∂V(3)

∂λb,d+1

=
∑
b

vbi
∂V(3)

∂λb,d+2

=
∑
a

ρa
∂V(3)

∂λa,−
, (5.2.147)

where ρa is such that
∑

abDab ρ
b = 0. Now, the equations

(1 + δbc)
∂V(3)

∂λb,c
=
∑
a

(cT
3

1 (Lb)c
T3

1 (Lc))|a
(τNa )2 − (τSa )2

da,a+1εa1ε
a
2(ε3 − εa1 − εa2)

,

∂V(3)

∂λb,d+1

=
∑
a

cT
3

1 (Lb)|a
(τNa )2

da,a+1εa1ε
a
2

,

∂V(3)

∂λb,d+2

=
∑
a

cT
3

1 (Lb)|a
(τSa )2

da,a+1εa1ε
a
2

,

(5.2.148)
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given the identification y|a = τa and the fact that ΦY has lowest component y2,

translate into the localization formulas for∫
P1
bc

ΦY =

∫
M6

c1(Lc)c1(Lb)Φ
Y ,∫

DNb

ΦY =

∫
M6

c1(Ld+1)c1(Lb)Φ
Y ,∫

DSb

ΦY =

∫
M6

c1(Ld+2)c1(Lb)Φ
Y ,

(5.2.149)

respectively, where P1
bc is the fibre taken at the fixed points Dc ∩ Db on the base

(b = c± 1 necessarily) and the DN,S
b are the divisor on the base taken at the North

and South pole of the fibre, respectively. The extremization constraints are then

equivalent to the following co-homological relations

0 =
∑
b

vbi

∫
P1
bc

ΦY =
∑
b

vbi

∫
DNb

ΦY =
∑
b

vbi

∫
DSb

ΦY

=
∑
a

ρa
(∫

DNa

ΦY −
∫
DSa

ΦY
)
, ∀ ρa such that

∑
ab

Dab ρ
b = 0 .

(5.2.150)

The first three conditions are obvious: the cycles
∑

b v
b
i P1

bc,
∑

b v
b
i D

N,S
b are trivial

in homology. The last equation equates cycles sitting at the North and South pole.

The corresponding fluxes of ΦY do not need to be equal but they must be related.

We know that c1(Ld+2) = c1(Ld+1) +
∑

a c1(La).
24 Then∑

a

ρa
(∫

DNa

ΦY −
∫
DSa

ΦY
)

=
∑
a

ρa
∫
M6

(
c1(Ld+1)− c1(Ld+2)

)
c1(La)Φ

Y

= −
∑
ab

ρa
∫
M6

c1(Lb)c1(La)Φ
Y ∝

∑
ab

ρaDab = 0 .

(5.2.151)

The last step follows by expanding ΦY in a sum of Chern classes, and by writing∫
M6
c1(Lb)c1(La)Φ

Y as a sum of triple intersections DM6
ABC on M6. But DM6

abc = 0 and

DM6
d+1,a,b = DM6

d+2,a,b = Dab.
25

We see that our construction based on the equivariant volume naturally incor-

porates the localization approach of [53, 106, 107], with the advantage that all the

geometrical constraints that must be imposed case-by-case in order to find the free

energy in [53, 106, 107] appear naturally in our construction: they correspond to

the extremization with respect to all parameters that remain after imposing the flux

constraints. This avoids an analysis based on the specific topology of the background.

24The I = 3 condition of
∑
A V

A
I c1(LA) = 0.

25The triple intersections on M6 are easily computed as DM6

ABC = ∂V(3)

∂λA∂λB∂λC
from (5.2.114).

112



5.3 AdS2, AdS3 and AdS4 solutions in type II supergravities

In this section we consider solutions in type II string theory with geometries that

are fibrations over a four-dimensional orbifold M4. We consider the case of massive

type IIA solutions with D4 brane flux, corresponding to D4 branes wrapped over M4

and the case of type IIB solutions with D3 brane flux. In all cases, we show that the

free energy can be obtained by extremizing the appropriate term in the equivariant

volume.

5.3.1 AdS2 ×M8 solutions in massive type IIA

In this section we turn our attention to D4 branes wrapped around a generic four-

dimensional toric orbifold M4 [85, 86, 99]. Specifically the brane system we study

corresponds to AdS2×M8 solutions in massive type IIA, where M8 is an S4 fibration

over M4. The geometry is similar to the case of M5 branes wrapped around M4

considered in section 5.2.1 and we can borrow most of the computations. Here, due

to the orientifold projection,26 the Z2 projection used in section 5.2.1 is automatically

implemented and there is only one set of fixed points, at one of the poles of S4. The

geometry to consider is then a CY4, a C2 fibration over M4 with toric fan generated by

the vectors (5.2.1). As discussed in [28] and in the introduction, the prescription for

D4 in massive type IIA is also similar to (5.2.4), with different degrees of homogeneity:

νD4 (2− δAB)MAB = − ∂

∂λAB
V(3)(λA, λAB, εI) , F = V(5)(λA, λAB, εI) . (5.3.1)

The rest of the discussion is very similar to the section 5.2.1. We can write the

flux equations as

νD4MAB = −
∫
M4

CA CB
(
τT
)2

2 Cd+1 Cd+2

= −
∑
a

B
(2)
a ·

(
CA CB

)
|a

da,a+1 εa1 ε
a
2

, (5.3.2)

where the equivariant forms CA, τT and the B
(α)
a are defined respectively by (5.2.13)

and (5.2.15). These equations are identical to the ones of section 5.2.1, with the only

difference being that B
(2)
a takes the place of B

(1)
a . The solution can be read from

(5.2.20) and (5.2.24):

B(2)
a = −νD4N ,

MAB = N
∑
c,d

tcA t
d
BDcd ,

(5.3.3)

with tcA given by (5.2.25).

26The brane system is actually D4 in the presence of D8, which generate the cosmological constant,

and an orientifold plane O8 that cuts S4 into half.
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Following prescription (5.3.1), the solution (5.3.3) must be substituted in the

expression for V(5), which depends on the B
(5)
a as

V(5)(λA, λAB, εI) =
∑
a

B
(5)
a

da,a+1 εa1 ε
a
2

. (5.3.4)

The relation between B
(5)
a and B

(2)
a is given in equation (5.2.16), with the added

complication that the exponents are half-integers and thus we need to be careful

about the signs:

B(5)
a = ηa

2
5
2

5!

∣∣νD4N
∣∣ 52 ∣∣∣(Cd+1 Cd+2

)
|a
∣∣∣ 32 ,

ηa = sign
((
Cd+1 Cd+2

)
|a
)
· sign

(
τa
)
.

(5.3.5)

We note that the sign of
(
Cd+1 Cd+2

)
|a is the same as the sign of B

(2)
a , and thus is

fixed:

sign
((
Cd+1 Cd+2

)
|a
)

= sign

(
(τa)

2

2
(
Cd+1 Cd+2

)
|a

)
= sign

(
− νD4N

)
≡ σ . (5.3.6)

The sign of the τa however is not fixed by (5.3.3). We can rewrite the equations

B
(2)
a = −νD4N as

τa = σ ηa

√
−2νD4N

(
Cd+1 Cd+2

)
|a . (5.3.7)

It is always possible to find λA and λAB that solve these equations, whatever the

value of ηa might be.

For the free energy we can write

F =
2

5
2

5!

(
−νD4N

) 5
2

∑
a

ηa
(
(ε3 − ε4 + (ta − 1)εa1 + (ta+1 − 1)εa2)(ε4 − taε

a
1 − ta+1ε

a
2)
) 3

2

da,a+1 εa1 ε
a
2

,

(5.3.8)

thus reproducing the extremal function in [85].27

The sign ambiguities remain to be fixed by a more careful analysis. For a convex

fan, supersymmetry is preserved with a topological twist and we expect that all the

ηa have the same sign [85]. This could follow from a generalization of the following

argument valid for the equivariant volume with single times only. The λA determine

the polytope

P = {yI ∈ R4 | yIV A
I ≥ λA} . (5.3.9)

27Compare formula (5.7) in [85] and set ϕ1 = ε4 , ϕ2 = ε3− ε4 ,map
a
1 = ta ,map

a
2 = 1− ta ,W = 0,

and set ε3 = 2 for simplicity of comparison. Our result for the free energy then matches theirs (up

to an overall sign due to different conventions) upon choosing ε3(−νD4)
5
2 = 16π√

8−Nf

. Notice that in

[85] the vectors va are taken to be primitive, contrary to the conventions that we are using. Our

va are their v̂a.
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Naturally P must be non-empty, so let us take yI ∈ P . If we contract the inequalities

yIV
A
I ≥ λA with cT

4

1 (LA)|a we get

− yIεI ≥ τa ∀a ∈ {1, . . . , d} . (5.3.10)

Given that P is a resolved cone and that the equivariant volume is given by an

integral over P (4.3.2)

V(λA, εI) =

∫
P

d4y e−yIεI , (5.3.11)

then the exponent −yIεI ≥ τa must be negative for convergence. This implies τa ≤ 0,

and thus ηa = −σ. By choosing σ = 1 we would find the result of [85].

The case of anti-twist requires taking a non-convex fan for M4. This can be

obtained by formally sending va → σava everywhere, implying εa1 → σaεa1 and εa2 →
σa+1εa2. It was proposed in [85] that the correct assignment of signs is ηa = −σaσa+1,

and it would be interesting to understand this by a geometrical argument.

5.3.2 AdS4 ×M6 solutions in massive type IIA

In this section we consider AdS4 ×M6 solutions of massive type IIA supergravity,

which correspond to a system of D4 branes wrapped around a two-cycle inside a

four-dimensional toric M4, in the presence of D8 branes and an orientifold plane

O8. Explicit solutions of this type have been found in [55], with M6 being a P1

fibration over a four-dimensional manifold that is either Kähler-Einstein or a product

of Riemann surfaces, cut in half by the O8 plane. The only toric manifolds that admit

such metrics are P2, P1 × P1 and dP3: these are the cases we will be focussing on.

More precisely, we consider a half-geometry modelled on a non-compact CY3

corresponding to the canonical bundle over M4, with fan given by

V a = (va, 1) , V d+1 = (0, 0, 1) , a = 1, . . . , d , (5.3.12)

where va are the vectors of the fan of M4. This fan has the same structure as the ones

in sections 5.2.2.1 to 5.2.2.3, and for this reason the discussion in this section will

share some similarities with the former. This half-geometry can accurately describe

the solutions of [55] when the parameters ` and σ are set to zero. We explain this

point in more detail in appendix B.3, where we also compute the free energy of the

solutions of [55] to be compared with the results of our approach.

Our prescription is the following:

νD4MA = − ∂

∂λA
V(3)(λA, λAB, εI) , F = V(5)(λA, λAB, εI) ,

∑
A

V A
I MA = 0 .

(5.3.13)

The higher times are needed in order to find solutions to the flux constraints. Simi-

larly to the discussion of section 5.2.2, we will need to extremize the free energy with

respect to any parameter that is not fixed by the flux constraints.
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Given the high-degree of symmetry of P2, P1 × P1 and dP3 we expect a critical

point at ε1 = ε2 = 0. Indeed, it can be verified with a similar logic as equation

(5.2.74) that the linear terms in εi in the expression of the free energy vanish and

thus ε1 = ε2 = 0 is a critical point.

The flux equations are

(I) νD4Ma = −1

2

∫
M4

cT1 (La)
(
τT
)2

ε3 +
∑

b c
T
1 (Lb)

,

(II) νD4Md+1 =
1

2

∫
M4

(
τT
)2
,

(5.3.14)

where τT is defined as in (5.2.58). For generic values of εi these equations are not

independent: since
∑

a v
a
iMa = 0 and

∑
a v

a
i c

T
1 (La) = −εi, from (I) we obtain

εi

∫
M4

(
τT
)2

ε3 +
∑

b c
T
1 (Lb)

= 0 . (5.3.15)

When ε1 and ε2 are not both zero this is a non-trivial relation that we can use to

write

νD4

∑
a

Ma = −1

2

∫
M4

∑
a c

T
1 (La)

(
τT
)2

ε3 +
∑

b c
T
1 (Lb)

= −1

2

∫
M4

(
τT
)2
, (5.3.16)

which is equation (II). Crucially, this argument fails when ε1 = ε2 = 0, which is

the case we will be focussing on. As we will see in this case equation (II) becomes

independent of (I) and provides an additional constraint.

As already discussed in section 5.2.2.2, we have enough gauge freedom to set

λa,a = λa,a+1 = 0. For generic fans, it is also usually possible to gauge away the λa,

but this is not the case for the highly symmetric fans that we consider in this section.

For the Z2 symmetric solutions studied in section 5.2.2.2 it was always possible to

find a critical point with λa = 0 regardless, as argued in appendix B.1. However the

argument of appendix B.1 cannot be repurposed for the type IIA solutions of this

section and we are thus forced to keep the λa. The equivariant form τT can then be

parameterized as

τT =
∑
a

λac
T
1 (La) +

(
ε3 +

∑
a

cT1 (La)
)(
λd+1 +

∑
b

λb,d+1c
T
1 (Lb)

)
, (5.3.17)

where

λd+1 = −λd+1 + λd+1,d+1ε3 , λa,d+1 = −2λa,d+1 + λd+1,d+1 . (5.3.18)

Then for ε1 = ε2 = 0 the flux equations become

(I) νD4Ma = −λd+1

2

(
λd+1

∑
b

Dab + 2
∑
b

DabΛb

)
,∑

a

(I) + (II) 0 =
∑
ab

DabΛaΛb + 2ε3λd+1

∑
ab

Dabλa,d+1 ,
(5.3.19)
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where

Λa = λa + ε3λa,d+1 . (5.3.20)

Notice that the second equation is not a consequence of the first, as we already

anticipated. The free energy restricted to ε1 = ε2 = 0 is

F = V(5) = ε23

(λ5

d+1

20

∑
ab

Dab +
λ

4

d+1

24

∑
ab

Dab(3Λa + ε3λa,d+1) +
λ

3

d+1

12

∑
ab

DabΛaΛb

)
.

(5.3.21)

We can eliminate λa,d+1 from the above expression by using the second flux constraint

in (5.3.19) and find

F = ε23

(λ5

d+1

20

∑
ab

Dab +
λ

4

d+1

8

∑
ab

DabΛa +
λ

3

d+1

16

∑
ab

DabΛaΛb

)
,

νD4Ma = −λd+1

2

(
λd+1

∑
b

Dab + 2
∑
b

DabΛb

)
.

(5.3.22)

The flux constraints are not sufficient to fix all parameters: one parameter, say λd+1,

remains undetermined. Our prescription is to extremize the free energy with respect

to this leftover parameter.

Let us consider first the case of Kähler-Einstein base manifold, with all fluxes

relative to two-cycles in the base equal, that is Ma = N . The three cases of interest

are then P2, P1 × P1 and dP3. We define the integers Mk =
∑

abDab and mk =∑
bDab, which take values Mk = (9, 8, 6) and mk = (3, 2, 1) for P2, P1 × P1 and dP3

respectively. Since the fluxes Ma are all equal we can solve the flux equation by also

setting all Λa equal to each other, giving us

Λa = −
2NνD4 +mkλ

2

d+1

2mkλd+1

. (5.3.23)

The free energy as a function of λd+1 is then

F = ε23Mk

(λ5

d+1

320
−
νD4Nλ

3

d+1

16mk

+
ν2
D4N

2λd+1

16m2
k

)
, (5.3.24)

and extremizing it we find four solutions:

F = ± 1

10
(3
√

2− 4) ε23

(
νD4N

mk

)5/2

Mk ,

F = ± 1

10
(3
√

2 + 4) ε23

(
νD4N

mk

)5/2

Mk .

(5.3.25)
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The first solution, with a plus sign, reproduces the free energy of the massive type

IIA supergravity solutions of [55] upon setting28 ε23 ν
5
2
D4 = 64π√

n0
. The details about the

computation of the free energy of the supergravity solutions are in appendix B.3.

Let us now consider the case of P1×P1 with independent fluxes. In this case the

metric on each P1 factor is round, but the two radii are different. If we impose the

condition
∑

A V
A
I MA = 0 then the fluxes can be parameterized as follows:

Ma = (N1, N2, N1, N2) , Md+1 = −2(N1 +N2) . (5.3.26)

The flux constraints can then be solved by setting

Λ1 = Λ3 = −
νD4N2 + λ

2

d+1

2λd+1

, Λ2 = Λ4 = −
νD4N1 + λ

2

d+1

2λd+1

. (5.3.27)

The free energy takes the form

F =
ε23λd+1

40

(
λ

4

d+1 − 5νD4(N1 +N2)λ
2

d+1 + 5ν2
D4N1N2

)
, (5.3.28)

and extremizing it with respect to λd+1 yields four solutions:

F = ± ε
2
3

10

(√
8 + z2 − (2 + z2)

)√
3−
√

8 + z2 (νD4N)5/2 ,

F = ± ε
2
3

10

(√
8 + z2 + (2 + z2)

)√
3 +
√

8 + z2 (νD4N)5/2 ,

(5.3.29)

where for convenience we have introduced the parameterization

N1 = (1 + z)N, N2 = (1− z)N, |z| < 1 . (5.3.30)

Once again the first solution, with a plus sign, reproduces the free energy of the

supergravity solutions of [55] upon setting ε23ν
5
2
D4 = 64π√

n0
(see appendix B.3 for details).

5.3.3 AdS3 ×M7 solutions in type IIB

In this section we consider AdS3 ×M7 solutions in type IIB, where M7 is an S3/Zp
fibration over B4, which could potentially arise as the near-horizon limit of a system

of D3 branes wrapped on a two-cycle in B4. Explicit solutions of this type have been

found in [108, 109] for Kähler-Einstein B4 or products of Kähler-Einstein spaces.

The case of smooth Kähler B4 has been studied in [54] using the formalism of GK

geometry and the GMS construction [12]. The orbifold case has not been considered

in the literature as of yet, so in this section we take B4 to be a generic toric orbifold

B4 ≡M4 and we also allow a general dependence on all the equivariant parameters,

28Notice that the numerical values of νD4 and ε3 here are different from those of the corresponding

quantities in the previous section.
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including those on the base M4. As we already discussed, this is important to obtain

the correct critical point for generic M4 without particular symmetries, even in the

smooth case. We also hope that our general formulas in terms of four-dimensional

integrals will be useful to find a field theory interpretation of these solutions.

With odd-dimensional M7 we need to add one real dimension, the radial one,

as familiar in holography. The relevant CY4 geometry is given by the fibration

with M4 as the base and the Kähler cone over the Lens space as the fibre, that is

C2/Zp ↪→ CY4 →M4. This CY4 is toric and its fan is generated by the vectors

V a = (va, 1, ta) , V d+1 = (0, 0, 1, 0) , V d+2 = (0, 0, 1, p) , (5.3.31)

where as usual the vectors va generate the fan of M4, a = 1, . . . , d.

Our prescription here reduces to the GMS construction [54], namely

F = V(2)(λA, εI) , V(1)(λA, εI) = 0 , νD3MA = − ∂

∂λA
V(2)(λA, εI) , (5.3.32)

where ∑
A

V A
I MA = 0 . (5.3.33)

Here V(2) matches the “supersymmetric action” introduced in [12] and we know

from [12] that there is no need to use higher times for these solutions. Notice that

the second equation in (5.3.32), which is consequence of the third and (5.3.33), is the

“topological constraint” in [12].

When p = 1 the CY4 matches exactly the one of sections 5.2.1 and 5.3.1. The

equivariant volume is computed in the same manner, with only minor corrections.

The one-to-one correspondence between the fixed points of CY4 and M4 given by

(V a, V a+1, V d+1, V d+2) ↔ (va, va+1) still holds, but the orders of the orbifold singu-

larities now differ by a factor of p:

da,a+1,d+1,d+2 = p da,a+1 . (5.3.34)

The inward normals to the faces of the cone generated by (V a, V a+1, V d+1, V d+2) are

now given by

Ua = (p ua1, 0, 0) ,

Ua+1 = (p ua2, 0, 0) ,

Ud+1 =
(
(ta − p)ua1 + (ta+1 − p)ua2 , p da,a+1,−da,a+1

)
,

Ud+2 = (−taua1 − ta+1u
2
a , 0, da,a+1) .

(5.3.35)

119



From these we can derive the restriction of the equivariant Chern forms of CY4 to

the fixed points

cT
4

1 (Lb)|a = −(εa1 δa,b + εa2 δa+1,b) ,

cT
4

1 (Ld+1)|a =
−(ta − p)εa1 − (ta+1 − p)εa2 − p ε3 + ε4

p
,

cT
4

1 (Ld+2)|a =
taε

a
1 + ta+1ε

a
2 − ε4

p
,

(5.3.36)

and the respective restrictions to the base M4

Ca = cT1 (La) , a = 1, . . . , d ,

Cd+1 =
−p ε3 + ε4 +

∑
a(ta − p)cT1 (La)

p
,

Cd+2 =
−ε4 −

∑
a tac

T
1 (La)

p
.

(5.3.37)

It is easy to verify that these forms satisfy
∑

a v
a
i c

T
1 (La) = −εi and

∑
A V

A
I CA = −εI .

The second degree homogeneous component of the equivariant volume can be

written as an integral on the base M4 as follows:

V (2)(λA , εI) =

∫
M4

(τT)2

2 p Cd+1 Cd+2

, τT =
∑
A

λA CA . (5.3.38)

The flux constraints then read

− νD3MA = ∂λAV
(2)(λA , εI) =

∫
M4

CA τT

p Cd+1 Cd+2

=
∑
a

B
(1)
a ·

(
CA
)
|a

da,a+1 εa1 ε
a
2

, (5.3.39)

where B
(1)
a is the restriction to the a-th fixed point of the form

B(1) ≡ τT

p Cd+1 Cd+2

. (5.3.40)

The solution to equations (5.3.39) takes the following form:

ν−1
D3 B

(1)
a = b(εI)−

∑
b

mb c
T
1 (Lb)|a , (5.3.41)

where the mb are such that Ma =
∑

bDabmb. Indeed, if we substitute this expression

into the right-hand side of (5.3.39) for A ≡ b ∈ {1, . . . , d} we obtain

∑
a

B
(1)
a ·

(
Cb
)
|a

da,a+1 εa1 ε
a
2

= νD3

∫
M4

(
b(εI)−

∑
a

ma c
T
1 (La)

)
Cb = −νD3

∑
a

Dabma , (5.3.42)
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thus recovering the left-hand side of (5.3.39). When A = d+ 1, d+ 2 from a similar

computation we find that

Md+1 =
∑
a

(ta − p)Ma

p
, Md+2 = −

∑
a

taMa

p
, (5.3.43)

which are precisely the values of Md+1 and Md+2 necessary to satisfy the relation

expected from the fluxes,
∑

A V
A
I MA = 0.

So far we have not specified the value of b(εI) in (5.3.41). Using the gauge

invariance (4.4.9) we can fix three parameters λA. Therefore only d − 1 of the

restrictions of τT to the fixed points are independent, which translates into a relation

among the B
(1)
a that we use to fix the value of b(εI). This can be seen by observing

that τT is an equivariant two-form and thus its integral over M4 vanishes, giving us

0 =

∫
M4

τT =

∫
M4

p Cd+1 Cd+2B
(1) . (5.3.44)

The value of b(εI) that satisfies this relation can then be written as

b(εI) =

∫
M4
Cd+1 Cd+2

∑
ama c

T
1 (La)∫

M4
Cd+1 Cd+2

. (5.3.45)

We observe that the reason why we had to turn on the higher times in the

cases studied in the previous sections was related to the fact that d− 1 independent

parameters were not enough to solve the flux constraints. In the case considered in

this section however the d−1 independent restrictions of τT =
∑

A λA CA are sufficient

and there is no necessity to include higher times. Nonetheless, it is interesting to

repeat the same computation of this section with the addition of higher times, which

we report in appendix B.2.

The free energy is given by the second degree homogeneous component of the

equivariant volume, which we write as

F = V (2)(λA , εI) =

∫
M4

(τT)2

2 p Cd+1 Cd+2

=
∑
a

B
(2)
a

da,a+1 εa1 ε
a
2

, (5.3.46)

where the B
(2)
a are the restrictions of the integrand to each fixed point. The value

of the Kähler moduli, and consequently of the B
(2)
a , is fixed by the flux constraints.

We can easily do this by employing the same strategy as formula (5.2.16) to relate

the B
(2)
a to the B

(1)
a :

B(2)
a ≡

( (
τT
)2

2 p Cd+1 Cd+2

)∣∣∣
a

=
p

2

(
B(1)
a

)2 (Cd+1 Cd+2

)
|a (5.3.47)

=
ν2
D3

2p

(
b(εI) +maε

a
1 +ma+1ε

a
2

)2(
pε3 − ε4 + (ta − p)εa1 + (ta+1 − p)εa2

)(
ε4 − taε

a
1 − ta+1ε

a
2

)
.
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We can also write the free energy as an integral over M4 as follows:

F =
p

2
ν2
D3

∫
M4

(
b(εI)−

∑
a

ma c
T
1 (La)

)2

Cd+1 Cd+2 . (5.3.48)

Notice that the equation that fixes b(εI) can be written as∫
M4

(
b(εI)−

∑
a

ma c
T
1 (La)

)
Cd+1 Cd+2 = 0 (5.3.49)

and can be used to further rewrite the free energy as

F = −p
2
ν2
D3

∫
M4

∑
a

ma c
T
1 (La)

(
b(εI)−

∑
a

ma c
T
1 (La)

)
Cd+1 Cd+2 . (5.3.50)

It would be very interesting to understand if our formulas can be written as the

integral of the anomaly polynomial for some D3 brane theory wrapped over a two-

cycle in M4 and thus providing a field theory interpretation of the solution.

5.3.3.1 Examples: Kähler-Einstein and Hirzebruch surfaces

We can check that our general formalism reproduces the know expressions for the

toric cases P2, P1 × P1 and dP3 with equal fluxes. The fan and intersection matrix

are given in (5.2.72) and (5.2.73). We take all the Ma ≡ M , ta ≡ t and ma ≡ m

equal. We find
∑

abDab = dmk and M = mmk with mk = 3, 2, 1 for P2, P1 × P1 and

dP3, respectively. Since
∑

abcDabc = 0, there is no linear term in ε1,2 in V(2) which

is extremized at ε1,2 = 0. By expanding (5.3.49) in integrals of Chern classes we find

b =
m[(pε3 − ε4)t + ε4(p− t)]

t(p− t)
(5.3.51)

and

V(2) = −ν2
D3

dM2[ε3ε4p(p− 3t)t + ε23p
2t2 + ε24(p2 − 3pt + 3t2)]

2pmk(p− t)t
, (5.3.52)

which reproduces formula (5.6) in [54] with ε4 = ε3b2/2.29 This still needs to be

extremized with respect to b2.

As we already discussed in section 5.2.2, the critical point is generically at a

non-zero value of ε1 and ε2, unless there is some extra symmetry in the background

and the fluxes. As an example where the critical point is not at ε1 = ε2 = 0 we

consider the case of the Hirzebruch surface M4 = Fk with fan

v1 = (1, 0) , v2 = (−k, 1) , v3 = (−1, 0) , v4 = (0,−1) . (5.3.53)

29In [54] N is the flux of the five-cycle fibred over c1/mk in M4. To compare the formulas we need

to identify M = mkN
d and t = n2

mk
, which follows from (5.5). The formulas match for ε3νD3 = 2

√
6.
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The constraint
∑

A V
A
I MA = 0 leaves two independent fluxes on the base M4 and

two fluxes associated with the fibre

M3 = M1 − kM2 , M4 = M2 ,

M5 =
M1(t1 + t3 − 2p) +M2(pk − 2p+ t2 + t4 − kt3)

p
,

M6 = −M1(t1 + t3) +M2(t2 + t4 − kt3)

p
.

(5.3.54)

The vectors of the fan and the fluxes have a symmetry between the second and fourth

entry, and therefore we expect that one of εi will be zero at the critical point. Notice

also that the physical fluxes depends only on two linear combinations of the ta. These

are the combinations invariant under

ta → ta +
2∑
i=1

βiv
a
i . (5.3.55)

In the free energy (5.3.50) this transformation can be reabsorbed in a redefinition of ε4
using

∑
a v

a
i c1(La)

T = −εi and therefore the central charge depends only on the phys-

ical fluxes. We also solve Ma =
∑

bDabmb, for example, by ma = (0, 0,M2,M1).30

The constraint (5.3.49) and the free energy (5.3.50) can be expanded in a series of

integral of Chern classes and expressed in terms of the intersections Da1...ak , which

are homogeneous of order k in εi. We see then that b and the free energy are homo-

geneous of degree one and two in all the εI , respectively. One can check explicitly

that F is extremized at ε2 = 0. The expressions are too lengthy to be reported so,

for simplicity, we restrict to the case M2 = M1. We also fix ta = (t1, t2, t1, t2) using

(5.3.55) for convenience. The free energy restricted to ε2 = 0 reads

F = − ν2
D3M

2
1A

8p(p(t1 + t2)− 2t1t2)
, (5.3.56)

where

A = ε23p
2[(k − 2)t1 − 2t2]2 + 2ε3ε4p[(k − 2)2(p− 2t1)t1 + 4(p+ (k − 2)t1)t2 − 8t22]

+ ε24[(k − 4)2p2 − 4(k − 3)(k − 2)pt1 + 4(k − 2)2t21 + 4(k − 6)pt2 − 8(k − 2)t1t2 + 16t22]

+ 4ε1k[ε3pt1((k − 1)pt1 − (k − 2)t21 − pt2) + ε4(−3(k − 2)pt21 + 2(k − 2)t31 + p2((k − 3)t1 + t2))]

+ 4ε21[p2((k2 + k − 3)t21 + (k − 4)t1t2 − t22) + pt1(−(2k2 + k − 2)t21 + (10− 3k)t1t2 + 4t22)]

+ ε21t
2
1[k2t21 + (2k − 4)t1t2 − 4t22] ,

(5.3.57)

which should be still extremized with respect to ε1 and ε4. One easily sees that the

critical point is at a non-zero value of ε1. This rectifies a result given in [54] where

30Any other choice would be equivalent. The equation Ma =
∑
bDabmb is invariant under

ma → ma +
∑2
i=1 γiv

a
i . This ambiguity can be reabsorbed in a shift of b in (5.3.48).
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it was assumed that the R-symmetry does not mix with the isometries of Fk. The

expression (5.3.56) for k = 0 is extremized at ε1 = 0 and it correctly reduces to the

P1 × P1 result (5.3.52) setting ε1 = 0 and t1 = t2.

5.4 Summary and discussion

In this chapter we have refined the proposal of [28], that the geometry of an exten-

sive class of supersymmetric solutions is captured by a universal quantity, depending

only on the topology of the internal space and equivariant parameters associated

with the expected symmetries of the solutions. This quantity is an extension of the

equivariant volume, familiar from symplectic geometry, where we have introduced

additional moduli dubbed higher times, which are necessary to parameterize all the

fluxes supported by a given topology. Although we have assumed from the outset

that the spaces of interest are toric, we have indicated that this assumption may

be relaxed by considering for example “non-convex” geometries as well as configura-

tions including a four-sphere, that are not toric geometries in the strict mathematical

sense. It is also possible to extend our construction to geometries with a number of

expected abelian symmetries which is strictly less than half of the real dimension31

of the manifold/orbifold (or cone over it). It is well known that in many situations

the metric on the internal space (or the cone over it, in the odd-dimensional case)

solving the supersymmetry equations may not be compatible with a Kähler or even

symplectic structure. Nevertheless, the equivariant volume is a robust topological

quantity, insensitive to the details of the metrics. Indeed, it may be regarded as a

gravitational analogue of anomalies in quantum field theory. In all cases that we have

analysed, we extract an extremal function from the equivariant volume and our pre-

scription for fixing the parameters on which it depends consists of extremizing over

all the parameters that are left undetermined by the flux quantization conditions.

This is consistent with the logic in the case of GK geometry [11] and indeed it is

analogous to the paradigm of a-maximization in field theory [4]. Geometrically, the

existence of critical points to the various extremal functions that we proposed may be

interpreted as providing necessary conditions to the existence of the corresponding

supergravity solutions and indeed it would be very interesting to study when such

conditions are also sufficient. In any case, if we assume that a solution exists, then

our method calculates the relevant observables, yielding non-trivial predictions for

the holographically dual field theories. It is worth emphasizing that in the procedure

of extremization one should allow all the equivariant parameters not fixed by sym-

metries to vary, otherwise it is not guaranteed that the critical point found will be

a true extremum of the gravitational action. We have demonstrated this point in a

number of explicit examples discussed in section 5.2.2.3 as well as section 5.3.3.1.

31The main difference is that in these cases the localization formula involves fixed point sets that

are not isolated points.
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In this chapter we have focussed on setups involving internal geometries that

are fibrations over four-dimensional orbifolds M4, that may be interpreted as arising

from branes wrapping completely or partially M4. For example, the case of M5

branes completely wrapped on M4 yields a proof of the gravitational block form of

the trial central charge, conjectured in [85] (and derived in the field theory side in

[28]). The case of M5 branes partially wrapped on a two-cycle inside M4 is still

poorly understood from the field theory side, the best understood setup being the

case of M4 = Σg×S2, where Σg is Riemann surface of genus g [104]. The full internal

space M6 may then be viewed also as the fibration of the second Hirzebruch surface

F2 ' S2 × S2 over the Riemann surface Σg, and interpreted as the backreaction of a

stack of M5 branes at a (resolved) C2/Z2 singularity, further wrapped on Σg, yielding

insights about the dual four-dimensional field theories. In section 5.2.2.3 we have

discussed the example of M4 = �×S2, corresponding to M5 branes probing a C2/Z2

singularity, further wrapped on a spindle � and it would be interesting to confirm

our predictions with a field-theoretic computation. It would also be nice to extend

the methods of [104] for computing anomalies to setups where the M5 branes wrap

a two-cycle with non-trivial normal bundle in an M4.

In the context of type IIA supergravity, we have analysed the case of D4 branes

completely wrapped on a general toric four-orbifold M4, proving the gravitational

block form of the entropy function conjectured in [85]. It would be very interest-

ing to reproduce this from a field theory calculation of the partition function of

five-dimensional SCFTs on S1 × M4, employing the method of [110] for perform-

ing localization on orbifolds. We have also analysed the case of D4 branes partially

wrapped on a two-cycle inside M4, providing a dual field theoretic proposal for a

class of solutions to massive type IIA supergravity, constructed in [55]. Finally, we

have also discussed the case of D3 branes partially wrapped on a two-cycle inside

M4, corresponding to type IIB geometries of the form AdS3 ×M7, making contact

with the framework of fibred GK geometries studied in [54]. In particular, we have

improved some of the results previously obtained in [54], by revisiting some of the ex-

amples discussed there. In this chapter we have not discussed geometries associated

to M2 and D2 branes (already briefly mentioned in [28]), which are not naturally re-

lated to four-dimensional orbifolds M4, but we expect that for these our method will

generalize straightforwardly. It would be very interesting to incorporate new classes

of supersymmetric geometries in our framework, such as for example AdS2 ×M8 in

type IIB in order to study entropy functions of AdS5 black holes. It is tantalizing to

speculate that our approach may be eventually extended to include geometries that

do not necessarily contain AdS factors.
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Chapter 6

Equivariant volume and the

Molien-Weyl formula

In this chapter we discuss the Molien-Weyl formulation of the equivariant volume.

The Molien-Weyl formula is closely related to the construction of toric orbifolds

as symplectic quotients, which we reviewed in subsection 4.2.3. A notable feature

is how it depends on the independent Kähler moduli of the orbifold, instead of

an over-parametrization thereof. The price to pay is that it requires instead an

over-parametrization of the equivariant parameters. Because of these differences,

it is interesting to see how the prescription that we presented in chapter 5 can be

reformulated in terms of the Molien-Weyl formula: we will do so by focusing on the

case of AdS3×M8 solutions. Furthermore, another reason to study the Molien-Weyl

formula is the fact that it could help better understand the “quantum” analogue of

the equivariant volume [28, 93, 111], the orbifold index, which is expected to be a

building block for partition functions on orbifolds [110].

This chapter is organized as follows. First, in section 6.1 we review definition

of the Molien-Weyl formula and provide proofs of its relation to the “standard” for-

mulation of the equivariant volume, including a discussion about the correspondence

between residues and fixed points. Then in section 6.2 we revisit the AdS3 ×M8

solutions in M theory of subsection 5.2.1, reformulating the prescription of chapter 5

in terms of the Molien-Weyl formula. At last we conclude in section 6.3 with a brief

discussion of interesting possible directions of future research.

6.1 The Molien-Weyl formula

In this section we review the key properties of the Molien-Weyl formulation of the

equivariant volume, including its version with higher times [93, 111]. In subsection

6.1.1 we review how the Molien-Weyl formula can be derived from the construction

of toric orbifolds as symplectic quotients that we reviewed in subsection 4.2.3. The

in subsection 6.1.2 we provide a new derivation starting from the formula of the
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equivariant volume as an integral over the polytope. Then in subsection 6.1.3 we

prove the relation between the two formulations of the equivariant index with higher

times. At last in subsection 6.1.4 we discuss the correspondence between fixed points

and residues of the Molien-Weyl formula [111].

For simplicity throughout this whole chapter we will imply Einstein notation for

any repeated index, and we will use the following conventions for the indices of a

(2m)-dimensional toric orbifold M2m with fan generated by the vectors {va}da=1:

• The indices a, b, ... run from 1 to d.

• The indices i, j, ... run from 1 to m.

• The indices m,n, ... run from 1 to r = d−m.

Let Qm
a be the GLSM charges (4.2.34), which by definition are integers that

satisfy Qm
a v

a
i = 0. The Molien-Weyl formula re-expresses the equivariant volume in

terms of new variables tm and εa as [93]

VMW (tm, εa) =
1

|Γ|

∫
(iR)r

r∏
m=1

dφm
2πi

et
mφm∏d

a=1(εa +Qm
a φm)

, (6.1.1)

where |Γ| is the order of the torsion group, defined by (4.2.35). The relation between

the Molien-Weyl formulation and the “standard” presentation of the equivariant

volume is condensed in the formula [28]

V(λa, εi = vai εa) = e−λaεa VMW (tm = −Qm
a λa, εa) . (6.1.2)

The variables tm = −Qm
a λa parametrize the Kähler moduli of M2m. Indeed from

relations (4.2.26) and (4.2.18),

[ω] = −2πλa c1(La) , vai c1(La) = 0 , (6.1.3)

we see that a shift of the form λa → λa + vai βa does not change the cohomology

class [ω], which makes the λa an over-parametrization of the Kähler moduli. The tm

are unchanged by such shifts, and are thus a proper parametrization of the moduli.

The trade-off of the Molien-Weyl formulation is that the equivariant parameters are

now over-parametrized. As we will explain in more detail in subsection 6.1.1, the εa
parametrize the Lie algebra of the torus Td in the construction of M2m as a symplectic

quotient. Since the εa are over-parametrized, it is natural to expect VMW to obey

a simple formula for shifts in εa that don’t affect εi = vai εa, in analogy with (4.3.9).

Indeed, we have that

VMW (tm, εa +Qm
a ) = e−t

mαm VMW (tm, εa) , (6.1.4)

as can be easily seen from either (6.1.1) or (6.1.2).
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The Molien-Weyl integral can be computed by means of the residue theorem,

provided that we close the contour of integration first. The contour should depend

of the value of the Kähler moduli tm, which determine the behavior at infinity of the

integrand. In [93] it was proposed that the criterion to determine which poles of the

integrand should be inside the contour and which ones outside should be based on

the Jeffery-Kirwan prescription [112]. When the contour is closed this way we write

it as

VMW (tm, εa) =
1

|Γ|

∫
JK

r∏
m=1

dφm
2πi

et
mφm∏d

a=1(εa +Qm
a φm)

. (6.1.5)

The Jeffery-Kirwan prescription states that the poles inside the contour are those for

which the corresponding set of indices (a1, . . . , ar) of terms in the denominator that

diverge satisfies the property

{α1Qa1 + . . .+ αrQar ∈ Rr | αm > 0} ⊂ C(tm) . (6.1.6)

Here C(tm) denotes the chamber of regular values of the function Cd → Rr, (za)
d
a=1 7→

1
2
Qm
a |za|2, such that tm ∈ C(tm).1

The Molien-Weyl formula can be generalized to include higher times as follows

[93]:

VMW ({tm1...mk}Kk=1, εa) =
1

|Γ|

∫
JK

r∏
m=1

dφm
2πi

e
∑K
k=1 t

m1...mkφm1 ...φmk∏d
a=1(εa +Qm

a φm)
. (6.1.7)

Notice that we are keeping the contour closed to the Jeffrey-Kirwan contour. The

criterion to determine which poles are inside the contour and which are outside is

the still the same, and is unaffected by the value of the higher times tm1,...,mk with

k ≥ 2. This choice of contour ensures that the Molien-Weyl formula with higher times

can formally be derived from the one with just single times by solving a system of

differential equations, just like in standard formulation of V. As an example, the

following system can be used to define the Molien-Weyl formula with second times:∂tmnVMW (tm, tmn, εa) = (2− δmn)∂tm∂tnVMW (tm, tmn, εa) ,

VMW (tm, tmn = 0, εa) = VMW (tm, εa) .
(6.1.8)

In subsection 6.1.3 we will derive the relation between (6.1.7) and the standard

formulation of the equivariant volume with higher times:

V({λa1...ak}Kk=1, εi = vai εa) = e
∑K
k=1(−1)kλa1...ak εa1 ... εak ·

·VMW

({
tm1...mk =

K∑
s=k

(−1)s
(

s

s− k

)
Qm1
a1
. . . Qmk

ak
εak+1

. . . εasλa1...as
}K
k=1

, εa
)
,

(6.1.9)

1The moment map µG (4.2.39) can be written in terms of tm as µG(z, z̄) = 1
2Q

m
a |Za|2− tm. The

orbifold M2m can be constructed as M2m = µ−1G (0)/G. Zero is a regular value of µG if and only if

tm is a regular value of the function (za)da=1 7→ 1
2 Q

m
a |za|2.
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which is valid as long as the above value of tm is in the same chamber of regular

values as tm0 ≡ −Qm
a λa.

The formula (6.1.4) for shifts in εa generalizes to

VMW

({
tm1...mk =

K∑
s=k

(
s

s− k

)
tm1...ms αmk+1

. . . αms
}K
k=1

, εa +Qm
a αm

)
=

= e−
∑K
k=1 t

m1...mkαm1 ...αmk VMW ({tm1...mk}Kk=1, εa) ,

(6.1.10)

where now tm1,...,mk also gets shifted, with the exception of the highest component,

k = K. The above formula is only valid as long as the tm do not get shifted outside

their chamber of regular values.

6.1.1 Derivation by means of symplectic reduction

In this subsection we review the derivation of the Molien-Weyl formula from the

symplectic quotient construction of a toric orbifold, which we reviewed in subsection

4.2.3. This will provide a first proof of equation (6.1.2) and a geometrical interpre-

tation of the Molien-Weyl formula (6.1.1). In the next subsection we will provide

a much more direct proof of (6.1.2). In this subsection we follow the discussion of

[93], re-adapted to our notations and expanded to make contact with the standard

formulation of the equivariant volume.

Our starting point is the representation of the toric orbifold M2m as the quotient

(4.2.42) :

M2m = µ−1
G (0) / G . (6.1.11)

We remind that G is a subgroup of the torus Td that can be factorized (4.2.35) as

the direct sum of a finite group Γ and a continuos component:

G = Γ ⊕
{(
e2πiQm1 θm , . . . , e2πiQmd θm

)
∈ Td

∣∣∣ θ1, . . . , θd−m ∈ R
}
, (6.1.12)

whereas µ−1
G (0) is a subset of Cd (4.2.41) that can be expressed in terms of the Kähler

moduli tm = −Qm
a λa as

µ−1
G (0) =

{
z ∈ Cd

∣∣∣ 1

2
Qm
a |za|2 = tm , m = 1, . . . , d−m

}
, (6.1.13)

The Hamiltonian function in Cd of the vector εa∂ϕa (ϕa is the phase of za) is

expressed in terms of the moment maps (4.2.37) as follows:

H(εa) = εa µ
a
0(z, z̄) =

1

2
εa |za|2 + εaλa . (6.1.14)

The above Hamiltonian on Cd defines an Hamiltonian H(εi) on M2m, which is asso-

ciated to the vector εi∂φi with εi = vai εa.
2 With a little abuse of language we can

2Indeed the vectors associated to the Lie algebra ofG are of the form αmQ
m
a ∂ϕa and are projected

to the null vector in M2m. Since vai Q
m
a = 0, we can see that this projection is done by vai .
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write H(εa) = H(εi = vai εa). Since Hamiltonians are defined up to a constant, we

can remove the dependence of (6.1.14) from λa by defining

H̄(εa) =
1

2
εa |za|2 . (6.1.15)

If we use H̄ instead of H in the definition (4.3.1) of the equivariant volume we obtain

a function of tm and εa:

VMW (tm, εa) =
1

(2π)m

∫
µ−1
G (0) /G

e−H̄(εa) ω
m

m!
. (6.1.16)

In the following we will show that the above quantity is exactly equal to the Molien-

Weyl integral (6.1.1). Equation (6.1.2) should now be clear: the factor exp(−λaεa)
that appears when we relate V and VMW simply comes from the constant term by

which the two Hamiltonians differ: H(εi = vai εa) = H̄(εa) + εaλa.

We can rewrite (6.1.16) as an integral over Cd:

VMW (tm, εa) =
1

(2π)d|Γ|

∫
Cd

dz dz̄ e−H̄(εa)

r∏
m=1

δ
( 1

2
Qm
a |za|2 − tm

)
, (6.1.17)

where the delta functions restrict us to µ−1
G (0) and the extra factors of 2π and |Γ|

at the denominator compensate the fact that M2m is µ−1
G (0) quotiented by G. Using

the integral representation of the delta function

δ(x) =
1

2π

∫ +∞

−∞
dϕ e−ixϕ =

1

2πi

∫
iR

dφ e−xφ (6.1.18)

we obtain the desired equivalence between (6.1.16) and (6.1.1) :

VMW (tm, εa) =
1

(2π)d|Γ|

∫
Cd

dz dz̄

∫
(iR)r

r∏
m=1

dφm
2πi

exp
(
tmφm −

|za|2

2
(εa +Qm

a φm)
)

=

=
1

|Γ|

∫
(iR)r

r∏
m=1

dφm
2πi

et
mφm∏d

a=1(εa +Qm
a φm)

. (6.1.19)

6.1.2 Direct derivation

In this subsection we give a direct proof of equation (6.1.2), which relates the standard

formulation of the equivariant volume and its Molien-Weyl formula counterpart in

the absence of higher times.

Our starting point is the formula (4.3.2) for the equivariant volume as an integral

over the polytope, which we write explicitly using Heaviside theta functions:

V(λa, εi) =

∫
P

dmy e−yiεi =

∫
Rm

dmy e−yiεi
d∏
a=1

θ(vai yi − λa) . (6.1.20)
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Now we can use the integral representation of the theta function

θ(x) = lim
η→0+

1

2πi

∫ +∞

−∞
dτ

eixτ

τ − iη
(6.1.21)

to write the equivariant volume as

V(λa, εi) = lim
ηa→0+

1

(2πi)d

∫
Rd

ddτ

∫
Rm

dmy
ei(v

a
i yi−λa)τa−yiεi∏d
a=1(τa − iηa)

. (6.1.22)

Let us introduce the new variables εa, which are related to the εi by εi = vai εa.

The εa are not uniquely defined, since shifting them by εa −→ εa + Qm
a αm does

not affect the relation εi = vai εa. It is always possible to take εa ≥ 0 without loss

of generality.3 We can then shift τa −→ τa − i εa without making the integration

contour cross any poles. We find

V(λa, εi = vai εa) =
e−λaεa

(2πi)d

∫
Rd

ddτ

∫
Rm

dmy
ei(v

a
i yi−λa)τa∏d

a=1(τa − i εa)
, (6.1.23)

where we have taken the ηa → 0 limit since the ηa are no longer needed for the

convergence of the integral. Now the integral over yi simply yields a product of delta

functions, leaving us with

V(λa, εi = vai εa) =
e−λaεa

(2π)r

∫
Rd

ddτ
e−iλaτa∏d

a=1( εa + i τa)

m∏
i=1

δ(vai τa) . (6.1.24)

In order to integrate out the delta functions it is convenient to change variables:

τa = −i Qm
a φm + P i

aτi , (6.1.25)

where the matrix P i
a is chosen so that P i

a v
a
j = δij. We note that such a matrix is

not uniquely defined: we could send P i
a −→ P i

a +αmQ
m
a and the contraction with vaj

would still yield δij. The delta functions in (6.1.24) are now simply δ(vai τa) = δ(τi),

so we are left with an integral in just the φm variables:

V(λa, εi = vai εa) =
∣∣ det(Q,P )

∣∣ · e−λaεa ∫
(iR)r

r∏
m=1

dφm
2πi

e−λaQ
m
a φm∏d

a=1(εa +Qm
a φm)

, (6.1.26)

where (Q,P ) is the square matrix obtained by concatenating Qm
a and P i

a. This

expression almost completely reproduces (6.1.2); the only piece that we are missing

is to show that ∣∣ det(Q,P )
∣∣ =

1

|Γ|
. (6.1.27)

3The set C = {vaεa | εa ≥ 0} is the convex polyhedral cone spanned by the vectors va. For

non-compact toric orbifolds the integral (6.1.20) is convergent if and only if the εi take values in C.
For compact toric orbifolds C = Rm.
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First, let us notice that det(Q,P ) does not depend on the specific choice of

the matrix P i
a. Indeed, if we shift P i

a −→ P i
a + αmQ

m
a the determinant does not

change, and all possible choices of P i
a differ by such a shift. We will now describe a

particularly convenient way to choose P i
a. Let yα be any fixed point of M2m, and let

vα be the square matrix whose columns are the generators (va1 , . . . , vam) of the cone

associated to yα. Then the following is a valid choice of P i
a:

P i
a =

{
(v−1
α )ia if va is one of the generators of the cone associated to p

0 otherwise
. (6.1.28)

Indeed, it is easy to verify that P i
a v

a
j = δij. Using the above expression for P i

a, it

immediately follows that∣∣ det(Q,P )
∣∣ =

∣∣ detQα

∣∣ · ∣∣ det v−1
α

∣∣ =
1

dα

∣∣ detQα

∣∣ , (6.1.29)

where Qα is the square matrix obtained from Qm
a by removing all the values of the

index a such that va is a generator of the cone associated to the fixed point yα. In

the second step we have used (4.2.6).

By definition the integer dp is the order of the orbifold singularity at the fixed

point yα. If we express the orbifold as the symplectic quotient (4.2.42) M2m =

µ−1
G (0)/G, then the order of the orbifold singularity is equal to the order of the

isotropy group of the action of G on each point in the orbit associated to yα. By the

same logic as (4.2.45), the orbit of G associated to the fixed point yα is the set

µ−1
G (0) ∩ {(z1, . . . , zd) ∈ Cd | za1 = . . . = zam = 0} . (6.1.30)

It is easy to verify that the subgroup of G that leaves each point in the above set

fixed is Γ times a subgroup of order
∣∣ detQα

∣∣. This means that

dα = |Γ| ·
∣∣ detQα

∣∣ , (6.1.31)

which together with (6.1.29) implies relation (6.1.27). This concludes the proof of

(6.1.2).

6.1.3 Derivation of the formula with higher times

We will now briefly discuss the derivation of the generalization of the Molien-Weyl

formula to the equivariant volume with higher times, reproducing formulas (6.1.7)

and (6.1.9). For simplicity we will focus on the case with just single and double times

as an example; the procedure easily generalizes to the inclusion of any higher times.

The equivariant volume with the addition of double times can formally be de-

termined from the equivariant volume without higher times by solving the following

system of differential equations:∂λabV(λa, λab, εi) = (2− δab)∂λa∂λbV(λa, λab, εi) ,

V(λa, λab = 0, εi) = V(λa, εi) .
(6.1.32)
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It is then immediate to find the analogue of 4

V(λa, εi = vai εa) =
e−λaεa

|Γ|

∫
JK

r∏
m=1

dφm
2πi

e−λaQ
m
a φm∏d

a=1(εa +Qm
a φm)

(6.1.33)

with the inclusion of second times:

V(λa, λab, εi = vai εa) =
e−λaεa+λabεaεb

|Γ|

∫
C

r∏
m=1

dφm
2πi

e(2λabεb−λa)Qma φm+Qma Q
n
b λabφmφn∏d

a=1(εa +Qm
a φm)

.

(6.1.34)

Where the contour C is the same as the contour of the integral in (6.1.33). If tm =

(2λabεb − λa)Qm
a and tm0 = −λaQm

a are in the same chamber of regular values, then

C matches the Jefferey-Kirwan contour and we get the desired expression:

V(λa, λab, εi = vai εa) = e−λaεa+λabεaεbVMW (tm = (2λabεb−λa)Qm
a , t

mn = Qm
a Q

n
bλab, εa).

(6.1.35)

It is easy to show that by iterating this argument we would reproduce (6.1.7) and

(6.1.9).

6.1.4 Mapping residues to fixed points

In this subsection we discuss the relation between fixed points and residues of the

Molien-Weyl formula [111], providing evidence of a one-to-one correspondence. For

simplicity we only keep single and double times.

Our starting point will be formula (6.1.7) with K = 2:

VMW (tm, tmn, εa) =
1

|Γ|

∫
JK

r∏
m=1

dφm
2πi

et
mφm+tmnφmφn∏d

a=1

(
εa +Qm

a φm
) . (6.1.36)

Each pole p inside the Jeffrey-Kirwan contour (we write p ∈ JK) is uniquely de-

termined by the r different values a1, ..., ar of the index a that correspond to the

terms in the denominator of (6.1.36) that diverge at the pole; we can thus identify

p ≡ (a1, ..., ar). We can now apply the residue theorem to (6.1.36) and obtain

VMW (tm, tmn, εa) =
1

|Γ|
∑
p∈JK

et
mφm(p)+tmnφm(p)φn(p)

| detQp|
∏

a/∈p εa(p)
, (6.1.37)

where we have defined the following:

(Qp)
m
n ≡ Qm

pn

φm(p) ≡ −
r∑

n=1

εpn(Q−1
p )nm

εa(p) ≡ εa +Qm
a φm(p) .

(6.1.38)

4Notice that we are using the version of the Molien-Weyl formula with the closed Jeffrey-Kirwan

contour, in order to avoid trouble at infinity.
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We will now introduce variables λa, λab so that λab is symmetric and

tmn = Qm
a Q

n
b λab , tm = Qm

a

(
2λab εb − λa

)
. (6.1.39)

Then the exponent in (6.1.37) can be rewritten as

tmφm(p) + tmnφm(p)φn(p) = −λa εa(p) + λab εa(p) εb(p) + λa εa − λab εa εb , (6.1.40)

and thus

VMW (tm, tmn, εa) = eλ
a εa−λab εa εb 1

|Γ|
∑
p∈JK

e−λ
a εa(p)+λab εa(p) εb(p)

| detQp|
∏

a/∈p εa(p)
. (6.1.41)

In light of the relation (6.1.9) between VMW and V we can see that each term in

the above residue formula matches a corresponding term in the fixed point formula,

provided that the following identifications hold:

• To each pole p ≡ (a1, ..., ar) in the Jeffrey-Kirwan contour we can associate the

fixed point yα, where α is the cone in the fan generated by the vectors {va}a/∈p,
and vice-versa.

• The quantity εa(p) matches, up to a minus sign, the restriction of the equivari-

ant Chern class cT1 (La) at the fixed point associated to the pole p, that is

εa(p) = − εpa
(
εi = vbi εb

)
,

εpa(εi) ≡ cT1 (La)|p = −
(uap)

i εi

dp
,

(6.1.42)

where the inward normals to the cone uap are defined as in (4.3.16), and we are

using the pedices α and p interchangeably.

Note that because of (6.1.31) we would have |Γ| · |Qp| = dp. We will not give a direct

proof of the first point above, rather in the rest of this section we will prove the

second point, and the computation of this subsection can then be seen as as evidence

for the correspondence of fixed points and poles.

We can rewrite the relation (4.3.16) as

∀a, b /∈ p δab =
1

dp
vb · uap , (6.1.43)

and use it as follows:

∀a /∈ p Qm
a =

∑
b/∈p

Qm
b δab =

1

dp

∑
b/∈p

Qm
b v

b · uap = − 1

dp

∑
n

Qm
pn v

pn · uap . (6.1.44)

In the last step we used that vai Q
m
a = 0. Acting with Q−1

p on both sides gives us

∀a /∈ p
∑
m

Qm
a (Q−1

p )nm = − 1

dp
vpn · uap . (6.1.45)
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Using (6.1.43) again we can also write

∀a /∈ p εa =
∑
b/∈p

εb δab =
1

dp
upa ·

∑
b/∈p

εb v
b . (6.1.46)

Putting everything together we find the following expression for εa(p) when a /∈ p:

∀a /∈ p εa(p) ≡ εa −
∑
m,n

εpn Q
m
a (Q−1

p )nm =
1

dp
upa ·

∑
b

εb v
b . (6.1.47)

On the other hand when a ∈ p the quantity εa(p) vanishes:

∀a ∈ p εa(p) ≡ εa −
∑
m,n

εpn Q
m
a (Q−1

p )nm = εa −
∑
n

εpn δ
pn
a = 0 . (6.1.48)

Hence, if we define

∀a ∈ p uap ≡ 0 (6.1.49)

we can conclude that

∀a εa(p) =
1

dp
upa ·

∑
b

εb v
b , (6.1.50)

which is exactly relation (6.1.42).

6.2 AdS3 ×M8 solutions in M theory revisited

In this section we revisit the AdS3 ×M8 solutions in M theory of subsection 5.2.1

through the lenses of the Molien-Weyl formalism. In subsection 6.2.1 we explain

how the procedure of chapter 5 can be reformulated, and in subsection 6.2.2 we

will provide a concrete example by taking the four-dimensional orbifold M4 to be a

wighted projective space.

We remind that the internal geometry of the AdS3 ×M8 solutions that we are

interested in is associated to fan (5.2.1):

V a = (va, 1, ta) , V d+1 = (0, 0, 1, 0) , V d+2 = (0, 0, 1, 1) , (6.2.1)

where as usual the va are the vectors of the base orbifold M4. Let us denote with qma
the GLSM charges of M4. Then the GLSM charges of the fibration are

Qm
a = qma , Qm

d+1 =
∑
a

(ta − 1)qma , Qm
d+1 = −

∑
a

ta q
m
a . (6.2.2)

The fixed points of the fibration are associated to cones in the fan of the type

(V a, V a+1, V d+1, V d+2). In light of the discussion of subsection 6.1.4, the integrand

of the Molien-Weyl formula should have d poles {pa}da=1 inside the Jeffrey-Kirwan

contour, such that all the terms (εA + Qm
A φm) vanish at the pole pa except for the
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ones with A = a, a + 1, d + 1, d + 2. The Molien-Weyl equivariant volume with

higher times can then by computed as in (6.1.37) :

VMW (tm, tmn, εA) =
d∑
a=1

et
mφm(pa)+tmnφm(pa)φn(pa)

da,a+1 εa(pa) εa+1(pa) εd+1(pa) εd+2(pa)
, (6.2.3)

where φm(pa) and εa+1(pa) are defined in (6.1.38).

6.2.1 The extremal function with the Molien-Weyl formula

In this subsection we formulate a procedure that allows to derive the gravitational

blocks formula (5.2.31) from the Molien-Weyl formula.

First, let us remind that the free energy (5.2.31) was obtained in subsection 5.2.1

from the following setup:

F = V(3)(λA, λAB, εI) , ∂λABV
(2)(λA, λAB, εI) = −νM5 (2− δAB)MAB . (6.2.4)

We claim that the Molien-Weyl analogue of the above prescription is to set the

free-energy as

F = V
(3)
MW (tm, tmn, εA) , (6.2.5)

and to impose the following flux equations:
∂tmnV(2)

MW

(
tm, tmn, εA

)
= −ν̄M5 (2− δmn)Mmn ,

∂tmV(2)
MW

(
tm, tmn, εA

)
= 0 ,

V(1)
MW

(
tm, tmn, εA

)
= 0 ,

(6.2.6)

where Mmn is related to MAB by MAB = Qm
a Q

n
BMmn.5 Notably when the flux

constraints (6.2.6) are imposed the free energy (6.2.5) becomes a function of the

variables εI = V A
I εA exclusively, as expected.

Before deriving (6.2.5) and (6.2.6) we would like to observe that the bottom two

equations in (6.2.6) have a nice interpretation. We remind that the Molien-Weyl

formula satisfies the shift formula (6.1.10), which for our particular case takes the

form

VMW

(
tm + 2tmnαn, t

mn, εA +Qm
Aαm

)
= e−t

mαm−tmnαmαn VMW

(
tm, tmn, εA

)
. (6.2.7)

when tmαm + tmnαmαn = 0 this can be seen as a gauge transformation of VMW .

The first equation in (6.2.6) by itself would not be a gauge invariant equation, given

that the term ∂tmnV(2)
MW under a gauge transformation would acquire corrections

proportional to ∂tmV(2)
MW and V(1)

MW . It should then be clear what role the other two

5It is always possible to write MAB = Qma Q
n
BMmn since the fluxes must satisfy V AI MAB = 0.
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equations in (6.2.6) are playing: they ensure that the system of equations (6.2.6) as

a whole is gauge invariant.

Let us derive (6.2.5) and (6.2.6). First, we notice that the flux constraints in

(6.2.4),

∂λABV
(2)
(
λA, λAB, εI

)
= −ν̄M5 (2− δAB)MAB , (6.2.8)

together with V A
I MAB = 0 imply that∂λAV

(2)
(
λA, λAB, εI

)
= 0 ,

V(1)
(
λA, λAB, εI

)
= 0 .

(6.2.9)

This can be seen by writing ∂λAB V
(2) = (2− δAB) ∂λA ∂λB V

(3) and contracting with

V A
I using (4.3.11).

We will make use of formula (6.1.9), which relates the standard formulation of

the equivariant volume and the Molien-Weyl one. In this case we can write it as

V(λA, λAB, εI = V A
I εA) = (6.2.10)

= e−λAεA+λABεAεB VMW (tm = (2λABεB − λA)Qm
A , t

mn = Qm
AQ

n
BλAB, εA) .

Given a fixed value for the equivariant parameters εI , there is some ambiguity in the

choice of εA. If λA and λAB are fixed to the value that solves the flux constraints

(6.2.8), we can always choose εA so that −λAεA+λABεAεB = 0. With this convenient

choice equations (6.2.9) and (6.2.8) can expressed as

0 = V(1) = V
(1)
MW ,

0 = ∂λAV
(2) = −εAV(1)

MW −Q
m
A∂tmV

(2)
MW = −Qm

A∂tmV
(2)
MW ,

ν̄M5MAB = −1+δAB
2

∂λABV
(2) = −εAεBV(1)

MW − (εAQ
m
B + εBQ

m
A )∂tmV

(2)
MW−

−Qm
AQ

n
B

1+δmn
2

∂tmnV
(2)
MW = −Qm

AQ
n
B

1+δmn
2

∂tmnV
(2)
MW .

(6.2.11)

For simplicity we have suppressed the arguments, they should be set up in the same

way as (6.2.10). In particular we have obtained the system of equations (6.2.6).

Viceversa, if we were to start from (tm, tmn, εA) that solve the Molien-Weyl flux

constraints (6.2.6), we could always choose a value for λA, λAB such that tm =

(2λABεB − λA)Qm
A , tmn = Qm

AQ
n
BλAB, and −λAεA + λABεAεB = 0. Then if we were

to trace the same steps as (6.2.11) backwards, we would find that (6.2.8) is satisfied.

We would also have

F = V
(3)
MW (tm, tmn, εA) = V(3)(λA, λAB, εI = V A

I εA) , (6.2.12)

concluding the derivation.
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6.2.2 M4 = WP2

In this subsection we focus on a particular example of four-dimensional toric orbifold,

the weighted projective spaces, and we apply the procedure explained in the previous

subsection.

The wighted projective space WP2 can be seen as an orbifold generalization of

P2: the fan of WP2 matches the one of P2 up to a rescaling of the vectors:

v1 = (n3, n3) , v2 = (−n1, 0) , v3 = (0,−n2) . (6.2.13)

The orders of the orbifold singularities are given by dab = | det(va, vb)| = na−1nb−1 .

For C2 fibered over WP2 the indices m,n, . . . can only take one possible value,

so we will suppress them; in order to distinguish between tm and tmn we will use the

following convention:

tm −→ t(1) , tmn −→ t(2) . (6.2.14)

There is only one vector of GLSM charges and its components along the base orbifold

are given by

Qa = (n1n2, n2n3, n3n1) a = 1, 2, 3 . (6.2.15)

The charges alongside the fiber can be found using (6.2.2) :

Q4 =
3∑

a=1

(ta − 1)nana+1 , Q5 = −
3∑

a=1

tanana+1 . (6.2.16)

The Molien-Weyl equivariant volume can then be expressed as

VMW (t(1), t(2), εA) =
3∑

a=1

et(1)φ(pa)+t(2)φ(pa)2

na−1na εa(pa) εa+1(pa) ε4(pa) ε5(pa)
, (6.2.17)

where

φ(pa) = −εa−1Q
−1
a−1 = − εa−1

na−1na
,

εA(pa) = εA −
εa−1QA

na−1na
.

(6.2.18)

We can now impose the flux constraints (6.2.6), which means solving the follow-

ing system of equations:
∂t(2)V

(2)
MW

(
t(1), t(2), εA

)
= −ν̄M5M ,

∂t(1)V
(2)
MW

(
t(1), t(2), εA

)
= 0 ,

V(1)
MW

(
t(1), t(2), εA

)
= 0 .

(6.2.19)
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Two of the above equations fix the values for the Käler moduli t(1) and t(2), and the

third will give us a constraint on the εA. We find a total of two distinct solution:
ε4 = 0

t(1) = −1
2
ν̄M5N Q4 ε5

t(2) = −1
2
ν̄M5N Q4Q5

,


ε5 = 0

t(1) = −1
2
ν̄M5N Q5 ε4

t(2) = −1
2
ν̄M5N Q4Q5

, (6.2.20)

where N = (n1n2n3)2M . 6 If we were to plug the above solutions inside the free-

energy F = V
(3)
MW

(
t(1), t(2), εA

)
we would get two different results. The key is that

these result only match after we translate into the εI variables. In order to do so we

need to solve the linear systems{
ε4 = 0

V A
I εA = εI

,

{
ε5 = 0

V A
I εA = εI

. (6.2.21)

If we substitute (6.2.20) in V
(3)
MW and perform the respective change of variables in

accordance with (6.2.21), we find that the free energy is given by

F =
1

6
(−ν̄M5N)3

[ (
(1− t1) ε2

n3
+ (1− t2) ε2−ε1

n1
− ε3 + ε4

)2(
t1
ε2
n3

+ t2
ε2−ε1
n1
− ε4

)2

ε2(ε2 − ε1)
+

+

(
− (1− t2) ε1

n1
− (1− t3) ε2

n2
− ε3 + ε4

)2(− t2
ε1
n1
− t3

ε2
n2
− ε4

)2

ε1 ε2
+

+

(
(1− t3) ε1−ε2

n2
+ (1− t1) ε1

n3
− ε3 + ε4

)2(
t3
ε1−ε2
n2

+ t1
ε1
n3
ε4
)2

ε1(ε1 − ε2)

]
,

(6.2.22)

which is the same as (5.2.31), as expected.

Let us conclude by noticing that from the solution (6.2.20) it is evident that in

general the second time t(2) is necessary for the prescription to work, except for the

particular case when either Q4 = 0 or Q5 = 0. These condition on the charges restrict

the topology of the fibration, and it would be interesting to try to understand why

the geometry of these special cases does not require higher times. It would also be

interesting to find a geometrical interpretation to the two distinct solutions (6.2.20),

and why the free energy F found from each of them only matches when we convert

back to the εI variables.

6.3 Summary and discussion

In this chapter we have discussed the Molien-Weyl formula and provided a direct

derivation of its relation with the standard formulation of the equivariant volume.

6Indeed N was defined in (5.2.20) so that Mab = N Dab. We can find the relation between N

and M by writing Dab = QaQb ∂
2
t(1)
V

(2)
MW |t(2)=0 and by computing ∂2t(1)V

(2)
MW |t(2)=0 = (n1n2n3)−2.
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We have revisited the AdS3 ×M8 solutions, obtaining once again the gravitational

blocks formula conjectured in [85], this time by means of the Molien-Weyl formula.

Given that the Molien-Weyl formula depends on the independent Kähler moduli

of the geometry rather than an over-parametrization thereof, the computation is

remarkably simple for orbifolds with a small number of Kähler moduli. This is

the case for the example that we have focused on in subsection 6.2.2, in which we

took the four-dimensional base orbifold to be a weighted projective space. More

in general, the Molien-Weyl formula provides an interesting alternative prospective,

especially considering the important role played by the “gauge transformations” of

the parameters of the equivariant volume, which are remarkably different in the two

formulations.

We want to conclude by briefly mentioning an interesting possible direction of

future research, for which the Molien-Weyl formulation could play a role. As observed

in [28, 110], the “quantum analogue” of the equivariant volume, the orbifold indices

[28, 93, 111], are expected to be a fundamental building block for partition functions

on orbifolds. They can be defined as characters of line bundles over the orbifold,

and they reduce to the respective formulas for the equivariant volume in a “classical

limit”:

~m · Z(Λa = −λa/~, qi = e−~εi) = V(λa, εi) +O(~) ,

~m · ZMW (Tm = tm/~, q̄a = e−~ε̄a) = VMW (tm, εa) +O(~) .
(6.3.1)

It would be interesting to extend the computation of [110] for more generic orbifolds

other than the spindle.
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Chapter 7

Conclusions

We will now briefly summarize our main results. For a much lengthier discussion we

refer to the “Summary and discussion” sections 3.4, 5.4 and 6.3. The following will

just be a short summary of the points we have brought up in these sections.

In chapter 3, based on [1], we have improved the estimate of the superconformal

index at large -N for general values for the BPS charges, focusing especially on the

little studied J1 6= J2, building upon our results in [3]. We have made use of both

the elliptic extension approach of [48–50], which we have extended to the J1 6= J2

case, and the Bethe Ansatz formula [46, 47], finding a good accord between the two

methods. The number of competing exponential terms that contribute to the Bethe

Ansatz formula is much bigger than the number of saddles of the elliptic action,

and it is not feasible to compute all of them. Nonetheless for each saddle of the

elliptic action we find a term in the Bethe Ansatz formula that matches it. The

discrepancy between the number of contributions between the two approaches can

be rationalized by noting that that the Bethe Ansatz formula is exact also at finite

N . We thus expect that the only contributions of the Bethe Ansatz formula that

dominate in some region of the parameter space should be the ones that match a

saddle.

In chapter 5, based on [2], we have extracted extremal functions for various

supergravity solutions that arise from the near-horizon limit of systems of branes

wrapped around four-dimensional orbifolds, either partially or totally. Our prescrip-

tion is based on the equivariant volume with higher times and it reproduces the

gravitational central charges/free energies after we extremize over all the parameters

that are not fixed by the quantization of the fluxes or supersymmetry. Our method

can be applied also when the supergravity solutions is not known, and we speculate

that the existence of a critical point for the extremal functions that we find might

be a necessary condition for the existence of solutions with a given topology.

In the case of systems of M5 branes we have considered both totally wrapped

branes and partially wrapped ones. In the former case we derive gravitational blocks
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formula conjectured in [85] and reproduced in the field theory in [28]. Partially

wrapped branes on the other hand are still poorly understood on the field theory

side. Nonetheless in the specific case when the base orbifold is S2×S2 we reproduce

the result of the brane setup of [104]. We also reproduce the gravitational central

charges of the known supergravity solutions [101, 102] and provide predictions for

more general backgrounds. We compare our method with the one of [53], finding

that they are equivalent. In particular we show that various non trivial cohomological

relations that need to be imposed in the approach of [53] can be seen as consequences

of the extremization with respect to the unfixed Kähler moduli.

In the case of systems of D4 branes in massive type IIA we also have considered

both totally wrapped branes and partially wrapped ones. In the former case we derive

gravitational blocks formula conjectured in [85]. In the latter case we compare the

results produced by our prescription with the gravitational free energy of the solutions

[55], which we have computed.

In the case of systems of D3 branes in type IIB partially wrapped around a

two-cycle we have extended the results obtained in [54] with the formalism of GK

geometry to the orbifold case.

In chapter 6 we have discussed the relation between the standard formulation

of the equivariant volume and the Molien-Weyl formula, and in particular we have

shown how the prescription that we presented in [2] can be reformulated in terms

of the latter by focusing on the case of AdS3 ×M8 solutions, providing a different

prospective. While this chapter is not based on any published works, it might provide

an interesting starting point for future research. For example, the equivariant volume

has a “quantum analogue”, the orbifold index, which is expected to be a fundamental

building blocks for supersymmetric partition functions on orbifolds [110], and the

Molien-Weyl formulation could play an interesting role.
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Appendix A

Appendix for the superconformal

index

A.1 The elliptic gamma and related functions

The elliptic gamma function

The elliptic gamma function [75] is defined by the following infinite product:

Γe

(
z ; τ, σ

)
=

∞∏
j,k=0

1− e2πi
(

(j+1)τ+(k+1)σ−z
)

1− e2πi
(
jτ+kσ+z

) , (A.1.1)

which is convergent as long as Im τ > 0 and Imσ > 0. It is meromorphic in z, with

poles in z ∈ Z + τ Z≤0 + σ Z≤0 and zeros in z ∈ Z + τ Z≥1 + σ Z≥1. It is manifestly

invariant under integer shifts in z, τ, σ and symmetric under the exchange of τ and

σ.

The elliptic gamma satisfies the following inversion relation:

Γe

(
z ; τ, σ

)
= Γe

(
τ + σ − z ; τ, σ

)−1

, (A.1.2)

and the following product formulas:

n−1∏
k=0

Γe

(
z +

k

n
τ ; τ, σ

)
= Γe

(
z ;

τ

n
, σ
)
, (A.1.3)

m−1∏
j=0

Γe

(
z +

j

m
; τ, σ

)
= Γe

(
mz ;mτ,mσ

)
. (A.1.4)

Relations (A.1.2) and (A.1.3) follow directly from definition (A.1.1); as for relation

(A.1.4), it is a consequence of the following polynomial identity:

m−1∏
j=0

(
1− e2πi(j/m)z

)
= 1− zm . (A.1.5)
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The θ0 function

The q-theta function θ0 is defined as follows:

θ0(z ; τ) =
∞∏
k=0

(
1− e2πi(z+kτ)

) (
1− e2πi(−z+(k+1)τ)

)
. (A.1.6)

It is analytic in z and its zeros are in z ∈ Z+ τ Z. It is related to the elliptic gamma

function by the following shift identity:

Γe(z + τ ; τ, σ) = θ0(z ;σ) Γe(z ; τ, σ) . (A.1.7)

On the other hand the shift identity for the θ0 itself is the following:

θ0(z + τ ;σ) = − e−2πi z θ0(z ;σ) . (A.1.8)

Bernoulli polynomials

The Bernoulli polynomials are defined by the following generating function:

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
. (A.1.9)

They satisfy the following relations:

Bn(x+ 1) =Bn(x) + nxn−1 , (A.1.10)

Bn(1− x) = (−1)nBn(x) . (A.1.11)

As a consequence of (A.1.11) the Bernoulli polynomials are either even or odd when

expressed in the variable 2x−1; in particular the first few polynomials can be written

as

B1(x) =
1

2

(
2x− 1

)
B2(x) =

1

4

(
2x− 1

)2 − 1

12

B3(x) =
1

8

(
2x− 1

)3 − 1

8

(
2x− 1

)
.

(A.1.12)

Some useful identities include the translation property,

Bn(x+ y) =
n∑
k=0

(
n

k

)
Bk(x) yn−k , (A.1.13)

and the multiplication formula,

m−1∑
j=0

Bn

(
z +

j

m

)
= m1−nBn

(
mz
)
. (A.1.14)
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The multiplication formula can also be written as follows:

m−1∑
j=0

Bn

(
z +

{
x+

j

m

})
= m1−nBn

(
mz + {mx}

)
, (A.1.15)

where the brackets {·} denote the fractional part, which is defined by x ≡ bxc+{x}.
Relation (A.1.15) follows directly from (A.1.14) if we consider that

m ·min
j

{
x+

j

m

}
= {mx} . (A.1.16)

The P , Q functions

Given z, τ ∈ C, Im τ > 0, throughout the rest of this appendix we will denote with

z1 and z2 the real numbers such that z ≡ z1 + τ z2.

The function P is defined by [76]

P (z ; τ) = e2πi αP (z) eπiτB2(z2) θ0(z ; τ) , (A.1.17)

where αP can be any real-valued function that satisfies the following two constraints:

αP should vanish on the real axis, and it must be chosen so that P (z ; τ) is invariant

under translations by the lattice Z + τ Z in z. The second requirement can always

be fulfilled because |P | is manifestly invariant under integer shifts, and it is also

invariant under shifts in τ , once (A.1.8) is taken into consideration. This can also be

seen from the second Kronecker limit formula [76]:

log |P (z; τ)| = − lim
s→1

(Imτ)s

2π

∑
m,n∈Z

(m,n)6=(0,0)

e2πi(nz2−mz1)

|mτ + n|2s
. (A.1.18)

Similarly, the function Q is defined by [77, 78]

Q(z ; τ) = e2πi αQ(z) e2πi( 1
3
B3(z2)− 1

2
z2B2(z2)) P (z ; τ)z2

Γe(z + τ ; τ, τ)
, (A.1.19)

where αQ is a real-valued function chosen according to the same criteria as αP . Hence

Q is a doubly periodic function in z as well, with periods 1 and τ . Its double Fourier

expansion is given by [48]

logQ(z ; τ) = − 1

4π2

∑
m,n∈Z
m6=0

e2πi(nz2−mz1)

m(mτ + n)2
+

2πiτ

3
B3({z2}) + πiφ(z) , (A.1.20)

where φ is a real-valued doubly periodic function related to αQ.
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Let m,n be integers such that gcd(m,n) = 1 and m 6= 0 ; from (A.1.18) and

(A.1.20) it is possible to derive the following integral formulas [48, 49]:∫ 1

0

dx logP
(
x(mτ + n) + cτ + d ; τ

)
=− πi B2({md− nc})

m(mτ + n)
+ πi ϕP (m,n) ,∫ 1

0

dx logQ
(
x(mτ + n) + cτ + d ; τ

)
=
πi

3

B3({md− nc})
m(mτ + n)2

+ πi ϕQ(m,n) .

(A.1.21)

Here φP and φQ are real functions whose precise value depends on the particular

choice of the phases αP and αQ. We point out that Bn({·}) is a continuous function

on the real axis because identity (A.1.10) implies that Bn(0) = Bn(1).

From (A.1.21) and definition (3.1.6) we can find a similar formula for the Qc,d

function (3.1.6); making use of the identity (A.1.13) for the Bernoulli polynomials

we can write it as∫ 1

0

dx logQc,d

(
x(mτ + n) + z ; τ

)
=

= −πi
6
cτ +

πi

3

B3

(
{m(d+ z1)− n(c+ z2)}+ c(mτ + n)

)
m(mτ + n)2

− (A.1.22)

− πi

m
c2B1

(
{m(d+ z1)− n(c+ z2)}

)
− πin

3m
c3 − πi

(
φQ(m,n)− c φP (m,n)

)
.

All the terms in the last line of this equation are purely imaginary.

A.2 Subleading terms in the Bethe Ansatz formula

In section 3.3.3 we assumed for simplicity that the integers q and r̂ satisfy gcd(ab, q, r̂ ) =

1; we will now show how the large -N computation of the superconformal index with

the Bethe Ansatz formula can be done without this assumption.

When gcd(ab, q, r̂ ) 6= 1 the problem is that it is not possible to find a BAE

solution u and a valid choice for the vector of integers m such that u−mω satisfies

(3.3.30). The workaround is to search for u and m that approximate the right-hand

side of (3.3.30) instead; to be precise we want to find a choice of integers {p̃, q̃, r̃},
indices ̃ = 0, . . . , p̃ − 1 and k̃ = 0, . . . , q̃ − 1, and vector of integers m ̃ k̃ , such that

p̃ · q̃ = N and

̃

p̃
+
k̃

q̃

(
ω +

r̃

p̃

)
− m ̃ k̃ω =

j

p
+
k

q

(
abω +

r̂

p

)
+ O

(
1

q

)
mod 1 . (A.2.1)

Then, we will show that these extra O(1/q) terms can be neglected without affecting

the leading order of the integrand Z:

p̃−1∑
̃1,̃2=0

q̃−1∑
k̃1 6=k̃2=0

log Γe

(
∆ +

̃1 − ̃2
p̃

+
k̃1 − k̃2

q̃

(
ω +

r̃

p̃

)
−
(
m̃1k̃1

−m̃2k̃2

)
ω ; aω, bω

)
=
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=

p−1∑
j1,j2=0

q−1∑
k1 6=k2=0

log Γe

(
∆ +

j1 − j2

p
+
k1 − k2

q

(
abω +

r̂

p

)
; aω, bω

)
+ o(q2) .

(A.2.2)

The quantity in the second line of (A.2.2) is the same as (3.3.37). Hence, the rest of

the computation is identical to the one in section 3.3.3.

Let us set ĥ ≡ gcd(ab, q, r̂ ) ; if we reparametrize the index k in terms of new

indices k′ = 0, . . . , q/ ĥ − 1 and k′′ = 0, . . . , ĥ − 1 such that k ≡ k′ + (q/ ĥ)k′′, we

can write the following:

j

p
+
k

q

(
abω +

r̂

p

)
=

j

p
+

k

q / ĥ

(
ab

ĥ
ω +

r̂/ ĥ

p

)
=

=
j

p
+

k′

q / ĥ

(
ab

ĥ
ω +

r̂/ ĥ

p

)
+
k′′(r̂/ ĥ)

p
mod 1, ω (A.2.3)

=
j ′

p
+

k′

q / ĥ

(
ab

ĥ
ω +

r̂/ ĥ

p

)
mod 1, ω .

In the last step we defined a new index j ′ as j ′ ≡ j + k′′(r̂/ ĥ) mod p. The

dependence on the index k′′ has dropped completely modulo 1, ω ; considering that

BAE solutions cannot repeat values modulo 1, ω , we will have to reintroduce the

dependence on k′′ as a part of the O(1/q) term.

As a consequence of the definition of ĥ , we have that gcd(ab/ ĥ, q/ ĥ, r̂/ ĥ) = 1.

Therefore if we set h ≡ gcd(q/ ĥ , ab), p̃ ≡ hp and q̃ ≡ N/ p̃ , we can find indices

̃ = 0, . . . , p̃− 1 , k̂ = 0, . . . , q̃ / ĥ− 1 and an integer r̃ such that

j ′

p
+

k′

q / ĥ

(
ab

ĥ
ω +

r̂/ ĥ

p

)
=

̃

p̃
+

k̂

q̃ / ĥ

(
ω +

r̃

p̃

)
mod 1, ω . (A.2.4)

This relation can be obtained by following the same steps used to prove (3.3.24),

with ab/ ĥ, q/ ĥ and r̂/ ĥ taking the place of ab, q and r respectively.

We can now chose the value for the vector of integers m so that the following

identity holds:

j

p
+
k

q

(
abω +

r̂

p

)
≡ ̃

p̃
+

k̂

q̃ / ĥ

(
ω +

r̃

p̃

)
+m̃ k̂ω mod 1 . (A.2.5)

Lastly, we define the index k̃ = 0, . . . , q̃ − 1 as k̃ ≡ k′′ + k̂ ĥ , which gives us

̃

p̃
+
k̃

q̃

(
ω +

r̃

p̃

)
≡ ̃

p̃
+

k̂

q̃ / ĥ

(
ω +

r̃

p̃

)
+
k′′

q̃

(
ω +

r̃

p̃

)
. (A.2.6)
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Considering that k′′/ q̃ = O(1/q), if we combine relations (A.2.5) and (A.2.6) to-

gether we finally obtain (A.2.1). The only thing left to do is to verify that the

simplification (A.2.2) works at leading order.

Let us set Z ≡ ∆ + (̃1 − ̃2)/ p̃ . We need to verify that the following is true:

q̃ / ĥ−1∑
k̂1 6=k̂2=0

log Γe

(
Z +

k̂1 − k̂2

q̃ / ĥ

(
ω +

r̃

p̃

)
+
k′′1 − k′′2

q̃

(
ω +

r̃

p̃

)
−
(
m̃1k̂1

−m̃2k̂2

)
ω ; aω, bω

)
=

=

q̃ / ĥ−1∑
k̂1 6=k̂2=0

log Γe

(
Z +

k̂1 − k̂2

q̃ / ĥ

(
ω +

r̃

p̃

)
−
(
m̃1k̂1

−m̃2k̂2

)
ω ; aω, bω

)
+ o(q2) .

(A.2.7)

We are ignoring the sums over ̃1, ̃2 = 0, . . . , p̃−1 and k′′1 , k
′′
2 = 0, . . . , ĥ−1 because

p̃, ĥ ∼ O(1) ; if (A.2.7) holds, then (A.2.2) would immediately follow.

A relation similar to (A.2.7), albeit simpler, has already been proven in [3], and

we can use it as a staring point. Let us define the following function:

f(z; τ) =
Ñ∑

γ 6=δ=1

log Γe

(
z +

γ − δ
Ñ

τ ;nτ, nτ
)
, (A.2.8)

where n is any positive integer. As long as z + t τ does not cross a zero or a pole of

Γe for any t ∈ (−1, 0) ∪ (0, 1), this function has been shown to satisfy the following

bound: ∣∣∣f(z + Cτ/Ñ ; τ
)
− f(z; τ)

∣∣∣ ≤ O(Ñ log Ñ) , (A.2.9)

for any C ∈ (−1, 1). There are a few details about the proof of (A.2.9) that will be

useful; let us review them briefly. The first step in the proof is to use the mean value

theorem to write∣∣∣f(z + Cτ/Ñ ; τ
)
− f(z; τ)

∣∣∣ ≤ |τ |
Ñ

(∣∣∣∂zf(z + c̄1τ/Ñ ; τ
)∣∣∣+

∣∣∣∂zf(z + c̄2τ/Ñ ; τ
)∣∣∣)

(A.2.10)

for some c̄1, c̄2 ∈ R, with |c̄1,2| < |C| .1 Then the authors of [3] have shown that for

any c̄ ∈ (−1, 1) the following bound holds:

1

Ñ

∣∣∣∂zf(z + c̄ τ/Ñ ; τ
)∣∣∣ ≤ 1

Ñ

Ñ∑
γ 6=δ=1

∣∣∣∣∣∣
∂zΓe

(
z + γ−δ+c̄

Ñ
τ ;nτ, nτ

)
Γe

(
z + γ−δ+c̄

Ñ
τ ;nτ, nτ

)
∣∣∣∣∣∣ ≤ O(Ñ log Ñ) .

(A.2.11)

Relation (A.2.9) then follows from (A.2.10) and (A.2.11).

1The mean value theorem is applied to the real and imaginary part separately, which is the

reason for the need of two constants, c̄1 and c̄2.
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We can’t use formula (A.2.9) to prove (A.2.7) directly; we need to generalize

(A.2.9) a bit first. Given any two subsets S, S ′ of the set {1, . . . , Ñ}, we consider the

following function:

fS,S′(z; τ) =
Ñ∑

γ∈S, δ∈S′
γ 6=δ

log Γe

(
z +

γ − δ
Ñ

τ ;nτ, nτ
)
. (A.2.12)

Then a similar relation to (A.2.9) holds for fS,S′ as well:∣∣∣fS,S′(z + Cτ/Ñ ; τ
)
− fS,S′(z; τ)

∣∣∣ ≤ O(Ñ log Ñ) . (A.2.13)

Indeed, the following trivial inequality:

Ñ∑
γ∈S, δ∈S′

γ 6=δ

∣∣∣∣∣∣
∂zΓe

(
z + γ−δ+c̄

Ñ
τ ;nτ, nτ

)
Γe

(
z + γ−δ+c̄

Ñ
τ ;nτ, nτ

)
∣∣∣∣∣∣ ≤

Ñ∑
γ 6=δ=1

∣∣∣∣∣∣
∂zΓe

(
z + γ−δ+c̄

Ñ
τ ;nτ, nτ

)
Γe

(
z + γ−δ+c̄

Ñ
τ ;nτ, nτ

)
∣∣∣∣∣∣ (A.2.14)

together with (A.2.11) and an analogue of (A.2.10) imply (A.2.13).

We can use relation (A.2.13) to show that

Ñ∑
γ 6=δ=1

log Γe

(
z +

γ − δ
Ñ

τ − (mδ −mγ)ω + Cτ/Ñ ;nτ, nτ
)

=

=
Ñ∑

γ 6=δ=1

log Γe

(
z +

γ − δ
Ñ

τ − (mδ −mγ)ω ;nτ, nτ
)

+O(Ñ log Ñ) ,

(A.2.15)

where {mδ}Ñδ=1 is a vector of integers between 1 and ab (with ab ∼ O(Ñ0) ), ω ∈ C
and z is such that z− (mδ −mγ)ω+ t τ does not cross a zero or a pole of Γe for any

t ∈ (−1, 0) ∪ (0, 1) and any possible value of (mδ −mγ). Indeed, we can write

Ñ∑
γ 6=δ=1

log Γe

(
z+

γ − δ
Ñ

τ−(mδ−mγ)ω ;nτ, nτ
)
≡

ab∑
i1,i2=1

fS(i1),S(i2)

(
z−(i1− i2)ω ; τ

)
,

(A.2.16)

where S(i) ≡ {δ |mδ = i}. Then (A.2.15) follows directly from (A.2.13).

At last, let us show the validity of simplification (A.2.7). In order to apply

(A.2.15) we need to first change the moduli of the Γe from (aω, bω) to
(
n(ω +

r̃ / p̃), n(ω + r̃ / p̃)
)
, where n is some positive integer. We can use the following

identity:

log Γe

(
u ; aω, bω

)
=

bp̃−1∑
`1=0

ap̃−1∑
`2=0

log Γe

(
u+ (`1a+ `2b)ω ; p̃abω + abr, p̃abω + abr

)
,

(A.2.17)
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which follows from (A.1.3) and the invariance of Γe under integers shifts. Then, for

any given value of `1, `2 we can use (A.2.15) with z ≡ Z+(`1a+ `2b)ω , τ ≡ ω+ r̃ / p̃

and n ≡ p̃ ab. It is easy to verify that z satisfies the required condition necessary for

avoiding zeros and poles, considering that the possible values for ∆ are ∆ ≡ τ + σ

and ∆ ≡ ∆I , with ∆I satisfying condition (3.3.36). This concludes the proof of

(A.2.7).
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Appendix B

Appendix for equivariant volumes

and holography

B.1 Fixing the Kähler moduli of AdS5 ×M6 solutions with

Z2 symmetry

In this appendix we verify that for the Calabi-Yau geometry considered in section

5.2.2.2 there is a critical point of V(3)(λA, λAB, εI) with λa = λab = 0. Even if

the group of gauge transformations (4.4.8) has a sufficient number of parameters to

potentially gauge away all λa and λab, in orbifolds M4 with a small number of vectors

in the fan there are often obstructions that make this impossible.

In the following we will verify that the values of the Kähler moduli λA, λAB given

by 
λa = λab = 0 ,

λa,d+1 such that
∑

bDabλb,d+1 = −νM5Ma ,

λd+1 such that ∂λd+1
V(3) = 0 ,

(B.1.1)

are an extremum of V(3), under the constraints imposed by the flux equations

∂λAV
(2)(λA, λAB, εI) = −νM5MA . (B.1.2)

In practice, we will show that there exists a value for the Lagrange parameters ρA
such that the function

E = V(3) +
∑
A

ρA
(
∂λAV

(2) + νM5MA

)
(B.1.3)

has null derivatives with respect to λA, λAB. The equations that we will solve are

then
∂

∂λA
E (λA, λAB, εI , ρA) = 0 ,

∂

∂λAB
E (λA, λAB, εI , ρA) = 0 , (B.1.4)

where the λ are given by (B.1.1) while ε1, ε2 can take general values. We will study

the case ε1 = ε2 = 0 separately.
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Case (ε1, ε2) 6= (0, 0). We claim that values of ρA that solve (B.1.4) exist and

they are the solutions of the following linear system:∑
A

ρA
(
CA
)∣∣
b

= hb , b = 1, . . . , d ,

hb ≡ −
1

2

[(
ε3 +

∑
a

cT1 (La)
)2(

λ̄d+1 +
∑
a

λ̄a,d+1c
T
1 (La)

)2]∣∣∣
b
.

(B.1.5)

Indeed, when the above equations are satisfied we have

∂λB
∑
A

ρA
(
∂λAV

(2) + νM5MA

)
=

∫
M4

∑
A ρA CA CB

ε3 +
∑

a c
T
1 (La)

=

= −1

2

∫
M4

CB
(
ε3 +

∑
a

cT1 (La)
)(
λ̄d+1 +

∑
b

λ̄b,d+1c
T
1 (Lb)

)2

= − ∂λBV(3),

(B.1.6)

where we have used λa = λab = 0. This gives us ∂λAE = 0. The ∂λABE = 0 equations

can also be derived from (B.1.5) in a similar manner.

Let us now discuss the existence of solutions to the equations (B.1.5). The

restrictions of
∑

A ρA CA to the fixed points are not independent, they satisfy the

following linear relation:

0 =

∫
M4

∑
A

ρA CA =
∑
b

∑
A ρA

(
CA
)
|b

db,b+1 εb1 ε
b
2

. (B.1.7)

However, the hb also satisfy the same linear relation, given that the value of λd+1 is

set by the condition ∂λd+1
V(3) = 0, which reads

0 =
1

2

∫
M4

(ε3 +
∑
a

cT1 (La))
2(λ̄d+1 +

∑
a

λ̄a,d+1c
T
1 (La))

2 = −
∑
b

hb
db,b+1 εb1 ε

b
2

. (B.1.8)

We can thus always eliminate one of the equations (B.1.5). Considering that shifting

ρA → ρA +
∑

I α
IV A

I with
∑

I α
IεI = 0 leaves the left-hand side of (B.1.5) invariant,

we can always gauge away ρd+1
1 and one of the ρa. We are left with a system of d−1

equations in d− 1 variables that generally is not singular and thus has a solution.

There is an edge case in which the system of equations must be further reduced:

when there is a ∈ {1, . . . , d} such that εa2 = 0 (and consequently εa−1
1 = 0). Since

(ε1, ε2) 6= (0, 0) and M4 is compact we must have εa1 6= 0, εa−1
2 6= 0. The b = a − 1

and b = a equations are (ρd+1 has been gauged away)

− ρa εa−1
2 = ha−1 , − ρa εa1 = ha . (B.1.9)

In principle depending on the value of ha−1 and ha the above equations might not

have a solution. However if we consider that ha−1 and ha can only depend on εa−1
2

1We note that the (ε1, ε2) 6= (0, 0) hypothesis is needed to set ρd+1 = 0.
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and εa1 respectively,2 and that in general da−1,a ε
a−1
1 = −da,a+1 ε

a
2, then the only way

for the right-hand side of (B.1.8) to be finite is for

ha−1

εa−1
2

=
ha
εa1
, (B.1.10)

which means that equations (B.1.5) are solvable without issue.

Case (ε1, ε2) = (0, 0). It is not immediately clear whether the solutions to equa-

tions (B.1.5) are well-behaving in the limit ε1, ε2 → 0. However when ε1 and ε2 are

zero the equations (B.1.4) are quite simple and we can solve them directly.

For ε1 = ε2 = 0 we have cT1 (La) = c1(La) and thus∫
M4

cT1 (La1) . . . c
T
1 (Lak) =

{
Da1a2 k = 2

0 otherwise
. (B.1.11)

From this relation it easily follows that∫
M4

cT1 (La1) . . . c
T
1 (Lak)

ε3 +
∑

b c
T
1 (Lb)

=

{
(ε3)−1Da1a2 k = 2

0 k > 2
. (B.1.12)

Using the above relations the extremization equations (B.1.4) become

∂λa equation: 1
2

∑
bDab(λ

2

d+1 + 2 ε3 λd+1λb,d+1) + (ε3)−1
∑

bDabρb = 0

∂λab equation: 1
2
ε3 λ

2

d+1Dab − ρd+1Dab = 0

∂λa,d+1
equation: −

∑
bDab(ε

2
3 λd+1λb,d+1 + ε3 λ

2

d+1)−
∑

bDab(ρb − ρd+1) = 0

∂λd+1,d+1
equation:

1
2

∑
a,bDab(ε

3
3 λa,d+1λb,d+1 + 6 ε23 λd+1λb,d+1 + 3ε3 λ

2

d+1)

+
∑

a,bDab(ρb − ρd+1) = 0

(B.1.13)

The ∂λd+1
equation was omitted because it is trivial: ∂λd+1

∑
A ρA

(
∂λAV

(2)+νM5MA

)
=

0 and ∂λd+1
V(3) = −∂λd+1

V(3) = 0 because of (B.1.1).

The solution to (B.1.13) is3

ρa = −ε23 λd+1λb,d+1 −
1

2
ε3 λ

2

d+1 , ρd+1 =
1

2
ε3 λ

2

d+1 , (B.1.14)

and thus (B.1.1) is the proper extremum of V(3) under the flux constraints.

2By definition ha−1 and ha are the restrictions of an equivariant form on the fixed points a− 1

and a.
3When we plug this solution into the left-hand side of the ∂λd+1,d+1

equation we do not get zero

straight away, but rather we get the same expression as ∂λd+1
V(3), which is zero by (B.1.1).
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B.2 AdS3 ×M7 solutions with the addition of higher times

In this appendix we revisit the computation of section 5.3.3, now with the inclusion

of second and triple times in the equivariant volume. For the AdS3×M7 solutions we

considered in section 5.3.3 there was no need to add any higher times. We will now

show that it is still possible to perform the computation even when the equivariant

volume is over-parameterized. The extremization procedure for the parameters in

excess plays a crucial role this time: relations that where automatically verified when

V(2) only included single times are now derived as extremization conditions. This

provides further evidence that extremization is the correct way to deal with any

parameter λ that is not fixed by the flux constraints.

The second degree homogeneous component of the equivariant volume with triple

times is given by

V (2)(λA , λAB , λABC , εI) =

∫
M4

(τT)2

2 p Cd+1 Cd+2

,

τT =
∑
A

λA CA +
∑
A,B

λAB CA CB +
∑
A,B,C

λABC CA CB CC .
(B.2.1)

We need to impose the following flux constraints:

− νD3MA = ∂λAV
(2)(λA , λAB , λABC , εI) =

∫
M4

CA τT

p Cd+1 Cd+2

. (B.2.2)

Proceeding in a similar way as we did in section 5.3.3, we will set all the λ to zero

except for λd+1, d+2 and λd+1, d+2, A. This assumption is justified by the fact that in

principle the group of gauge transformation for the single, double and triple times

has enough parameters to gauge away all the λ except λd+1, d+2 and λd+1, d+2, A.4 At

the end of this appendix we will quickly check that V(2) does indeed have a critical

point for λa,b = λa,b,d+1 = λa,b,d+2 = λa,b,c = 0, thus verifying the correctness of this

choice of λ. The flux constraints (B.2.2) now read

− νD3Ma =
1

p

∫
M4

cT1 (La)
(
λd+1, d+2 +

∑
A

λd+1, d+2, A CA
)

=
∑
b

Dabλb , (B.2.3)

where

λa =
λd+1, d+2, a − λd+1, d+1, d+2

p
+

ta(λd+1, d+1, d+2 − λd+1, d+2, d+2)

p2
. (B.2.4)

Up to gauge transformations, the λa are then fixed to be λa = −νD3ma, where the

ma are such that
∑

bDabmb = Ma.

4Note that λa,b, λa,b,d+1, λa,b,d+2 and λa,b,c do not appear inside V(2) unless a, b, c ∈ {a, a+ 1}
for some a ∈ {1, . . . , d}.
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We notice that the flux constraints did not fix all the λ, but rather there is one

such parameter left:

V (2) =
1

2p

∫
M4

Cd+1 Cd+2

(
λd+1, d+2 +

∑
A

λd+1, d+2, A CA
)2

=
p

2
ν2
D3

∫
M4

Cd+1 Cd+2

(
λ−

∑
a

ma c
T
1 (La)

)2

,

(B.2.5)

where

λ =
λd+1, d+2 − ε3 λd+1, d+1, d+2

p νD3

+
ε4 (λd+1, d+1, d+2 − λd+1, d+2, d+2)

p2 νD3

. (B.2.6)

Our procedure prescribes to fix the value of λ by extremizing V (2) with respect to

it. If we call b(εI) the extremal value of λ, we find that

0 =
∂

∂λ
V(2) = p ν2

D3

∫
M4

Cd+1 Cd+2

(
b(εI)−

∑
a

ma c
T
1 (La)

)
. (B.2.7)

Notably, the equation we obtain is the exact same as (5.3.49). In the context of

the computation without higher times, equation (5.3.49) was a trivial relation, a

predictable consequence of the fact that there are only d−1 single times, but d fixed

points. In the computation of this appendix the same relation is now derived as an

extremization condition.

If we substitute (B.2.7) into V(2) we get

V (2) = −p
2
ν2
D3

∫
M4

Cd+1 Cd+2

(
b(εI)−

∑
a

ma c
T
1 (La)

)∑
a

ma c
T
1 (La) , (B.2.8)

which is the same as the main result of section 5.3.3.

We can quickly verify that the values of λ that we have fixed are an extremum

of V(2) by employing the same strategy as appendix B.1. We can find the values of

the Lagrange parameters ρA such that the function

E(λA , λAB , λABC , εI , ρA) = V(2) +
∑
A

ρA
(
∂λAV

(2) + νD3MA

)
(B.2.9)

has null derivatives with respect to λA , λAB , λABC by solving the following linear

system:∑
A

ρA
(
CA
)∣∣
b

= −p νD3

[
Cd+1 Cd+2

(
b(εI)−

∑
a

ma c
T
1 (La)

)]∣∣∣
b
. (B.2.10)

Using the same line of reasoning as in appendix B.1, solutions to this system exist and

thus (B.2.8) is the proper extremal value of V(2) (with respect to the extremization

in λ).
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B.3 AdS4 ×M6 gravity solutions

In this appendix we study the family of AdS4 ×M6 solutions to massive type IIA

supergravity constructed in [55]. The internal space is a P1 bundle over a four-

dimensional compact manifold, P1 ↪→M6 → B4, where the base space can be either

a Kähler-Einstein manifold (B4 = KE4) or the product of two Riemann surfaces

(B4 = Σ1 × Σ2). In the general class of solutions in [55], the P1 bundle is the

projectivization of the canonical bundle over B4, P(K ⊕ O). In what follows, we

will focus on spaces with positive curvature and set to zero the constant parameter

` appearing in [55]. This last choice is motivated by our interest for systems with

only D4 and D8 branes, therefore all fluxes, except for F(0) and F(4), must vanish. In

both configurations, the metric in the string frame is5

ds2
s.f. = e2A

(
ds2

AdS4
+ ds2

M6

)
, (B.3.1)

where ds2
AdS4

is the metric on AdS4 with unit radius. The details of the internal

space, along with the expressions for the dilaton and the form fluxes, will be given

case by case. The solutions in [55] corresponding to the geometries discussed in

section 5.3.2 are cut into half along the equator of the P1 fibre due to the presence

of an O8 plane.

B.3.1 Kähler-Einstein base space

We begin considering B4 = KE4, in which case the metric on M6 is given by (setting

κ = +1 in [55])

ds2
M6

= − q′

4xq
dx2 − q

xq′ − 4q
Dψ2 +

q′

3q′ − xq′′
ds2

KE4
, (B.3.2)

where

q(x) = x6 +
σ

2
x4 + 4x3 − 1

2
, (B.3.3)

with σ a real parameter. Here, we introduced Dψ = dψ + ρ, where the one-form ρ

is defined on KE4 and is such that d4ρ = −R, with R the Ricci form of KE4. The

line element ds2
KE4

is normalized such that its scalar curvature is RKE = 4. The

background under exam corresponds to σ > −9, in which case the metric is smooth

and well-defined given that ψ is 2π-periodic and x ∈ [0, x+], with x+ the only positive

root of q(x). In x = 0 the S1 fibre parameterized by ψ does not shrink and here is

located an O8-plane [55]. The warp factor of the ten-dimensional metric is

e2A = L2

√
x2q′ − 4xq

q′
, (B.3.4)

5Notice the different normalization of ds2M6
with respect to [55].
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with L a real constant. The dilaton reads

e2Φ =
72L4

f 2
0

xq′

(3q′ − xq′′)2

(
x2q′ − 4xq

q′

)3/2

, (B.3.5)

where we find convenient to introduce the constant f0 in order to parameterize the

Romans mass

F(0) =
f0

L3
, (B.3.6)

and the four-form flux is given by

F(4) = −Lf0

12

[
3x(x6 − 5x3 − σx− 5)

(1− x3)2
dx∧Dψ∧R+

9x5 + 5σx3 + 45x2 + σ

6(1− x3)
R∧R

]
.

(B.3.7)

All the other fields, namely the two-forms B(2) and F(2), vanish.

The first step we take in the analysis is the quantization of the fluxes, which

imposes

(2π`s)F(0) = n0 ∈ Z ,
1

(2π`s)3

∫
Σ4

F(4) = NΣ4 ∈ Z (B.3.8)

for any four-cycle Σ4 on M6. Letting Σα be a basis of two-cycles for H2(KE4,Z), we

take as a basis for H4(M6,Z) the set {Cα, C+}, where Cα are the four-cycles obtained

by considering the fibration P1 ↪→ Cα → Σα, and C+ is a copy of the KE base space

at x = x+. Performing the integrals, we obtain the fluxes

Nα =
π2Lf0

6(2π`s)3

x2
+(3x3

+ + 2σx+ + 15)

1− x3
+

mk nα ,

N+ = − π2Lf0

18(2π`s)3

9x5
+ + 5σx3

+ + 45x2
+ + σ

1− x3
+

Mk ,

(B.3.9)

where we defined the integers

n(Σα) =
1

2π

∫
Σα

R = mk nα , Mk =
1

4π2

∫
KE4

R∧R . (B.3.10)

mk is the Fano index of the KE4 and is the largest positive integer such that all of

the nα are integers. These integers take the values mk = (3, 2, 1) and Mk = (9, 8, 6)

for P2, P1 × P1 and dP3, respectively.

For the rest of this subsection we will restrict to the case σ = 0. In order

to understand this assumption, we first need to make contact with the equivariant

volume extremization procedure. The toric manifold KE4 is completely described by

its fan va, which defines the toric divisors Σa and their associated line bundles La.

The set of divisors Da ⊂ M6 is naturally induced as the P1 fibrations over Σa, to

which we must add Dd+1, a copy of KE4 at the pole of the half P1. The corresponding

integer fluxes are defined as

MA =
1

(2π`s)3

∫
DA

F(4) (B.3.11)
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and, for a = 1, . . . , d, they read

Ma =
πL f0

12(2π`s)3

x2
+(3x3

+ + 2σx+ + 15)

1− x3
+

×
∫

Σa

R . (B.3.12)

Recalling that
∑

a c1(La) = c1(TKE4) = R/(2π), we obtain∑
a

∫
Σa

R =
∑
a

∫
KE4

R∧ c1(La) =
1

2π

∫
KE4

R∧R , (B.3.13)

which allows us to compute the sum∑
a

Ma =
π2Lf0

6(2π`s)3

x2
+(3x3

+ + 2σx+ + 15)

1− x3
+

Mk . (B.3.14)

Identifying Md+1 with N+ we have∑
A

MA =
∑
a

Ma +N+ = − π2Lf0 σ

18(2π`s)3
Mk , (B.3.15)

and consistency with the I = 3 component of the third condition in (5.3.13), which

reads
∑

AMA = 0, imposes σ = 0.

When σ vanishes, the zeros of (B.3.3) can be computed analytically,

x3 = −2± 3√
2

=⇒ x+ =

(
3− 2

√
2√

2

)1/3

, (B.3.16)

and the fluxes simplify to

Nα =
π2Lf0

2(2π`s)3

(
3 + 2

√
2√

2

)1/3

mk nα , N+ = − π2Lf0

2(2π`s)3

(
3 + 2

√
2√

2

)1/3

Mk .

(B.3.17)

In order for Nα and N+ to be integers, as imposed by (B.3.8), we require

π2Lf0

2(2π`s)3

(
3 + 2

√
2√

2

)1/3

=
N

h
, (B.3.18)

where N is an arbitrary integer and h = hcf(Mk,mk). Specifically, h = (3, 2, 1) for

P2, P1 × P1 and dP3, respectively. On the other hand, the first condition of (B.3.8)

yields
f0

L3
=

n0

2π`s
. (B.3.19)

Combining (B.3.18) and (B.3.19) we obtain the following quantization conditions on

the parameters L and f0

L4 = (2π`s)
4 24/3(3− 2

√
2)1/3

π2n0

(
N

h

)
,

f 2
0 = (2π`s)

4 4(3− 2
√

2)1/2 n
1/2
0

π3

(
N

h

)3/2

.

(B.3.20)
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The free energy of our AdS4 ×M6 background with KE base space can be read

off from the four-dimensional effective Newton constant G(4) as [113]

F =
π

2G(4)

=
16π3

(2π`s)8

∫
e8A−2Φ vol(M6) , (B.3.21)

which gives the general result

F =
1

(2π`s)8

8π6L4f 2
0

135
x2

+(9x3
+ + 5σx+ + 45)Mk . (B.3.22)

In this computation we used the fact that, in our conventions, the Kähler form is

JKE = R, therefore the total volume of the KE4 can be determined from

Vol(KE4) =
1

2

∫
KE4

R∧R = 2π2Mk . (B.3.23)

Setting σ = 0 and substituting the expressions of x+, L and f0 into (B.3.22), the free

energy then reads

F =
32
√

2(3− 2
√

2)π

5n
1/2
0

(
N

h

)5/2

Mk , (B.3.24)

which agrees with the the first equation in (5.3.25) with a plus sign, taking into

account that, for our examples, h = mk.

B.3.2 S2 × S2 base space

We now move to the second case, B4 = S2
1 × S2

2 , whose six-dimensional metric is

(setting κ1 = κ2 = +1 in [55])

ds2
M6

= − q′

4xq
dx2 − q

xq′ − 4q
Dψ2 +

q′

xu1

ds2
S2
1

+
q′

xu2

ds2
S2
2
, (B.3.25)

where

q(x) = x6 +
σ

2
x4 + 2(1 + t)x3 − t

2
,

u1(x) = 12x(1− x3) , u2(x) = 12x(t− x3) ,
(B.3.26)

with σ and t real constants. Dψ = dψ + ρ, where ρ is a one-form on S2
1 × S2

2 such

that d4ρ = −(R1 +R2), with Ri Ricci form of S2
i , while each ds2

S2
i

is the metric on

a two-sphere with unit radius. The configuration of interest is realized when t > 0

and σ > −9 · 4−1/3(1 + t)2/3, and in this region the metric is smooth and well-defined

given that ψ is 2π-periodic and x ∈ [0, x+], with x+ the only positive root of q(x).

Also in this case, we have an O8-plane in x = 0. The warp factor has the same

expression as in the previous case, namely

e2A = L2

√
x2q′ − 4xq

q′
, (B.3.27)
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whereas the dilaton is now given by

e2Φ =
72L4

f 2
0

q′

xu1u2

(
x2q′ − 4xq

q′

)3/2

. (B.3.28)

The remaining non-vanishing fields are the Romans mass

F(0) =
f0

L3
, (B.3.29)

with f0 ∈ R, and the four-form flux

F(4) = −Lf0

12

[
3x
(
x6 − (t+ 4)x3 − σx− (2t+ 3)

)
(1− x3)2

dx ∧Dψ ∧R1

+
3x
(
x6 − (4t+ 1)x3 − σtx− t(3t+ 2)

)
(t− x3)2

dx ∧Dψ ∧R2 (B.3.30)

− 9x8 + 5σx6 + 18(t+ 1)x5 − 2σ(t+ 1)x3 − 9(t2 + 3t+ 1)x2 − σt
3(1− x3)(t− x3)

R1 ∧R2

]
.

In order to quantize the fluxes as in (B.3.8), we take as a basis for H4(M6,Z) the

set {C1, C2, C+}, where Ci are the fibrations P1 ↪→ Ci → S2
i (at a fixed point on the

other sphere) and C+ is a copy of S2
1 × S2

2 at x = x+. The expressions of the three

fluxes are

N1 =
π2Lf0

3(2π`s)3

x2
+

(
3x3

+ + 2σx+ + 3(2t+ 3)
)

1− x3
+

,

N2 =
π2Lf0

3(2π`s)3

x2
+

(
3x3

+ + 2σx+ + 3(3t+ 2)
)

t− x3
+

, (B.3.31)

N+ =
4π2Lf0

9(2π`s)3

9x8
+ + 5σx6

+ + 18(t+ 1)x5
+ − 2σ(t+ 1)x3

+ − 9(t2 + 3t+ 1)x2
+ − σt

(1− x3
+)(t− x3

+)
,

where we made use of the relation

1

2π

∫
S2
i

Ri = χ(S2
i ) = 2 . (B.3.32)

As before, we will restrict to configurations with σ = 0, in which case the equation

q(x) = 0 can be solved analytically, giving

x3 = −(t+ 1)±
√

(t+ 2)(2t+ 1)

2
=⇒ x+ =

(√
(t+ 2)(2t+ 1)

2
− (t+ 1)

)1/3

.

(B.3.33)

When σ vanishes N+ = −2(N1 +N2), therefore we will focus exclusively on the quan-

tization of the fluxes N1 and N2, since the quantization of N+ follows immediately.

Setting σ = 0, the fluxes simplify to

N1 =
π2Lf0

(2π`s)3

x2
+(x3

+ + 2t+ 3)

1− x3
+

, N2 =
π2Lf0

(2π`s)3

x2
+(x3

+ + 3t+ 2)

t− x3
+

, (B.3.34)
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and taking their ratio we can immediately determine t

t =

[√
9N2

1 + 14N1N2 + 9N2
2 ± 3(N1 −N2)

]2
32N1N2

. (B.3.35)

Since t needs to be positive, N1 and N2 must have the same sign, i.e. N1N2 > 0; for

the sake of simplicity, we will take both of them positive. Taking the product of the

fluxes (B.3.34) and making use of (B.3.19) we obtain

L4 = (2π`s)
4 1

π2n0

(
2

t

)1/2(√
(t+ 2)(2t+ 1)

2
− (t+ 1)

)1/3

(N1N2)1/2 ,

f 2
0 = (2π`s)

4 n
1/2
0

π3

(
2

t

)3/4(√
(t+ 2)(2t+ 1)

2
− (t+ 1)

)1/2

(N1N2)3/4 .

(B.3.36)

The free energy of the AdS4 solution under exam can be computed performing

the integral (B.3.21) and takes the general expression

F =
1

(2π`s)8

32π6L4f 2
0

135
x2

+

(
18x3

+ + 10σx+ + 45(t+ 1)
)
, (B.3.37)

which, once all the ingredients are substituted, becomes

F =
4
√

2π

5n
1/2
0

(
(N1 +N2)

√
9N2

1 + 14N1N2 + 9N2
2 − (3N2

1 + 2N1N2 + 3N2
2 )
)

×
√

3(N1 +N2)−
√

9N2
1 + 14N1N2 + 9N2

2 .

(B.3.38)

Parameterizing the fluxes as N1 = (1 + z)N , N2 = (1− z)N , with |z| < 1, we obtain

F =
32π

5n
1/2
0

(√
8 + z2 − (2 + z2)

)√
3−
√

8 + z2N5/2 , (B.3.39)

which agrees with the the first equation in (5.3.29) with a plus sign. Setting z = 0

we consistently retrieve the result (B.3.24) specified to the case P1 × P1.
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