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ABSTRACT
In a computing context characterized by a complex and intercon-

nected network of heterogeneous devices, which generate enor-

mous amounts of data requiring exchange and near-real-time pro-

cessing, the collaboration between Edge Computing and Function

as a Service (FaaS) models holds significant potential to enhance the

flexibility, cost-effectiveness, and responsiveness of applications.

However, traditional FaaS encounters challenges in distributed edge

environments due to dynamic traffic demands and resource limi-

tations. Effective methodologies must be developed to address the

load management issue, which involves determining the allocation

of incoming requests to each node and deciding whether to process

them locally, reject them, or offload them to neighboring nodes

with available resources. This paper investigates and compares

various approaches for managing incoming requests in a Decentral-

ized FaaS environment. On the one hand, it considers Actor-Critic

Reinforcement Learning algorithms, namely Proximal Policy Opti-

mization (PPO) and Soft Actor-Critic (SAC). On the other hand, it

examines the NeuroEvolution of Augmenting Topologies (NEAT)

method. Experimental validation underscores the promising results

of PPO, which ensures an average rejection rate of less than 4%.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; Ge-
netic algorithms; • Computer systems organization→ Peer-
to-peer architectures.
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1 INTRODUCTION
The Cloud Computing paradigm is widely acknowledged as a fun-

damental core supporting modern services and applications charac-

terized by high workloads, with a projected market size exceeding

USD 2200$ billion in 2030 [5]. The Cloud has revolutionized the al-

location, distribution, and consumption of computational resources.

Typically based on a pay-as-you-go pricing model, it offers flexible,

scalable, and readily accessible resources, eliminating the need to

manage their complexity. In this context, the widespread adoption

of the Internet of Things (IoT) paradigm has recently led to the

deployment of millions of small devices, resulting in complex and

interconnected networks where vast amounts of data are exchanged

almost in real-time. This trend has spurred the blossoming of the

Edge Computing paradigm, which relocates the computation pro-

cess from centralized servers to the periphery of the network, in

close physical proximity to the end devices. This decentralization

helps minimize latency, facilitating real-time interactions [13].

Function as a Service (FaaS) is a cloud service model that, when

integrated with Edge Computing, enables each edge node to ex-

ecute short-lived code in response to events without managing

the infrastructure associated with building and maintaining mi-

croservices applications. This approach significantly enhances the

flexibility, cost-effectiveness, and responsiveness of applications [2].

However, when dealing with distributed Edge environments, tra-

ditional FaaS is inadequate due to dynamic traffic demands and

limited resources [16]. Effective solutions must be devised to ad-

dress the load management problem, determining the amount of

incoming requests each node should serve locally, reject, or offload

to neighbors with higher resource availability. To this end, Ciavotta

et al. proposed DFaaS [4], a fully decentralized FaaS platform de-

signed to automatically distribute traffic load across autonomous

edge nodes in the same network. DFaaS relies on a peer-to-peer

network to share information about node states and traffic, enabling

suitable agents to make informed decisions regarding the offloading

strategy to pursue. While numerous literature proposals rely on

heuristic or meta-heuristic approaches to tackle the task offloading

problem in edge or edge-cloud environments [3, 12], Reinforcement

Learning (RL) is gaining traction in this context [11, 14, 17, 33] due
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to its ability to continuously and automatically adapt decisions to

environmental conditions.

This work presents a preliminary comparison among three dis-

tinct approaches for implementing DFaaS agents: two Reinforce-

ment Learning (RL) methods, specifically Proximal Policy Optimiza-

tion (PPO)[27] and Soft Actor-Critic (SAC)[9], and the NeuroEvo-

lution of Augmenting Topologies (NEAT) algorithm [28]. Despite

NEAT not being conventionally categorized within the RL taxon-

omy, it can be regarded as an RL-based approach due to its incor-

poration of automatic evolution in Deep Neural Networks (DNNs)

based on environment characteristics and responses to agent deci-

sions [24]. Our experimental findings demonstrate the effectiveness

of PPO in load management for FaaS-based applications, achieving

an average rejection rate of less than 4%.

The paper is organized as follows: Section 2 briefly overviews the

state of the art. Section 3 presents the working scenario of DFaaS,

while the traffic offloading problem is formulated in Section 4 to

be exploited in the RL context. Section 5 details the proposed al-

gorithms, while Section 6 describes their experimental validation.

Finally, conclusions and future work are discussed in Section 7.

2 RELATEDWORK
This section reviews state-of-the-art proposals in the context of

tasks offloading in edge and edge-cloud environments, considering

both heuristic [3, 12] and RL-based approaches [17, 33]. Indeed,

Machine Learning and, particularly, RL are increasingly popular in

this context since they can take quick offloading decisions even in

partially-observable environments [11, 15].

The proposal by [3] introduces a dynamic priority-based compu-

tation scheduling and offloading algorithm, employing (i) a multi-

ple knapsack-based heuristic algorithm for managing high-priority

tasks, and (ii) a task weight and data size-based computation sched-

uling and offloading algorithm for medium-priority tasks in a mo-

bile edge computing environment. An edge-cloud offloading mech-

anism based on a Knapsack Potential Game to derive an optimal

offloading ratio for each edge server, aiming to balance the cost-

effectiveness of the overall system is proposed by [12]. The work of

Liu et al. [17] focuses on minimizing the system deadline violation

ratio considering incoming load and delay constraints, utilizing

a deep deterministic policy gradient-based learning algorithm to

determine the optimal offloading policy for mobile applications

with task-dependency requirements in a mobile edge computing

environment. [33] proposes a multi-objective RL algorithm based

on double deep Q-network to dynamically approximate the optimal

offloading decision in the context of Internet of Vehicles.

While all the mentioned approaches highlight the promising

results achieved by RL methods in tackling offloading problems,

none specifically focuses on FaaS systems, which are the main

target of our work. As far as FaaS is concerned, [6] proposes a

load-balancing algorithm designed for FaaS applications, which

aims to balance locality awareness, load distribution, and random-

ness. The authors employ consistent hashing, establishing a stable

mapping between objects and servers to enhance locality while

simultaneously addressing issues related to server loads, cold-start

overheads of different functions, and bursty traffic. While closely

related to our work in managing the load of serverless applications,

[6] focuses on general servers and does not consider the specific

challenges posed by Edge environments.

3 DECENTRALIZED FAAS (DFAAS)
Figure 1 illustrates the reference scenario of DFaaS [4], compris-

ing a network of autonomous FaaS-enabled edge nodes distributed

peripherally and geographically. Each node is equipped with a plat-

form based onOpenFaaS [22], facilitating the execution of serverless

functions. Function execution requests (i.e., HTTP requests) gener-

ated by a client connected to the nearest access point are received

by a single edge node. As depicted in the figure, requests can be

autonomously forwarded to other edge nodes when necessary, such

as in cases of node overload.

Figure 1: Reference DFaaS scenario [4].

Figure 2 illustrates the high-level architecture of the DFaaS plat-

form. Each node consists of three primary components: an agent,

a proxy, and a FaaS platform. The agent maintains the peer-to-

peer network, monitoring the local node state by collecting metrics

and predicting incoming load for individual function classes in the

next time slot. Moreover, it negotiates resources with neighboring

nodes to handle the load, either forwarding or accepting requests.

Upon resource negotiation, the proxy component (implemented

via HAProxy [10]) configures traffic redirection or acceptance. The

agent communicates this configuration to the proxy, which then

forwards requests to other nodes or to the local FaaS platform for

execution, selecting, instantiating, and executing the corresponding

function. Internally, the FaaS platform integrates a gateway and a

queue for managing requests that cannot be immediately processed.

Figure 2: DFaaS platform: proposed architecture [4].

4 REINFORCEMENT LEARNING PROBLEM
This study investigates and compares AI-powered offloading strate-

gies, focusing on the management of request acceptance for local
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processing, rejection, or redirection to neighboring nodes to ensure

balanced and continuous request processing. To tackle the com-

plexity of this subject, we examine state-of-the-art Actor-Critic RL

and e NeuroEvolution approaches, noting that for the purposes of

this paper, NeuroEvolution is regarded as an integral component

of reinforcement learning methodologies.

RL has recently become popular in the literature to address

scaling and offloading problems in edge computing scenarios [11,

15]. These scenarios are highly dynamic and typically too complex

to be effectively modeled analytically. RL has the ability to learn

from interactions with the environment and automatically adapt

over time, deciding the proportion of requests to process locally, to

forward to other nodes or to reject ensuring an effective resource

utilization, reduced latency, and improved user experience.

In general, RL algorithms consist of one or multiple agents that,

in each time step 𝑡 , automatically learn how to map the current state

𝑠 (𝑡) to an action 𝑎(𝑡), based on the interaction with an environment

that reacts to the agent decisions by providing a numeric reward

signal 𝑟 (𝑡). The state-action mapping, called policy, is iteratively up-

dated balancing exploration (i.e., selecting a not-yet-chosen action

to visit new states with possibly higher reward) and exploitation

(i.e., using the accumulated experience to choose the current best

action) [29]. The reward associated with each state-action pair usu-

ally depends also on the transition that occurs in the environment,

i.e., on the new state 𝑠′ = 𝑠 (𝑡 + 1) the agent will observe in the next

instant. We write therefore 𝑟 (𝑡) = 𝑟 (𝑠, 𝑎, 𝑠′). It is crucial to note that
the next state 𝑠′, albeit related to 𝑠 and to the selected action 𝑎, may

be at least partially unpredictable, due to environment dynamics

that cannot be modeled or observed efficiently. The global expected

return is defined as 𝐺 =
∑∞
𝑘=0

𝛾𝑘𝑟 (𝑡 + 𝑘 + 1), where the parameter

𝛾 is used to discount the expected reward in future time steps, thus

limiting the impact of distant choices on the learned policy.

In this work, we considered a single-agent RL systemwhosemain

goal is to prioritize local processing of requests without reaching a

congestion state, while also learning to reject or forward requests

when necessary. Albeit preliminary, our analysis aims at investi-

gating whether RL can effectively tackle the offloading problem in

this setting, with the ultimate goal of designing a multi-agent or

federated RL method to manage and distribute the incoming load

in the DFaaS platform.

The agent distributes the incoming load based on the node state

and other system information, encoded in the so-called observa-
tion, by taking appropriate actions that are rewarded to guide the

decisions towards reducing the number of rejections and the per-

manence in a congestion state. The state space (or space of obser-

vations) S, action space A and reward function 𝑟 (𝑠, 𝑎, 𝑠′) for our
problem are characterized in the following.

State space. Each state 𝑠 ∈ S includes four variables: the number of

incoming requests, the capacity of the local processing queue, the

forwarding capacity (i.e., the number of requests that neighboring

nodes can accept), and the node state (i.e., if we are observing

congestion). In particular, we assume that a node is in a congested

(or overloaded) state if either the local processing queue is full or

the total number of requests redirected to it by neighboring nodes

exceeds its forwarding capacity. As already mentioned in Section 3,

a node in a congested state will reject all requests until the resource

availability is restored.

Action space. The agent decision involves determining the number

of requests to process locally, forward to neighboring nodes and

reject. Formally, we consider a continuous action space A whose

elements are tuples 𝑎 = (𝑝𝑙𝑜𝑐 , 𝑝 𝑓 𝑤𝑑 , 𝑝𝑟𝑒 𝑗 ) where each 𝑝 𝑗 is the

percentage of requests to be processed, offloaded or rejected, re-

spectively (𝑝𝑙𝑜𝑐 + 𝑝 𝑓 𝑤𝑑 + 𝑝𝑟𝑒 𝑗 = 1). Figure 3 illustrates an example

of action taken when the incoming load includes 100 requests: 70

of them are accepted locally, 20 are forwarded and 10 are rejected.

Figure 3: An example of agent action.

Note that in this preliminary work we do not tackle explicitly

the problem of identifying the destination node for the forwarded

requests. We may assume that this further decision is delegated to

a suitable heuristic as in [4].

Reward function. The reward function is the sum of three terms,

related to the corresponding elements of the agent action and

weighted according to the values of 𝑝𝑙𝑜𝑐 , 𝑝 𝑓 𝑤𝑑 and 𝑝𝑟𝑒 𝑗 , respec-

tively. Each term is further multiplied by a factor to adjust the

importance of the actions based on the node state, i.e., on whether

it is congested or not. Indeed, if the system is not congested, the

agent should prefer to process the requests locally, but without

overloading the node. The reward for local processing is given pro-

portionally to the queue factor 𝜑𝑞𝑢𝑒𝑢𝑒 , which measures the queue

capacity on a scale from 0 (full) to 1 (empty). The reward for for-

warding requests considers the 𝜑𝑞𝑢𝑒𝑢𝑒 and the forwarding factor
𝜑𝑓 𝑤𝑑 , which measures the availability of the neighboring nodes

from 0 (minimum availability) to 1 (maximum availability); it in-

creases as the incoming load and forwarding capacity increase.

Finally, rejected requests are penalized rather than rewarded: the

penalty is determined by 𝜑𝑞𝑢𝑒𝑢𝑒 and 𝜑𝑓 𝑤𝑑 , and it decreases as the

incoming load increases and the forwarding capacity decreases.

Note that, if the node is overloaded, the agent should decide

not to process requests locally. A corresponding penalty is applied,

forcing the agent to reject incoming requests in order to prevent
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further aggravation of the congested stage. An additional fixed

penalty is defined to discourage the agent from reaching this state.

Details about the algorithms and approaches we considered are

provided in the following section.

5 ALGORITHMS
Conventional tabular RL approaches encounter limitations when

dealing with large or continuous action and state spaces, as those

considered in this context [19]. Therefore, we investigate three ap-

proaches, two of which are based on Actor-Critic Deep Reinforce-

ment Learning (DRL), and one on NeuroEvolution of Augmenting

Topologies [7]. DRL is a branch of RL that combines reinforcement

learning and deep learning, utilizing neural networks to approxi-

mate the values achieved by the agent in different states according

to its policy. Among the existing DRL methods, we consider the

Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC)

approaches. Like other policy-gradient methods, they are designed

to directly learn the optimal policy without explicitly approximat-

ing the value of each possible action. This characteristic is crucial

in our context, where the action space is continuous, making a di-

rect estimate of the action values infeasible [8]. Furthermore, both

PPO and SAC are based on the Actor-Critic architecture, where two
DNNs interact to collectively design the best policy. In particular,

the network denoted as the actor decides, in each state, which ac-

tion to perform, while the critic evaluates its decisions by providing
an error signal used to optimize future choices.

Neuroevolution refers to the application of evolutionary algo-

rithms to the automatic design, training and optimization of DNNs:

across multiple iterations (or generations), multiple solutions are

explored by selecting, combining and mutating DNN characteristics

as, e.g., the number and connections between neurons, rather than

updating the DNN weights as in more traditional approaches. We

compare the performance of PPO and SACwith the NeuroEvolution

of Augmenting Topologies (NEAT) algorithm, which proved to be

effective in producing a good-quality DNN faster than other RL

methods in some scenarios [30].

We realized a custom implementation of PPO and SAC using

PyTorch [23], while NEAT is implemented using neat-python [18].

Gymnasium [32] was used to define the environment. Details about

the three algorithms and related changes to adapt to our context

are provided in the following sections.

Proximal Policy Optimization. PPO is a policy-gradient, model-free

RL algorithm based on the Actor-Critic architecture. The algorithm

optimizes a surrogate objective function using stochastic gradient

ascent [27]. PPO is designed to be scalable for large models and

parallel implementation, and robust regarding the choice of hyper-

parameters. Due to its robust performance and minimal need for

tuning, it has been designated as the default algorithm in prominent

RL frameworks such as StableBaselines3 [26].

Several variants of this algorithm have been proposed; in this

work, we consider in particular the PPO-Clip algorithm, which in-

troduces the concept of a trust region to prevent, through a suitable

parameter clip 𝜖 , sudden policy updates that may result in incor-

rect optimizations. It is characterized by two additional parameters:

Generalized Advantage Estimation (GAE) 𝜆, an interpolation factor

that weights the differences among the advantages estimated over

multiple time steps, and Entropy Coefficient, which regulates the

balance between exploration and exploitation.

Soft Actor-Critic. SAC is a RL algorithm designed for continuous

action spaces. Its primary characteristic is entropy regularization:

the policy is trained to maximize a trade-off between the reward

function and entropy, which quantifies the randomness in the pol-

icy [9]. The high entropy within a SAC policy promotes extensive

exploration of the space and mitigates premature convergence to

suboptimal policies. SAC operates as an off-policy algorithm capa-

ble of learning from past experiences and trajectories generated by

various policies. The algorithm utilizes three neural networks: a

state value function 𝑉 , a soft Q-function 𝑄 , and a policy function

𝜋 , each separately approximated and optimized to facilitate con-

vergence. A soft update parameter 𝜏 is employed to regulate the

frequency at which the target network weights are updated based

on the weights of the policy network.

Context-specific adaptations to PPO and SAC. The rationale behind
opting for a custom implementation of Proximal Policy Optimiza-

tion (PPO) and Soft Actor-Critic (SAC) lies in the necessity to define

an appropriate approach for characterizing the action probability

distribution. In general, algorithms designed for continuous action

spaces cannot generate a policy by learning the probability of select-

ing a specific action 𝑎 in the current state 𝑠 (𝑡), as is typically done

when the set A has a finite (and possibly not excessively large)

number of elements. Instead, the agent learns to estimate, based on

the current state, the parameters (e.g., mean and standard devia-

tion) of a probability distribution over actions [29, 8]. Traditional

PPO and SAC algorithms typically adopt a Gaussian probability

distribution [27, 9], possibly with slight modifications if the action

space is bounded. However, this choice is unsuitable in our context,

where each action 𝑎 = (𝑝𝑙𝑜𝑐 , 𝑝 𝑓 𝑤𝑑 , 𝑝𝑟𝑒 𝑗 ) must satisfy the specific

condition 𝑝𝑙𝑜𝑐 + 𝑝 𝑓 𝑤𝑑 + 𝑝𝑟𝑒 𝑗 = 1 (see Section 4).

To address this, following proposals from other literature [31], we

opted to utilize the Dirichlet probability distribution [21], which is

highly effective in characterizing a decision space where actions are

chosen in the simplex [20]. The agent will learn the concentration

parameter 𝛼 , which determines the distribution’s shape. Since this

parameter must be strictly positive, we modeled the actor network

of both PPO and SAC by incorporating an exponential activation

function in the last layer. It’s noteworthy that an alternative choice

for a probability distribution ensuring 𝑝𝑙𝑜𝑐 + 𝑝 𝑓 𝑤𝑑 + 𝑝𝑟𝑒 𝑗 = 1 is the

Gaussian-softmax. However, this would introduce training biases

due to the normalization of actions (to enforce 𝑝𝑙𝑜𝑐 +𝑝 𝑓 𝑤𝑑 +𝑝𝑟𝑒 𝑗 =
1), the non-injectivity of the softmax function, and its invariance

with respect to translations [31].

NeuroEvolution of Augmenting Topologies. Traditional DL meth-

ods involve updating the DNN weights through methods such as

gradient descent. In contrast, NEAT evolves both the weights and

the network topology [28], starting from a minimal network and

allowing it to evolve and increase in complexity only when deemed

beneficial for the considered problem. Abstracting from natural

evolutionary processes and genetics, NEAT encodes information

about the DNN structure and connection weights as the genotype,

while characterizing the phenotype (i.e., the concrete expression

of the genotype) as the specific network built and trained based
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on this general structure. To address the issue of competing con-

ventions [25], which arises when damaged networks result from

a crossover between genomes with different encodings but repre-

senting the same solution, NEAT utilizes historical markers known

as innovation numbers, which enable tracking the origin of each

gene, thus facilitating a coordinated and coherent evolution of the

network topology. NEAT comprises several parameters that require

tuning to optimize its performance; among others, the mutation

probability of activation functions, the probability of adding or re-

moving nodes and connections from the network, and the mutation

probability of connection weights.

6 EXPERIMENTAL ANALYSIS
This section presents the results of the experimental analysis con-

ducted to compare the proposed algorithms in a simulated scenario.

Specifically, Section 6.1 outlines the experimental setup andmethod-

ology employed, detailing the definition of our evaluation metrics.

Section 6.2 further elaborates on the obtained results.

6.1 Experimental setup and methodology
The objective of the experimental analysis is to assess the efficacy

and robustness of the PPO, SAC, and NEAT algorithms within a

simulated DFaaS environment. Specifically, our focus lies in com-

paring the generalization capabilities of these three methods and

assessing whether an agent trained under a specific load setting

can effectively handle situations characterized by varying distri-

butions of incoming requests and forwarding capacity. To achieve

this goal, we designed three distinct scenarios, each involving a

total of 𝑛 = 10𝑘 incoming requests, delineated as follows: The first

scenario, illustrated in Figure 4a, represents the most unpredictable

conditions, with request and forwarding capacity values generated

according to a Gaussian distribution. The second and third scenar-

ios, depicted in Figures 4b and 4c, employ a sinusoidal function. In

the former, we introduce random noise to increase the complexity

level encountered by the agent.

We considered three categories of requests, characterized by

varying CPU and memory demands, which are randomly sampled

from Gaussian distributions defined by the following parameters:

A) between 1 and 10 CPU shares (with mean 5 and standard

deviation 2.5), defined as the portion of CPU that can be

assigned to process each function, and between 1MB and

25MB of RAM (mean 12.5MB, standard deviation 2.5);

B) between 11 and 20 CPU shares (with mean equal to 15 and

standard deviation 2.5) and between 26MB and 50MB of

RAM (with mean 38MB and standard deviation 2.5);

C) between 21 and 30 CPU shares (with mean equal to 25 and

standard deviation 2.5) and between 51MB and 75MB of

RAM (with mean 63MB and standard deviation 2.5);

During the generation process, each one of the 𝑛 incoming re-

quests is extracted from class A, B or C with uniform probability.

Given the preliminary nature of this work, we only considered a

single agent deployed on a single edge node, with a local processing

queue capacity of 100 requests, and a maximum availability of 1000

CPU shares and 8000MB of RAM.

For each algorithm, the experiments were performed in two

different settings: one with the standard hyperparameter values

(a) First scenario.

(b) Second scenario.

(c) Third scenario.

Figure 4: Number of requests (left) and forwarding capacity
(right) over time in the three designed scenarios.

suggested by the original authors in the respective papers, and

one with tuned hyperparameters, determined by a Bayesian opti-

mization on 100 execution trials using the Optuna framework [1].

Only the most impactful hyperparameters were tuned, as shown

in Table 1. It is relevant to note that, due to its evolutionary na-

ture, which embeds stochastic processes of mutation and selection,

NEAT does not consistently produce similar results in different

executions even when the environment and hyperparameters are

kept constant. This variation influences the comparison between

standard and tuned hyperparameters, which may be less significant

than what is observed for PPO and SAC.

For each scenario and algorithm, we conducted 5 training experi-

ments with 5 different seeds, each repeated using both standard and

tuned hyperparameters, resulting in a total of 90 runs. Each session

of PPO and SAC training consisted of 1000 episodes including 100

steps each, resulting in a total of 100𝑘 training steps per session.

NEAT began with 100 neural networks, and each session lasted for

100 generations.

At the conclusion of each training session, the algorithms’ per-

formance was assessed utilizing four principal metrics: the reward

average and standard deviation, the number of steps in a conges-

tion state, and the number of rejected requests. Average reward is a

paramount indicator to consider, as it inherently encapsulates other

metrics (refer to Section 4). Improvement in any tracked metric cor-

relates with enhanced reward. The standard deviation of the reward
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Table 1: Training hyperparameters for each algorithm. If a
tuned column cell is empty, the standard value is used.

Method Hyperparameter Standard Tuned

PPO [27]

𝛾 0.99 0.91

GAE 𝜆 0.95 —

Clip 𝜖 0.2 —

Entropy Coefficient 0.01 —

Learning Rate 0.0003 0.0007

Nodes in hidden layers 256 167

SAC [9]

𝛾 0.99 0.90

𝜏 0.05 0.003

Learning Rate 0.0001 0.0081

Nodes in hidden layers 256 206

NEAT [28]

Connection add probability 0.50 0.52

Node add probability 0.30 0.50

Weight mutate rate 0.80 0.88

Survival threshold 0.20 —

is computed based on the average reward across all training runs

with varying seeds, considering a single scenario and algorithm.

A low value signifies consistent performance and predictability of

the algorithm under diverse initial conditions. Finally, a reduced

number of rejected requests indicates efficient request distribution

by the agent, thereby ensuring a high level of service quality.

6.2 Experimental results
In line with our earlier discussion, our primary aim in this experi-

mental evaluation is to compare how well the PPO, SAC, and NEAT

algorithms can adapt to different scenarios. Therefore, all the re-

sults presented below were obtained by training the agents on one

of the three scenarios outlined in Figure 4 and then testing them

on the remaining scenarios.

Figure 5 illustrates the average reward across all combinations

of training and test scenarios for each algorithm, shedding light on

the effects of hyperparameter tuning. Looking at Figure 5a, we can

see that PPO performs consistently well when trained on scenario 2,

even when tested on scenarios 1 and 3 (third and fourth sets of bars).

Interestingly, in these cases, tweaking the hyperparameters does

not seem to improve the average reward much, possibly because it

leads to overfitting to the specific conditions encountered during

training. Similar trends are observed for other combinations of train-

ing and testing scenarios, albeit with lower overall performance.

This can be attributed to the distinct load distributions characteriz-

ing scenarios 1 and 3, making it challenging for the trained agent

to generalize across different settings. In contrast, SAC performs

significantly better with tuned hyperparameters compared to stan-

dard settings (see Figure 5b), demonstrating robust generalization

capabilities. However, the average reward is lower than that of

PPO, and the SAC algorithm leads to an increase in the number

of rejected requests and the number of steps in a congested state

during the training process, as illustrated in Figure 6a. Finally, the

generalization capabilities of NEAT (Figure 5c) are generally poor,

and no clear benefit is observed from hyperparameter tuning except

in the two instances where the method is trained in scenario 2. As

previously mentioned, this is generally the best training setting,

since the load is less biased towards either a stochastic or a purely

deterministic pattern.

(a) PPO average reward.

(b) SAC average reward.

(c) NEAT average reward.

Figure 5: Impact of hyperparameters tuning.

The comparison between PPO and SAC across the three consid-

ered metrics is presented in Figure 6, encompassing both training

and test results. The results consistently demonstrate the superior

performance of PPO, which effectively manages a higher number

of requests per episode on average (10, 000), with a rejection rate

of less than 4%. Moreover, the PPO agent exhibits prompt respon-

siveness in restoring optimal working conditions during congested
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(a) Training results.

(b) Test results.

Figure 6: Comparision between PPO and SAC.

situations, as evidenced by the moderate number of steps in a con-

gested state.

As previously observed, the PPO agent trained in the second

scenario emerges as the top performer. Although the agent trained

in the third scenario demonstrates the highest average reward

during testing within the same setting, its performance declines

significantly when tested in a different scenario, indicating clear

overfitting attributed to the simplistic nature of the observed load

distribution. Conversely, the right plot of Figure 6 displays that

while the results achieved by an agent trained and tested on scenario

2 are slightly lower, it learns a policy that generalizes remarkably

well to unseen settings. A similar pattern, though less pronounced,

is also observable in SAC.

NEAT is the algorithm exhibiting the poorest performance across

all settings, as highlighted in Figure 8 (representing the third sce-

nario). This is partially attributable to the tendency of the agent

to prioritize forwarding requests over local processing. The queue

factor 𝜑𝑞𝑢𝑒𝑢𝑒 (light blue bars in the figure), defined in Section 4,

is always very close to 1, showing an almost empty queue in all

timesteps; while this situation should encourage the agent in prior-

itizing the local computation, the number of forwarded requests

is often significantly high. The promising results achieved by the

agent trained in the second scenario (with a positive average re-

ward, as shown in Figure 5c) are negatively balanced by a rejection

rate of around 30–40%.

Figure 7: PPO Standard fitting.

The results suggest that utilizing RL for load management in

DFaaS-Edge systems poses challenges, yet yields promising per-

formance and underscores avenues for further development. One

notable challenge observed is overfitting, underscored by the im-

portance of meticulously crafting the training environment. Specif-

ically, an agent exposed solely to a simplistic scenario risks overfit-

ting and underperforming in unknown scenarios, as it might adopt

highly specialized policies tailored exclusively to the considered

setting. Another significant aspect concerns the challenges encoun-

tered in the second scenario: during training, the average reward

is inferior compared to other scenarios, albeit demonstrating su-

perior generalization during testing. Given the heightened noise
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Figure 8: NEAT queue and forwarding factor in scenario 3.

in the load pattern relative to the third scenario, striking a balance

between exploration and exploitation becomes pivotal to mitigate

excessive policy updates that may prove suboptimal in the long run.

Lastly, a notable observation is the agent’s inclination to reject an

excessive number of requests to prevent congestion. This tendency

may stem from an imbalance in the components constituting the

reward function, which may be adjusted in future works to mitigate

this undesired behavior.

7 CONCLUSION
This paper presents an initial approach to workload distribution in

decentralized FaaS systems at the edge using RL algorithms. The

PPO, SAC, and NEAT methods were implemented and tested in a

simulated DFaaS environment to determine their ability to handle

requests optimally. After tuning the hyperparameters and setting

up the scenarios, the results showed that PPO outperformed the

other algorithms, yielding an average rejection rate below 4%.

In future works, a multi-agent system could be explored to im-

prove collaboration and coordination between edge nodes. A more

realistic simulated environment could be developed for training

purposes, and new requests could be generated to extend the range

of possible scenarios. Finally, new RL algorithms could be tested to

find better alternatives for workload distribution.
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