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Abstract

This study aims to provide a manageable symmetric two-players conflict model to understand the

structural determinants of the properties of its set of equilibria, in particular existence, multiplicity and

(a)symmetry. We investigate the effects of introducing spillovers into the marginal productivity of agents’

efforts and into the polarization between agents’ goals. We show that, without spillovers, the equilibrium

efforts’ intensity is uniquely connected to the ratio of the marginal productivity of effort to (ex ante)

polarization. Then, we connect the existence of multiple symmetric and asymmetric equilibria to the

intensity of the spillovers in the outcomes through growing polarization and hostility. We also show that

negative spillovers in conflict technology (direct destructiveness) can imply the non-existence of equilibria.

Finally, we introduce a measure of the intensity of conflict at equilibrium and we show how, depending on

the equilibria configurations, the parameters have different interesting effects on the intensity of conflict.
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1 Introduction

Conflicts are ubiquitous in social contexts, they occur any time agents want to get a goal that is incompatible

with other agents’ goal (polarization). Situations such as fights, wars, electoral competitions, crimes, strikes

and lockouts, sport contests, patent races, projects competitions, litigations, labor market tournaments are all

examples of conflicts that can be modelled as games, where players expend costly, non-refundable resources

trying to affect the probability of getting a desired outcome. Conflicts share several specific features. Firstly,

it is common that an agent cares not only about its goal, but also about the outcome of the defeated

party (hostility), whether itself or the opponent. Further, the winner and the loser outcomes may change

because of growing polarization and hostility as agents’ effort increases, more generally because of possible

spillovers. Finally, players’ effort may have a direct destructive effect on the conflict technology, reducing its

effectivity. This paper contributes to conflict theory providing a manageable symmetric two-players abstract

conflict model to understand the structural determinants of the properties of its set of equilibria, in particular

existence, multiplicity and (a)symmetry. Often abstract conflict models have a unique interior fully stable

equilibrium, as shown in Szidarovszky and Okuguchi (1997). This can be unsatisfactory, as stressed by

Hirshleifer (1989) and, more recently, by Blattman and Miguel (2010) and by Baliga and Sj̈ström (2013),
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because it rules out the possibility of boundary equilibria displaying either null or maximum efforts,1 as well

as multiple (a)symmetric Pareto ordered equilibria, while multiplicity or even non-existence may provide

insights into real conflict situations, as illustrated by Konrad (2009). We show that, without spillovers, the

intensity of the equilibrium efforts is uniquely connected to the ratio of the marginal productivity of effort to

(ex ante) polarization. Then, we connect the existence of multiple symmetric and asymmetric equilibria to

the intensity of the spillovers in the outcomes through growing polarization and hostility.2 We also show that

spillovers in conflict technology can imply the non-existence of equilibria. Finally, we introduce a measure

of the intensity of conflict at the equilibrium and we study the role of parameters on it. A clear and robust

connection between on one hand uniqueness or multiplicity, symmetry or asymmetry of the equilibria, and

on the other hand the structural properties of the model, is highly desirable to deepen the economic rationale

of the emergence of particular conflict scenarios. More generally, understanding the structural origins of

heterogeneous behaviors starting from a fully symmetric setting is a central goal of research in different

areas of economics and social sciences,3 and this approach is particularly relevant in conflict settings, where

heterogeneity and apparently multiple steady states are both commonly observed, as we argue in Section 2.

Research on conflict theory has developed rapidly and increasingly, as surveyed for example in Anderton and Carter

(2019); Sandler and Hartley (2007); Baliga and Sj̈ström (2013); Blattman and Miguel (2010); Jackson and Morelli

(2011).

It is beyond the scope of this paper to list the enormous number of contributions on conflicts. Roughly,

in conflict theory we might distinguish four general classes of models. A first class apply bargaining models

to the analysis of conflicts, as reviewed in Baliga and Sj̈ström (2013) and Jackson and Morelli (2011). A

second class consists of general equilibrium models, which analyze the trade-off between the production of

private consumption and of conflict goods.4 The seminal papers by Esteban and Ray (1999, 2008, 2011)

introduce a further class of models, connecting conflicts to various indexes of polarization, fragmentation and

inequality. The literature on contests is vast, the interested reader should consult Corchon (2007); Konrad

(2009); Nitzan (1994).5 The model proposed in the present contribution is not within the realm of general

equilibrium, and it is related to but different from both contest models and the class of models connecting

conflicts and polarization. The present work relies on a class of symmetric two-players games where two

symmetric agents submit entries that influence the probability of reaching a desired outcome and bear some

costs for the action; an entry might be a bid, an effort, or a commitment of non-refundable resources.

Strategic interaction within the model is characterized by four key properties that are easily interpretable

in applications: (i) continuous conflict technology (ii) ex ante and endogenous polarization (iii) ex ante and

endogenous hostility and (iv) direct destructiveness. This class of games allows for a clear discussion of all

these spillovers, so that a rich variety of equilibria configurations can arise, with multiple symmetric Pareto

ordered equilibria or asymmetric equilibria as well as non existence of pure strategy equilibria, even keeping

the assumptions on the constitutive elements of the conflict model reasonably simple and transparent. Then,

by introducing indexes related to polarization, sabotage and hostility, and considering the possible spillover

effects, we connect the characterization of the equilibria set and the intensity of equilibrium conflict to

the structural characteristics of the model. Thus, the adopted approach proposes a general methodology

1As well-known, zero-effort equilibria are ruled out by assuming the Tullock contest success function, while maximum-effort

equilibria are ruled out by assuming unlimited upper bound for agents’ effort.
2All these concepts will be formally defined in section 3.
3See Amir et al. (2010); Matsuyama (2002).
4See for example Grossman (1991, 1994, 1995) and Grossman (1999).
5Following the seminal contributions of Tullock (1967, 1980) and Krueger (1974), general analysis of rent-seeking games were

provided by Pérez-Castrillo and Verdier (1992) and by Riaz et al. (1995), while Corchon (2007) and Konrad (2009) provide

formal models for contests, and review their main possible applications and generalizations. Finally, Chowdhury and Gürtler

(2015) provide a model of sabotage activities in contests, and review related literature.
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for generating inter-agent differences out of a symmetric conflict game with fully rational and completely

informed players.

The remainder of the paper is organized as follows. Section 2 quickly discusses some evidence to show the

significant heterogeneity in agents’ behavior within symmetric conflicts. Section 3 illustrates the proposed

approach to model conflicts and discusses the restrictions we use to construct a specific family of conflict

models. Section 4 discusses the characteristics of the equilibrium set for three different cases: no spillover,

spillovers in outcomes, and spillovers in the effectivity function. Section 5 discusses the relationship between

our structural parameters and conflict intensity for the different kind of equilibria. Finally, Section 6 concludes

the paper.

2 The Relevance of Multiple Symmetric and Asymmetric Equilib-

ria in Conflict Models

Even if in conflict models players’ strategies are costly resources used to affect the probability of getting a

desired result, such strategic choices often might be observable only indirectly, as it is the case with agents’

efforts. Moreover, the total amount of resources used in equilibrium, called the intensity of conflict by

Esteban and Ray (1999, 2011), might not induce a full overt violent conflict, for example as it has been with

the Cold War. Actually, abstract conflict models do not explicitly encompass any element of “violence” in

them, they just model settings where players have conflicting aims and expend costly, non-refundable re-

sources trying to affect the probability of getting the desired outcome. Hence, the most important observable

consequence of the existence of multiple symmetric or asymmetric equilibria is the heterogeneity of observable

agents’ behavior, possibly with the existence of multiple agglomeration clusters. As argued by Amir et al.

(2010) and Matsuyama (2002), the endogenous heterogeneity within a class of symmetric games is important.

In conflicts, corner equilibria, multiple symmetric Pareto-ranked equilibria, multiple asymmetric equilibria,

and non existence of pure strategy equilibria, are all important cases.

The data we report in what follows do not aim at supporting and grounding a specific model of conflict,

they simply suggest that in many conflicts there might be something that it is not easily compatible with the

standard prediction of a unique interior equilibrium. The main lesson we draw is that models that explain

when and why multiple symmetric and asymmetric equilibria arise can help to analyze real cases because

empirical results sometimes are at odd with the prediction of a unique interior equilibrium.

Since empirical analysis of conflicts is somehow problematic because efforts are not directly observable,

in order to have a careful interpretation of exogenous and endogenous variables it is crucial to establish

a connection between real conflicts and theoretical models. The link between agents’ conflict effort levels

and observable measures of conflict is empirically complex, and a theoretical view is required to distinguish

between different possible interpretations. In particular, in our setting maximum effort does not mean

effective conflict, but that the amount of available resource used to try to reach the goal is the maximum

possible. For instance, the cold war is an example of high effort in the sense of huge military investment,

even if there was no actual overt war. On the other hand, the second world war is an example of maximum

intensity conflict with overt war: according to the estimates of Eloranta and Land (2015) during WWII the

average military burden for the conflicting countries raised well over 50% of GDP. And we would like to

consider both these cases as examples of conflict situations. In general, if we consider some simple examples

of, to some extent, similar conflicting countries and their military expenditure as percentage of GDP as a

rough indicator of conflict efforts, a relevant degree of heterogeneity emerges. In 2007 North Korea military
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spending was 22.9% of its GDP against 2.7% of South Korea6; Russian military spending was 3.4% of its

GDP against 3.8% of USA; Saudi military spending was 8.5% of its GDP against 3.4% of Iran; Pakistan

military spending was 3.4% of its GDP against 2.3% of India; Armenia military spending was 3% of its

GDP against 2.9% of Azerbaijan.7 Further, if we consider a minor border dispute such as the one between

Bolivia and Brazil on Isla Suárez/Ilha de Guajará-mirim, then in 2007 Brazil and Bolivia were devoting to

military spending respectively 1.4% and 1.7 of their GDP.8. These simple data have surely many different

explanations, however they not only illustrate the heterogeneity of resources devoted to conflicting goals in

actual situations, they also indicate that it is possible to have symmetric null, intermediate or maximum

intensity, and asymmetric situations too. Another interesting case of conflicts for which evidence is available

are litigations. Farber and White in Farber and White (1991) report the disposition of the 252 cases of

medical malpractice charges raised against a single large hospital and/or medical personnel on its staff by

patients who received treatment there, initiated in 1977 or later and resolved by the end of 1989. Overall,

92 cases (36.5%) were dropped by plaintiffs or dismissed by the judge, 147 cases (58.3%) were settled out of

court (with or without mediation), and only 13 (5.2%) were tried to a verdict in court. Again, we get a clue

of possible heterogeneous outcomes.

Experimental results on conflicts have been booming in the recent years, in general focused on specific

contests, as illustrated by Dechenaux et al. (2014); Sacco and Schmutzler (2008). These papers principally

review experiments on standard Tullock contests, on the all-pay auction and on the rank-order tournaments.

These models are specific cases of a common strategic model where players exert costly irreversible efforts

while competing for a prize and an individual player’s probability of winning the prize depends on the players’

relative expenditures, however they differ for the specification of such probability. They have obviously

different equilibria, when symmetric and with two players, an interior intermediate the first and third case,

a mixed one the second. The most important messages that can be drawn from the experimental studies

reviewed in Dechenaux et al. (2014) are

1. most studies on Tullock contests and all-pay auctions find significant overbidding relative to the Nash

equilibrium prediction, while there is little overbidding in rank-order tournaments;

2. in all three cases there is significant heterogeneity in the behavior of individual subjects;

3. in Tullock contests bids are widely distributed with multiple high frequency bid, while in all-pay auctions

the distribution of bids is bimodal, with some subjects submitting very low and others submitting very

high bids.

Several explanations have been provided for these results, mostly based on modified utility function

(including for instance non-monetary utility from winning the contest, or preferences over payoffs relative to

other contestants) or on subject’s irrational behaviors. In Sacco and Schmutzler (2008) the authors consider

all-pay auctions with endogenous prizes that depend positively on each player own effort and negatively on

the effort of competitors, a case somewhat related to our conflict model. They find that, in the two player

case (BIG2), the frequency distribution exhibits a global maximum at high bid and a local maximum at 0,

and a substantial fraction of the subjects choose bids that are not part of the symmetric mixed strategy

equilibrium (MSE). Again, the experimental observations seem to confirm the heterogeneity of observable

agents’ conflict behavior, consistently with multiple symmetric and asymmetric equilibria.

6Data from Anderton and Carter (2019), in turn elaboration of data from CIA and from the International Institute for

Strategic Studies.
7Data from the World Bank.
8Data from the World Bank.
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3 Modeling Conflicts

We consider two agents, so that each generic part is indexed by i ∈ {1, 2}, and the opponent is identified by

j = 3− i. Grounding on the constitutive elements that allow us to introduce a micro-founded conflict model

(CM), we focus on a sufficiently general class that allows us to describe a suitably wide range of situations,

but that, at the same time, is sufficiently specialized to allow us to derive significant results. The main goal

is to understand the role and the relation between the structural characteristics of the elements of a CM and

the properties of the set of equilibria of the associated game. To this end, we focus on symmetric conflict

models, namely those in which the associated strategic-form game is symmetric.9 We also consider simple

functional forms, to guarantee that results on multiplicity and on non-existence are not ascribable to the

complexity and on peculiar properties of the constitutive elements.

Each contender uses available resources to try to achieve a particular goal and, while doing so, it influences

the probability of obtaining an outcome zi ∈ Z ⊆ R, exploiting a suitable amount of effort xi ∈ Xi ⊆ R
+,

whereXi represents the set of agents’ possible efforts. We assume that contenders are exogenously constrained

with regard to the amount of effort they can choose, namely we assume a bounded effort set, setting w.l.g.

Xi = [0, 1] . The reasons for this assumption are two. First, it is hardly realistic to assume that players’

efforts can increase without limit because of exogenous constraints, such as limited capacity; second, this

assumption allows interpreting agents’ bids as intensity, i.e. as the percentage of the available resources used

for the conflict game.

The agent’s effort is the choice variable and has several consequences on the possible outcomes and on the

probability of reaching one of them. First, the agents’ goals can be affected and can change, depending on

the agent’s own and the opponent’s effort.10 We represent the possible outcomes of the conflict for each agent

using functions of his own/opponent’s efforts. In particular, we assume that for each player, the interaction

might end in two ways, either reaching its goal outcome gi(xi), where

g1(x1) = −θ − δx1, g2(x2) = θ + δx2,

or its defeat outcome di (xj), where

d1 (x2) = γx2, d2 (x1) = −γx1,

with θ > 0, δ and γ non-negative constants. θ represents the distance between the agents’ goals when no

effort is exploited, while δ and γ allow taking into account possible spillover effects. Thus, the set of i’s

possible outcomes has just two possibilities: either i reaches its goal gi or it obtains a defeat outcome di, as

in Chowdhury and Sheremeta (2011a,b, 2015). Recalling the compactness of efforts, we denote the inferior

and the upper bounds of i’s outcomes as gi and gi, respectively, so that gi ≤ gi and g1 ≤ 0 ≤ g2.

Each agent’s utility function Ui is a linear decreasing function of the distance between i’s outcome and

its goal, the well known Euclidean preferences:11

U1 (z) = − (z − g1(x1)) , U2 (z) = − (g2(x2)− z) ,

so that gi is the bliss point of i′s utility function,

argmaxUi (zi) = gi (xi) . (1)

9We recall that a game Γ = ({1, 2} ,Xi ×Xj , πi(xi, xj)) is symmetric if Xi = Xj and π1(x1, x2) = π2(x1, x2),∀xi ∈ Xi, i =

1, 2, and that in a two-player symmetric game, the best reply correspondences are symmetric (i.e., BRi (xj) := BRj (xi) ).
10When the agents’ outcomes do not depend on their efforts, then the model belongs to the class of rent-seeking models.

However, in models of production and conflict, the values of the goals are determined endogenously by the agents’ choices on

how much time is used on conflict and, consequently, on production. See, for example, Garfinkel and Skaperdas (2007); Hausken

(2005); Konrad (2009); Neary (1997).
11For a recent analysis of the role of this type of utility function, see e.g. Brady and Chambers (2015).
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The proposed utility function, while quite common in the political economy literature,12 is new in conflict

theory and has important implications. If there are two agents only, as in our model, the measure of

polarization P ∗ derived in Esteban and Ray (1994) is proportional to the absolute distance between the

attributes of individuals.13 Using this property, in our model it is natural to measure polarization as the

distance between the agents’ bliss points,14 which is realized from the function ρ : [0, 1]2 → R
+, given by

ρ (x1, x2) := g2 (x2)− g1 (x1) = 2θ + δ(x1 + x2).

so that θ is a measure of ex-ante polarization. Esteban and Ray also prove that the bimodal distribution

is more polarized than any other distribution with the same total population, under any measure P ∗,15

a further justification for our measure. The root of any conflict, as discussed by Esteban and Ray (1994,

1999, 2008); Esteban and Schneider (2008); Esteban and Ray (2011); Hirshleifer (1995a,b); Fearon (1995);

Jackson and Morelli (2011) is the incompatibility between agents’ goals:16 the attempt to reach the best

possible outcome leads the agents to clash and it is one source of the conflicting behavior. In our model,

the agents’ goal contrast is equivalent to strictly positive polarization, because, by construction, the agents’

goals are incompatible:

g2 ≥ g1 ⇔ ρ (x1, x2) > 0 ∀ (xi, xj) .

Polarization is one of the most established concepts in the political economy literature, however the best way

of actually measuring polarization has been widely discussed.17 On one hand, polarization encompasses the

distance between agents’ goals characterizing political and social conflicts, where polarization refers to the

divergence of political attitudes to ideological extremes. On the other hand, more generally, according to the

seminal work by Esteban and Ray (1994), polarization results from the interaction of within group identity

and across-group alienation. 18 The relation between polarization and conflict has been widely studied,

see e.g. Esteban and Ray (2011). In particular Esteban and Ray (1999) show that the level of conflict

increases with the magnitude of polarization, and that if there are two groups, the intensity of conflict is

most pronounced with a bimodal distribution of the population over opposing goals.

Also the defeat outcome is crucial in conflict models as conflicts may be to the death, as in WWII, or a mere

border adjustment, as the Greco-Turkish War of 1897 over the sovereignty of Crete. Similarly, in litigation,

a plaintiff can claim the reimbursement only for damages actually incurred or also for potential, moral and

indirect losses. Further, in electoral struggles, the defeated party might be protected by constitution or might

be seriously limited in its future opportunities. All these possibilities, should be considered for an effective

CM.

Efforts have an impact on the likelihood of obtaining a specific outcome through the function Si(xi, xj) =

βxi (1− αxj) + k, where β > 0 and α, k ∈ [0, 1], so that Si is linear in xi and the marginal productivity

of i’s effort is linearly decreasing in the opponent’s effort xj . These functions represent the effectivity of

agents’ efforts. The term “effectivity function” is used in Corchon and Dahm (2010), while other works

(e.g., Rai and Sarin (2009)) label it as the technology that describes the productivity of the investment by

contender i. Whatever the terminology, Si is a formal description of technology and/or institutions that

transforms agents’ effort into the factors that operate on the likelihood of achieving the desired goal. Note

12See, for example, Torsten and Tabellini (2000).
13See Esteban and Ray (1994) Theorem 1.
14An alternative expression might be alienation following Esteban and Ray (1994) formalization.
15Esteban and Ray (1994) Theorem 2.
16Fearon 1995 call this aspect “issue indivisibilities”, and considers it as one of the three mechanisms leadind to conflicts,

besides asymmetric information and committment problems.
17See e.g. Esteban and Ray (1994) and Schmitt (2016).
18There are many recent works on polarization within social and political context, for a recent review see Gentzkow (2016).
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that in our formulation, the effectivity of an agent’s effort might be affected by the opponent’s one, in order

to consider the possibility that a part can hamper or disable the opponent’s capability directly.19

The role of function Si is to distinguish the agents’ effort effectivity, which is part of i’s characteristics,

from the probability of achieving a specific outcome, represented by the conflict success function (CSF),

which is objective and holds for both contenders. Depending on the effectivity of the agent’s effort (s1, s2),

i′s probability of achieving an outcome is measured by the ratio conflict success function (Hirshleifer (1989))

Pi(zi|Si (xi, xj) , Sj (xj , xi)) =






Si(xi,xj)
Si(xi,xj)+Sj(xj,xi)

if zi = gi (xi) ,

Sj(xj,xi)
Si(xi,xj)+Sj(xj,xi)

if zi = di (xj) ,

0 otherwise,

where Pi : R
+ × R

+ → ∆(Z) 20, determines a random outcome z̃i ∈ Z̃i, distributed according to the

probability measure Pi(Si (xi, xj) , Sj (xj , xi)). The combination of the ratio CSF with the functional form

of the effectivity of agents’ efforts, lead to the following reduced form of outcomes probability

Pi(zi|Si (xi, xj) , Sj (xj , xi)) =





βxi(1−αxj)+k
βxi(1−αxj)+βxj(1−αxi)+2k if zi = gi (xi) ,

βxj(1−αxi)+k
βxi(1−αxj)+βxj(1−αxi)+2k if zi = di (xj) ,

0 otherwise.

When k = 0 and α = 0, we get the standard Tullock CSF. From now on, we assume k > 0, and w.l.g.

k = 1.21 The CSF is a key element of any CMs. The proposed ratio CSF is probably the most common

functional form in the related literature, where it has been axiomatized by Skaperdas (1996) and generalized

by Rai and Sarin (2009). We assume the function is differentiable and satisfies Axioms 1 to 5 of Skaperdas

(1996), but it does not satisfy the homogeneity Axiom 6, from which the CSF cannot be continuous. The

latter axiom is motivated by the idea that the units in which effort is measured should not count. However,

because of the assumption on the compactness of the effort sets, we can interpret bids as the intensity of

effort, so that Axiom 6 is not actually relevant to our model. To the best of our knowledge, the proposed

form of an agent’s effectivity function first appears in Dasgupta and Nti (1998). However, in such study, the

function was an implicit specification of the general CSF of Theorem 1 of Skaperdas (1996), which has been

discussed subsequently by Amegashie (2006) and Rai and Sarin (2009). Our specification has been considered

in Hirshleifer (1995a), in Garfinkel and Skaperdas (2007) reviewing conflict theory, and in Esteban and Ray

(2011) discussing the generality of their results.22 The main point that distinguish this CSF from the usual

Tullock type, is that while in the latter zero effort implies zero success probability, our version implies that

an agent investing zero effort still retain a strictly positive probability of winning. And this is exactly the

reason we don’t use the standard Tullock CSF: it implies that if player j were to make no effort, player

i could win with certainty by exerting an infinitesimal amount of effort. But then, neither players would

leave such an opportunity unexploited, hence a zero effort profile can’t be an equilibrium: to exclude such

possibility by construction is restrictive since we would like to explore the structural conditions that might

imply zero effort as an equilibrium outcome, exactly as we would like to analyze the structural conditions

that lead to maximum effort. This point on the restrictiveness of the embedded assumptions behind the

19See Chowdhury and Gürtler (2015).
20As usual, ∆ (·) denotes the set of all probability measures on the set ·.
21Once k > 0, its value has no special significance: if we multiply numerator and denominator by any positive number we

would get an equivalent functional form.
22Actually, in Esteban and Ray (2011) the authors did not emphasize that their generalization may generate non interior

equilibria because their proof of proposition 1 does not hold anymore when the conflict success function is continuous in the

origin.
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standard contest success function, which implies a stable and interior equilibrium with a strictly positive

intermediate level of conflict, is also forcefully proposed by Fearon (2008). Moreover, as argued in Hirshleifer

(1995b) and Garfinkel and Skaperdas (2007), in conflicts this role of randomness is reasonable, in particular

in situations where frictions play a role. Indeed, one way of thinking about our CSF, is to consider a

third agent, ”Nature”, which has a constant effectivity function SN (xN ) = k, so that when Nature wins,

there is a random draw: in this sense Nature and SN (xN ) = k describe frictions, the role of factors that

are independent from players’ efforts. Thus, k > 0 implies that neither party can ever be fully certain of

winning. In this way, we allow for the fact that the outcome of conflicts are typically subject to exogenous

uncertainty, as argued by Besley and Persson (2011).23

Finally, in exploiting effort xi, agents face consequent costs, described using the linear cost function

Ci(xi) = xi, where, w.l.g., we assume unitary marginal costs24.

Based on this setting,25 we can derive a payoff function πi : Xi ×Xj → R, as

πi(xi, xj) =

∫ g2

g
1

Ui (zi) dPi (zi|Si (xi, xj) , Sj (xi, xj))− Ci (xi) ,

and, thus, obtain the class of associated strategic-form games ΓCM =
{
Γ =

(
{1, 2} , [0, 1]2 , πi(xi, xj)

)}
.

3.1 Endogenous changes in goals, defeat outcomes and effectivity functions

All the functions involved in the proposed CM are assumed to be smooth. This has substantial implications,

because of the regularity of the CSF. Assuming continuously differentiable functions, the marginal probability

of achieving zi has symmetric and intuitive behavior in a neighborhood of zero effort and, for a suitable

combination of structural parameters, zero-effort equilibria are possible. A further reason to assume smooth

function is to be transparent on the reasons that generate non existence of pure strategy equilibria: as we

will show, non existence appears with direct sabotage that might generate discontinuity in the best reply

correspondence even if all involved function are smooth and the strategy set is compact and convex.

The possible spillovers from the agents’ choices are

∂Si (xi, xj)

∂xj
= −βαxi ≤ 0,

∂g1
∂x1

= −δ ≤ 0,
∂g2
∂x2

= δ ≥ 0,
∂d1
∂x2

= γ ≥ 0 ,
∂d2
∂x1

= −γ ≤ 0.

The spillover effects can be summarized in the following assumption.

Assumption 1. The direct sabotage assumption (α > 0): the greater each player’s effort is, the lower

the effectivity of the counterpart’s effort becomes;

The cumulative polarization assumption (δ > 0): the greater each player’s effort is, the greater the

polarization becomes;

The hostility assumption (γ > 0): the greater each player’s effort is, the worse the opponent’s defeat

outcome becomes.

The direct sabotage assumption states that an agent’s effort can directly reduce the effectivity of the

counterpart’s effort, for physical, economic, or institutional reasons. This is a specific version of what is

simply denoted by “sabotage”, a deliberate and costly act of damaging a rival’s likelihood of winning the

23See Assumption 1.
24In principle, the cost function may depend on the opponent’s effort. In what follows, we ignore this kind of spillover, because

we checked that it does not provide any interesting insights into the equilibrium properties.
25Actually, a two-agent CM can be defined as the sextuple (X,S,C, ζ,P,U), in which each component is a vector of two

elements.
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conflict.26 We write of direct sabotage because we want to emphasize that in this case the effect on the

effectivity function is directly determined by the agent’s effort, there is no decision on the portion of effort to

use to increase the probability of winning and the portion to use to reduce opponent’s effectivity. For example,

in innovation conflicts one firm’s R&D effort might directly decrease the patent value for the competitor by

hastening further innovation, creating a negative spillover. Note that the expected effects on the CSF are

reinforced by the direct sabotage assumption, since the probability of an agent achieving a goal is increasing

in its effort (∂Pi(gi|Si, Sj)/∂xi > 0), while that of a defeat outcome is increasing in the opponent’s effort

(∂Pi(gi|Si, Sj)/∂xj > 0).

The cumulative polarization assumption is based on the idea that an agent’s intensity of effort can push

his/her own goal away from that of the opponent. In particular, the assumption has the crucial implication

that the polarization increases with both agents’ intensity of effort (i.e., ∂ρ/∂x1 = ∂ρ/∂x2 = δ > 0). This is

common to many settings where the intensity of agents’ effort increases the distance between players’ goals,

and it is our synthetic way of modelling polarization as a process. Actually, the literature on polarization

has emphasized that polarization is both a state and a process. Polarization as a state refers to the extent

to which opinions on an issue are opposed, while polarization as a process refers to the increase in such

opposition.27 We model this latter aspect by assuming that polarization can be affected by the same agents’

effort, since as the agents become more involved in the conflict, their goals may further diverge, as argued in

Hirshleifer (1991, 1995a,b); Hirshleifer and Osborne (2001).

Hostility is a more disputed concept than polarization. Actually there is no universally accepted def-

inition of hostility. In the scientific literature, the term hostility didn’t receive a fixed definition and it

has been treated by various authors and disciplines differently.28 We consider the concept proposed by

Barefoot et al. (1994): hostility is the antagonistic attitude towards people including cognitive, affective and

behavioral components. Further, Myasishchev (1995) notes that hostility is formed in the course of inter-

action. This definition covers both steady, so-called personal hostility, and various situational complexes

of hostile installations or predisposition in specific conditions. Thus, as a steady, common feature hostility

means devaluation of motives and personal qualities of other people, feeling oneself in opposition to people

around and wish them evil. Within the present model, the idea behind the hostility assumption is that

an agent’s effort affects the counterpart’s defeat outcome. The point is that the mutual engagement for an

outcome might intensify rivalries and anger, i.e. hostility, toward the opposing part.29 In particular, hostility

means that when players are hostile, they are fired up on a mission to defeat the other agent. In this case,

a greater intensity of effort worsens the defeat conditions. In particular, the hostility assumption implies

that the counterpart’s effort intensity pushes the defeat outcome away from a player’s bliss point, so that

∂|g1(x1) − d1(x2)|/∂x1 = ∂|g2(x2) − d2(x1)|/∂x2 = γ > 0. Again, the situation in which an increase in a

contender’s effort induces a worse outcome for the loser is quite common, and characterizes situations in

which the confrontation between counterparts leads to a more radical standing for the loser of the conflict.

An example where this kind of spillovers are important is litigation. Depending on the litigation system,

losers have to compensate winners for a portion of their legal expenditures or, under one prominent proposal,

up to the amount actually spent by the loser.

This CM gives rise to the class of strategic-form games ΓL, in which the payoff function πi is

πi(xi, xj) = − βxj (1− αxi) + 1

βxi (1− αxj) + βxj (1− αxi) + 2
[θ + δxi + γxj ]− xi. (2)

From (2), it is evident that the constant term “+1” in the expression of the effectivity function is absolutely

26See Chowdhury and Gürtler (2015)
27See e.g. Baldassarri and Bearman (2007).
28E.g., according to Simmel (1904), hostility is the counterpart of the sympathetic impulse.
29See Miller and Johnston Conover (2015) for an application to political competition.
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general, because the general case can be rephrased by rescaling β, obtaining the same CSF (2). Note that the

proposed CSF has several differences with respect to the Tullock CSF (Tullock (1980)), and avoids several

disadvantages (e.g., the lack of smoothness). This simplifies the interpretation of the roles of the parameters.

The increase in the polarization and in the hostility both negatively affect i’s expected outcome in the payoffs

of the associated game.

The parameters of this family of CM are crucial to the results described in the next section. Hence, to

help the reader with the interpretation, we summarize these parameters in the following table.

Parameters Meaning

α ∈ [0, 1] Direct sabotage

β ∈ (0,+∞) Productivity of effort

γ ∈ [0,+∞) Hostility

δ ∈ [0,+∞) Cumulative polarization

θ ∈ (0,+∞) Ex ante Polarization

Table 1: The structural parameters of the CM and their meaning

4 Results

In this section, we study the different possible sets of equilibria from our symmetric CM, defined in Section

3. We interpret the intensity of each player’s equilibrium effort as the degree of its conflict behavior. We are

particularly interested in understanding which conditions foster the emergence of multiple symmetric and/or

asymmetric equilibria. To this end, we focus on three scenarios, each obtained by considering some (or no)

spillover effects, as illustrated in Assumption 1: (1) no spillovers; (2) spillovers on outcomes, emphasizing

the different roles of the polarization and hostility assumptions; (3) spillovers in the conflict success function,

the direct destructive assumption.

4.1 No spillovers

The case of no spillovers is obtained by setting α = γ = δ = 0. The players’ payoff functions reduce to

πi(xi, xj) = − βxj + 1

βxi + βxj + 2
θ − xi. (3)

In what follows, we identify the corresponding class of strategic-form games by ΓLNS =
{
Γ = ({1, 2} , [0, 1]2, π)

}
,

with π(xi, xj) = π1(x1, x2) × π2(x2, x1), where πi are defined by (7). The expression of the best-response

functions BRi : [0, 1] → [0, 1] is given by

BRi(xj) = max

{
min

{
−xj −

2

β
+

1

β

√
βθ (βxj + 1), 1

}
, 0

}
, (4)

which are continuous, piecewise smooth functions, with derivatives that vanish at the unique fixed point

BRi(x̄) = x̄.

The possible Nash equilibria are investigated in the following Proposition, for which we define

xNE
IS =

βθ − 4

4β
. (5)
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Figure 1: (θ, β) regions where there is the corner equilibrium (0, 0) (light blue), the internal symmetric

equilibrium IS = (xNE
IS , xNE

IS ) (green) or the corner equilibrium (1, 1) (blue). Boundaries are represented by

darker colors with respect to the region to which they belong.

Proposition 1. When no spillover effect is present, there always exists exactly one, symmetric, Nash equi-

librium (xNE , xNE), which can be either an internal or a corner equilibrium, and is defined by

xNE =





0 if βθ ≤ 4,

xNE
IS if 4 < βθ < 4 + 4β,

1 if βθ ≥ 4 + 4β.

(6)

In Figure 1 we graphically represent the result of Proposition 1.

Proposition 1 shows that the occurrence of either a corner or an internal equilibrium is essentially con-

nected to the joint effect of the marginal productivity of effort and to the ex ante polarization. The occurrence

of maximum equilibrium effort in the conflict is constrained to a suitably large ex ante polarization30. Fur-

ther considerations about the effects of β and θ are collected in the following Corollary, the proof of which is

straightforward.

Corollary 1. When no spillover effect is present, then

1. the intensity of the effort in equilibrium xNE
i is non- decreasing in the marginal productivity of the

effort β and in the agents’ polarization;

2. an increase in ex ante polarization θ has the effect of reducing the interval
[
0, 4θ

]
of β for which there

is zero effort, while it increases the interval of β for which there is maximum effort. The interval for

which there is an intermediate degree of effort increases if θ ≤ 4, and decreases if θ > 4.

From the previous proposition, we have that the intensity of the effort in equilibrium xNE
i is non-decreasing

in the marginal productivity of the effort β and in the agents’ polarization. The vertical sections of Figure

1 show that an increase in ex ante polarization θ increases the interval of β for which there is maximum

equilibrium effort (blue vertical sections), and decreases that for which the equilibrium effort is null (light

30If θ < 4, the third case of (6) is not possible
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blue vertical sections). The interval for which there is an intermediate equilibrium effort increases if a low

level (θ < 4) of ex ante polarization is increased, and decreases if the ex ante polarization is sufficiently large

(green vertical sections).

The second result of Corollary 1 shows that when there are no spillovers and polarization is high, then

a small increment in the marginal productivity of effort dramatically changes the equilibrium regime from

no effort to intermediate, or even to maximum effort. In other words, when ex ante polarization is big,

small institutional or technological changes may have a significant effect on the equilibrium behavior, which

explains why the ex ante distance between the counterparts’ goals is often the object that we need to monitor

to minimize the risk of maximum disruptive antagonism. In terms of example 1, this result implies that an

increase in the marginal productivity of effort, for example because of a higher cohesion within the parties,

implies a higher equilibrium effort with no effect on the equilibrium probability of victory however with an

increase in the effort’s costs. This result is consistent with the social studies on conflicts that emphasize

that the mounting wave of conflict in the last two centuries can be partially traced to several developments

leading to an increase in the marginal productivity of effort, developments such as the growth of technology,

of nation-states and its capacity to mobilize resources.31

4.2 Spillovers in outcomes: The role of the cumulative polarization and hostility

assumptions

The case of a spillover in outcomes is obtained by γ > 0 and δ > 0, while keeping α = 0. The resulting payoff

functions are

πi(xi, xj) = − βxj + 1

βxi + βxj + 2
(θ + δxi + γxj)− xi, (7)

from which we obtain the class of strategic-form games ΓLSO =
{
Γ = ({1, 2} , [0, 1]2, π)

}
, with π(xi, xj) =

π1(x1, x2)× π2(x2, x1), where πi are defined by (7).

The results we present in this section are simplified if we introduce the following two synthetic parameters:

∆ (γ, δ) ≡ γ − δ and Λ (β, θ, δ) ≡ βθ − 2δ,

Consider the interpretation of ∆ and Λ. By construction

• ∆(γ, δ) = ∂x2
d1 + ∂x1

g1 = − (∂x1
d2 + ∂x2

g2) = ∂xi
[(g2 − g1) + (d2 − d1)] . Hence, ∆ is a measure

of how both players’ efforts affect the divergence between the goal and defeat outcomes; that is, it

measures how an agent’s effort affects both polarization and hostility. In particular,

γ ↑⇒ ∆ ↑, δ ↓⇒ ∆ ↑ and ∆ ↑⇒ γ ↑ ∨δ ↓,

which means that an increment in ∆ reduces the effects of cumulative polarization (δ ↓) and/or worsens
the effects of hostility (γ ↑). Moreover

∆ ≥ 0 ⇔ γ ≥ δ

i.e. ∆ is positive if and only if hostility prevails over polarization. Hence, we expect that an increment

in a positive ∆ would increase the equilibrium efforts.

• Λ (β, θ, δ) = θ∂xi
Si (α = 0)−2 |∂xi

gi| . Hence, Λ is a measure of the combination of ex ante polarization

and the productivity of i’s effort, net of the endogenous polarization effect. In particular,

β ↑ ∨θ ↑⇒ Λ ↑, δ ↓⇒ Λ ↑ and Λ ↑⇒ β ↑ ∨θ ↑ ∨δ ↓,
31See e.g. Bartos and Wehr (2002).
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which means that an increment in Λ reduces the effects of i′’s effort on cumulative polarization (δ ↓),
and/or increases the marginal productivity of effort (β ↑), and/or increases the ex ante polarization

(θ ↑). Moreover

Λ (β, θ, δ) ≥ 0 ⇔ βθ ≥ 2δ

i.e. Λ is positive if and only if the combination of ex ante polarization and the productivity of i’s effort

prevails over the polarization effect. Hence, we expect that an increase in positive Λ would increase the

equilibrium efforts.

The best-response functions related to games Γ ∈ ΓLSO are continuous, piecewise smooth functions

BRi : [0, 1] → [0, 1], given by

BRi(xj) =






min

{
max

{
−xj −

2

β
+

1

β

√
(β∆xj + Λ) (βxj + 1), 0

}
, 1

}
if β∆xj + Λ ≥ 0,

0 if β∆xj + Λ < 0.

(8)

Note that the continuity of the best-response function guarantees the existence of the Nash equilibrium.

The main difference between this and the case of no spillovers, despite the possibility of having strictly

non-increasing best-response functions, lies in its behavior at the fixed points x̄. When there are spillovers

in polarization and in outcomes, it is no longer true that the best-response functions are flat at x̄, and the

uniqueness of the equilibrium is no longer guaranteed. Note that when ∆ = Λ = 4, the best-response function

(8) reduces to BRi(xj) = xj . Thus, in this peculiar case, any strategy xi ∈ [0, 1] is a Nash equilibrium. We

avoid dealing further with this case. Therefore, in the remainder of this section, we assume that at least one

of the two synthetic parameters ∆ and Λ is different from 4.

Let us introduce

xNE
IS = − 1

β

[
Λ − 4

∆− 4

]
, (9)

xNE
1,AS =

−(Λ +∆) + (Λ−∆)
√

∆+4
∆

2β∆
, xNE

2,AS =
−(Λ +∆)− (Λ −∆)

√
∆+4
∆

2β∆
, (10)

and

xNE
0,B = − 1

β

(
2−

√
Λ
)
, xNE

1,B = − 1

β

(
2 + β −

√
(β + 1) (β∆+Λ)

)
. (11)

which, when real and belonging to [0, 1], are respectively the coordinates of the internal symmetric, internal

asymmetric and boundary asymmetric Nash equilibria. In the following proposition we report the set of

possible Nash equilibria.

Proposition 2. When the polarization and hostility assumptions hold, for any parameter configuration, there

exist up to three Nash equilibria. In particular, we can have

• a unique symmetric internal (xNE
IS , xNE

IS ) or corner equilibrium;

• three symmetric equilibria, with one internal (xNE
IS , xNE

IS ) and two corner equilibria;

• three internal asymmetric equilibria, corresponding to (xNE
IS , xNE

IS ), (xNE
1,AS , x

NE
2,AS), and (xNE

2,AS , x
NE
1,AS);

• the internal symmetric equilibrium (xNE
IS , xNE

IS ) and two asymmetric boundary/corner equilibria, either

(xNE
0,B , 0), (0, xNE

0,B ) or (xNE
1,B , 1), (1, xNE

1,B ).

In Figure 2, we present the most significant configurations of the equilibria described in Proposition 2.

Before commenting on the effects of spillovers on the possible sets of equilibria, we complete the results of

Proposition 2 to determine which parameter configurations provide multiplicity of symmetric and asymmetric

equilibria.
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Figure 2: Multiple Nash equilibria for games Γ ∈ ΓLSO. Best response functions BRi(xj) are respectively

sketched using color red (i = 1) and blue (i = 2), while stars represents the Nash equilibria. From left to right,

top to down we respectively have multiple symmetric, multiple asymmetric internal, multiple asymmetric

boundary and multiple asymmetric corner equilibria. We set β = 10 and γ = 2.

Proposition 3. For any CM, when the polarization and the hostility assumptions hold, there exist

• multiple symmetric Nash equilibria if and only if

{
4− β (∆− 4) ≤ Λ ≤ 4,

∆ ≥ 4;
; (12)

• asymmetric Nash equilibria if and only if

{
4 < Λ < β(4−∆) + 4,

∆ < −4;
; (13)

• a unique symmetric equilibrium if and only if




Λ ≤ 4,

∆ < 4(β+1)−Λ
β ,

∪




Λ > 4,

∆ ≥ 4(β+1)−Λ
β ,

∪





∆ ≥ −4,

Λ > 4,

∆ < 4(β+1)−Λ
β .

(14)

If condition (12) is fulfilled with a strict inequality, then we have three distinct equilibria. However,

when equality occurs, the internal equilibrium coincides with either (0, 0) or (1, 1), and we actually have

the two symmetric corner equilibria. In what follows we focus on the case of three distinct equilibria.
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The multiplicity of the symmetric equilibria (i.e., condition (12)) necessarily requires that ∆ > 4, while

the multiplicity of the asymmetric equilibria (i.e., condition (13)) necessarily requires that ∆ < −4. If the

divergence between the goal and defeat outcomes is suitably small (|∆| < 4), the possible scenarios are the

same as those in the case of no spillovers, and only a unique symmetric equilibrium is possible. This means

that the measure of how both players’ efforts affect the divergence between the goal and defeat outcomes

should be sufficiently large or small to obtain multiple equilibria. However, for intermediate values, we have

uniqueness, as if there are no outcome spillovers. Similarly, the multiplicity of symmetric equilibria (i.e.,

condition (12)) necessarily requires β (4−∆) + 4 < Λ < 4, while the multiplicity of asymmetric equilibria

(i.e., condition (13)) necessarily requires 4 < Λ < β(4 −∆) + 4. Thus, the measure of the combination of ex

ante polarization and the productivity of i’s effort, net of the polarization effect, should be high intermediate

in order to obtain multiple asymmetric equilibria. Conversely, for low intermediate values, we might obtain

multiple symmetric equilibria. More generally, if hostility is sufficiently large with respect to cumulative

polarization, multiple symmetric equilibria can arise for intermediate values of Λ. On the other hand, if

hostility is sufficiently small with respect to cumulative polarization, multiple asymmetric equilibria can

arise, again for intermediate values of Λ. This means that a relatively large level of cumulative polarization

can lead to equilibria in which the intensity of the effort of one contender is larger than that of the other,

which may become the maximum and minimum values possible, respectively (see the last plot of Figure 2).

Since ∆ is a measure of how both players’ efforts affect the divergence between the goal and defeat

outcomes, that is, a measure of how an agent’s effort affects both polarization and hostility, the existence of

multiple symmetric equilibria requires a significant endogenous effect of effort on hostility, net of polarization.

On the other hand, the existence of multiple asymmetric equilibria requires a significant endogenous effect of

effort on polarization, net of hostility. This result shows the different roles played by cumulative polarization

and by hostility. In particular, the magnitude of hostility w.r.t. to cumulative polarization is the main factor

leading to multiple symmetric equilibria, while multiple asymmetric equilibria requires significant and roughly

similar effects of cumulative polarization and of hostility. The point is that the introduction of spillovers on

goal and defeat outcomes introduce escalating and de-escalating endogenous mechanisms which might take

the form of strategic complementarity, and of multiple symmetric equilibria, or of strategic substitutability,

and of multiple asymmetric equilibria, depending whether hostility or cumulative polarization prevail or

compensate. This result shows that, as argued by social scientists32, hostility plays quite a different role in

conflict than polarization. The relationship between hostility and conflict behavior is complex. On one hand,

hostility adds fuel to and intensifies effort, on the other hand increasing effort increases hostility, pointing to

strategic complementarity in players’ effort. Cumulative polarization has a different effect because increases

the distance between goals, but does not affect the defeat outcomes, meaning that in some cases it might be

strategically rational to reply to an opponent effort increment with a reduction in effort, i.e. with strategic

substitutability.

Now consider all four parameters: productivity of effort β, endogenous hostility γ, cumulative polarization

δ, and ex ante polarization θ. Because of these four parameters it is impossible to have a full picture of the

joint effects of these parameters. However, it is interesting to consider the necessary and sufficient conditions

w.r.t. β and θ, for given γ and δ, and similarly, the necessary and sufficient conditions w.r.t δ and γ, for

given β and θ. To help with the discussion, Figures 3 and 4 show two-dimensional sections of the regions of

multiple, symmetric, or asymmetric equilibria in the(δ, γ) and (β, θ) planes.

Consider δ and γ, for given β and θ. The necessary and sufficient conditions ((12)) for multiple symmetric

32See Bartos and Wehr (2002).
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Figure 3: (δ, γ) regions in which there is only the corner equilibrium (0, 0) (light blue), only the internal

symmetric equilibrium IS = (xNE
IS , xNE

IS ) (green), only the corner equilibrium (1, 1) (blue) or there are

multiple symmetric (MS, yellow) or asymmetric (MA, red) equilibria. Boundaries are represented by darker

colors with respect to the region to which they belong. We set θ = 12.

equilibria can be written as

βθ − 4

2
< δ < min

{
γ − 4;

β (γ + θ)− 4 (β + 1)

β + 2

}
,

which means that cumulative polarization should be bounded below by the interaction between the pro-

ductivity of effort and ex ante polarization, and above by a measure of endogenous hostility. Thus, as

shown in Figure 3, both cumulative polarization and endogenous hostility should be sufficiently large, even

if cumulative polarization cannot grow quickly.

On the other hand, the necessary and sufficient conditions (13) for multiple asymmetric equilibria can be

written as

max

{
γ + 4;

β (γ + θ)− 4 (β + 1)

β + 2

}
< δ <

βθ − 4

2
,

which means that cumulative polarization should be bounded above by the interaction between the pro-

ductivity of effort and ex ante polarization, and below by a measure of endogenous hostility. Thus, both

cumulative polarization and endogenous hostility should be significant, but they are restricted in their values,

while a crucial role is played by the interaction between the productivity of effort and ex ante polarization,

which should be sufficiently large (see Figures 3 and 4).

With regard to the necessary and sufficient conditions w.r.t β and θ, for given δ and γ, we have that the

necessary and sufficient conditions (12) for multiple symmetric equilibria can be written as






4 + 2δ

θ + (∆− 4)
< β <

4 + 2δ

θ
,

∆ > 4,
.

Thus, the productivity of effort should be bounded below and above by two values that are decreasing in

ex ante polarization, but increasing in cumulative polarization (Figure 4). The necessary and sufficient

conditions for multiple asymmetric equilibria (13) can be rewritten as






4 + 2δ

θ
< β <

4 + 2δ

θ + (∆− 4)
,

∆ < −4 ∧ θ > 4−∆,
∨






4 + 2δ

θ
< β,

∆ < −4 ∧ θ < ∆− 4,
.
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Figure 4: (θ, β) regions in which there is only the corner equilibrium (0, 0) (light blue), only the internal

symmetric equilibrium IS = (xNE
IS , xNE

IS ) (green), only the corner equilibrium (1, 1) (blue) or there are

multiple symmetric (MS, yellow) or asymmetric (MA, red) equilibria. Boundaries are represented by darker

colors with respect to the region to which they belong. Arrows show toward which direction boundaries move

as the parameter increases.

Thus, the range of possible values for the productivity of effort depends on the value of ex ante polarization.

These cases are depicted in Figure 4, in which we also show how the thresholds vary depending on δ and γ,

when the dependence is uniform with respect to the other parameters. These figures show that the regions

of different sets of equilibria in the (θ, β) space have similar behavior w.r.t. the case of no spillovers. Here,

a big value of ex ante polarization means a small increase in the productivity of effort is sufficient to shift

from a region with no effort to an intermediate situation, possibly with multiple symmetric or asymmetric

equilibria, to a region with maximum effort only.

In the following Corollary, we show the results concerning the effects of the parameters on the equilibria.

We start examining how the intensity of effort at the various Nash equilibria varies depending on β, δ, γ, and

θ. We assume that the parameters’ perturbation is such that it does not affect the existence of the particular

equilibrium. In this sense, the results of Corollary 2 are local. For a graphical representation, refer to Figures

3 and 4.

Corollary 2. Assume that we have an internal symmetric equilibrium. Then,

1. if ∆ < 4, then an increase in β, γ, or θ leads to an increase in xNE
IS , while an increase in δ leads to a

decrease in xNE
IS ;

2. if ∆ > 4, then an increase in β, γ, or θ leads to a decrease in xNE
IS , while an increase in δ leads to an

increase in xNE
IS .

In case (1), since we assume that the symmetric equilibrium is internal, recalling Proposition 3, we

necessarily have a unique symmetric equilibrium, with the possibility of asymmetric equilibria. In this case,

the effort at the symmetric equilibrium is increasing in the marginal productivity of effort, in endogenous

hostility, and in the ex ante polarization. However, maybe surprisingly, it is decreasing in the cumulative

polarization. The point is that with a bigger δ, an increment in effort has two effects: it increases the

likelihood of winning the conflict, and it pushes the two players’ goals further away. However, an increase in

γ makes a default worse, incentivizing more effort.

In case (2), recalling Proposition 3, there are multiple symmetric equilibria. Surprisingly, the effects of the

parameters on the symmetric equilibrium are completely reversed. The effort at the internal equilibrium is
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decreasing in the marginal productivity of effort, in endogenous hostility, and in the ex ante polarization, but

is increasing in the cumulative polarization. However, it should be emphasized that in this case, an increase

in cumulative polarization increases the regions with zero-effort equilibria, while an increase in endogenous

hostility increase the regions of maximum-effort equilibria.

The results on asymmetric equilibria are more complex, although are qualitatively similar.

The different roles played by cumulative polarization and hostility in the equilibrium effort, both in

terms of the emergence of possible asymmetric and multiple equilibria, and in terms of the effect of the

equilibrium intensity, suggest that it is fundamental to distinguish between them in the design, analysis, and

interpretation of a conflict model, as it is common in classic social conflict theory.33

4.3 Spillovers in effectivity function: Effects of the direct sabotage assumption

Assume α > 0, γ = δ = 0; that is, a positive direct destructiveness effect. Then, the resulting payoff functions

are

πi(xi, xj) = − βxj (1− αxi) + 1

βxi (1− αxj) + βxj (1− αxi) + 2
θ − xi, (15)

from which we obtain the class of strategic-form games ΓLSE =
{
Γ = ({1, 2} , [0, 1]2, π)

}
, with π(xi, xj) =

π1(x1, x2)× π2(x2, x1), where πi are defined by (15).

In this case, the best response is not always a function. In particular, if α < 1/2, it is a function expressed

by

BRi(xj) = max



min



− 2

β(1− 2αxj)
− xj

(1− 2αxj)
+

√
βθ(−αβx2

j + βxj + 1)

β(1 − 2αxj)
, 1



 , 0



 . (16)

If α ≥ 1/2, we have that BRi(xj) coincides with the right hand side of(16) if xj ∈ [0, 1/2α) ∩ [0, 1] , and

for xj ∈ (1/(2α), 1] ∩ [0, 1] it is either a constant function (as for example in Figure 5, left plot) or a

correspondence (Figure 5, middle and right plots). The main difference between the case of spillovers on the

effectivity function and the cases without spillovers or with spillovers in the outcome is that, in the present

case, the best response is no longer necessarily convex-valued. Thus, Kakutani’s Theorem cannot be applied,

and the existence of the Nash equilibrium is no longer guaranteed, as is evident in the right plot of Figure 5.

Introducing

xNE
IS =

1

2α
−

√
β(4α+ β − αβθ)

2αβ
, (17)

we can state the following result about the set of Nash equilibria under spillovers in the effectivity function.

Proposition 4. For any CM such that the direct sabotage assumption holds, we can have either a unique

symmetric equilibrium, which can be the internal point (xNE
IS , xNE

IS ) or one of the corner points (0, 0) and

(1, 1), or no equilibrium.

The main result on ΓLSE is the possible non-existence of a pure-strategy Nash equilibrium, which is

fostered by a sufficiently large value of destructiveness of effort, as shown in the following Corollary. The

direct sabotage assumption is a way of modeling a situation where agents use strategies to damage someone

else’s success rather than improving their own. The discontinuity in the best reply correspondence arises

because when the opponent’s effort is not too big, the best way to hinder the sabotage effect is to increase

his/her own effort, however at some point when the opponent effect is huge, then the best way to avoid the

negative effect on the likelihood to get the goal is to suddenly reduce to zero his/her own effort so to cancel

the sabotage too.

33See Bartos and Wehr (2002).
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Figure 5: Possible resulting Nash equilibria for games Γ ∈ ΓLSE . Best response functions BRi(xj) are

respectively sketched using color red (i = 1) and blue (i = 2), while stars represents the Nash equilibria. We

set β = 2.

Corollary 3. The intensity of effort xNE
IS increases as β, θ, and α increase.

We have no equilibria if and only if 



α ≥ 1/2,
4

β
≤ θ ≤ 4α+ β

αβ
.

A graphical representation of the possible equilibria, depending on the parameters, is reported in Figure

6. Note that we have the usual effects of the marginal productivity of effort and of ex ante polarization on

the equilibrium effort, as well as of the direct destructiveness parameter. However, when these effects are

sufficiently large, they rule out the existence of a (pure strategy) equilibrium, owing to the discontinuity in

the best-response functions.

5 The Changing Patterns of Aggregate Conflict Intensity

In this section, we analyze a measure of the overall conflict intensity, CI, to evaluate the total equilibrium

effort of the players. Among the different ways of assessing the aggregate equilibrium effort of the players, we

actually follow the practice of Esteban and Ray (1999, 2008, 2011) considering the average players’ effort34

CI(x∗
1, x

∗
2) =

x∗
1 + x∗

2

2
.

In particular, we define the conflict intensity

• CIIS , at the internal symmetric equilibrium as CIIS = CI(xNE
IS , xNE

IS );

• CIAS , at the internal asymmetric equilibria as CIAS = CI(xNE
AS , xNE

AS );

• CIi,B for i = 0, 1 at the boundary equilibria as CIi,B = CI(xNE
i,B , i).

Corollary 4. On increasing the parameters, depending on the equilibria scenario, the intensity of conflict

at internal equilibria is

34Esteban and Ray simply adopted the sum of efforts, the linear transformation of it adopted in the present contribution

allows considering the aggregate conflict intensity as still a share of the maximum possible effort devoted to conflict.
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Figure 6: (α, θ) regions in which there is the corner equilibrium (0, 0) (light blue), the internal symmetric

equilibrium IS = (xNE
IS , xNE

IS ) (green), the corner equilibrium (1, 1) (blue) or no equilibrium (white). Bound-

aries are represented by darker colors with respect to the region to which they belong. Arrows show toward

which direction boundaries move as β increases.

CIS CAS
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

❳

Parameter

Scenario
Unique int.

sym. eq.

Multiple int.

sym. eq.

Multiple

asym. eq.

Multiple

asym. eq.

marginal productivity of

effort β

increasing

concave

decreasing

convex

increasing

concave

increasing

concave

ex ante polarization θ linearly

increasing

linearly

decreasing

linearly

increasing

linearly

increasing

marginal effect on en-

dogenous polarization δ

decreasing

convex

increasing

convex

decreasing

convex

decreasing

convex

marginal effect on en-

dogenous hostility γ

increasing

convex

decreasing

convex

increasing

convex

increasing

convex

Monotonicity and concavity properties are always strict.

Corollary 5. On increasing the parameters, when multiple asymmetric boundary equilibria occurs, the in-

tensity of conflict is

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Parameter

Scenario
C1,B C0,B

marginal productivity of

effort β

increasing

concave

not mono-

tonic

ex ante polarization θ increasing

concave

increasing

concave

marginal effect on en-

dogenous polarization δ

decreasing

concave

decreasing

concave

marginal effect on en-

dogenous hostility γ

increasing

concave

constant

Monotonicity and concavity properties are always strict.
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Corollary 5 shows that in the case of multiple asymmetric equilibria, the behavior of conflict intensity

for border equilibria is first-order similar to the case of interior equilibria apart from the effect of marginal

productivity of effort and of hostility on C0,B. The most informative and interesting results can be found in

Corollary 4. It shows the systematic reverse of the parameters’ effects on the aggregate conflict intensity from

the case of a unique internal symmetric equilibrium to the situation of multiple internal symmetric equilibria.

On the other hand, the intensity of conflict has a similar behavior in both the cases of multiple interior

asymmetric equilibria and of a unique interior symmetric equilibrium. This means that for the analysis of

the aggregate intensity of conflict, the main crucial distinction is between two polar situations, when there

are multiple symmetric equilibria and the other scenarios. In Section 4.2, we showed that the multiplicity of

symmetric equilibria necessarily requires ∆ > 4, otherwise either we get multiplicity of asymmetric equilibria

(∆ < −4) or a unique symmetric equilibrium (|∆| < 4). This means that the measure of how both players’

efforts affect the divergence between the goal and defeat outcomes crucially affects the qualitative behavior of

conflict intensity. Moreover, the multiplicity of symmetric equilibria necessarily requires β (4−∆)+4 < Λ <

4, while the multiplicity of asymmetric equilibria necessarily requires 4 < Λ < β(4−∆)+4. Thus, the peculiar

scenario of multiple symmetric equilibria requires that the hostility and the cumulative polarization belong to

a positively sloped cone that requires higher cumulative polarization and higher hostility as the productivity

of effort or the ex ante polarization increase. This is evident looking at the yellow region (labelled with MS)

in the diagrams reported in Figure 3.

Thus, according to Corollary 4, cumulative polarization and hostility not only lead to multiple symmetric

equilibria as showed in Section 4.2, they also affect the behavior of conflict intensity, confirming that the

introduction of spillovers on goal and defeat outcomes introduce new important escalating and de-escalating

mechanisms in conflict behavior which might take the form of strategic complementarity when hostility

prevail, proving once more that hostility plays quite a different role in conflict than polarization. These results

bolster the importance of distinguishing the different scenarios and the role of the different parameters, thus

the relevance of our construction of this general class of CMs.

6 Conclusion

This paper focuses on analyzing and understanding the determinants of the properties of the equilibrium set

in a class of conflict models. In particular, we focus on five different structural parameters - direct sabotage

(α), productivity of effort (β), ex ante polarization (θ) , cumulative hostility (γ) and polarization (δ) - and

on their effects on the set of equilibria.

To the best of our knowledge, the proposed family of CMs is the first to generate such a multiplicity of

possible equilibria scenarios, connecting their characteristics to fundamental micro properties of the model.

Based on the proposed approach, it is possible to understand the role of spillovers (or of their absence) on

the emergence of multiple and/or asymmetric equilibria and on the behavior of conflict intensity. Within our

model, the emergence of these different equilibrium possibilities have a neat strategic interpretation. First,

the possibility of having boundary and or/corner equilibria is not ruled out, with a clear interpretation of

minimum/maximum equilibrium efforts. Characterizing a conflict only in terms of the constant productivity

of effort (β) and polarization (θ) is quite limited, because it allows for the existence of a unique symmetric

Nash equilibrium only. Conversely, an essential role is played by the endogenous effects on the outcomes (the

polarization and cumulative hostility assumptions), which lead to a complex situation in which equilibria

can be multiple and symmetric or asymmetric. In particular, we emphasize the possibility of having multiple

Pareto ordered symmetric equilibria. We showed that it is essential to distinguish between different spillover

effects, because the effects of cumulative polarization (δ) and of cumulative hostility (γ) lead to significantly
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different, and possibly opposite results. Moreover, the analysis of the effects of these parameters on the total

conflict intensity shows that they are opposite whether the scenario is with multiple symmetric equilibria or

not, reinforcing the importance of distinguishing the parameters combinations that justify the emergence of

such different cases.

Finally, taking into account the possibility of direct destructive spillovers in a contender’s marginal pro-

ductivity of effort (α), the non-existence of pure-strategy Nash equilibria is possible.

In all these results, a crucial role is played by ex ante polarization (θ): an increase in ex ante polarization

with constant productivity of effort (β) either increase the likelihood of an equilibrium with high effort (figure

1 and 4), or increase the likelihood of multiple equilibria (figure 4), or lead to non existence of pure strategy

equilibria (figure 5).

The results pursued here allow for further investigations in several directions. From a methodological

point of view, the properties of conflicts can be analyzed in two different and complementary ways: either

using comparative statics, showing how equilibria change as parameters change, or using out-of-equilibrium

dynamics to emphasize players’ complex and cyclic behavior. This paper belongs to a strand of research

in which we pursue both aspects. Here, we analyzed the structural conditions that generate one, zero, or

multiple symmetric and asymmetric equilibria, as well as their properties as a function of the structural

parameters.

Appendix

In this Section we provide details about how best response relations are obtained and we report the proofs

of the Propositions and Corollaries of Sections 4.1, 4.2 and 4.3, respectively concerning the family of games

ΓNS ,ΓLSO and ΓLSE.

6.1 Proofs of Section 4.1

Firstly, we derive the expression for the best response (4). We start noticing that

∂πi(xi, xj)

∂xi
=

β (θ + βθxj)

(βxi + βxj + 2)
2 − 1. (18)

It is easy to see that ∂2
xi
πi(xi, xj) < 0, so the payoff function is strictly concave for any parameters’ configu-

ration. Let us introduce function x+ : [−1/β,+∞) → R defined by

x+(z) = −z − 2

β
+

√(
z +

1

β

)
θ, (19)

which will be used for the characterization of the best response function. Function x+ is strictly concave

and has a unique fixed point at zm = (βθ − 4)/(4β), coinciding with the unique maximum point of x+.

Moreover, x+ is strictly increasing (respectively decreasing) on [−1/β, zm) (respectively in (zm,+∞)), on

which x+(z) > z (respectively x+(z) < z).

To compute the best response function, we start solving xi = argmaxz∈[0,1] πi(z, xj) for a fixed strategy

xj ∈ [0, 1]. From (18), we have that ∂xi
πi(xi, xj) ≥ 0 leads to

−β2x2
i +

(
−2xjβ

2 − 4β
)
xi −

(
β2x2

j − θβ2xj + 4βxj − θβ + 4
)
≥ 0. (20)

Assuming that xj > −1/β, inequality (20) is solved for x−(xj) ≤ xi ≤ x+(xj), where

x±(xj) = −xj −
2

β
±
√(

xj +
1

β

)
θ
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are real values for any positive β and θ. Noticing that x−(xj) < 0, for each xj we have three possibilities.

• x+(xj) ≤ 0 : the marginal payoff is negative for any xi ∈ [0, 1], so the payoff function πi(xi, xj) is strictly

decreasing for any xi ∈ [0, 1] and attains its maximum at xi = 0. In this case we have BRi(xj) = 0.

• x+(xj) ∈ (0, 1) : the marginal payoff is positive for any xi ∈ [0, x+(xj)) and negative for any xi ∈
(x+(xj), 1], so the payoff function πi(xi, xj) is strictly increasing for any xi ∈ [0, x+(xj)) and strictly

decreasing for any xi ∈ (x+(xj), 1], and attains its maximum at xi = x+(xj). We then have BRi(xj) =

x+(xj).

• x+(xj) ≥ 1 : the marginal payoff is positive for any xi ∈ [0, 1], so the payoff function πi(xi, xj) is strictly

increasing for any xi ∈ [0, 1] and attains its maximum at xi = 1. We then have BRi(xj) = 1.

The previous considerations allow concluding that BRi(xj) = min{max{x+(xj), 0}, 1}, namely we find

(4).

Proof of Proposition 1. If we solve the system of the two equations x1 = BR1(x2) and x2 = BR2(x1), we

easily find that the unique possible solution belongs to {(0, 0), (1, 1), (xNE
IS , xNE

IS )}. In particular, recalling

the expression of the best response in terms of x+ and the role of zm, we have that the Nash equilibrium is

(0, 0) if and only if zm ≤ 0; is (xNE
IS , xNE

IS ) if and only if 0 < zm < 1; is (1, 1) if and only if zm ≥ 1. Solving

the previous inequalities we obtain (6).

6.2 Proofs of Section 4.2

Firstly, we derive the expression for the best response (8). We start noticing that, from (7), we have

∂πi(xi, xj)

∂xi
=

β (βxj + 1) (θ + δxi + γxj)

(βxi + βxj + 2)
2 − δ (βxj + 1)

βxi + βxj + 2
− 1,

∂πi(xi, xj)

∂x2
i

= −2β (βxj + 1) (Λ + β∆xj)

(βxi + βxj + 2)
3 ,

(21)

and we introduce function x+ : D → R, defined on set D = {xj ∈ [0, 1] : Λ + β∆xj ≥ 0}, whose expression

is given by

x+(xj) = − 2

β
− x2 +

√
(βxj + 1)(Λ + β∆xj)

β
. (22)

We remark that set D depends on the parameters’ configuration. Function (22) is strictly concave for Λ 6= ∆,

while for Λ = ∆ it becomes

x+(xj) = −xj

(
1−

√
Λ
)
+

√
Λ− 2

β
. (23)

To derive the expression for the best response we distinguish three cases, depending on xj .

a) xj ∈ [0, 1] is such that Λ + β∆xj < 0. In this case, we have from (21) that the payoff function πi(xi, xj)

is strictly convex with respect to xi, so its global maximum is attained at xi = 0 and/or xi = 1. Since

πi(0, xj)− πi(1, xj) > 0 ⇔ ω = β2(1−∆)x2
j + β(4 −∆− Λ + β)xj + 4 + 2β − Λ > 0,

using −Λ ≥ β∆xj we obtain ω > β2x2
j + β(4 + β)xj + 4 + 2β > 0, which is indeed true. This means that

BRi(xj) = 0.

b) xj ∈ [0, 1] is such that Λ + β∆xj = 0. In this case we have that

πi

(
xi,−

Λ

β∆

)
= −δ

∆− Λ

βΛ
− xi
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is a decreasing function and this again provides BRi(xj) = 0.

c) xj ∈ [0, 1] is such that Λ + β∆xj > 0. In this case the payoff function is strictly concave. To find

xi = argmaxz∈[0,1] πi(z, xj), we start noticing that, from (21), imposing ∂xi
πi(xi, xj) ≥ 0 we obtain

− β2x2
i +−2β (βxj + 2)xi + βθ − 2δ − 4βxj − β2xj

2

+ β2θxj − β2δxj
2 + β2γxj

2 − 3βδxj + βγxj − 4 ≥ 0. (24)

The previous inequality is solved for x−(xj) ≤ xi ≤ x+(xj), where

x±(xj) = − 2

β
− xj ±

√
(βxj + 1)(Λ + β∆xj)

β
,

which, since Λ + ∆xj > 0, are both real and satisfy x−(xj) < −1/β < x+(xj). Since x+ is concave, the

present setting is then very similar to that we obtained in the case of no spillover. Proceeding in the same

way, we easily obtain BRi(xj) = min{max{x+(xj), 0}, 1}.
Combining the results of cases (a),(b) and (c) provides (8).

We stress that the best response function is continuous. This is evident if either Λ + β∆xj ≤ 0 or

Λ + β∆xj > 0 for every xj ∈ [0, 1]. Conversely, if x̄j = −Λ/(β∆) belongs to (0, 1), we need to check the

continuity of BRi at xj = x̄j . If ∆ > 0 (and so Λ < 0) we have that BRi(xj) = 0 for xj ≤ x̄j and since

lim
xj→x̄+

j

x+(xj) =
1

β

(
Λ

∆
− 2

)
< 0, (25)

we have limxj→x̄+

j
BRi(xj) = 0, so the best response function is continuous. Similarly, if ∆ < 0 (and so

Λ > 0) we have that BRi(xj) = 0 for xj ≥ x̄j and, since (25) still holds, we have limxj→x̄−

j
BRi(xj) = 0, so

the best response function is again continuous.

Proof of Proposition 2. To find symmetric and asymmetric internal equilibria we must solve the system of

the two equations x+(x2) = x1 and x+(x1) = x2, which provides x = −1/β 6∈ [0, 1] and (9) and (10). The

analytical expressions for (11) are obtained by solving the two equations x+(x) = 0 and x+(x) = 1. We omit

to report the simple but very long computations. We just notice that even if xNE
i,AS are well-defined even if

∆ > 0, they are actually solutions of the aforementioned system only if ∆ ≤ 4. Moreover, if ∆ = −4, we

actually have xNE
1,AS = xNE

2,AS = xNE
IS .

Before proving Proposition 3, we need some preliminary results.

Lemma 1. We have that

a) BRi(0) = 0 if and only if Λ ≤ 4;

b) BRi(1) = 1 if and only if ∆ ≥ 4(β+1)
β − Λ

β ;

c) xNE
IS ∈ (0, 1) if and only if

{
Λ < 4,

∆ > 4(β+1)
β − Λ

β ,
∪
{

Λ > 4,

∆ < 4(β+1)
β − Λ

β ,

d) asymmetric equilibria exists if and only if ∆ < −4 and there are no symmetric corner equilibria.

Proof. a,b) The proof is straightforward.

c) It is sufficient to solve 0 < xIS < 1. From

0 <
Λ− 4

β(4−∆)
< 1
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we have 



Λ− 4 < 0,

4−∆ < 0,

∆ > 4(β+1)
β − Λ

β ,

∪





Λ− 4 > 0,

4−∆ > 0,

∆ < 4(β+1)
β − Λ

β .

Noticing that in each system the first and the last conditions imply the second ones allows concluding.

d) The proof essentially relies on the continuity of the best response function and on the existence of a

unique symmetric equilibrium and of a unique couple of asymmetric equilibria.

We start proving that if either symmetric corner equilibria exist or if ∆ ≥ −4, then no asymmetric

equilibria are possible. To this end, let us introduce the two regions

T1 = {(x1, x2) ∈ [0, 1]2 : x1 ≤ x2}, T2 = {(x1, x2) ∈ [0, 1]2 : x1 ≥ x2},

respectively corresponding to the two triangles in which the square [0, 1]2 is divided by the line x2 = x1.

We prove that if ∆ > −4 and there are no symmetric corner equilibria, then there are asymmetric

equilibria. By contradiction, we actually show that if either there are symmetric corner equilibria or if ∆ ≥ 4

then no asymmetric equilibria are possible.

Firstly, we assume that a symmetric corner equilibrium is present, for example point (0, 0). FromBRi(0) =

0 for i = 1, 2, we should either have that

d1) the best response functions do not intersect line x2 = x1 on (0, 1), namely BR2([0, 1]) ⊂ Tr and

BR1([0, 1]) ⊂ Ts with r, s ∈ {1, 2} and r 6= s

d2) the best response functions intersect line x2 = x1 at xNE
IS , namely BR2([0, x

NE
IS ]) ⊂ Tr ∩ [0, xNE

IS ] ×
[0, 1], BR1([0, x

NE
IS ]) ⊂ Ts ∩ [0, 1] × [0, xNE

IS ] and BR2([x
NE
IS , 1]) ⊂ Ts ∩ [xNE

IS , 1] × [0, 1], BR1([x
NE
IS , 1]) ⊂

Tr ∩ [0, 1]× [xNE
IS , 1] with r, s ∈ {1, 2} and r 6= s.

No other configurations are possible since, recalling Proposition 2, the best response functions can have at

most one intersection with x2 = x1 on (0, 1). In both cases (d1) and (d2), the graphs of the best response

functions are included in sets which have no asymmetric points in common, and so no asymmetric equilib-

ria can exist. As similar argument allows concluding that if point (1, 1) is an equilibrium, no asymmetric

equilibria can exist.

Now we assume ∆ ≥ −4. Since we can indeed assume that no corner equilibria exist and noticing that

the continuity of the best response function implies that at least a symmetric equilibrium exists, (xNE
IS , xNE

IS )

is the unique symmetric equilibrium and we must necessarily have

{
Λ > 4,

∆ < 4(β+1)
β − Λ

β ,

as otherwise we would have that either (0, 0) or (1, 1) are equilibria. Combining the two inequalities, we then

have

∆ < 4 + (4 − Λ)/β < 4 < Λ, (26)

from which we can conclude that

BR′
2(x

NE
IS ) =

(∆ + 4)sign(∆− Λ)

4sign(∆− 4)
− 1 =

∆+ 4

4
− 1. (27)

Using arguments similar to those used in case (d2) (from (26) we have BR′
2(x

NE
IS ) < 1, so a situation similar

to that in case (d1) is excluded), we can conclude that if BR′
2(x

NE
IS ) ≥ 0, no asymmetric equilibria are

possible, which recalling (27), allows concluding that no asymmetric equilibria arise if ∆ ≥ 0. We then

consider −4 ≤ ∆ < 0. Recalling the proof of Proposition 2, no internal asymmetric equilibria arise. To

prove that no boundary/corner equilibria are possible, in what follows, we assume that, as in Figure 2,
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functions x2 = BR2(x1) and x1 = BR1(x2) are represented having domains on the horizontal and vertical

axis, respectively. Moreover, it is indeed sufficient to focus on what happens, for example, in T2. We prove

that if ∆ ∈ [−4, 0), function x1 = BR1(x2) is invertible on D = {BR1(x2) > 0} ∩ [xNE
IS , 1] and there is left

neighborhood of xNE
IS on which the graph of BR2 lies strictly below the graph of BR−1

1 . If −4 < ∆ < 0, we

have BR′
2(x

NE
IS ) ∈ (−1, 0) so, thanks to the symmetry, the slope of the tangent line of BR1 (in plane (x1,x2))

is 1/BR′
2(x

NE
IS ) < −1. This provides the neighborhood with the aforementioned property. Moreover, as BR1

is concave, BR1 is non-increasing on (xNE
IS , 1] and coincides with x+ where it is strictly positive and strictly

decreasing. This allows concluding that BR1 is invertible on D.

If ∆ = −4, the last argument is still valid, and so BR1 is invertible on D. Comparing the Taylor expansions

at x = xNE
IS of x+

x+(x) = xNE
IS − (x− xNE

IS )− 16β

Λ + 4

(x− xNE
IS )2

2
+ o((x− xNE

IS )4)

and of x−1
+

x−1
+ (x) = xNE

IS − (x− xNE
IS )− 16β

Λ + 4

(x− xNE
IS )2

2
− 768β2

(Λ + 4)2
(x− xNE

IS )3

6
+ o((x − xNE

IS )4)

we can conclude that there is left neighborhood of xNE
IS on which the graph of BR2 lies strictly below the

graph of BR−1
1 .

Let BR1(1) = x̂ < 1.We first consider x̂ > 0. Since BR1 is non-increasing on [xNE
IS , 1], we must have x̂ < xNE

IS .

If (x̂, 1) were an equilibrium, we would need BR2(x̂) = 1. We can not have x+(x̂) = 1, as otherwise point

(x̂, 1) would belong to the intersection of functions x2 = x+(x1) and x1 = x+(x2), which, for ∆ ≥ 4, have

no asymmetric intersections. If x+(1) > 1, the graph of x+ lies above that of x−1
+ in a right neighborhood

of x̂. This would mean that the reciprocal position of the two best response functions change from a right

neighborhood of x̂ to a left one of xNE
IS and this, since BRixj are continuous, implies that an asymmetric

internal equilibrium must exist, which is excluded by ∆ ≥ 4.

Let us assume x̂ = 0. Since we can not have BR1 ≡ 0, we must have ŷ > 0 so that BR1 ≡ 0 on [ŷ, 1] and BR1

is strictly positive and strictly decreasing in a right neighborhood of ŷ. In such neighborhood it is invertible

and its inverse is x+. In this case we can have a boundary/corner equilibrium only if BR2(0) ≥ ŷ. Again,

this would imply that functions x+ and x−1
+ have an intersection point for x < xNE

IS , which is not possible.

This allows concluding that if ∆ ≥ −4 no asymmetric equilibria can arise.

To complete the prove we should show that if ∆ < −4 and symmetric corner equilibria do not exist,

then we have asymmetric equilibria. This can be done proceeding similarly to the last two cases, namely

combining geometric and continuity arguments. Since it is simple but very long, we do not report details.

Proof of Proposition 3. To have just multiple symmetric equilibria it is necessary and sufficient that both

(0, 0) and (1, 1) are equilibria. Recalling case (d) of Lemma 1, it is indeed sufficient. It is necessary since if

they both were not equilibria we would just have one symmetric equilibrium. Moreover, it is not possible to

have just one symmetric corner equilibrium. In this case, to have symmetric multiple equilibria, (xNE
IS , xNE

IS )

should be an equilibrium, too. However, the uniqueness of internal symmetric equilibria together with the

continuity of the best response would necessarily require that the other corner point is an equilibrium, too.

Then (12) is obtained from the union of cases (a) and (b) of Lemma 1. We notice that the second condition

reported in (12) can be actually neglected, as it is a necessary consequence of the first one. We left it for the

relevance in the interpretation and comparison of the results.

To have a unique equilibrium, we distinguish three situations. We have that (0, 0) is the unique equilibrium

if and only if BRi(0) = 0 and (1, 1) is not an equilibrium. It is indeed necessary, it is also sufficient thanks
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to the continuity of the best response (we recall the considerations about the case of multiple symmetric

equilibria). This first situation is then obtained by simultaneously considering case (a) and the negation of

case (b) of Lemma 1. Similarly, we have that (1, 1) is the unique equilibrium if and only if BRi(1) = 1 and

(0, 0) is not an equilibrium, and this corresponds to simultaneously considering the negation of case (a) and

case (b) of Lemma 1. To have that (xNE
IS , xNE

IS ) is the unique equilibrium, we must simply consider case (c)

of Lemma 1, excluding the possibility of symmetric corner equilibria (negation of cases (a) and (b)) and of

asymmetric equilibria, namely, from case (d), adding condition ∆ ≥ 4.

The parameters’ region (13) in which we have multiple asymmetric equilibria can be then simply obtained

as the complement of the union of regions (12) and (14).

Proof of Corollary 2. Firstly we notice that if xNE
IS is an internal equilibrium, then, from xNE

IS > 0, we

necessarily must have either ∆ > 4 and Λ− 4 < 0 or ∆ < 4 and Λ − 4 > 0.

We have

∂xNE
IS

∂β
=

−2(δ + 2)

β2(∆− 4)
,

∂xNE
IS

∂γ
=

Λ− 4

β(∆− 4)2
,

∂xNE
IS

∂θ
= − 1

∆− 4
,

∂xNE
IS

∂δ
= −βθ − 2γ + 4

β(∆ + 4)2
,

so we can immediately conclude that ∂xNE
IS /∂β > 0 and ∂xNE

IS /∂θ > 0 if and only if ∆−4 < 0 (or equivalently

Λ− 4 > 0). Similarly, we have ∂xNE
IS /∂γ > 0 if and only if Λ− 4 > 0 (or equivalently ∆ < 4). Noticing that

−βθ + 2γ − 4 = (−Λ + 4) + 2(∆− 4),

where the last two addends have the same sign, we can conclude that ∂xNE
IS /∂δ > 0 if and only if ∆ > 4 (or

equivalently Λ− 4 < 0).

7 Proofs of Section 4.3

Firstly, we derive the expression for the best response related to game Γ ∈ ΓLSE . As we said in Section 4.3,

in this case it can be a correspondence. We start noticing that, from (15), we have

∂xi
πi(xi, xj) =

−αβx2
j + βxj + 1

(βxi + βxj − 2αβxixj + 2)2
θβ − 1,

∂2
xi
πi(xi, xj) =

2β2θ(2αxj − 1)(−αβx2
j + βxj + 1)

(βxi + βxj − 2αβxixj + 2)3
.

(28)

As for the proofs in the previous sections, we introduce a suitable function x+ : [0, 1/(2α)) → R defined by

x+(xj) = − 2

β(1− 2αxj)
− xj

(1− 2αxj)
+

√
βθ(−αβx2

j + βxj + 1)

β(1− 2αxj)
, (29)

which will be used to obtain the best response depending on strategy xj . Notice that for xj ∈ [0, 1/(2α)) we

have −αβx2
j+βxj+1 > 0, so (29) is well-defined. Direct checks show that x+(xj) ≤ 0 for any xj ∈ [0, 1/(2α))

if and only if βθ ≤ 4, while for

4 < βθ < 4 + β/α (30)

function x+ is unimodal and concave on [0, 1/(2α)). Moreover, x+ attains its maximum at x = xNE
IS (defined

by (17)), which is a fixed point, too.

The next two propositions will respectively deal with the parameters’ configurations for which the best

response to a player strategy is either a single value or a set consisting of more then one element.
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Proposition 5. Let xj ∈ [0, 1]. Then

BRi(xj) =






max{min{x+(xj), 1}, 0} if xj ∈ [0, 1/(2α)) ∩ [0, 1],

0 if xj ∈ [1/(2α), 1] and βθ < 4 + β/α,

1 xj ∈ [1/(2α), 1] and βθ > 2β + 4.

Proof. If α < 1/2 and xj ∈ [0, 1] or α ≥ 1/2 and xj ∈ [0, 1/(2α)), we indeed have 2αxj − 1 < 0, which, as

already noticed, guarantees−αβx2
j+βxj+1 < 0.Moreover, βxi+βxj−2αβxixj+2 = βxi(1−2αxj)+βxj+2 >

0, so, recalling 28, we have ∂2
xi
πi(xi, xj) < 0. For such xj , the payoff function πi is then concave with respect

to xi ∈ [0, 1]. Solving ∂xi
πi(xi, xj) > 0 we find x−xj < xi < x+xj , where

x±(xj) =
−2− βxj ±

√
βθ(−αβx2

j + βxj + 1)

β(1− 2αxj)
,

and x− is strictly negative. Proceeding as in Sections 6.1 and 6.2, we can conclude that BRi(xj) =

max{min{x+(xj), 1}, 0}.
Now we consider α ≥ 1/2 and xj = 1/(2α). In this case we have

πi

(
xi,

1

2α

)
=

−xi(4α+ β − αβθ) − 2αθ − βθ

4α+ β
. (31)

This means that if βθ < 4 + β/α, the coefficient of xj is strictly negative and function (31) is strictly

decreasing, so BRi(1/(2α)) = 0, while if βθ > 2β + 4 then the coefficient of xj is strictly positive and

function (31) is strictly increasing, so BRi(1/(2α)) = 1.

Now we consider α > 1/2 and xj ∈ (1/(2α), 1]. In this case, to have a non-empty interval, we must take

α > 1/2. We study the sign of

f(xj) = πi(0, xj)− πi(1, xj) = β2(1− 2α+ αθ)x2
j + β(4− 4α+ β − βθ)xj + 4 + 2β − βθ. (32)

A simple computation shows that

f

(
1

2α

)
=

(4α+ β)(4α+ β − αβθ)

4α2
, f(1) = (2β − βθ + 4)(β − αβ + 1),

f ′(xj) = 2β2(1− 2α+ αθ)xj − β(4α− β + βθ − 4),

(33)

so if βθ < 4 + β/α, then both f(1/(2α)) > 0 and f(1) > 0. Moreover, we have that if (1 − 2α + αθ) = 0,

then f(xj) = ((4α+ β)(βx2(1− α) + 1))/α > 0, and then BRi(xj) = 0 for any xj ∈ (1/(2α), 1]. Conversely,

if (1 − 2α + αθ) < 0, since f is concave and both f(1/(2α)) > 0 and f(1) > 0, then BRi(xj) = 0 for any

xj ∈ (1/(2α), 1]. Finally, if (1− 2α+ αθ) > 0, f is convex but f ′(1/(2α)) = β(4α+ β)(1 − α)/α > 0, which,

together with f(1/(2α)) > 0, guarantees that BRi(xj) = 0 for any xj ∈ (1/(2α), 1].

Finally, if βθ > 2β + 4, we have f(1/(2α)) < 0, f(1) < 0 and f ′(xj) > 0, which means that f(xj) < 0

(i.e. BRi(xj) = 1) for each xj ∈ (1/(2α), 1].

We now consider the case of a best response correspondence. To this end we introduce

x̃j =
4α− β + βθ − 4 +

√
(4α+ β)(4α + β − 4θ − 2βθ + βθ2)

2β(1− 2α+ αθ
. (34)

Proposition 6. Let α ≥ 1/2 and xj ∈ [1/(2α), 1]. We have that

a) if βθ = 4 + β/α then BRi(xj) =




[0, 1] xj =

1
2α

0 1
2α < xj = 1
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b) if 4 + β/α < βθ ≤ 2β + 4 then BRi(xj) =






1 1
2α ≤ xj < x̃j

{0, 1} xj = x̃j

0 x̃j < xj ≤ 1

Proof. Firstly, we study xj = 1/(2α). Recalling (31), if 4+β/α < βθ ≤ 2β+4, then (31) is strictly increasing

and BRi(1/(2α)) = 1, while if 4α+ β − αβθ = 0, then (31) is constant and BRi(1/(2α)) = [0, 1];

Now we consider xj ∈ (1/(2α), 1]. In this case, to have a non-empty interval, we must take α > 1/2. To

study the sign of πi(0, xj) − πi(1, xj) we make use of function f defined by (32). Recalling (33) we have

that if βθ = 4 + β/α, we have (1 − 2α + αθ) = 2 − 2α + 4α/β > 0, so f is strictly convex and, as just

seen, increasing. Since f(1/(2α)) = 0 and f(1) > 0, we have that f(xj) > 0 (i.e. BRi(xj) = 0) for each

xj ∈ (1/(2α), 1].

Conversely if 4 + β/α < βθ < 2β + 4, we have f(1/(2α)) < 0, f(1) > 0 and f ′(xj) > 0. By continuity

and increasing monotonicity of f , we have exactly one solution of f(xj) = 0 belonging to (1/(2α), 1), given

by (34). Recalling that for βθ > 4 + β/α, x+ is strictly convex, we have

• xj < x̃j we have f(xj) = πi(0, xj)− πi(1, xj) < 0 and then BRi(xj) = 1;

• xj = x̃j we have f(xj) = πi(0, xj)− πi(1, xj) = 0 and then BRi(xj) = {0, 1};

• xj > x̃j we have f(xj) = πi(0, xj)− πi(1, xj) > 0 and then BRi(xj) = 0.

Noticing that for βθ = 2β + 4 we have both f(1) = 0, which means that BRi(1) = [0, 1], and x̃j = 1, we

can conclude.

Combining the conclusions of Propositions 5 and 5 it is easy to obtain the expression of the best response

relations for any parameters’ configurations.

Proof of Proposition 4. Solving x+(xj) = xj provides

1

2α
+

√
β(4α+ β)

2αβ
,

1

2α
−

√
β(4α+ β)

2αβ
,

1

2α
+

√
β(4α+ β − αβθ)

2αβ
,

1

2α
−
√
β(4α+ β − αβθ)

2αβ
,

which are the potential symmetric equilibria. Thanks to (30), all the four solutions real. However, the first

and the third solution are larger than 1/(2α) and the second one is negative. Conversely, the last one is

indeed smaller than 1/(2α) and, using again (30), it is also non negative.

The only possible situation in which we can have asymmetric equilibria, from Proposition 5 and 6, if

when xj ∈ [0,min 1/(2α)). However, recalling that in this case function x+ is either negative or unimodal

and concave, with a unique fixed point at which the maximum is attained, simple geometrical considerations

exclude the possibility to have asymmetric solutions of the system of the two equations x2 = x+(x1) and

x1 = x+(x2).

The unique symmetric equilibrium is a simple consequence of the existence of an unique symmetric fixed

point for x+ on [0, 1/2α] and of the possible expression of the best response relations given by Propositions

5 and 5. We limit to notice that the case of no equilibrium corresponds to case (b) of Proposition 6.

Proof of Proposition 3. The behavior of xNE
IS with respect to β, θ and α is straightforwardly obtained comput-

ing its partial derivatives with respect to such parameters. The parameters’ region on which no equilibrium

exists is given by case (b) of Proposition 6.
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8 Proofs of Section 5

Proof of Corollary 4. For simplicity, in the following computations we remove the denominator 2 from the

definitions of conflict intensity as it does not affect monotonicity and concavity.

We start recalling the conditions for the occurrence of the following scenarios

a) We have a unique internal symmetric equilibrium if ∆ < 4 AND Λ > 4(as consequence of the third

condition in (14)

b) We have multiple symmetric internal equilibria if ∆ > 4 and Λ < 4 (as consequence of condition (12);

values ∆ = 4 or Λ = 4 provide boundary equilibria)

c) We have multiple asymmetric equilibria if ∆ < −4 and Λ > 4 (as consequence of condition (13))

We have

∂CIIS
∂δ

= −2(βθ − 2γ + 4)

β(δ − γ + 4)2
= −2(Λ− 2∆+ 4)

β(∆ − 4)2
,

∂2CIIS
∂δ2

= −4(Λ− 2∆+ 4)

β(∆− 4)3
.

When there is a unique internal equilibrium, from conditions in (a), we have Λ + 4 > 2∆ and ∆ < 4, from

which ∂CIIS/∂δ < 0 and ∂CIIS/∂δ > 0.

When we have multiple symmetric equilibria, from conditions in (b), we have Λ+4 < 2∆ and ∆ > 4 (we

recall that we do not consider the case of ∆ = Λ = 4), so ∂CIIS/∂δ > 0 and ∂2CIIS/∂δ
2 > 0.

When we have multiple asymmetric equilibria, from conditions in (c), we have Λ−2D+4 > 0 and ∆ < 0,

so ∂CIIS/∂δ < 0 and ∂2CIIS/∂δ
2 > 0.

We have

∂CIIS
∂γ

= −2(2δ − βθ + 4)

β(δ − γ + 4)2
=

2(Λ− 4)

β(∆− 4)2
,

∂2CIIS
∂γ2

= −4(2δ − βθ + 4)

β(δ − γ + 4)3
= − 4(Λ− 4)

β(∆− 4)3
.

When there is a unique internal equilibrium, from conditions in (a), we have ∂CIIS/∂γ > 0 and

∂CIIS/∂γ > 0.

When we have multiple symmetric equilibria, from conditions in (b), we have ∂CIIS/∂γ < 0 and

∂2CIIS/∂γ
2 > 0.

When we have multiple asymmetric equilibria, from conditions in (c), we have ∂CIIS/∂γ > 0 and

∂2CIIS/∂γ
2 > 0.

We have
∂CIIS
∂θ

=
2

δ − γ + 4
= − 2

(∆− 4)
,

∂2CIIS
∂θ2

= 0.

When there is a unique internal equilibrium or multiple asymmetric equilibria, from conditions in (a) and

(c), we have ∂CIIS/∂θ > 0, conversely when we have multiple symmetric equilibria, from conditions in (b)

we obtain ∂CIIS/∂θ < 0.

Finally we have

∂CIIS
∂β

=
4(δ + 2)

β2(δ − γ + 4)
= − 4(δ + 2)

β2(∆− 4)
,

∂2CIIS
∂β2

= − 8(δ + 2)

β3(δ − γ + 4)
=

8(δ + 2)

β3(∆− 4)
.

When there is a unique internal equilibrium or multiple asymmetric equilibria, from conditions in (a) and

(c), we have ∂CIIS/∂β > 0 and ∂2CIIS/∂β
2 < 0, conversely when we have multiple symmetric equilibria,

from conditions in (b) we obtain ∂CIIS/∂β < 0 and ∂2CIIS/∂β
2 > 0 .

Now we recall that the existence of internal asymmetric equilibria necessarily requires

{
4 < Λ < β(4−∆) + 4,

∆ < −4.
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Moreover, from

CIAS = −∆+Λ

∆β
=

γ − 3δ + βθ

β(δ − γ)

We have
∂CIAS

∂θ
= − 1

∆
> 0,

∂CIAS

∂γ
=

Λ

∆2β
> 0,

∂2CIAS

∂γ2
= − 2Λ

∆3β
> 0,

∂CIAS

∂δ
=

2∆− Λ

∆2β
< 0,

∂2CIAS

∂δ2
=

2(2∆− Λ)

∆3β
> 0,

and
∂CIAS

∂β
=

∆− 2δ

∆β2
> 0,

∂2CIAS

∂β2
= −2(∆− 2δ)

∆β3
< 0,

which allow concluding.

Proof of Corollary 5. We start noting that to have xNE
1,B ∈ (0, 1) we need





γ − δ < −4,

βθ < 2δ − β(γ − δ) + 4(β + 1),

βθ − 2δ + β(γ − δ) > 0.

(35)

We have

CI1,B = −β −
√
(β + 1)(βθ − 2δ + β(γ − δ)) + 2

β
+ 1,

so the behavior with respect to γ is straightforward and while computing derivatives with respect to θ and

δ we have

∂CI1,B
∂θ

=
β + 1

2
√
(β + 1)(βθ − 2δ + β(γ − δ))

> 0,
∂2CI1,B

∂θ2
= − β(β + 1)2

4(−(β + 1)(2δ − βθ + β(δ − γ)))3/2
< 0,

and

∂CI1,B
∂δ

= − (β + 1)(β + 2)

2β
√
(β + 1)(βθ − 2δ + β(γ − δ))

< 0,
∂2CI1,B

∂δ2
= − (β + 1)2(β + 2)2

4β(−(β + 1)(2δ − βθ + β(δ − γ)))3/2
< 0.

Finally, we have

∂CI1,B
∂β

=
4δ + 3βδ − βγ − βθ + 4

√
βγ − 3βδ − 2δ + βθ − β2δ + β2γ + β2θ

2β2
√
βγ − 3βδ − 2δ + βθ − β2δ + β2γ + β2θ

and

∂2CI1,B
∂β2

=
(
72βδ2 − 16(−(β + 1)(2δ − βθ + β(δ − γ)))3/2 + 32δ2 + 51β2δ2 + 12β3δ2 + 3β2γ2 + 4β3γ2

+ 3β2θ2 + 4β3θ2 − 24βδγ − 24βδθ − 42β2δγ − 16β3δγ − 42β2δθ − 16β3δθ + 6β2γθ

+ 8β3γθ
)
/
(
4β3(−(β + 1)(2δ − βθ + β(δ − γ)))3/2

)

Since γ − δ < −4 we have δ > 4, which, together with βθ < 2δ − β(γ − δ) + 4(β + 1), leads to

4δ + 3βδ − βγ − βθ > 4δ + 3βδ − βγ − 2δ + β(γ − δ)− 4(β + 1)

= 2δ + 2βδ − 4β − 4

= 2δ − 4 + 2β(δ − 2) > 0,
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so CI1,B is strictly increasing with respect to β. we have that the denominator of
∂2CI1,B

∂β2 is positive, while

−16(−(β + 1)(2δ − βθ + β(δ − γ)))3/2 < 0. The remaining terms at the numerator can be written as

f(γ) =(4β3 + 3β2)γ2 + (6β2θ − 42β2δ − 16β3δ − 24βδ + 8β3θ)γ

+ 12β3δ2 − 16β3δθ + 4β3θ2 + 51β2δ2 − 42β2δθ + 3β2θ2 + 72βδ2 − 24βδθ + 32δ2,

which is a convex parabola in γ. From the second and third condition in (35) we must have

γ0 =
2δ + βδ − βθ

β
< γ <

4β + 2δ + βδ − βθ + 4

β
= γ1,

so

f(γ0) = −4δ2(β + 1)2 < 0, f(γ1) = −4(β + 1)2(β(8δ − 16) + δ2 + 12δ − 12) < 0,

since δ > 4 provides 8δ − 16 > 0 e δ2 + 12δ − 12 > 0. This guarantees
∂2CI1,B

∂β2 < 0, so CI1,β is strictly

concave.

The proof of the comparative static of CI0,B is straightforward.
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