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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Machine learning has become a powerful tool for computational analysis in the biomedical

sciences, with its effectiveness significantly enhanced by integrating domain-specific knowl-

edge. This integration has give rise to informed machine learning, in contrast to studies that

lack domain knowledge and treat all variables equally (uninformed machine learning). While

the application of informed machine learning to bioinformatics and health informatics data-

sets has become more seamless, the likelihood of errors has also increased. To address

this drawback, we present eight guidelines outlining best practices for employing informed

machine learning methods in biomedical sciences. These quick tips offer recommendations

on various aspects of informed machine learning analysis, aiming to assist researchers in

generating more robust, explainable, and dependable results. Even if we originally crafted

these eight simple suggestions for novices, we believe they are deemed relevant for expert

computational researchers as well.

Introduction

Machine learning has become pervasive in a huge number of computational biology and medi-

cine studies nowadays to address complicated problems being the backbone of the most novel

research [1]. In fact, computational intelligence models help scientists understand complex

biological processes [2], predict outcomes of a medical procedure [3,4], and support the design

of new drugs [5]. Nevertheless, mistakes and bad practices in applying computational intelli-

gence to biomedical data have become common, too [6–8].

The machine learning approaches can be nowadays categorized into two groups: informed

and uninformed [9,10]. We call uninformed machine learning the models that do not make

prior assumptions about the data set, meaning that they treat all the variables and the instances

of the dataset in the same way, egalitarianly. These models do not take into account the bio-

medical knowledge that would beforehand highlight the role of a particular set of factors. On

the contrary, we call informed machine learning the models which do take into account

knowledge about the data set scientific subfield, during data collection and preparation (data
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pre-processing), during model development (in-processing), or during model correction and

alignment (post-processing).

A study where a computational feature ranking phase is done on data of electronic medical

records by treating all the variables in the same way [11], for example, can be considered an

uninformed machine learning project. On the other hand, a bioinformatics study where three

particular genes are known to be related to neuroblastoma and therefore treated with more

importance compared to other genes [12] can be called informed machine learning.

It should be noted that the concepts of informed machine learning and uninformed

machine learning have been previously introduced and developed in the field of artificial intel-

ligence. These terms have their origins in background learning, which was first introduced in

the 1980s. It is noteworthy that Art Samuel [13] was among the first to combine learning and

domain knowledge-defined structure of the model, which could be considered the earliest

example of informed machine learning, in 1959. Currently, there is a wealth of literature in

this field that also proposes a historic perspective [14,15].

Before diving into the tips, let us first clarify what informed computational intelligence

models are, when to use them, and help you recognize that you are likely already using them in

many situations.

In order to understand what are the biologically and medically informed (partial-knowl-

edge) computational intelligence models [16–18] and how to use them we have to start from

the two most established approaches: the knowledge-based [10,16,19] (full-knowledge) and

the data-driven based [11,20] (zero-knowledge) models.

Full-knowledge models strongly rely on humans and their comprehensive domain knowl-

edge, employing a relatively small subset of available data and simple statistics primarily for

validation rather than for model construction [10,19]. They often do not fully exploit all the

possibly available data since some of them may be hard to exploit just based on domain knowl-

edge [21]. Full-knowledge models are characterized by their predictability (as they are explain-

able by design) and adherence to physical plausibility, making them particularly suitable for

biological and medical applications where the underlying mechanisms are well understood

[22,23]. However, the effectiveness of these models is limited by the human capacity to concep-

tualize and manage complex biological systems, rendering them less flexible for novel or

poorly understood phenomena [24–26].

Zero-knowledge models utilize large datasets to build and validate models without prior

domain knowledge [27–30]. These models harness the computational power of modern tech-

nological infrastructures to analyze data, to identify patterns, and to make predictions that

may not be immediately apparent to human researchers [31–34]. While these models excel in

handling vast amounts of data and making generalized predictions, their outputs may not

always be aligned with physical or biological plausibility or understandable and explainable,

especially when extrapolating beyond the scope of the data; this limitation underscores the

necessity for cautious interpretation of results, particularly in biological and medical settings

where point wise accuracy and understanding the underlying mechanisms are crucial [35–39].

Partial-knowledge models represent a synthesis between the full- and zero-knowledge mod-

els capitalizing on the predictability, explainability, and plausibility of knowledge-based mod-

els while leveraging the data-processing capabilities of data-driven models. By integrating

domain knowledge at varying levels, from data collection and feature engineering to the inclu-

sion of approximate system models and model post-processing, partial-knowledge models

strive for accuracy in both general and specific instances, enhancing their utility in biological

and medical research for both interpolation and extrapolation tasks [10,16–19].

The integration of these modeling approaches within the biological and medical sciences

can potentially enhance our understanding and treatment of complex diseases [40], facilitate

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012711 January 9, 2025 2 / 13

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012711


the discovery of new therapeutics [41], and contribute to personalized medicine [42]. By prop-

erly selecting and combining these methodologies, researchers can navigate the intricacies of

biological systems and medical conditions, advancing the frontier of healthcare innovation

[10,16–19].

Note that, some of the readers might have never heard about the terms informed machine

learning and uninformed machine learning, and might read this manuscript thinking they are

discovering something new. However, it is actually likely that they have already completed

computational projects in both these areas in the past already.

The biomedical literature contains plenty of articles involving data-driven feature synthesis

and selection, which could be categorized on informed machine learning (for example,

[12,14]).

Both informed and uninformed machine learning have advantages and drawbacks and are

error-prone. The Quick Tips series published articles on several computational aspects in the

past, but none on this topic. We fill this gap by providing our eight quick tips for avoiding

common mistakes and pitfalls when using informed machine learning in the biomedical sci-

ences (Fig 1). We originally designed our recommendations for novices, but we believe they

should be kept in mind by experts, too.

Fig 1. A schematic representation of the flowchart of the execution of our eight guidelines. The best practices for open science should be followed from the

beginning to the end, and therefore, we represented them as the background of the whole process.

https://doi.org/10.1371/journal.pcbi.1012711.g001
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Tip 1: Recognize and state clearly the possible limitations of the

knowledge you used to inform the machine learning model

The usage of informed machine learning, as explained earlier, can bring several advantages to

a scientific study. But it can, however, generate some problems as well.

Therefore, it is always important to keep in mind the limitations of this approach [43].

The informed machine learning approach, in fact, does not allow an agnostic inclusion of

all the biomedical variables into a statistical model, and thus this selection sometimes can

result being misleading [15]. For example, if the knowledge introduced by the informed model

was wrong, outdated, obsolete, or misleading, it would corrupt the statistical model and gener-

ate inaccurate or inflated outcomes and results eventually. Sometimes, the information might

be available as a general knowledge, but no specific feature related to that knowledge might

have been annotated in the data set.

Occasionally, the biomedical experts and the computer scientists, although willing to col-

laborate, might not understand each other because of different experiences, knowledge, and

jargon [44].

Other setbacks might happen because of the complexity of the model: including knowledge

might seem useful, but if the statistical model became too complicated to be handled correctly,

of course there would be no final benefit for the study.

Moreover, an informed machine learning model might fail to assimilate the knowledge

introduced, and therefore might still work agnostically, even if the person who prepared the

model thought they were preparing an informed machine learning algorithm [15,43].

Finally, past research has shown that adding additional knowledge to model inference

might either increase or decrease the accuracy of the resulting models [45,46].

Tip 2: Understand how many ways there are to actually design an

informed machine learning method

As described earlier, biologically and medically informed machine learning is an innovative

approach that integrates domain-specific knowledge into data-driven models enhancing their

performance, explainability, and plausibility [10,16,19]. This integration can be implemented

at various stages of the machine learning pipeline, primarily categorized into pre-, in-, and

post-processing methods.

Pre-processing is a critical step that involves preparing and transforming the data before it

is fed into a machine learning model [47,48]. This stage is pivotal because it directly addresses

the quality of input data, ensuring that the machine learning model has the best possible start-

ing point. Techniques such as data cleaning [49], feature engineering [50,51], and data aug-

mentation [52] fall under this category, where domain knowledge is leveraged to enhance the

data set’s relevance and quality. Furthermore, full-knowledge models that utilize domain

knowledge to provide a first hint to be fed to or to be corrected by a machine learning model

(that means, commonly referred as serial or parallel informed models) exemplify how domain

knowledge can guide the machine learning model towards more accurate and relevant predic-

tions [10]. Pre-processing can also improve explainability as machine learning model trained

on a richer set of features and higher quality data can lead to simpler and then explainable

models [17,53,54].

Pre-processing essentially capitalizes on domain expertise to navigate the machine learning

model through the complex data landscape, minimizing the distance it needs to cover to gen-

erate valuable insights [55]. The pre-processing approach has been employed in several bio-

medical informatics studies in the past, especially when specific biomarkers were deemed

more important than others before a computational phase [12].
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In-processing involves the direct incorporation of domain knowledge into the computa-

tional intelligence model’s learning process [56]. This method requires a deep integration of

mathematical representations of domain insights (such as laws, trends, or constraints) into the

learning algorithm itself [56] and demands a collaborative effort between domain experts and

data scientists to modify the learning algorithm’s structure [57]. This necessity could mean

altering the functional form of the model [28,30] (for example, a particular architecture of a

neural network), introducing specific constraints [58], or embedding regularizers [59] to

maintain the model’s desirable properties like convexity [60] and differentiability [61]. The

objective is to steer the model’s learning mechanism in a way that it not only benefits from

domain knowledge but also enhances its predictive accuracy on a granular level, beyond aver-

age performance metrics [62]. By selection the proper model in-processing can also deal with

the trade-off between accuracy and explainability [53]. The in-processing approach has been

employed in multiple biomedical informatics studies in the past [10,56].

Post-processing focuses on refining the machine learning model’s outputs to ensure they

align with domain knowledge and expectations [63,64]. This stage does not modify the machine

learning model itself but adjusts its outputs through additional rules or models to enforce

domain consistency [65]. This alignment can improve also explainability by, for example, forc-

ing the model to be never too far from a full-knowledge model [17,53]. Techniques include

using machine learning predictions as inputs to physical models for more controlled outcomes

or applying logical rules to rectify inconsistencies in predictions [66,67] (for example, a predic-

tion indicating cancer should not concurrently suggest healthiness). Post-processing is about

leveraging the existing machine learning capabilities as-is and employing domain knowledge to

contextualize and correct the model’s predictions [68]. This approach aims to mitigate potential

errors and align the model’s outputs with domain-specific truths, requiring substantial domain

understanding to implement effectively [69,70]. The biomedical informatics literature has

plenty of studies reporting post-processing informed machine learning approaches [10,19].

Tip 3: Use your knowledge in pre-processing appropriately

Pre-processing plays a crucial role in enhancing the predictive model performance by leverag-

ing domain knowledge to inform, a priori, the machine learning model effectively [9,71].

Pre-processing acts, a priori, in different ways:

i. Modifying the input (that is, the features) fed to the machine learning models;

ii. Modifying the data (that is, the observation or samples) used to train the machine learning

models; and

iii. Guiding the selection of the type of machine learning algorithms.

Modifying the input means cleaning, cleansing, engineering, selecting, and reducing the

inputs to remove inconsistencies and errors, and enrich the input to ensure that the informa-

tion fed into the machine learning models is of high quality [49,72].

Modifying the input also means constructing serial or parallel biologically and medically

informed machine learning. In serial and parallel informed machine learning, a potentially

partial (meaning that is unable to take into account all the available data) full-knowledge

model is available to make prediction [73].

Modifying the data set involves selecting and enriching the available data [74], not only by

choosing the most appropriate data but also by designing experiments to collect this data if

necessary [75], ensuring it accurately represents the phenomena under study [76]. Techniques

for data fusion and data integration are a key in this context [77].
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Experimental design for data collection is probably the most important phase of a successful

machine learning-based research project or product as it allows to prevent to introduce spuri-

ous correlations [78] and to try to match the main hypothesis behind any machine learning

algorithm, namely the data well represent the population [79].

Guiding the selection of the type of machine learning algorithm means guiding the selec-

tion of the algorithm functional form [30] (for instance, deep or shallow and for the deep the

type of architecture), including transfer learning [80], the level of explainability of the model

(from rule based model to deep models passing from linear models) [53], and the hyperpara-

meters characterizing the machine learning algorithm [81,82]. This aspect is a pivotal part of

the process and should be informed by the specific characteristics of the pre-processed and

enriched data set and the physiological mechanisms/principles and by the domain knowledge

underpinning the problem space [83].

For example, if we are in a safety-critical situation, it is better to use a fully interpretable

model [53], even if less accurate. If we deal with images, convolutions are the best choice,

while transformers are the way to go if we have to deal with natural language [28]. If we have a

lot of structured data, deep models are probably the best choice, while for medium or small

cardinality unstructured data sets, shallow models are the optimal choice [30]. This mix of

domain knowledge and experience can make a difference in delivering an effective biomedi-

cally informed machine learning study.

Tip 4: Use your knowledge in in-processing appropriately

In-processing plays a crucial role in enhancing the predictive model performance by leverag-

ing domain knowledge of a potentially partial, but well mathematically encoded, full-knowl-

edge model to inform the learning process of a zero-knowledge effectively [56].

In-processing involves the integration of domain-specific laws and principles directly

into the model training process, especially to ensure that the models adhere closely to

known scientific knowledge [84]. When certain biological laws or medical principles are

known, these can be used to guide the model in several ways [69]. One approach is to ensure

the model’s predictions do not deviate significantly from these laws by incorporating a reg-

ularization term that penalizes deviations from the expected physical behavior [68]. This

regularization can help in maintaining the model’s fidelity to the biological laws or medical

principles, such as the relationship between specific inputs and outputs, ensuring that if an

input value increases, the output adjusts in a biological or medical consistent manner

[68,69]. Moreover, when dealing with complex systems where simulators exist but are too

slow for practical use, surrogate models can be developed [84]. These models aim to mimic

the simulator’s outputs while being computationally efficient, thus requiring the model to

accurately capture the underlying physical relationships [56]. Incorporating biological laws

or medical principles into machine learning does not always require exhaustive or precise

details; even hints or partial knowledge about the physical system can be beneficial [10,56].

Other methods like the ones based on reasoning like inductive logic programming [85],

neuro-symbolic approaches [67,86], and learning constrained models [58] have also shown

to achieve good practical results.

In summary, the in-processing strategy within biologically and medically informed

machine learning represents a paradigm shift toward developing machine learning models

that are informed by and compliant with the biological laws or medical principles. This

approach significantly contributes to creating models that are not only predictive but also

interpretative and aligned with the real-world phenomena they aim to simulate, thereby bridg-

ing the gap between data-driven insights and biological laws or medical principles.
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Tip 5: Use your knowledge in post-processing appropriately

Post-processing leverages domain knowledge (for example, a potentially, partial but still well-

mathematically encoded, full-knowledge model) to align the output of a zero-knowledge

model [63].

Post-processing in physics-informed models focuses on refining predictions of a zero-

knowledge model to ensure they align with domain-specific knowledge, constraints, and prac-

tical considerations [64]. This step is crucial for enforcing certain characteristics and relation-

ships that must be present in the predictions. For instance, in an autonomous system to

diagnose different types of cancers, if a model predicts the type of cancer, it must recognize

hard constraints such as the hierarchies present in the diseases, namely, if we predict cancer in

the lung we also have to predict lung problems [66,67].

Furthermore, post-processing involves adjusting predictions to ensure they do not diverge

excessively from established practices, like the dose of chemotherapy, thereby ensuring that

the model’s recommendations are practical and implementable within current protocols. This

step not only enhances the model’s reliability but also its acceptance among practitioners [63].

Ensuring that the model’s decisions are in harmony with domain knowledge can be straight-

forward if the model is inherently explainable [53]. For models that are not easily interpretable,

techniques such as feature importance analysis can provide global explainability, offering

insights into what the model considers important across all decisions [53]. For local explain-

ability—understanding individual predictions—tools can be employed to break down the deci-

sion-making process for specific cases [53].

Eventually, one can decide to build full-knowledge model, then interpretable and controlla-

ble, that require some inputs that are not easy to measure or estimate: in this case zero-knowl-

edge model might be of support and more easily controllable, since their estimate can be

verified and controlled by the subsequent full-knowledge model toward final biological and

medical informed machine learning model [64].

Tip 6: Involve a biomedical expert

As explained in other Quick Tips articles [87], the success of an interdisciplinary scientific

project relies massively on the involvement of domain experts for all the scientific fields

involved. So, if your study is on bioinformatics, we suggest you to involve a wet-lab biologist,

and if your study is on medical informatics, we advise you contact a medical doctor. These bio-

medical experts need to be contacted and included in two main phases: at the beginning of

your project (when you are defining the scientific question) and at the end (when the results

are ready and their implications need to be discerned) [88].

Therefore, if you work at a university, we recommend that you contact a biologist in the

biology department or a medical doctor in the medicine department [44]. If there are no bio-

medical experts in your organization, we recommend that you look for someone online, on

forums such as Reddit, StackExchange, or similar.

The information given by the biomedical expert will be pivotal: they will provide insights

for the scientific question definition and for the result understanding that will be invaluable

and that will enrich your study.

Of course, it would be even better if you could have the support of a biomedical

researcher throughout the whole project and not just at the start and at the end. This hope,

however, can be too optimistic knowing the busy schedule of medical doctors and wet-lab

biologists [44].
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Tip 7: Evaluate and compare different approaches: Knowledge,

uninformed machine learning, and informed machine learning

One of the best practices of computational projects is to use different methods to see if similar

results are found. The same approach can be employed in a biomedical study: therefore, when

you have a biomedical data set ready to be analyzed, we suggest you to process it through a

knowledge approach (using common knowledge about the scientific subfield and standard sta-

tistics about the data set, without machine learning [19]), a uninformed machine learning

approach (also called data-driven or zero-knowledge [11,20]), and an informed machine learn-

ing approach (also called partial-knowledge [19]).

A knowledge strategy that includes only information about the scientific domain and

involves no computational intelligence can be carried out through traditional statistics [89], by

checking against common knowledge: for example, if a specific clinical factor is known to be

prognostic for the disease of the data set, one can double-check if the results obtained through

the informed or uninformed machine learning approaches confirm it or not.

For instance, in a previous study on a data set of electronic health records with chronic kid-

ney disease, we utilized a uninformed machine learning approached which detected age, esti-

mated glomerular filtration rate (eGFR), and creatinine as most diagnostic factors [90].

Afterwards, we double-checked our discoveries in the scientific literature (knowledge

approach) to see if they could be confirmed or not. That is what we suggest you to do.

The results of informed machine learning studies [12] should be checked against common

knowledge on the disease investigated, too. Comparison of results can lead to interesting

insights about the data (for example, if more data might be needed to complete the study), or

about the methods (for example, if the results contradict common knowledge), or about new

discoveries.

Regarding evaluation, past research has shown that adding additional knowledge to model

inference might either increase or decrease the accuracy of the resulting models, but it consis-

tently aids in generating explainable models [45,46].

Tip 8: Follow open science best practices

Even for informed machine learning, we promote the usage of best practices for open science:

open source software code, open data release, and open access publication [91].

If you have the chance to decide which programming language to use for your informed

machine learning project, we strongly suggest to pick an open source one, such as Python or

R. This way, you will be able to share your software code with any collaborator at any time

and, if you publish your software code openly later on GitHub or GitLab, anyone will be able

to use it. These practices would ensure the possibility to reproduce and replicate your compu-

tational results, and would allow other researchers around the world to start new, similar sci-

entific projects if they want.

Regarding data, we recommend that you share your data online in public, open reposito-

ries, if you are authorized to do so. There are several open repositories for bioinformatics data

and medical data where you can release your data set (Gene Expression Omnibus (GEO),

ArrayExpress, Sequence Read Archive (SRA), and the Cancer Genome Atlas (TCGA), the

Cancer Imaging Archive (TCIA), and PhysioNet, for example) and for any data type (Figshare,

Zenodo, and University of California Irvine Machine Learning Repository).

We advise you to openly publish both the raw data and the preprocessed data you used for

your analysis. Of course, the privacy of data’s patients need to be preserved: make sure that all

the data are anonymous, deidentified, and unidentifiable.
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Moreover, as explained in other Quick Tips articles [88,92,93], we suggest to use these

online resources to look for an alternative data set of the same type and of the same disease of

the primary cohort dataset that you analyzed in your study. If you found one, repeat your anal-

ysis on it and see if your scientific discoveries are confirmed there.

Finally, if you have a say on which scientific journal to choose for your paper submission,

we suggest to pick an open access one: publishing an open access article, in fact, would make it

readable and available to anyone in the world, and also let your study have a bigger impact on

the scientific community.

Conclusions

Informed machine learning has become popular in several biomedical studies nowadays,

thanks to the large availability of computational resources and the spread of knowledge about

computational intelligence. Even if it has become easier to apply informed machine learning, it

has become easier to make mistakes, too: bad practices and pitfalls, if not carefully handled,

that can produce negative consequences on the final results of the study. In this manuscript,

we propose eight simple guidelines for avoiding common mistakes and inaccuracies in studies

involving informed machine learning phases.

We believe our eight recommendations can help researchers produce more stable and reli-

able results in any biomedical study.
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