Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPMALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2-and ãH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.

Ceccon, M., Merlo, M., Mologni, L., Poggio, T., Varesio, L., Menotti, M., et al. (2016). Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. ONCOGENE, 35(29), 3854-3865 [10.1038/onc.2015.456].

Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency

CECCON, MONICA
Primo
;
MOLOGNI, LUCA
Secondo
;
BOMBELLI, SILVIA;RIGOLIO, ROBERTA;CASATI, COSTANZA;MASTINI, CRISTINA;GAMBACORTI PASSERINI, CARLO;
2016

Abstract

Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPMALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2-and ãH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.
Articolo in rivista - Articolo scientifico
Molecular Biology; Cancer Research; Genetics
English
14-dic-2015
2016
35
29
3854
3865
none
Ceccon, M., Merlo, M., Mologni, L., Poggio, T., Varesio, L., Menotti, M., et al. (2016). Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. ONCOGENE, 35(29), 3854-3865 [10.1038/onc.2015.456].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/99902
Citazioni
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 32
Social impact