The stability of thiol bonding on the surface of star-shaped gold nanoparticles was studied as a function of temperature in water and in a set of biologically relevant conditions. The stability was evaluated by monitoring the release of a model fluorescent dye, Bodipy-thiol (BDP-SH), from gold nanostars (GNSs) cocoated with poly(ethylene glycol) thiol (PEG-SH). The increase in the BDP-SH fluorescence emission, quenched when bound to the GNSs, was exploited to this purpose. A maximum 15% dye release in aqueous solution was found when the bulk temperature of gold nanostars solutions was increased to T = 42 °C, the maximum physiological temperature. This fraction reduces 3-5% for temperatures lower than 40 °C. Similar results were found when the temperature increase was obtained by laser excitation of the near-infrared (NIR) localized surface plasmon resonance of the GNSs, which are photothermally responsive. Besides the direct impact of temperature, an increased BDP-SH release was observed upon changing the chemical composition of the solvent from pure water to phosphate-buffered saline and culture media solutions. Moreover, also a significant fraction of PEG-SH was released from the GNS surface due to the increase in temperature. We monitored it with a different approach, that is, by using a coating of α-mercapto-ω-amino PEG labeled with tetramethylrhodamine isothiocyanate on the amino group, that after heating was separated from GNS by ultracentrifugation and the released PEG was determined by spectrofluorimetric techniques on the supernatant solution. These results suggest some specific limitations in the use of the gold-thiolate bond for coating of nanomaterials with organic compounds in biological environments. These limitations come from the duration and the intensity of the thermal treatment and from the medium composition and could also be exploited in biological media to modulate the in vivo release of drugs.

Borzenkov, M., Chirico, G., D'Alfonso, L., Sironi, L., Collini, M., Cabrini, E., et al. (2015). Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars. LANGMUIR, 31(29), 8081-8091 [10.1021/acs.langmuir.5b01473].

Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars

BORZENKOV, MYKOLA
;
CHIRICO, GIUSEPPE
Secondo
;
D'ALFONSO, LAURA;SIRONI, LAURA;COLLINI, MADDALENA;
2015

Abstract

The stability of thiol bonding on the surface of star-shaped gold nanoparticles was studied as a function of temperature in water and in a set of biologically relevant conditions. The stability was evaluated by monitoring the release of a model fluorescent dye, Bodipy-thiol (BDP-SH), from gold nanostars (GNSs) cocoated with poly(ethylene glycol) thiol (PEG-SH). The increase in the BDP-SH fluorescence emission, quenched when bound to the GNSs, was exploited to this purpose. A maximum 15% dye release in aqueous solution was found when the bulk temperature of gold nanostars solutions was increased to T = 42 °C, the maximum physiological temperature. This fraction reduces 3-5% for temperatures lower than 40 °C. Similar results were found when the temperature increase was obtained by laser excitation of the near-infrared (NIR) localized surface plasmon resonance of the GNSs, which are photothermally responsive. Besides the direct impact of temperature, an increased BDP-SH release was observed upon changing the chemical composition of the solvent from pure water to phosphate-buffered saline and culture media solutions. Moreover, also a significant fraction of PEG-SH was released from the GNS surface due to the increase in temperature. We monitored it with a different approach, that is, by using a coating of α-mercapto-ω-amino PEG labeled with tetramethylrhodamine isothiocyanate on the amino group, that after heating was separated from GNS by ultracentrifugation and the released PEG was determined by spectrofluorimetric techniques on the supernatant solution. These results suggest some specific limitations in the use of the gold-thiolate bond for coating of nanomaterials with organic compounds in biological environments. These limitations come from the duration and the intensity of the thermal treatment and from the medium composition and could also be exploited in biological media to modulate the in vivo release of drugs.
Articolo in rivista - Articolo scientifico
Electrochemistry; Condensed Matter Physics; Surfaces and Interfaces; Materials Science (all); Spectroscopy
English
16-lug-2015
2015
31
29
8081
8091
partially_open
Borzenkov, M., Chirico, G., D'Alfonso, L., Sironi, L., Collini, M., Cabrini, E., et al. (2015). Thermal and Chemical Stability of Thiol Bonding on Gold Nanostars. LANGMUIR, 31(29), 8081-8091 [10.1021/acs.langmuir.5b01473].
File in questo prodotto:
File Dimensione Formato  
langmuir2015.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
langmuir2015 (2).pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/96269
Citazioni
  • Scopus 88
  • ???jsp.display-item.citation.isi??? 86
Social impact