Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3MKCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m-2 and 431 mA m-2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.

Daghio, M., Vaiopoulou, E., Patil, S., Suárez Suárez, A., Head, I., Franzetti, A., et al. (2016). Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 82(1), 297-307 [10.1128/AEM.02250-15].

Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments

DAGHIO, MATTEO
Primo
;
FRANZETTI, ANDREA
Penultimo
;
2016

Abstract

Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3MKCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m-2 and 431 mA m-2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.
Articolo in rivista - Articolo scientifico
bioelectrochemical systems
English
2016
82
1
297
307
AEM.02250-15
partially_open
Daghio, M., Vaiopoulou, E., Patil, S., Suárez Suárez, A., Head, I., Franzetti, A., et al. (2016). Anodes stimulate anaerobic toluene degradation via sulfur cycling in marine sediments. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 82(1), 297-307 [10.1128/AEM.02250-15].
File in questo prodotto:
File Dimensione Formato  
10281-94839.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF Visualizza/Apri
Applied and Environmental Microbiology-2015-Daghio-297.full.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/94839
Citazioni
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 62
Social impact