Let X be the unit circle bundle of a positive line bundle on a Hodge manifold. We study the local scaling asymptotics of the smoothed spectral projectors associated with a first order elliptic Töplitz operator T on X, possibly in the presence of Hamiltonian symmetries. The resulting expansion is then used to give a local derivation of an equivariant Weyl law. It is not required that T be invariant under the structure circle action, that is, T needn't be a Berezin-Töplitz operator.

Paoletti, R. (2015). Equivariant local scaling asymptotics for smoothed Töplitz spectral projectors. JOURNAL OF FUNCTIONAL ANALYSIS, 269(7), 2254-2301 [10.1016/j.jfa.2015.03.007].

Equivariant local scaling asymptotics for smoothed Töplitz spectral projectors

PAOLETTI, ROBERTO
2015

Abstract

Let X be the unit circle bundle of a positive line bundle on a Hodge manifold. We study the local scaling asymptotics of the smoothed spectral projectors associated with a first order elliptic Töplitz operator T on X, possibly in the presence of Hamiltonian symmetries. The resulting expansion is then used to give a local derivation of an equivariant Weyl law. It is not required that T be invariant under the structure circle action, that is, T needn't be a Berezin-Töplitz operator.
Articolo in rivista - Articolo scientifico
Positive line bundle, Toeplitz operator, eigenfunction asymptotic concentration, Hamiltonian action
English
2015
269
7
2254
2301
reserved
Paoletti, R. (2015). Equivariant local scaling asymptotics for smoothed Töplitz spectral projectors. JOURNAL OF FUNCTIONAL ANALYSIS, 269(7), 2254-2301 [10.1016/j.jfa.2015.03.007].
File in questo prodotto:
File Dimensione Formato  
JFA-2015.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/89146
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
Social impact