We examine maximum likelihood estimation procedures in multilevel models related to two-level hierarchically structured data. Usually, for fixed effects and variance components estimation, multivariate normal distribution is assumed. Here we consider for random effects multivariate exponential power distribution (MEP), which represents one of the possible generalizations of multivariate normal distribution. We examine robustness of maximum likelihood estimators under normal assumption when, indeed, random effects are MEP distributed. The study is conducted through MC simulation procedures.

Solaro, N., Ferrari, P. (2003). On parameters estimation procedures in multilevel models. In Atti del Convegno "Modelli Complessi e Metodi Computazionali Intensivi per la Stima e la Previsione" (pp.392-397). Venezia : Dipartimento di Statistica, Università Ca' Foscari di Venezia.

On parameters estimation procedures in multilevel models

SOLARO, NADIA;
2003

Abstract

We examine maximum likelihood estimation procedures in multilevel models related to two-level hierarchically structured data. Usually, for fixed effects and variance components estimation, multivariate normal distribution is assumed. Here we consider for random effects multivariate exponential power distribution (MEP), which represents one of the possible generalizations of multivariate normal distribution. We examine robustness of maximum likelihood estimators under normal assumption when, indeed, random effects are MEP distributed. The study is conducted through MC simulation procedures.
paper
multivariate exponential power distributions, MC simulation, ML and REML estimation
English
Convegno S.CO. 2003
4-6 Settembre, 2003
Atti del Convegno "Modelli Complessi e Metodi Computazionali Intensivi per la Stima e la Previsione"
2003
392
397
none
Solaro, N., Ferrari, P. (2003). On parameters estimation procedures in multilevel models. In Atti del Convegno "Modelli Complessi e Metodi Computazionali Intensivi per la Stima e la Previsione" (pp.392-397). Venezia : Dipartimento di Statistica, Università Ca' Foscari di Venezia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/8796
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact