A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of Mπ2Fπ2/2 with respect to the quark mass m in the chiral limit, where Mπ and Fπ are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass, and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use lattices generated by the Coordinated Lattice Simulation (CLS) group at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner relation. For the renormalization-group-invariant ratios we obtain [ΣRGI]1/3/F=2.77(2)(4) and ΛMS¯/F=3.6(2), which correspond to [ΣMS¯(2GeV)]1/3=263(3)(4)MeV and F=85.8(7)(20)MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.
Engel, G., Giusti, L., Lottini, S., Sommer, R. (2015). Chiral symmetry breaking in QCD with two light flavors. PHYSICAL REVIEW LETTERS, 114(11) [10.1103/PhysRevLett.114.112001].
Chiral symmetry breaking in QCD with two light flavors
ENGEL, GEORG;GIUSTI, LEONARDO;
2015
Abstract
A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of Mπ2Fπ2/2 with respect to the quark mass m in the chiral limit, where Mπ and Fπ are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass, and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use lattices generated by the Coordinated Lattice Simulation (CLS) group at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner relation. For the renormalization-group-invariant ratios we obtain [ΣRGI]1/3/F=2.77(2)(4) and ΛMS¯/F=3.6(2), which correspond to [ΣMS¯(2GeV)]1/3=263(3)(4)MeV and F=85.8(7)(20)MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.114.112001.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
130.66 kB
Formato
Adobe PDF
|
130.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.