We prove that the existence of a Mihlin-H\"ormander functional calculus for an operator $L$ implies the boundedness on $L^p$ of both the maximal operators and the continuous square functions build on spectral multipliers of $L.$ The considered multiplier functions are finitely smooth and satisfy an integral condition at infinity. In particular multipliers of compact support are admitted.

Wrobel, B. (2015). On the consequences of a Mihlin-Hörmander functional calculus: maximal and square function estimates [Altro].

On the consequences of a Mihlin-Hörmander functional calculus: maximal and square function estimates

WROBEL, BLAZEJ JAN
Primo
2015

Abstract

We prove that the existence of a Mihlin-H\"ormander functional calculus for an operator $L$ implies the boundedness on $L^p$ of both the maximal operators and the continuous square functions build on spectral multipliers of $L.$ The considered multiplier functions are finitely smooth and satisfy an integral condition at infinity. In particular multipliers of compact support are admitted.
Altro
Mathematics - Functional Analysis; Mathematics - Functional Analysis; 47A60, 42B25, 42B15
English
2015
arXiv:1507.08114
http://arxiv.org/abs/1507.08114v1
Wrobel, B. (2015). On the consequences of a Mihlin-Hörmander functional calculus: maximal and square function estimates [Altro].
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/85763
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact