The development of nanosystems applied to rapid and sensitive measurement of biomarkers in fluid samples is a current major goal in diagnostic biomedicine. In this article, we report the accurate and reliable detection of anti-HSA (human serum albumin) antibodies by protein-functionalized magnetic nanospherical probes due to the reversible alteration of their microaggregation state induced by protein antibody-specific interaction, sensed as changes in the T2 relaxation time of surrounding water molecules. Once the optimal parameters were adjusted, the method proved to be very sensitive, providing concentration- and time-dependent responses. Furthermore, we demonstrate that the developed immunoassay is able to quantitatively determine the biomarker concentration from T2 linear correlation, thereby supplying a rapid, yet accurate, assay with sensitivity in the femtomolar range. The high susceptibility and stability of these magnetic nanoparticles, as well as their accessible synthetic preparation, make these nanosensors a promising new tool for versatile and effective medical diagnostics.
Colombo, M., Ronchi, S., Monti, D., Corsi, F., Trabucchi, E., Prosperi, D. (2009). Femtomolar detection of auto-antibodies by magnetic relaxation nanosensors. ANALYTICAL BIOCHEMISTRY, 392(1), 96-102 [10.1016/j.ab.2009.05.034].
Femtomolar detection of auto-antibodies by magnetic relaxation nanosensors
COLOMBO, MIRIAM;PROSPERI, DAVIDE
2009
Abstract
The development of nanosystems applied to rapid and sensitive measurement of biomarkers in fluid samples is a current major goal in diagnostic biomedicine. In this article, we report the accurate and reliable detection of anti-HSA (human serum albumin) antibodies by protein-functionalized magnetic nanospherical probes due to the reversible alteration of their microaggregation state induced by protein antibody-specific interaction, sensed as changes in the T2 relaxation time of surrounding water molecules. Once the optimal parameters were adjusted, the method proved to be very sensitive, providing concentration- and time-dependent responses. Furthermore, we demonstrate that the developed immunoassay is able to quantitatively determine the biomarker concentration from T2 linear correlation, thereby supplying a rapid, yet accurate, assay with sensitivity in the femtomolar range. The high susceptibility and stability of these magnetic nanoparticles, as well as their accessible synthetic preparation, make these nanosensors a promising new tool for versatile and effective medical diagnostics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.