We derive some 1-D symmetry and uniqueness or non-existence results for nonnegative solutions of {-div(A(x)∇;u)=u-g(x)inR+Nu=0on}R+N in low dimension, under suitable assumptions on A and g. Our method is based upon a combination of Fourier series and Liouville theorems. © 2013 Elsevier Ltd.

Farina, A., Soave, N. (2013). Symmetry and uniqueness of nonnegative solutions of some problems in the halfspace. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 403(1), 215-233 [10.1016/j.jmaa.2013.02.048].

Symmetry and uniqueness of nonnegative solutions of some problems in the halfspace

SOAVE, NICOLA
2013

Abstract

We derive some 1-D symmetry and uniqueness or non-existence results for nonnegative solutions of {-div(A(x)∇;u)=u-g(x)inR+Nu=0on}R+N in low dimension, under suitable assumptions on A and g. Our method is based upon a combination of Fourier series and Liouville theorems. © 2013 Elsevier Ltd.
Articolo in rivista - Articolo scientifico
1-D symmetry for elliptic problems; Fourier series; Liouville theorems; Uniqueness for elliptic problems; Analysis; Applied Mathematics
English
2013
403
1
215
233
none
Farina, A., Soave, N. (2013). Symmetry and uniqueness of nonnegative solutions of some problems in the halfspace. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 403(1), 215-233 [10.1016/j.jmaa.2013.02.048].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/78381
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
Social impact