Multi-risk assessment is becoming a valuable tool for land planning, emergency management and the deployment of mitigation strategies. Multi-risk maps combine all available information about hazard, vulnerability, and exposed values related to different dangerous phenomena, and provide a quantitative support to complex decision making. We analyse and integrate through an indicator-based approach nine major threats affecting the Lombardy Region (Northern Italy, 25 000 km2), namely landslide, avalanche, flood, wildfire, seismic, meteorological, industrial (technological) risks; road accidents, and work injuries. For each threat, we develop a set of indicators that express the physical risk and the coping capacity or system resilience. By combining these indicators through different weighting strategies (i.e. budgetary allocation, and fuzzy logic), we calculate a total risk for each threat. Then, we integrate these risks by applying AHP (Analytic Hierarchy Process) weighting, and we derive a set of multi-risk maps. Eventually, we identify the dominant risks for each zone, and a number of risk hot-spot areas. The proposed approach can be applied with different degree of detail depending on the quality of the available data. This allows the application of the method even in case of non homogeneous data, which is often the case for regional scale analyses. Moreover, it allows the integration of different risk types or metrics. Relative risk scores are provided from this methodology, not directly accounting for the temporal occurrence probability of the phenomena.

Lari, S., Frattini, P., Crosta, G. (2009). Integration of natural and technological risks in Lombardy, Italy. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 9, 2085-2106.

Integration of natural and technological risks in Lombardy, Italy

LARI, SERENA;FRATTINI, PAOLO;CROSTA, GIOVANNI
2009

Abstract

Multi-risk assessment is becoming a valuable tool for land planning, emergency management and the deployment of mitigation strategies. Multi-risk maps combine all available information about hazard, vulnerability, and exposed values related to different dangerous phenomena, and provide a quantitative support to complex decision making. We analyse and integrate through an indicator-based approach nine major threats affecting the Lombardy Region (Northern Italy, 25 000 km2), namely landslide, avalanche, flood, wildfire, seismic, meteorological, industrial (technological) risks; road accidents, and work injuries. For each threat, we develop a set of indicators that express the physical risk and the coping capacity or system resilience. By combining these indicators through different weighting strategies (i.e. budgetary allocation, and fuzzy logic), we calculate a total risk for each threat. Then, we integrate these risks by applying AHP (Analytic Hierarchy Process) weighting, and we derive a set of multi-risk maps. Eventually, we identify the dominant risks for each zone, and a number of risk hot-spot areas. The proposed approach can be applied with different degree of detail depending on the quality of the available data. This allows the application of the method even in case of non homogeneous data, which is often the case for regional scale analyses. Moreover, it allows the integration of different risk types or metrics. Relative risk scores are provided from this methodology, not directly accounting for the temporal occurrence probability of the phenomena.
Articolo in rivista - Articolo scientifico
multi-Risk, multi-Hazard, Indicators, vulnerability
English
2009
9
2085
2106
none
Lari, S., Frattini, P., Crosta, G. (2009). Integration of natural and technological risks in Lombardy, Italy. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 9, 2085-2106.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/7714
Citazioni
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
Social impact