We prove some results about the first Steklov eigenvalue $d_1$ of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality \cite{fichera} may be extended to a wide class of nonsmooth domains. Next, we study the optimization of $d_1$ for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball.

Bucur, D., Ferrero, A., Gazzola, F. (2009). On the first eigenvalue of a fourth order Steklov problem. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 35(1), 103-131 [10.1007/s00526-008-0199-9].

On the first eigenvalue of a fourth order Steklov problem

FERRERO, ALBERTO;
2009

Abstract

We prove some results about the first Steklov eigenvalue $d_1$ of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality \cite{fichera} may be extended to a wide class of nonsmooth domains. Next, we study the optimization of $d_1$ for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball.
Articolo in rivista - Articolo scientifico
shape optimization
English
2009
35
1
103
131
none
Bucur, D., Ferrero, A., Gazzola, F. (2009). On the first eigenvalue of a fourth order Steklov problem. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 35(1), 103-131 [10.1007/s00526-008-0199-9].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/7703
Citazioni
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 35
Social impact