We prove that minimizers for subcritical second-order Sobolev embeddings in the unit ball are unique, positive and radially symmetric. Since the proofs of the corresponding first-order results cannot be extended to the present situation, we apply new and recently developed techniques.

Ferrero, A., Gazzola, F., Weth, T. (2007). Positivity, symmetry and uniqueness for minimizers of second-order Sobolev inequalities. ANNALI DI MATEMATICA PURA ED APPLICATA, 186(4), 565-578 [10.1007/s10231-006-0019-9].

Positivity, symmetry and uniqueness for minimizers of second-order Sobolev inequalities

FERRERO, ALBERTO;
2007

Abstract

We prove that minimizers for subcritical second-order Sobolev embeddings in the unit ball are unique, positive and radially symmetric. Since the proofs of the corresponding first-order results cannot be extended to the present situation, we apply new and recently developed techniques.
Articolo in rivista - Articolo scientifico
equazioni, differenziali
English
2007
186
4
565
578
none
Ferrero, A., Gazzola, F., Weth, T. (2007). Positivity, symmetry and uniqueness for minimizers of second-order Sobolev inequalities. ANNALI DI MATEMATICA PURA ED APPLICATA, 186(4), 565-578 [10.1007/s10231-006-0019-9].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/7699
Citazioni
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
Social impact